
UC San Diego
UC San Diego Previously Published Works

Title
From Nano to Micro: Evolution of Magnetic Domain Structures in Multidomain Magnetite

Permalink
https://escholarship.org/uc/item/3dm3c9jd

Journal
Geochemistry Geophysics Geosystems, 20(6)

ISSN
1525-2027

Authors
Nagy, Lesleis
Williams, Wyn
Tauxe, Lisa
et al.

Publication Date
2019-06-01

DOI
10.1029/2019gc008319
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3dm3c9jd
https://escholarship.org/uc/item/3dm3c9jd#author
https://escholarship.org
http://www.cdlib.org/


From Nano to Micro: Evolution of Magnetic Domain
Structures in Multidomain Magnetite

Lesleis Nagy1 , Wyn Williams2 , Lisa Tauxe1 , and Adrian R. Muxworthy3

1Scripps Institution of Oceanography, La Jolla, CA, USA, 2School of Geosciences, University of Edinburgh, Edinburgh,
UK, 3Department of Earth Science and Engineering, Imperial College London, London, UK

Abstract Reliability of magnetic recordings of the ancient magnetic field is strongly dependent on the
magnetic mineralogy of natural samples. Theoretical estimates of long-term stability of remanence were
restricted to single-domain (SD) states, but micromagnetic models have recently demonstrated that the
so-called single-vortex (SV) domain structure can have even higher stability that SD grains. In larger grains
(≿10 μm in magnetite) the multidomain (MD) state dominates, so that large uniform magnetic domains
are separated by narrow domain walls. In this paper we use a parallelized micromagnetic finite element
model to provide resolutions of many millions of elements allowing us, for the first time, to examine the
evolution of magnetic structure from a uniform state, through the SV state up to the development of the
domain walls indicative of MD states. For a cuboctahedral grain of magnetite, we identify clear domain
walls in grains as small as ∼ 3 μm with domain wall widths equal to that expected in large MD grains; we
therefore put the SV to MD transition at ∼ 3 μm for magnetite and expect well-defined, and stable, SV
structures to be present until at least ∼ 1 μm when reducing the grain size. Reducing the size further shows
critical dependence on the history of domain structures, particularly with SV states that transition through
a so-called “unstable zone” leading to the recently observed hard-aligned SV states that proceed to unwind
to SD yet remain hard aligned.

1. Introduction
In paleomagnetism, we are primarily interested in the ability of naturally occurring magnetic minerals to
retain reliable magnetic recordings of external fields over timescales up to the age of the solar system. For
many years, our understanding of stable remanences has relied on analytic theories of Néel (1949, 1955)
and Stoner and Wohlfarth (1948). These theories make the assumption that a particle's magnetization is
perfectly uniform and predict that the magnetic stability of single-domain (SD) grains increases with grain
size up to a maximum size d0 called the critical singe-domain grain size. Together, the theories of Néel and
Stoner-Wohlfarth have laid the foundation for much of the early theory relating to man-made recording
technologies. Yet it has long been appreciated (Gottschalk, 1935; Nagata, 1953) that the characteristics of
magnetic materials vary rapidly with grain size, in a manner not expected from prevailing theory.

In contrast to the well-defined particles used in the magnetic recording industry, rock samples used in pale-
omagnetic studies generally have complicated magnetic mineralogies and a wide grain size distributions
that extends well above d0 (Roberts et al., 2018). Experimental observations (Day et al., 1977; Gottschalk,
1935; Stacey, 1963; Stacey et al., 1961) have shown us that the stability of grains larger than the expected
threshold size, decreases only gradually, rather than suddenly as might have been expected from traditional
theories of multidomain (MD) behavior. Such grains, larger than d0 but exhibiting better than expected mag-
netic recording properties similar to SD, were termed pseudo-single-domains (PSD) by Stacey (1961). The
nature of PSD grains remained poorly understood until the advent of three-dimensional numerical micro-
magnetic modeling (Schabes & Bertram, 1988; Williams & Dunlop, 1989) that was able to determine the
detailed structure of nonuniform domains and discovered the, by now familiar, flower and vortex states.
These numerical predictions have subsequently been verified via improved nanometric imaging of magnetic
structures (Dunin-Borkowski et al., 1998). More recently, Nagy et al. (2017, 2019) demonstrated that vortex
states have magnetic recording fidelity and stability equal to, and even exceeding that, of SD grains, thereby
theoretically extending the grain size range capable of holding a paleomagnetically meaningful signal by at
least an order of magnitude. Roberts et al. (2018) recently suggested abandoning the term PSD in favor of
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vortex behavior, as the former term implies an ambiguous domain structure with unknown or undefined
mechanisms of magnetic recording, which no longer holds true.

