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INT. J. REMOTE SENSING, 1993, voL. 14, No. 2, 345-363

Characterization of spatial statistics of distributed targets in SAR
data

E. RIGNOT and R. KWOK

Jet Propulsion Laboratory, California Institute of Technology,
4800 Oak Grove Drive, Pasadena, California 91109, U.S.A.

{ Received 27 March 1991, in final form 4 September 1991)

Abstract. A method for the analysis of spatial statistics in multifrequency
polarimetric Synthetic Aperture Radar (SAR) data is presented. The objective is
to extract the intrinsic variability of the target by removing the variability from
other sources. Three sources which contribute to the spatial variability in the
returned power from a distributed target are modelled, they are (1) image speckle,
(2) system noise, and (3) the intrinsic spatial variability of the target or texture.
Speckle and system noise are modelled based on an understanding of the physics
of the SAR imaging and processing systems. Texture is modelled as a random
variable which modulates the mean returned power from a distributed target. An
image model which accounts for all three sources of variability is presented. The
presence of texture is shown to increase the image variance-to-mean square ratio
and to introduce deviations of the image autocovariance function from the
expected SAR system response. Two textural parameters, the standard deviation
of texture and its autocovariance coefficient, are examined. This statistical
approach is illustrated using sea-ice SAR imagery acquired by the Jet Propulsion
Laboratory three-frequency polarimetric airborne SAR. Textural modulation of
the signal has been detected in the imagery. Results show that for different sea-ice
types the spatial statistics seem to vary more across frequency than across
polarization and the observed differences increase in magnitude with decreasing
frequency. The results also suggest the potential of this approach for discrimina-
tion of various sea-ice types and open water in single frequency, single polariza-
tion SAR data. Correlation of the spatial statistics to field measurements will be
important for the verification of these observations.

1. Introduction

The importance of characterizing the spatial variability of the backscattered
radar signal from a remotely-sensed scene has been shown to be useful for the
analysis of SAR data by many investigators (e.g., Laur 1989, Ulaby er al. 1986,
Kouyate 1984, Lyden et al. 1984). Yet, more attention needs to be given to the
effects of speckle noise, system noise, spatial resolution and incidence angle on the
measurement of these statistics, especially if the goal is to develop an invariant
measure which could be utilized with multi-temporal imagery.

Spatial statistics of natural targets are difficult to characterize in digital SAR
imagery as the intrinsic spatial variability of the radar signal is strongly modulated
by image speckle. Spatial statistics are also corrupted by system noise, especially in

tPlease, send all correspondence to: Dr. Eric Rignot, Jet Propulsion Laboratory,
California Institute of Technology, Mail Stop 300-235, 4800 Oak Grove Drive, Pasadena,
CA 91109, U.S.A. Phone: (818) 354-1640. Fax: (818) 393-6943.
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the case of spaceborne systems where the signal-to-noise ratio is significantly lower
than that for airborne systems. To obtain an absolute measure of the intrinsic spatial
variability of the target it is necessary to remove the spatial modulation of the signal
due to speckle and system noise. The measurements also need to be repeated at
various incidence angles and at various spatial resolutions; this is because different
scattering mechanisms may contribute to the observed backscatter at different
incidence angles and different structural features may be revealed at different spatial
resolutions and/or at various wavelengths.

In this context, techniques for quantitative analysis of spatial statistics based on
post-processed SAR data, e.g., using a locally adaptive smoothing filter such as
those of Lee (1981) or Frost er al. (1982) are sub-optimal since they modify the
spatial resolution and in some cases the statistics of the data. Similarly, popular
techniques originally designed for optical imagery such as they Grey Level Co-
occurrence Matrix method (Haralick et al. 1973) are not well suited to the analysis
of SAR imagery as they do not separate the intrinsic variability of the signal from
the variability due to image speckle and system noise.

In this article, an approach is discussed which models three different sources
which contribute to the spatial variability of the data: 1. image speckle, 2. system
noise and 3. texture or intrinsic signal variability. The spatial statistics are extracted
based on this model. Speckle and system noise are modelled based on the
understanding of the physics of SAR imaging and processing. Texture is modelled as
a random variable which modulates the mean returned power from a locally
homogeneous area. The resulting composite image model is presented in §2. Based
on this model, two textural parameters are estimated from the image data: 1. the
variance of texture and 2. the autocovariance coefficient of texture. The sensitivity of
these parameters to the SAR system impulse response, system noise, and the number
of sample elements used for their estimation is discussed and the approach is applied
to the analysis of spatial statistics of sea-ice in three-frequency polarimetric SAR
data acquired by the NASA/JPL airborne SAR instrument.

