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Abstract 

Several theories about Theory of Mind (ToM) have been 
proposed. The most well-known of these are Theory Theory 
and Simulation Theory, although alternative and hybrid 
theories do exist. One such theory, proposed by Bach (2011, 
2014), is based on the Structure-Mapping theory of analogy, 
which has been shown to play a key role in cognitive 
development. There is evidence that children are more likely to 
pass false belief tasks when trained using stories that are easy 
to compare via structural alignment, as opposed to stories that 
are difficult to compare in this way (Hoyos, Horton & Gentner, 
2015). This paper shows how a computational model based on 
Bach’s account can provide an explanation for the Hoyos et al. 
training study and proposes directions for future research on 
human subjects. 

Keywords: analogy; theory of mind; false belief; structure-
mapping; cognitive modeling 

Introduction 
The mechanisms behind Theory of Mind (ToM) have been 
hotly debated for decades. According to one popular theory, 
Theory Theory, children are little scientists who develop 
theories about others’ beliefs (e.g. Gopnik & Wellman, 
1992). Another theory, Simulation Theory, suggests that 
children play out scenarios as if they were the agents involved 
(e.g. Goldman, 1992). Other accounts include hybrid theories 
(e.g. Bach, 2011), which attempt to combine aspects of 
Theory Theory and Simulation Theory (see Related Work). 

Another important question is how ToM is learned and 
when. Interestingly, several studies have shown that at least 
some aspects of ToM can be improved via brief intervention 
(e.g. Hoyos et al., 2015; Hale & Tager-Flusberg, 2003; 
Lohman & Tomasello, 2003). This paper considers one such 
study and models how analogical generalization may lead to 
improved performance on the false belief tasks tested. The 
model generates testable predictions for future work. 

We begin by discussing the theories that underlie our 
model, the Structure-Mapping Theory of analogy (SMT; 
Gentner, 1983) and Bach’s (2011) structure-mapping account 
of ToM, along with our computational models of analogical 
matching and generalization used in the model. We then 
summarize a ToM training study (Hoyos et al., 2015) and 
describe how our model explains the performance 

improvements provided by training. We close with related 
work and future directions. 

Background 
We base our model on the Structure-Mapping approach to 
Theory of Mind proposed by Bach (2011, 2014). Because 
understanding Structure-Mapping Theory (SMT; Gentner, 
1983) is essential to understanding this theory and our model, 
we describe it first. This is followed by a description of 
Bach’s theory. Finally, we describe the computational 
models of SMT processes that we are using. 

Structure-Mapping Theory 
Structure-Mapping (Gentner, 1983) is a theory of analogy 
and similarity. Under SMT, relational/structural similarity is 
emphasized over similarity based on features alone. Humans’ 
ability to see these structural similarities across dissimilar 
cases is a key aspect of higher order cognition, which 
suggests that structural similarity is used in everyday 
reasoning. SMT proposes that comparison involves the 
alignment of elements between two cases, called a base and 
a target.  

Consider a common pedagogical analogy: “A cell is like a 
city. The city government controls the city. The nucleus 
controls all the cell’s activities. A power station provides 
electricity. A mitochondrion is like the power station.” 
(Chang & Forbus, 2015). In this example, the cell acts as a 
target and the city acts as a base. Structural representations of 
the two are aligned to form a mapping. SMT predicts that the 
cell maps to the city, the nucleus maps to the government, 
control of the cell maps to control of the city, and the 
mitochondrion maps to the power station (Fig. 1). What about 
providing electricity? Because of the match between the 
mitochondrion and the power station, we can infer that the 
mitochondrion does something like providing electricity. 
This conclusion is called a candidate inference. 

SMT can be extended to include analogical generalization 
(Kuehne et al., 2000). As a person is exposed to alignable 
cases, generalizations are formed. For example, we can form 
a generalization between the city and the cell. This would 
state that “Something like a city or cell has something like a 
city government or nucleus that controls it and something like 
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a power station or a mitochondrion that gives it energy.” 
Eventually, generalizations become abstract schemas that can 
represent, for example, a single type of event. They can be 
stored in long term or working memory. 

 
SMT Theory of Mind  
Bach (2011, 2014) has proposed that ToM is developed via 
structure-mapping.  He proposes that two forms of base 
domains are used.  The first are abstract schemas built up over 
time.  The second are events from autobiographical memory.  
This provides a hybrid model: Mappings to the schema 
domain correspond to theories as described in Theory Theory 
models, and mappings to the autobiographical domain 
correspond to simulation.  For example, to decide whether a 
person who arrived 15 minutes late to a flight that was 
delayed by 10 or a person who arrived 15 minutes late to a 
flight that left on time would be more upset, a person might 
retrieve an abstract schema that says “people are very upset 
when they narrowly miss their goal” or they might simulate 
how they would feel if they were the person in question by 
mapping to an autobiographical memory. Bach argues that 
simulation tends to happen when the general heuristic has not 
yet been formed, and involves complex combinations of 
cases (see Bach, 2011 for specifics).  