With the exception of Nagy (2016) and Valdez-Grijalva et al. (2018) who looked at single-vortex (SV)-MD
transition in magnetite and greigite, respectively, little attention has been given to the transition from the
vortex state to the magnetically unstable MD states. The SV to MD transition is of particular interest because
recent numerical models of thermal stability in small single-vortex (SV) grains (Nagy et al., 2017) have shown
that grains containing an easy-aligned SV domain state behave similarly to SD grains, in that switching
between stable states occurs by coherent rotation of the magnetic domain structure. This structure-coherent
rotation requires substantial energy and so these domain states exhibit both the high blocking tempera-
tures and the high temporal stability required for retaining recordings of magnetic fields over geological
timescales.

In contrast to the stable SV state, “true” MD states change via domain wall motion. Unless pinned by a crystal
defects, MD walls move easily in response to changing external fields and are poor paleomagnetic recorders.
It is important to understand the nature of the transition from the stable SV states to the unstable MD states
so as to better determine the grain size range capable of carrying reliable paleomagnetic recordings.

Observing magnetic behavior of such small particles experimentally is challenging. To observe the magneti-
zation inside a particle requires that it be electron transparent, that is, ∼200 nm or less. For larger particles,
there are many techniques for observing surface magnetization structures, but they do not allow us to look
at the magnetic structure inside the particle. Only numerical modeling can currently allow us to do this.

In this paper we explore the particular case of the evolving magnetic domain structure in spherical and
cuboctahedra particles of magnetite. We observe the change in domain state from SD to SV and then the evo-
lution of domain walls typical of what we expect in MD states as we increase the grain size. We then shrink
the grain and examine the minimum grain sizes that hold MD and SV domain states. In order to achieve this,
we use a parallelized finite-element micromagnetic model Nagy et al. (2019), capable of providing model
resolutions of many millions of elements.

2. Materials and Methods
We use a standard micromagnetic approach in this study. Given a magnetic region 𝛺, we find the unit
vector along the magnetization M⃗, here �̂� (i.e., ‖�̂�‖ = 1), that minimizes the effective field energy. This
energy has three possible sources: (1) Ea, the magnetocrystalline anisotropy interaction, (2) Ee, the exchange
interaction, and (3) Ed, the energy resulting from the self demagnetizing field, H⃗d. These three energy terms
can be expressed as follows:

Ea = K1∫Ω
(𝜂2

1𝜂
2
2 + 𝜂2

1𝜂
2
3 + 𝜂2

2𝜂
2
3) dV , (1)

Ee =
A
L2 ∫Ω

(Δ�̂�)2 dV , (2)

Ed = −
𝜇oMs

2 ∫Ω
H⃗d · �̂� dV , (3)

where K1 is the dominant magnetocrystalline anisotropy term, A is the exchange constant, Ms is the satu-
ration magnetization, and L is the length scale at which we choose to measure our particles (in this study
we use 10−9 m, i.e., nanometers). The room temperature values for K1, A, and Ms used to model magnetite
in this study are listed in Table 1. Equations (1) and (2) are computationally cheap to calculate as they are
highly local. Computation of equation (3) proceeds by solving Maxwell's equations in a current-free regime.
In this case it is possible to write H⃗d = −∇𝜑, where 𝜑 is the magnetic scalar potential calculated by solving

Δ𝜑 =
{

−Ms∇ · �̂� x⃗ ∈ Ω
0 x⃗ ∈ R3 Ω.