2. Statistical image model and assumptions

In this approach, texture or the intrinsic spatial variability of the signal is
modelled as a random modulation of the mean returned power from a distributed
target. Let (i, j) denote the location of a pixel site in the image plane in pixel
spacings, where i is an index in the range direction and j is an index in the azimuth
direction. After reception, processing and detection of the radar signal, the power P
of the radar return at pixel site (i, j) of region / is

P 1 =[INT, j+<nD1S: ; m

where { > denotes the expected value, [ is the backscattered power from the target,
n is the additive system noise power, T is the texture random variable, and S is the
image speckle random variable. T and § are independent normalized random
variables (i.e., {T)»=1; {§)=1), with stationary statistics, i.e., the mean is indepen-
dent of the position and the autocorrelation function is translation invariant. The
variance-to-mean square ratio of speckle (62/<5>?) is equal to 1/N where N is the
equivalent number of looks of the SAR data. The system noise power {n,> is
independent of the signal, I, texture, T, and speckle, S, but varies with slant-range.
The speckle random variable §; ; does not depend on the region / of the image plane,
and I has stationary statistics in each region /. A similar model was used in Ulaby e¢
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al. (1986) although the contribution of system noise was not accounted for in this
work.

Equation (1) defines a quasi-homogeneous image model as T modulates the
mean backscattered power (I}, of a locally homogeneous region indexed /. The
model implicitly assumes that image speckle has the statistical characteristics of
being multiplicative. In certain situations, this assumption may not be appropriate.
The multiplicative model breaks down in the presence of dominant single scatterers
(e.g., man-made structures) or when the autocorrelation function of the backscatter
cross-section of the target does not vary smoothly from one resolution cell to the
next (Madsen 1986).

The image model (1) also assumes that system noise is modulated by image
speckle in the same manner as the signal. In effect, although system noise is
composed of a suite of noise sources that occur at different stages of the SAR
imaging and processing systems, its bandwidth in the processed data is usually
limited by the SAR correlator bandwidth, and thus signal and system noise have
nearly the same correlation properties.

Using (1) it is verified that the expected value of the detected power at pixel
location (1,7} is the sum of the mean backscattered power and of the system noise
power

<Pi,j,i>=<l>!+<ni>- 2

2.1. Variance of texture
By computing the image variance using (1), the variance of texture % in region /
is obtained as

NV,

mr_l

(N+ 1)(—<1>' )2

<P>

o=

€)

where V,, is the image variance-to-mean square ratio, i.e., V,,=a%/{P>?, of is the
image variance, and N is the equivalent number of looks. As previously defined, N is
a first-order statistical characteristic of image speckle. It does not depend on the
distribution of the backscatter cross-section of the imaged surface and is an intrinsic
characteristic of the SAR imaging and processing systems. In single-look SAR
intensity data, N is equal to one. In multi-look intensity data, N is computed using
(Zelenka 1976)

"7 Pk, )
N _pan @

()

where n is the number of incoherently averaged samples used to produce the
multi-look samples and g5 the autocovariance coefficient of speckle. When the n
samples are independent, N equals #; but in most current SAR processors the
selected samples are slightly correlated (due to sampling of the data) and the
resulting equivalent number of looks N is less than n. An overestimated value of N
results in an overestimated value of the variance of texture (3). To properly estimate
N, ps must be known. Its estimation is discussed in §3.3.
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Equation (3) measures the increase in the image variance-to-mean square ratio
compared to the speckle variance-to-mean square ratio, i.e., 1/N. When the data are
composed of pure speckle, V,, is 1/N, and % is zero. In the presence of texture, V,,
becomes larger than 1/N, and the ratio increase is proportional to ¢2.