Because we do not attempt to model a complete Theory of 
Mind in this paper, we assume a simplified version of Bach’s 
theory. Our model focuses on the learning aspect, so we 
assume that heuristic-like abstractions have not yet been 
formed. Thus, only concrete autobiographical memories are 
retrieved from long term memory. Generalizations are 
formed in working memory, which we propose as a 
mechanism by which schemas are learned.  

SME and SAGE-WM 
The Structure Mapping Engine (SME; Forbus et al., 2016) 
implements the analogical mapping process of SMT.  SME 
compares a base and target case, both represented in predicate 
calculus, and computes one or more mappings that align 
statements and entities. Each mapped expression receives an 
initial score, which is propagated to its children. Thus, highly 

                                                             
1 Sequential Analogical Generalization Engine, Working Memory 

nested expressions have high scores. The score of a mapping 
is the sum of the scores of its constituents. Thus, mappings 
between cases that have high structural similarity receive 
higher scores. Mappings also include candidate inferences 
that project missing information from one case to the other.  

In this model, we deliberately do not model retrieval from 
long-term memory, to avoid the cost of providing enough 
distractors to make this challenging, and instead assume that 
retrieval finds reasonable autobiographical memories.  
However, we have proposed (Kandaswamy et al., 2014) that 
analogical generalization also occurs in working memory, 
what we call interim generalizations.  The SAGE-WM 
model1 keeps a list of generalizations and recent examples. 
Given a new example it uses SME to compute a score 
between the probe and each generalization in turn, ordered by 
recency.  If the score is over a pre-determined threshold, the 
probe is assimilated into the generalization. If no 
generalization is above threshold, the new example is 
compared to each outlier in turn using SME, again ordered by 
recency. If any mapping is above threshold, a new 
generalization is formed. Otherwise the probe becomes a new 
ungeneralized example. 

Learning Theory of Mind  
Several studies have shown that Theory of Mind can be 
acquired in part using experimental interventions (e.g. 
Lohman & Tomasello, 2003; Hale & Tager-Flusberg, 2003; 
see Hofmann et al., 2016 for meta-analysis). However, most 
of these studies involve extended training. On the other hand, 
there is evidence that ToM can be acquired much more 
quickly when training examples are highly structurally 
alignable. In particular, a study by Hoyos et al. (2015) 
showed that structurally alignable unexpected contents-style 
stories can improve children’s performance on false belief 
tasks, given just three training examples. In this paper, we 
examine and model the results of this experiment. 

Modeling Task 
In the Hoyos et al. (2015) study, children were first given a 
false belief pre-test containing one unexpected contents task 
(UC), one verbal false belief task (VFB), and one unexpected 
location task (UL). In the UC task, a container (e.g. a cookie 
box) is shown to have unexpected contents (e.g. grass) and 
participants are asked to predict what someone who has never 
seen inside would think the container contains. In VFB 
participants are told another child holds a false belief (that 
they think an item is somewhere it is not) and asked to predict 
where the child will look for the item. Finally, in UL, 
participants are told a story where one child places an object 
in a location and leaves the room. Another child then moves 
the object, and the participants are asked to predict where the 
first child will look for the object when they return.  

Those who passed all three tests were excluded from the 
study. The remaining children were split into two groups: 
high alignment and low alignment. Both groups were 

Fig. 1: A visual representation of SMT. Entities are 
shown as rectangles. Relationships are in diamonds. 
Dotted lines show correspondences between the two 
cases. Dashed lines show the candidate inference. 
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presented with three stories in the style of an UC task, in a 
repetition-break pattern: the main character in the first two 
stories held a true belief (e.g. she thought that there was cereal 
in a cereal box, and there really was cereal inside), while the 
character in the last held a false belief (e.g. she thought there 
were crayons in the crayon box, but there were really rocks).  
The difference was that the stories heard by children in the 
high alignment condition were very similar, in terms of both 
structure and linguistic content. The stories heard by children 
in the low alignment condition, on the other hand, differed on 
both counts. Following training, all children were tested on 
the same three tasks (UC, VFB, UL) as before. 

Hoyos et al. found that children in both conditions made 
significant gains from pre- to post-test. Importantly, they 
found that the children in the high alignment condition made 
significantly higher gains than those in the low alignment 
condition.  Hoyos et al. concluded that structural alignment 
aids false belief understanding. Furthermore, they, like Bach 
(2011, 2014) postulated that analogical comparison is 
“instrumental in children’s understanding of mental states 
and their relation to the factual world.” In this paper, we 
propose a mechanism for how structural alignment during 
learning can aid in false belief understanding and forming a 
complete Analogical Theory of Mind.   