(4)

with the condition 𝜑 → 0 as ‖‖x⃗‖‖ → ∞.
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Table 1
Material Parameters for Magnetite at Room Temperature

Parameter Value Unit Source
K1 −1.24 × 104 J/m3 Bickford (1950)
A 1.33 × 10−11 J/m Heider and Williams (1988)
Ms 4.8 × 105 A/m Pauthenet and Bochirol (1951)

Calculation of 𝜑 is computationally expensive as it is a result of long-range interactions involving each
moment within the magnetic region. Several strategies are available to calculate 𝜑, the most popular being
the boundary element method (Fredkin & Koehler, 1990; Lindholm, 1984; Ó Conbhuí et al., 2018). Unfor-
tunately, it is well known that the boundary element method results in a dense matrix-vector system, which
leads to two problems: (1) the computation grows as  (

N2), where N is the number of vertices at the sur-
face of the magnetic region, and (2) the problem is not well suited for parallelization, because each row of
the dense matrix must fully participate in the resulting matrix-vector computation. The approach taken in
this study uses a spatial transform technique (Figure 1) where the space outside the magnetic region 𝛺s is
also included in the finite element mesh and is bounded by a spherical shell of radius R1. This sphere is then
enclosed in a second shell of radius R∞ representing the boundary at infinity where the condition 𝜑 = 0 can
be applied. The spatial transform,

x⃗′ =

(
R1‖‖x⃗‖‖

√
R∞ − R1

R∞ − ‖‖x⃗‖‖
)

x⃗, (5)

is then used to distort the finite element shape functions within the region 𝛺∞ in order to account for
the condition that the magnetic scalar potential is zero at infinity (Abert et al., 2013; Brunotte et al., 1992;
Imhoff et al., 1990a, 1990b). The integral form that solves equation (4) can then be split into three parts:

Figure 1. Schematic outlining the three regions of the method used. 𝛺 is
the magnetic region, which is enclosed in the free space region 𝛺s ∪𝛺∞.
The region 𝛺s corresponds to the area where no mapping is applied to solve
for the magnetic scalar potential, whereas 𝛺∞ corresponds to the region in
which the mapping is applied.

∫Ω∞

J−1∇v(x⃗) · J−1∇𝜑(x⃗) |J| dV = 0, (6)

∫Ωs

∇v(x⃗) · ∇𝜑(x⃗) dV = 0, (7)

∫Ω
∇v(x⃗) · ∇𝜑(x⃗) dV = 𝜇0Ms∫Ω

∇ · �̂� dV , (8)

where v
(

x⃗
)

is the finite element shape function, and J−1 and |J| are
the inverse Jacobian matrix and Jacobian of equation (5), respectively
(see supporting information section S1). The solution of equations (6) to
(8) was implemented in the FEniCS finite element environment (Alnæs
et al., 2015; Logg et al., 2012). This method results in a fully sparse
matrix-vector system that is amenable to execution in a parallel environ-
ment Nagy (2016).

2.1. Geometries, Meshing, and Processing
Two geometries were selected for this study, a sphere and cuboctahedron.
The cuboctahedral geometry is shown in Figure 2 and was scaled using
the scaling factor S in equation (9) to generate a cuboctahedron with
volume equivalent to a sphere of diameter d:

S = 1
2

(
𝜋

5

) 1
3 d. (9)
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Figure 2. The cuboctahedral geometry used in this study. This geometry is uniformly scaled so that it occupies a
volume equivalent to a sphere of a given diameter given by (9).

Meshes were generated using Trelis (Trelis, 2018) and element sizes between 7 nm (for smaller models)
and 10 nm (for the largest models) were chosen as these values are both close to the 9-nm exchange length
for magnetite (Rave et al., 1998). The exchange length is a guide to the maximum element size used in
micromagnetic modeling so the values chosen here provide a good trade-off between accuracy and feasibility
of performing computations (supporting information section S2).