2.2. Autocovariance coefficient of texture

As the image field is assumed to be stationary in region /, the spatial correlation
between two points separated by p pixels in range and ¢ pixels in azimuth only
depends on (p, q) and not on the absolute position of the points in the image plane.
Using (1), the autocorrelation function of the image power P, denoted R,, is

ps(p, @)
N )

Rolps @) =I5 0 p, q)o%+<P>2)(l . )

Assuming o is non-zero, and using Ru(p, ¢) = pp(p, ¢)oi + {P>?, the autocovariance
coefficient of texture is deduced as

ps(p, )
1 pP(p’ q)er_T

= 6
o D=5 | e ) <7 ©
N (P>?
Using (3) and (4), (6) becomes

N+] pP(ps 51) er_pS(f:; q)
(r, Q= 7
pr(p, 9) NVor—1 | 4 PsP9) @)

n

System noise does not appear in (7) as expected since its presence does not affect the
correlation properties of the image field in our model. Equation (7) shows py
measures the local broadening of the image autocovariance coefficient pp from the
expected autocovariance coefficient of speckle pg. pr varies between 0 and 1. The
minimum value corresponds to a point where texture is highly decorrelated; the
maximum value, pr=1, corresponds to a point with high correlation.

2.3. Other statistical models

The image model presented in (1} views texture as a random modulation of the
backscatter cross-section (proportional to {I),) of the target. An alternative
description of the observed spatial variability of the signal can be obtained using
correlated K-distributions. In that case, texture results from the spatial variability of
the number of scatterers per resolution cell contributing to the total power return.
The modelling approach is described in appendix D and the first and second order
statistical characteristics of the signal are discussed and compared to those from our
model.

3. Estimation of o, and g,
The estimation accuracy of the two textural parameters given in (3) and (7)
depends on the number of sample elements used for the computation of the local
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image spatial statistics, and on the estimation accuracy of the autocovariance
coefficient of speckle and of the system noise power level.

3.1. Effect of window size

Typically, a large number of samples is required to estimate the image variance
and the image autocovariance of a SAR signal to a high level of confidence. In this
section, the sensitivity of these parameters on the window size is discussed.

Using sampling distributions, Kendall and Stuart (1963) derived a general
expression for computing the standard error for estimation of the V,,, ratio and the
autocovariance coefficient pp for a given window size based on the mth order
statistics of the data. To examine the effect of window size on the standard error, an
exponential distribution of the intensity is used for the one-look data and a Gamma
distribution is used for N-look data. Although other distributions exist that model
the data more accurately in some cases, the standard errors computed from these
distributions will be assumed to be reasonably close (at least to first-order) to errors
computed from more accurate distributions. In the limit of a very large equivalent
number of looks, a Gaussian distribution of the intensity about its mean is used.
Additional details are given in appendices A and B.

The percentage error of the V,, ratio versus window size (assuming a square
window) is plotted in figure | for one-look data and N-look {N infinite) data. The
result indicates that in order to estimate V,, with a high degree of confidence a
window size larger than 20 pixel by 20 pixel elements is required.

The percentage error in the estimation of the image autocovariance coefficient
versus window size is plotted in figure 2 for different values of pp using one-look
data. When p, is large (i.e., larger than 0-6), a window size larger than 20 pixel by 20
pixel elements produces an estimation error less than 10 per cent. When p, is small,
the estimation noise is dominant and a large window size (i.e., larger than 50 by 50
elements) is necessary to improve the estimation. In digital SAR imagery, small
values of pp are commonly measured for a displacement of only a few pixels because
of the strong modulation of the signal by image speckle which is weakly correlated
due to sampling rates. Hence, only the first few values of the autocovariance
coefficient can be estimated using a reasonable number of points. In the case of an
infinite number of looks, the standard error is shown in figure 3. The error values are
close to those given in figure 2, indicating that the gain in estimation accuracy of the
autocovanance coefficient is small when images with large N are used instead of one-
look images.

These standard errors in the determination of the image local statistics can be
used to estimate the estimation errors of g and p; for a given window size.
Equation (3) shows the error in oZ is proportional to the error in ¥, (assuming N is
known). Equation (7) shows the error in p; is large when ¥, is close to /N (i.e.,
little textural variability), otherwise is proportional to the error in p,.