Learning Analogical Theory of Mind 
The mean performance increase by children in the high 
alignment group was 0.75 out of 3 possible, with significant 
gains made in all three of the false belief tests. Yet few 
children learned more than one. On the other hand, children 
in the low alignment condition made an average of 0.23 
gains. Only gains in the UC task were significant. Since all 
of the training examples were variants of UC, it is not 
surprising that this was the easiest task to learn. However, 
learning ToM requires the ability to transfer to other tasks, as 
was the case with children in the high alignment condition. 
The process of making gains in UL and VFB tasks must, then, 
be different than the process of only gaining UC. 

We argue that analogical comparison in working memory 
alone leads to gains in the UC. That is, immediate recall of 
the training examples themselves is sufficient to cause gains. 
In contrast, a generalization between a training example and 
an autobiographical memory retrieved from long term 
memory leads to transfer to the other two tasks, VFB and UL. 
The violation of expectation generated during training causes 
the child to probe long term memory for a case of similar 
surprise. What exactly they find surprising about the 
training—that something other than what they expected was 
inside the box, that the character in the story was incorrect in 
her guess, or something else—affects the case that is 
retrieved from long term memory. This in turn affects which 
of UL and VFB the child is able to answer. 

A Computational Model 
Our model, like Bach’s theory, is based in SMT, using 
SAGE-WM for reasoning and learning.  

Our Model 
A simplified English version of each training and testing 
example from Hoyos et al. (2015) was semi-automatically 
encoded using a natural language understanding system (EA 
NLU; Tomai & Forbus, 2009). Although syntax was 
simplified, overall structure and word choices were 
consistent with the original stories. Figure 2 shows a partial 
representation of a true belief story. Events are represented in 
the neo-Davidsonian style: a reified event with role relations 
connecting it to other constituents. The conjunction of 
statements about an event participates in causal relations. In 
English, Figure 2 states that because it is not the case that 
there is a seeing event in the box by Kim, Kim thinks that 
there is a containment event wherein the box contains cereal. 

During training, the appropriate examples were passed into 
SAGE-WM in the order that the children in the corresponding 
condition saw them (true belief, true belief, false belief). The 
threshold for whether or not a probe was generalized was set 
to 0.01. If the incoming example matched to an example 
already in working memory with a score greater than 0.01, 
the model asked whether the match was correct. This 
corresponds to feedback in the Hoyos et al. (2015) 
experiment. When told it was correct, the model assimilated 
the examples into a generalization. Its behavior when told it 
was incorrect, on the other hand, depended on its calculation 
of surprise. Surprise occurs when the model encounters an 
incorrect match whose score is the same order of magnitude 
as the previous correct match. We propose that this comes out 
of the repetition break structure of the story order (Hoyos et 
al., 2015; Loewenstein & Heath, 2009): the high similarity to 
the interim generalization leads to a strong expectation of 
sameness, and the violation leads to a search for re-
categorization. When surprised, the model probes long term 
memory for an alternative case to align with.   

Figure 3 gives a visual representation of our model. In the 
high alignment condition (a), the first true belief story is 
stored in working memory. The second true belief story is 
then matched to the first, and an interim generalization is 
formed. When the false belief story comes in, it too matches 
to the generalization. Due to violated expectations, long term 

(causes-Underspecified 
 (not  
(and  
  (inside-UnderspecifiedRegion see85118 box1)   
  (perceivedThings see85118        
    (InsideOfSpaceRegionFn box1))  
  (isa see85118 VisualPerception) 
  (doneBy see85118 kim))) 

 (opinions kim 
  (and  
    (containedObject contain84430 cereal84499)     
    (containingObject contain84430 box1) 
    (isa cereal84499 BreakfastCereal) 
  (isa contain84430 ContainingSomething))))   

Fig. 2: A partial representation of a true belief story. This 
statement represents the phrase “Kim thinks that the box 
contains cereal because Kim has never seen inside the 
box”.	
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memory (dotted line) is probed. Long term memory is a 
collection of generalized and specific cases that represent 
memories formed over time. If a case is retrieved, an interim 
generalization between the match and the false belief case is 
created and stored in working memory (b).   

In the low alignment condition (c), on the other hand, no 
generalization is formed between the two true belief cases. 
This leads to them being stored as separate cases in working 
memory. When the false belief case comes in, it matches to 
the first true belief case, but no element of surprise is present 
when the model is corrected. For this reason, long term 
memory is never probed, and working memory consists of 
only the three training examples (d). The contents of working 
memory during testing predict the questions that the child is 
able to answer.  