Evolution of domain structures within the magnetite grain proceeded by first saturating the smallest model
(30 nm), then minimizing for the total energy (equations (1)–(3)). This solution was then linearly interpo-
lated to the next largest mesh and minimized again. The process continued until the model size reached
2,700-nm equivalent spherical volume diameter (ESVD) for cuboctahedra and 1,500-nm ESVD for spheres;
the maximum sizes were selected given resource constraints. After reaching the maximum size, the geome-
try size was then reduced, repeating the minimizations between steps. Our micromagnetic models were run
on the ARCHER supercomputer service (http://www.archer.ac.uk).

3. Results
3.1. Visualization
Results were visualized using Paraview (Ahrens et al., 2011; Ayachit, 2015). The image in Figures 3a and 3b
illustrates a typical micromagnetic solution of a crystal in a single-vortex state. The difficulties in visualiz-
ing micromagnetic data with many vectors are apparent in the figure in that the high density of magnetic
moments tends to obscure features of interest. We use two techniques in order to bring out structures in spin
alignment. First, we color images by the anisotropic deviation of moment (ADM), denoted by Θ, which is a
quantity derived from the directional component of the magnetocrystalline anisotropy energy:

Θ = −1
2
(
1 −

(
𝜂4

1 + 𝜂4
2 + 𝜂4

3
))

, (10)

with−1∕3 ≤ Θ ≤ 0, whereΘ = 0 corresponds to �̂� aligned along a crystallographic hard axis (in magnetite)
and Θ = −1∕3 corresponds to �̂� aligned along a crystallographic easy axis. ADM is therefore the angle
between a given magnetization vector and the nearest easy axis defined by the magnetocrystalline energy.

Additionally, we can summarize the magnetization structure using helicity, which is given by

H = �̂� · (∇ × �̂�) , (11)

that is, the curl of the magnetization projected on to itself. Intuitively, high helicity corresponds to regions
where the magnetization direction is changing rapidly, such as domain walls and regions surrounding the
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Figure 3. Vortex structure in a 100-nm cuboctahedron aligned along the [111] direction, (a) vectors have been colored by the anisotropic deviation of moment,
ADM (10). A vortex core is visible on the [111] plane highlighted by the yellow triangle. (b) The helicity isosurface that corresponds to the vortex core.

Figure 4. Anisotropy and helicity images for a 100-nm cuboctahedron. (a and b) Anisotropy slices in the (111) and (110) planes, respectively. The intersection
between the anisotropy planes and the helicity surface from Figure 3b is shown as a white outline in (a) and (b). Dark red spots in (a) and (b) correspond to the
helicity isosurface of the vortex core (Witt et al., 2005). (c) illustrates how the vectors along the isosurface line (the white line) rotate through a cone (inset)
producing the high anisotropic deviation of moment (ADM) spots.

NAGY ET AL. 2911
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Figure 5. Subset of spherical and cuboctahedral models from the atlas shown in supporting information Figures S3 and S4. Helicity is shown in the (111) plane.
The top row shows examples of solutions of anisotropic deviation of moment (ADM) starting with the 30-nm solution, which is then used to seed to subsequent
sizes, etc. The middle row shows the helicity isosurfaces (associated with the increasing sequence), and the bottom row again shows the ADM solutions,
beginning with the largest model from the top row as the starting point and decreasing grain size in increments back down to 30 nm. ADM color bar same as in
Figure 4.

vortex cores. By selecting particular helicity values, it is possible to visualize an isosurface that highlights
rapidly varying magnetization structures with the particle.