3.2. Effect of system noise

System noise is composed of a mixture of noise sources such as thermal noise
from the receiver electronics, bit-error rate from transmission, quantization noise,
side lobe noise, etc. It affects the statistical characteristics of the signal and thereby
biases the measurement of textural features, As mentioned in § 2, the autocovariance
coefficient p, is in general not affected by the presence of system noise. However, if
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the contribution from system noise is ignored, o1 will be estimated with a systematic
error given by

Acy=—1/(1+SNR) (8)

where SNR denotes the signal-to-noise ratio, i.e. SNR={I>/{a)>. The error is 100
per cent for a SNR performance of 0dB. A 10 per cent error level is reached for a
SNR performance less than 10dB. In this paper, observations of textural variability
of the signal are based on airborne SAR data from the NASA/JPL DC-8 SAR
instrument where the system noise power level is low. The noise equivalent
backscatter cross-section (the level at which the target backscattered power is
equivalent to the noise power) is below —40dB at C-, L-, and P-band frequencies
between 30° and 60° incidence angle, i.e., more than {0dB below the expected
backscatter signatures of many sea-ice types at the currently observed frequencies,
and therefore system noise can be neglected in the analysis. For comparison, the
noise equivalent backscatter cross-section of the SAR data from the European First
Earth Resources SAR Satellite E ERS-1 is expected to be only — 18dB. In that case
the influence of system noise on the spatial statistical characteristics of the SAR
signal must be considered during analysis of the data. This aspect is important as
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Figure 1. Estimation error of the image variance-lo-mean square ratio o2/{P)? for single
{({-look) and multi-look (N-look) SAR data versus the size (in pixel samples) of a
square window. ’
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Figure 2. Estimation error for some values of the image autocovariance coefficient p, for
single look SAR data versus the size of a square window.

O

many conclusions drawn from the observation of airborne SAR data cannot be
quickly applied to the prediction of observations from spaceborne SAR data if
system noise is not considered.

3.3. Effect of image speckle

The approach presented in this paper relies on our capability to correctly
estimate the autocovariance coefficient of speckle, i.e., estimate the speckle spec-
trum. Considerable work on speckle spectrum estimation has already been done in
the field of SAR oceanography and estimation of wave spectra (Monaldo and
Lyzenga 1986, Beal er al. 1983). In Vachon and Raney (1989} the speckle spectrum is
estimated by intentionally defocusing the processor. Raney (1983) showed that the
speckle spectrum is only a function of system coherence and not a function of scene
coherence {i.e., texture) or system focus. Another method is proposed in Cordey and
Macklin (1989) using SAR complex data as in that case the autocorrelation function
of the complex amplitudes is proportional to the autocovariance coefficient of
speckle and does not depend on scene coherence and system focus. Artifacts in the
autocovariance coefficient of speckle were mentioned in this paper which have been
explained in Rignot and Chellappa (1991) who developed a segmentation technique
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for SAR complex data. Ulaby et al.{1986) used the image autocovariance coefficient
of a patch of calm water with no apparent textural variability to estimate the
autocovariance coefficient of speckle. As shown ecarlier, large window sizes are
required for accurate estimation, and water, when present in the imagery, is not
always textureless due to surface-wind effects. Therefore, this technique may
sometimes not provide reliable estimates of this function.

In our study, we insist that the SAR system is well focused. Clearly, if the SAR
system is defocused, the study of intrinsic texture is uscless. To estimate pg, we fit a
theoretical model with measurements of the actual spatial resolution of the SAR
system. In effect, in the presence of a well focused SAR system, pg is equal to p, the
autocorrelation coefficient of the SAR system incoherent impulse response. It can be
shown (e.g., Barber 1985) that the SAR impulse response function that results from
the SAR correlation process is the Fourier transform of the synthetic aperture of the
SAR instrument. In general, this aperture is a rectangular window, and p, is a
two-dimensional sinc function (with sinc(x)=(sin (zx))/(nx)). Yet, additional pro-
cessing is usually performed to reduce the amplitude of the side lobes of the impulse
response for enhancement of data quality. The operation may be done both in range

N-LOOK
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Figure 3. Estimation error for some values of the image autocovariance coefficient p, for
infinite-look SAR data versus the size of a square window.
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and azimuth, sometimes using different filters. The actual SAR system impulse
response is therefore proportional to the Fourier transform of the weighted synthetic
aperture. Similarly, during the selection (usuvally in the frequency domain) of
independent samples used to generate multi-look intensity imagery, various window-
ing functions (or pass-band filters) are used that produce an impulse response equal
to the Fourier transform of the weighted aperture. In the case of the NASA/JPL
DC-8 SAR the synthetic aperture can be modelled as a rectangular window with
amplitude weighting using a Hamming filter in range and a Kaiser filter in azimuth.
Multi-look filtering (non-coherent summation of samples in the time domain) uses
simple sinc filters. The corresponding analytical model of the system coherent
impulse response is given in appendix C. The model only depends on the spatial
resolution of the data in range and azimuth. The values used for analysis of sea-ice
data are based on measurements of the mean resotution of the SAR instrument from
corner reflectors of known backscatter characteristics (Freeman 1990). Again, the
accuracy of the resolution estimates affects the quality of the model. Typically, the
range resolution R, of the NASA/JPL airborne SAR is known with 10 per cent
accuracy which results in a 10 per cent error for p,. The same observation applies to
the determination of the equivalent number of looks. Experimentally, in the case of
sea-ice SAR data, the contribution of this error was found to be of second order
compared to the observed variability of the textural measurements across frequency
and across different sea-ice types.

4. Analysis of spatial statistics in sea-ice SAR data

Three-frequency polarimetric sea-ice SAR data were acquired by the NASA/JPL
aircraft SAR during the March 1988 Alaska campaign over the Beaufort and
Chuckchi seas. The airborne instrument operates at C-, L-, and P-bands (5-656 cm,
23-98 cm, and 68-13 cm wavelengths) simultanecusly, and obtains fully polarimetric
information by transmitting and receiving a combination of linear polarizations:
HH, HV, VH, and VV, where, for example, HV means H-polarization is transmitted
and V-polarization is received by the antenna (Held e al. 1988). Three scenes from
the Beaufort sea were selected to illustrate the technique of analysis of spatial
statistics. The images are four-look intensity data where multi-looking was per-
formed in azimuth, i.e., not reducing spatial resolution in range. The equivalent
number of looks, computed using (5), is 3-1, 3-4 and 35 at C-, L-, and P-band
frequencies respectively. Spatial resolutions at those frequencies are respectively
11-1m, 10-7m and 11-2m in slant-range and 18-0m, 16:0m, 15-6 m in azimuth. Pixel
spacing of the digitized images is 6:66 m in slant-range and 12-1 m in azimuth at all
three frequencies.

Five different sea-ice types were identified by visual inspection of the data. In
decreasing order of radar backscatter cross-section, they are: (1) multi-year ice
(MY), which is old ice that survived one or more summer melts, typically several
metres thick and of low salinity; (2) first year rough ice (FYR), less than a metre
thick, with a lot of ridging and a rough surface; (3) first year smooth ice (FYS),
about one meter thick with a smooth surface; (4) frozen lead ice (FL), newly formed
ice, a few centimetres thick; and (5) open water. A three-frequency colour overlay of
one of the selected images is shown in figure 4. P-band is coded in red, L-band in
green, and C-band in blue. The saturation of each colour is proportional to the
intensity of the signal at that frequency and the average intensities are set to the
middle of the display dynamic range. Figure 5 shows the intensity images obtained
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Figure 4. Colour overlay of multi-frequency SAR data of sea-ice acquired by the NASA/
JPL aircraft SAR at P- (Red), L- (Green) and C- (Blue) band frequency. The image is
1024 pixels by 750 pixels. in size. The radar moved from left to right and the
illumination direction is from the top. The letterings on top of the colour overlay
indicate the different sea-ice types identified in the scene. (MY) is multi-year ice; (FYR)
is first year rough sea-ice; (FYS) is the first year smooth sea-ice; and (FL) is frozen lead
ice.

at those three frequencies for different polarization configurations of the SAR
antenna, respectively HH-polarization, VV-polarization, and HV-polarization. The
image is 1024 pixels in azimuth (left to right in the figure) and 750 pixels in range
(top to bottom in the figure). The letterings on top of the colour overlay indicate the
different sea-ice types that have been identified in the scene. Multi-year ice (MY)
patches show a characteristic much brighter return than first year ice at C-band
(blue) at this time of the year, and correspond to more rounded geometrical shapes.
Deformed first year ice of different roughnesses and thicknesses is also present in the
imagery (FYR and FYS). Pressure ridges are clearly visible in first year ice as bright
linear features (yellow linear features in figure 5), especially at L- and P-bands. At
those latitudes and during the winter season, open water is difficult to observe and
depending on conditions only appears in open leads for a few hours before it freezes.
Water was only positively identified in one of our SAR images based on-correlative
passive microwave observations and visual inspection of the data.