The images presented in Figure 4 highlight how ADM (equation (10)) and helicity (equation (11)) values
are used throughout this study. Figures 4a and 4b show ADM values through the (111) and (110) planes
respectively, whereas Figure 4c shows a cylindrical isosurface of constant helicity surrounding the vortex
core. It should be noted how in ADM space the high helicity sheath around the vortex core is associated
with three red dots in the anisotropy plane images (Figures 4a and 4b). These features occur because the
vectors that correspond to the vortex core sheath trace out a cone with a base in the (111) plane (Figure 4c).
Because this cone encompasses the three hard axes for magnetite, the magnetization vectors pass near to
these hard axes resulting in three regions with vectors at high angles to the easy axes (high ADM), giving
rise to the three red dots (see also Witt et al., 2005).

3.2. Effect of Increasing Grain Size
We consider the effect on domain state of growth of a crystal. In Figure 5 we show a subset of the results from
the simulations for spherical grains for the purposes of discussion. The complete atlas of results for spherical
and cuboctahedra is shown in Figure S3 and S4, respectively. In the case of both spherical and cuboctahedral
models the initial state is a uniform magnetization in the [111] direction, illustrated by the uniform dark
blue color in both spheres and cubes in Figure 5. As grain size increases, the domain state for cuboctahedra
develops first into a flower state (as shown by faint lighter blue patches in Figures 5 and S4) for the 150-nm
(ESVD) crystal. By 200 nm, the cuboctahedra has a well-defined SV state as illustrated by the characteristic
three red dots in the ADM color maps and the helicity isosurface oriented in the [111] direction. Once the
SV state is established in the cuboctahedra, the SV core is aligned along the [111] direction until at least
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Figure 6. Anisotropy energy values for the the 2,700-nm equivalent spherical radius cuboctahedra in two planes. The
model is believed to be entering the multidomain state and shows evidence of complex domain structure, with
domains (in dark blue lying along the easy axes) separated by domain walls (lighter blue lines). The numbers in each
figure denote the walls in (Table 3) and angle through which each domain rotate (Table 2) ADM = anisotropic
deviation of moment.

400 nm. By 500 nm, however, the rounded, cylindrical shape of the helicity isosurface begins to resemble a
structure reminiscent of a twisted-triangular prism (TTP).

There is no flower state for the spherical geometries. Instead, the ADM color map for the 110-nm spherical
grain shows a sudden change in the domain structure to the single vortex (SV), highlighted by the three
spots in Figure 5. But these spots are asymmetric about the [111] direction suggesting that the SV core is not
aligned perfectly with the magnetocrystalline axis. This asymmetry persists until the 400-nm model. The
transition can be seen most clearly by observing the [111] orientated helicity isosurfaces, which show the
core sheath rotating from [110] to [111]. As in the cuboctahral case, the spherical helicity isosurfaces also
show evidence of a TTP-like structure by 400 nm.

Examining the anisotropy energy surfaces for spheres in the 200- to 400-nm size range, the 200-nm sphere
shows four red spots in the ADM maps, with the top and bottom most spots smeared, this is due to the fact
that the [111] slice plane and the vortex core are not aligned. As the vortex core rotates to the [111] direction,
the three red spots characteristic of a vortex core can be seen as expected. These spots appear to “tighten
up,” that is, become smaller and closer, as size increases and the helicity isosurface begins to resemble the
TTP structure. The tightening up of the three red spots is also observed in the cuboctahedral grains, but to
a lesser extent, and again corresponds to the vortex core transitioning from a cylinder to a TTP.

In spheres, the 500- to 1,200-nm size range shows little development with increasing grain size (Figure
S3). Flattening of the side isosurface becomes more pronounced and the red spots in the ADM color maps
continue to tighten. Between 400 and 700 nm, light blue spokes of higher-energy anisotropy regions can
be observed eminating from the red spots outward toward the grain surface. These regions separate suc-
cessively larger dark blue regions of low ADM. The clearest example is the 1,200-nm sphere (Figure S3),
which hints toward a possible final domain structure with dark blue domains and lighter blue walls. The
clear implication is that as the grain size increases, regions of uniform magnetization grow aligned with the
easy magnetocrystalline axes and can be considered protodomains, while hard-aligned (e.g., [110]) regions
between them are reduced. There is a rapid rotation of the magnetization that is the initial formation of
domain walls.

In cuboctahedra, the size range 500 to 1,200 nm shows much more development in the domain structure
compared to the spheres. At the ends of the isosurfaces, fins along the hard crystalline axis begin to emerge
(700 nm), whereas the center of the isosurface continues to becomes more triangular (observe the center
three spots tightening). By 1,200 nm, the fins are well developed and resemble a propeller structure, with
the lobes oriented at 45◦ to each other; this is most clearly seen in column VII of Figure S4. Again, spokes
can be observed emanating from the core spots to the grain edge in the 1,200-nm cuboctahedra, seen most
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Figure 7. Bloch-like walls in the (111) plane. The white line on the right indicates the region in which the magnetization is evaluated. The inset image shows
the magnetization along this line with respect to the plane, made transparent so that the rotation of vectors through the plane is apparent. It can be seen that
there is significant rotation through the plane, along with some degree of rotation within the plane as the magnetization swings from one easy axis to another.

clearly in the ⟨1, 1, 1⟩ anisotropy slice. This is similar to what is observed for spheres, but the fanning out of
the spokes representing the evolution of domain walls is greater in cuboctahedra, and the dark blue domains
are smaller. Furthermore, the corners show small regions of high anisotropy that are likely a result of the
grain geometry.

The transition from 1,200 to 1,500 nm is sudden in spheres. Both the ADM color maps and the helicity
isosurfaces show evidence of a complex multivortex domain structure in the 1,500-nm model. The ADM
images, in particular, show some evidence of dark blue domains with magnetization vectors oriented along
easy axes, especially in the center, as well as possible closure domains developing near the surface.

For cuboctahedra, the transition to a MD state is more gradual and the domain structure hinted at in the
1,200-nm particle continues to develop and become more defined. This is particularly evident in the ADM
images, where the gradual broadening out of the light blue spokes becomes tighter. Furthermore, the devel-
opment of structures resembling closure domains becomes more distinct at the corners (columns I and III of
Figure S4). It is likely that this domain structure will continue to become more and more refined as the size
of the grain is increased. Unfortunately, due to the constraints of available computer resources and time, it
was not possible to simulate larger grain sizes. However, the transition from SV to MD structure is clear by
the 2,700-nm model (the largest grain that was simulated), and we examine this in section 3.4.

3.3. Effect of Decreasing Grain Size and the Hard-Aligned Single Vortex
The bottom row of Figure 5 shows the effect of decreasing grain size, summarizing the more complete results
in Figures S3 and S4. As the grain size reduces, there is evidence that the complex structures found in larger
grains persist to smaller grain sizes for both the sphere and the cuboctahedra. In spheres, for example, the
complex structure observed at 1,500 nm persists until the size is reduced to 500 nm at which point there is
once more a sudden transition to a single-vortex state, albeit a distorted one. The complex structure observed
in the 2,700-nm cuboctahedron disappears more gradually until it becomes a vortex structure at 700 nm,
although the fins at the tube ends when viewing the isosurfaces are still visible.

NAGY ET AL. 2914
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Figure 8. The graph shows the anisotropy energy plotted along the 1 and 6
sample lines of Figure 6. The linear part of the sigmoid of best fit is used to
estimate the wall width indicated by the dotted vertical lines.

The vortex state finally collapses into a flower state by about 70 nm for
both cuboctahedra and spheres, the final state for both being uniform
structures along the hard directions (red) [001] for spheres and [001̄] for
cuboctahedra.

The collapse of the vortex into a hard-aligned direction is an important
result that we wish to highlight and is consistent with observations from
numerical micromagnetic studies derived from completely random inital
states (Nagy et al., 2019, 2017; Valdez-Grijalva et al., 2018). These studies
found that grains within a so-called “unstable zone” (∼85 to ∼100 nm in
magnetite) have domain structures predominantly aligned toward a hard
axis. We see that as the size is decreased, the single-vortex domain struc-
ture must transition through the unstable zone where it becomes trapped
as the core begins to unwind. The solution is caught in some weakly
metastable state, and energy minimization is unable to overcome some,
possibly very small, energy barriers. It is likely that thermal fluctuations
would cause these states to be ephemeral.