Several sample windows were sclected within the imagery with a number of
elements varying from 325 (open leads) to 3200 pixels (multi-year ice floes). Two
textural characteristics were computed for each window: the standard’deviation of
texture o5 using (3), and the autocovariance area of texture in range using (7) and
defined as
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2

4= o1(p, 0 ©
W]

The integrated area A, was found to be a better discriminant than the autocovar-

iance length pr(1) since the correlation length tends to be noisier than the integrated

measure. The integration is limited to two pixels because of the limited accuracy in

pp for larger displacements (see above). Ay varies between 0 {(pr=0) and 2 (pr=1).

Il B Y

Pa N
4, Fis
s

Figure 5. Multi-frequency and multi-polarization SAR data of sea-ice acquired by the
NASA/JPL aircraft SAR at P- (top), L- (middle), and C- (bottom) band frequencies.
From left to right, amplitude data display obtained using an HH-polarization, a VV-
polarization, and an HV-polarization (also see bottom right corner of picture for
reference). The transverse white line at P-band corresponds to a processing artefact. in
each image, the radar moved from left to right and the illumination direction is from
the top.
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Figure 6. Standard deviation of texture (o) and autocovariance area of texture (A;) versus
the incidence angle for multiyear sea-ice at P-, L- and C-band frequencies and
VV-polarization.

The first case corresponds to a textured arca where the data is highly uncorrelated,
whereas the second case indicates a smooth homogeneous surface with little
backscatter variation.

Textural features extracted in azimuth were found to be similar to those obtained
in range. Since spatial resolution i1s more stable in range than in azimuth and of
comparable order of magnitude, only the results obtained in slant-range are
considered in the discussion. .

The effect of incidence angle on the textural measurements was first examined
using multi-year ice and first year smooth ice as they were the only sea-ice types
systematically present across the entire swath in our data. The results shown in
figure 6 indicate that the variability of these measurements with the incidence angle
(between 35° and 55°) is insignificant compared to the observed within-class
variability of the measurements.

Plots of A; vs oy for the different sea-ice types at various frequencies and
polarizations are shown in figures 7 and 8. The limiting case, A;=0-85 which .
corresponds to pp= pg, is never reached indicating that only a broadening of the
image auto-covariance coefficient due to texture is observed in the data set.

The results plotted in figure 7 show little variability of the textural characteristics
between HH- and VV-polarizations at L-band. The same observation can be made
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at P- and C-bands (not shown here). Therefore, the spatial statistics seems to be
similar across polarization. Only frozen lead ice shows some textural variability
across polarization. A possible explanation is that the observed areas are not locally
homogeneous and are composed of a mixture distribution of various sea-ice types
(ridges in formation, smooth areas, rough areas, etc.) that have different backscatter
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Figure 7. Autocovariance area of texture (A;) versus the standard deviation of texture (o)
at L-band frequency for multi-year sea-ice (MULTIYEAR), first year rough (FYR),
first year smooth (FYS) and frozen lead (FROZENLEAD). (@) VV-polarization; ()
HH-polarization.
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Figure 8. Autocovariance area of texture (A ) versus the standard deviation of texture (o)
for multi-year sea-ice (MULTIYEAR), first year rough (FYR), first year smooth
(FYS), frozen lead (FROZENLEAD) and open water (WATER); at VV-polarization
and (e) C-band frequency; (b) L-band frequency; and (¢) P-band frequency.

characteristics and polarization behaviour, thereby introducing a spatial variability
of the signal that is polarization dependent.