3.4. The 2,700-nm Grain
The images shown in Figure 6 are large versions of the anisotropy energy
slices for the 2,700-nm cuboctahedral grain shown in Figure 5. In order to

examine these slices in more detail, we approximate the angles between adjacent domains and the widths of
domain walls. The structures that appear to be closure domains in Figure 6 are not included as it is believed
that those structures are not yet completely formed, as indicated by a light blue coloring in their centers.

In Figure 6 we highlight what we interpret to be domains, numbering the Bloch-like body domain walls
that separate these domains (1–6). Figure 7 shows the magnetization along a line through a domain wall for
the (111) plane; the magnetization rotates through an angle of 71.5◦ in the domain wall. It can be seen that
there is significant amount of rotation through the plane as would be expected in a Bloch wall.

In order to estimate wall widths, locations were chosen which minimize possible wall distortion form the
grain surface or vortex core. For the chosen locations (shown as white lines on Figure 6), the angle of rotation
is taken along the line and results in the sigmoid graph as illustrated in Figure 8. The linear part of the graph
corresponds to the region in which the magnetization vectors are rotating the most rapidly and therefore
define the width of the domain wall. By fitting a line along the linear region of the sigmoid and projecting
to the maximum/minimum angles, we can estimate the wall width to be at least 100 nm (Hubert & Schäfer,
1998; Lilley, 1950) in size.

It is expected that the magnetization within domains would be directed along one of the easy directions;
therefore, the angles between domains should be one of 70.5◦, 109.5◦, or 180◦ as these are the only angles
available between vectors directed along the diagonals of a cube. Table 2 shows the angles between the

Table 2
Estimated Domain Angles in the {1, 1, 0} and {1, 1, 1} Planes Across Domain
Walls Corresponding to the Lines in Figure 6

Domains ⟨1, 1, 1⟩ ⟨1, 1, 0, ⟩
Angle Error (%) Angle Error (%)

1 and 2 69 1.6 67 5.1
2 and 3 70 1.3 72 2.2
3 and 4 69 2.6 68 4.1
4 and 5 69 1.6 67 5.1
5 and 6 69 1.5 72 2.3
1 and 6 69 1.4 67 4.4

Note. The domain walls are defined by the two domains which they connect.
The error value is the relative error of the measured angle with respect to the
expected angle of 70.5◦.
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Table 3
Estimated Domain Widths in the (110) and (111) Planes Along the Lines
Indicated in Figure 6

Wall no. ⟨1, 1, 1⟩ ⟨1, 1, 0, ⟩
Length (nm) Error (%) Length (nm) Error (%)

1 129 21 122 26
2 128 22 122 26
3 126 23 87 47
4 131 20 159 3
5 134 19 131 20
6 115 30 103 38

Note. The error value is the relative error of the measured wall width with
respect to an expected wall width of 164 nm.

domains indicated in Figures 6a and 6b. As can be seen from the Table 2, all domains observed are 70.5◦

walls. The errors in domain wall angle in both (110) and (111) planes are small in both cases.

Dunlop and Özdemir (1997) gave estimates for the expected width of the domain walls according to

𝛿w = 𝜋 sin
(
𝜙

2

)(A
K

) 1
2
, (12)

where 𝛿w is the domain wall width, 𝜙 is the angle through which the magnetization of the domain wall
rotates and K