Figure 8 shows the average results obtained at VV-polarization and L-, P- and
C-bands. Error bars represent the standard deviation of each measurement. At C-
band (figure 8 (a)) o is relatively small {about 0-3) and A is large. Both features
indicate a small random modulation of the signal and rather spatially homogeneous
backscatter characteristics. The data set does not suggest texture to be a good
discriminant at this frequency. At L-band (figure 8 (#)), texture is more pronounced
as g 15 higher and less correlated as A4 is lower. The trend continues at P-band
(figure 8(c)), a longer wavelength, indicating that o consistently increases and Ay
decreases with increasing wavelength. A possible explanation of these observations is
that as the wavelength increases and the radar penetrates deeper into the ice the
spatial distribution of backscatter cross-section becomes less homogeneous. This
varying degree of homogeneity may also be related to the size of the resolution cell, a
fact pointed out by Yueh er ol (1989) in their study of the first order statistical
characteristics of multi-frequency forestry data. In the NASA/JPL aircraft SAR
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data the size of the resolution cell is kept nearly constant (between 10-7 and 11-2m)
across frequency. Hence, one resolution cell is about 120 wavelengths wide at C-
band, 30 wavelengths at L-band, and 10 wavelengths at P-band. As the number of
scattering elements per resolution cell is typically proportional to the number of
wavelengths per resolution cell, any variability in the number of scatterers per
resolution cell will have a more pronounced effect (i.e., fluctuations in the observed
return) on the signal at longer wavelengths than at smaller wavelengths. This effect
correlates well with the observed textural measurements.

Textural measurements vary differently with various sea-ice types. Open water
has a ¢; which remains fairly constant across frequency, indicating a smooth
surface. However, A, drops unexpectedly from almost 2 at C-band (smooth surface)
to 0-8 at P-band. We do not have an explanation for this behaviour and further
investigation is required. On the other hand, the correlation of texture remains
constant in frozen leads and first year rough. A possible explanation is the presence
of pressure ridges in the ice. The spatial distribution of these ridges does not vary
with frequency and hence the correlation length of the signal tends to remain nearly
constant.

Multi-year ice is consistently less textured than first year ice as o is smaller. The
textural signature of open water is also significantly different from that of first year
ice which indicates that texture may be a useful discriminant for single polarization,
single frequency SAR data as it is difficult to separate newly formed ice from open
water using tonal information alone. At C-band, the differences in signatures are not
statistically significant, but at L- and P-bands separability of the measurements is
more clear. Note that o, alone would not separate these ice types and second order
statistics (4y) are important.

5. Conclusions

A statistical approach to the analysis of spatial statistics in polarimetric multi-
frequency SAR data was presented. This approach quantifies the random spatial
variability of natural targets by measuring the characteristics of its first and second
order spatial statistics after the variability due to image speckle and system noise has
been removed. This approach was illustrated using sea-ice imagery acquired by the
NASA/JPL aircraft SAR.

Spatial statistics in sea-ice SAR imagery, based on the extracted statistics, reveal
that a textural modulation of the signal can be detected and is more apparent at
longer wavelengths (23-98 cm to 66-8 cm) than at shorter wavelengths (5-6.cm) and
the statistics do not vary significantly with the polarization configuration of the
radar antenna and the incidence angle. Good discrimination between sea-ice types
that are not well separated using tonal information alone was observed in some
cases, especially at longer wavelengths, showing that spatial statistics contain useful
discriminative information about the scattering characteristics of sea-ice. In order to
verify these measurements and relate the SAR observation to ice scattering physics,
in-situ sea-ice experiments need to systematically include observations and measure-
ments of the spatial variability of the backscatter characteristics of various ice-floes.
As multi-resolution SAR data of sea-ice were not available the influence of spatial
resolution on spatial satistics could not be quantified. In the case multi-year ice, finer
resolution would be especially interesting since it would reveal the influence of melt
ponds on the spatial statistics.



360 E. Rignof and R. Kwok

Acknowledgments

The authors would like to thank the people from the AIRSAR team at the Jet
Propulsion Laboratory who operated the imaging polarimeter and processed the
data used in this paper. This work was carried out at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with National Aeronautics and
Space Administration.

Appendix A. Estimation error of the image variance-to-mean square ratio

If ¢ and p denote, respectively, the estimate of the image standard deviation and
the estimate of the image mean power, the variance of the estimate of their ratio is
given by Kendall and Stuart (1963) as, for a sample of size # (first order),

AN @—2 Var (o) Var(u)_ Cov (o, 1)
var (ﬁ)‘[mJ [<a>2 T T s ] (19

where Cov (x, y) is the covariance of x and y, and Var(x) the variance of x, and y;
the ith order moment of the power. Computation of these moments using a
Gamma-distribution of the power leads to

o\ _(N+1)
2AN+1 '
Var (V,,.) z% (12)

where N is the equivalent number of looks of the SAR data.