(
= 1.64 × 103 J/m3) is an effective anisotropy constant determined as the anisotropy energy

per unit volume across the domain wall (see equation 5.8, Dunlop & Özdemir, 1997). Using the data in
Table 1, we get an estimate for the domain wall width of 164 nm for a wall rotating through 70.5◦. In Table 3
we compare this value to domain wall widths estimated from the models (Figures 7 and 8). As can be seen
there is some variance, which could be partly due to estimations of domain width being prone to small
errors since identification of the linear region in Figure 8, was done manually. Another factor could be
that the domain structure observed is not yet fully developed since further increases in size could result in
thinner, more distinct domain walls. It should be noted that the model in Dunlop and Özdemir (1997) is
only a one-dimensional model that assumes that the magnetization only rotates in a single plane with Θ ∈
[0, 180]). The one-dimensional models also assume that the contribution from the magnetostatic interaction
is negligible for the internal domain walls. Finally, the Dunlop and Özdemir (1997) estimate requires an
assumption for the value of K, which may not be well constrained.

4. Discussion and Conclusions
Our methodology provides the optimal conditions for gradual evolution of domain states: The grain geome-
tries have a high degree of symmetry, and there are no thermal fluctuations that would facilitate domain state
switching across energy barriers. Domain structures are therefore free to evolve until the energy between
domain states entirely disappears (within the numerical accuracy of the optimization). Despite this we see
a rapid change of domain state from SV to SD at ∼70 nm for decreasing grain sizes in both spherical and
cubo-octahedral grain shapes, in agreement with previous micromagnetic studies on magnetite (Fabian
et al., 1996; Muxworthy & Williams, 2006). This study also shows that, in the absence of thermal fluctuations
the SD state can persist up to ∼200 nm (cuboctahedra) and ∼110 nm (spheres). Such large SD states are not
seen, however, when the thermal energy of the grains is taken into account (Nagy et al., 2017). Irrespective
of the exact size at which the SD to SV transition occurs, which will inevitably be dependent on the exact
grain morphology, the transition occurs abruptly, or at least over a very narrow grain size range of ∼10 nm.

This relatively abrupt change in domain state from SD to SV is again seen at the SV to MD boundary for
spherical grains but more gradually for cuboctahedral grains. Evolution of the vortex core occurs as exten-
sions along the hard magnetocrystalline axis as fins that develop into multicore structures. These appear to
be primitive Bloch-like 71◦ domain walls that separate uniform regions of magnetization (domains) aligned
with the easy axes. This sharp transition occurs in grains as small as 700 nm for deceasing grain sizes in
spheres and somewhat more gradually from ∼900 nm for cuboctahedra. For increasing grain sizes, the SV
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state persists until ∼1,500 nm for increasing grain sizes in both spheres and cuboctahedra. Again, as for
the SD-SV transition, the SV-MD transition grain size will be modified by thermal fluctuations. The large
CPU requirements of modeling grain of theses sizes, however, means that no study has yet examined the
energy barrier that exists between SV and MD states in the same size grain. Nevertheless, in terms of sta-
bility of paleomagnetic signals, we can estimate that SV domain states in magnetite will exist from ∼70 nm
to at least ∼1,000 nm, thus providing a greatly enhanced size range of domain stability over that provided
by the SD domain states. The formation of partial or incomplete closure domain structures in the models
for micron-sized particles, that is, 0.5–5 μm, may explain the complex surface domain structures observed
in magnetite grains in this size range (Geiß et al., 1996; Halgedahl & Fuller, 1980; Muxworthy & Williams,
2006).

The results that have been presented above are an important addition to the understanding of how MD
structures evolve. The picture that emerges is that complex domain structures develop from a combination of
fins in the helicity sheath enclosing the vortex core along with boundary domains emerging from the surface.
This is particularly striking when considering the cuboctahedral models. When comparing the largest grain
size (the 2,700-nm cuboctahedron) against theoretical results, there is a good agreement of estimated domain
wall thickness with what is predicted by theory. Large body domains aligned along the easy axes are clearly
present and what appear to be the start of closure domains are also seen. Comparing the angles between
adjacent domains gives good correspondence between what is expected and estimates of domain wall widths
seem to be on the same order of magnitude as calculated in Dunlop and Özdemir (1997).
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