Appendix B. Estimation error of the image autocovariance coefficient
If pp denotes the estimate of the image autocovariance coefficient, its variance is
given by Kendall and Stuart (1963) as

2
p [ Haz 1 (Hao | Hoa H22 U3y U3
Var (pp)=—| =+ <{—+—5+2 }— + (13)
P e, 4 H3o 52 Haoloz HitHzo HirHoz
where p is the true value of the autocovariance coefficient (i.e., p=pu,,//(i20Hz0)):

and p; the ith and ij order moment of the reduced power (e,
=[Py —1p, ) D{[P2— tpy}?). We have (Goodman 1975)

CPYPLY=pp it Fo(—i, =), 1, pp) (14)

where ,F, is a Gaussian hypergeometric function, leading to

Var (p) =1 [1 — pP2[1 + 69+ 20%). (15)

For a Gaussian distribution of the power about its mean value, the variance is
(Kendall and Stuart 1963)

]
Var (pp)=— 11 —p*. (16)

Appendix C. Analytical model of the SAR impulse response function
Aperture weighting in range uses a Hamming window, and multi-looking is done
in azimuth using sinc filters. The resulting impulse response for small squint angles is
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h(m, n)=hg(m)hz(n) an
with
s 32 4y (sine (am 2% : S _
hg(m)=1y, sinc (nm RR)+y2(smc (nm RR+1E)+smc (nm R, n))
hy(n)=sinc (nn S—z) (18)
R;

where sp and Ry are respectively the sample spacing and the spatial resolution in
slant-range, s; and R are the same quantities in azimuth, y, ~1-073, and y, x~0-457.

Appendix D. Textural variability from K-distributions

In the traditional approach for modelling of the distribution function of speckled
image data, a random walk model is used (Goodman 1975). In the limit of an
infinite number of steps in the random walk, the resulting statistics of the complex
amplitude field are circular Gaussian (central limit theorem). However, studies by
Jakeman and Pusey (1976) revealed that if the number of steps is itself a random
variable, even in the limit of a very large number of scatterers, the resulting statistics
are not necessarily Gaussian. As a result, the higher order moments of the data have
different predicted values, and comparisons with experimental data indicate that in
several cases K-distributions better describe the observed statistics (Jakeman and
Pusey 1976, Jakeman 1980, Oliver 1986, Yueh et al. 1989).

Jakeman (1980) studied the first order statistics of one of these limit distributions
using a negative binomial distribution for the number of random steps

(N/o)"

_rN+a—1 _ NI
PN—CN (1+N/a)N+a (]9)

where a is a positive parameter, and N is the mean number of random steps. The V,,
ratio of a one-look K-distribution is (2/a+ 1). Comparison with (3) indicates that 2
is equivalent to 1/a. When « is infinite, the amplitude of the signal is Rayleigh
distributed and ¢ is zero, a consistent result. As a goes to zero, the fluctuations in
the number of scatterers increase and ¢ increases too.

In Jakeman (1980), the spatial variability in the number of scatterers per
resolution cell is viewed as a death and birth process parametrized by a death rate p,
a birth rate 4, and an immigration rate v. The K-distributed model of the covariance
coefficient of the power of the signal is

1
14—
A—
pr(d)=52 exp [~ 2udlpg(d) + P L=

(20)

where d is the displacement in pixels. For comparison, assuming no system noise, (7)
can be rewritten as

] +Pr(d)
d
pold)=— 2 o) +£2 @

The two expressions are similar but not equivalent. One reason is that Jakeman’s
model implicitly assumes that texture has a correlation function of exponential type,
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whereas our model makes no assumption. Very few studies have been made on
correlated K-distributions and to the best of our knowledge an exponential
behaviour of p, has not been demonstrated using real SAR data. Further, a model
based on K-distribution assumes that the only source of textural variability of the
signal is the number of scatterers per resolution cell. Our model] does not exclude the
influence of other factors and is therefore more appropriate to the characterization
of spatial statistics in SAR imagery. )
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