Testing proceeded as follows: cases were again encoded 
semi-automatically using EA NLU. These cases were given 
to the model which retrieved the most similar case from 
working memory and generated candidate inferences by 
analogy. The candidate inferences correspond to what the 
model predicts is missing from the test cases (e.g. what the 
agents will do). These candidate inferences were manually 
inspected to determine whether any could result in correctly 
answering the test questions.  

Results  
The model behaved as predicted. In the high alignment 
condition, the model generalized the true belief cases with a 
normalized match score of 0.075. It then matched the false 
belief to the generalization with a score of 0.066, which 
corresponds to the child incorrectly predicting that the 
character in the story knows what is in the box. The model 
was then informed that this match was incorrect. Because the 
similarity scores it had encountered were within the same 
order of magnitude, it searched long term memory for another 
match. It then retrieved one of two memory cases that 
matched with a normalized score of 0.083 or 0.066, and 
created an interim generalization between it and the false 
belief case. We used stories intended to approximate a 
memory a child might have (e.g. thinking that a magician put 
a ball inside of a hat, only to find the hat empty) to model 
what might plausibly be retrieved. Depending on the case 
retrieved, the model was then able to answer VFB or UL. 
Correctness was evaluated based on the candidate inferences 
generated from the best mapping between the test case and 
the contents of working memory. For example, to correctly 
answer “Where is Nora going to look for her ball?” (UL) the 
mapping must produce a candidate inference stating that 
there might be a looking event, in which Nora looks for her 
ball in the appropriate location. 

In the low alignment condition, on the other hand, the 
second true belief case matched to the first with a very low 
similarity score of 0.0014, well below threshold. For this 
reason, the model did not form a generalization between 
them. When the false belief case was compared, it had a 
match score of 0.066 with the first true belief case. Similar to 
the high alignment condition, the model was informed that 
this was not a correct match.  

Because the previous match score was of a different order 
of magnitude, the model did not look into long term memory, 
and instead stored the false belief case alongside the two true 
belief cases. When the UC case came in, the false belief case 
was retrieved. The mapping generated a candidate inference 
that would allow the model to properly answer “What does 
she think is in the box?” This candidate inference stated that 
not having looked inside the cookie box would cause the 
agent to believe that it contained something analogous to 
crayons in the crayon box from the training example. That is, 
cookies. 

Note that this retrieval is due to recency in working 
memory: the UC test case lacks the explanation present in the 
training cases about why a person holds a certain belief (e.g. 
“Kim thinks that the cereal box contains cereal because Kim 
has never looked inside the box.”), so the first true belief case 
had the same match score. If that case had been retrieved, the 
model would not have been able to answer UC correctly. 

Discussion 
Our model gives one explanation for the results of the Theory 
of Mind training study presented in Hoyos et al. (2015). It 
also suggests that an important step in ToM development is 
generalizing belief-state cases in long term memory. In the 

Fig. 3: A visual representation of our model of training in 
the Hoyos et al. study. (a) shows training in the high 
alignment condition. (b) is a representation of working 
memory after high alignment training. (c) and (d) show 
low alignment training and the consequent working 
memory, respectively. Cases that are structural matches to 
the probe are bold.  
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training studies, understanding that the training cases can, 
and indeed should, be assimilated to long term memory with 
belief-state interpretation cases is crucial. In other words, 
children may be accumulating experiences that require 
reasoning about belief states in long term memory, but these 
memories remain inert until a surprising event—such the one 
experienced by the high alignment participants in the Hoyos 
et al. study—stimulates their retrieval and begins the process 
of creating schemas that can be used in future ToM reasoning. 
This predicts that children in the high alignment condition of 
Hoyos et al. (2015) are more likely to retain what they have 
learned than the children in the low alignment condition: the 
children in the high alignment condition were more likely to 
access those experiences from long term memory and form a 
generalization with them. 

In addition, our model predicts that reversing the order of 
training examples would cause children in both conditions to 
fail. In the low alignment case, when the most recent training 
example is retrieved, children would match the UC task to a 
true belief scenario, and answer incorrectly. Children in the 
high alignment case would similarly fall back on retrieval of 
the most recent case, as they would not experience the 
surprise caused by the repetition break structure. 

Previous studies (e.g. Hale & Tager-Flusberg, 2003; 
Lohmann & Tomasello, 2003) have suggested that 
experience plays a role in ToM development. Our model 
provides a concrete explanation for how these experiences 
might lead to ToM and provides further suggestions for 
human subject experiments. 

Related Work 

Theories of Theory of Mind 
Here, we summarize the best-known ToM theories. 

Theory Theory One of the most popular takes on ToM is 
Theory Theory, which views the child as a scientist with 
regard to interpreting other people’s mental states (e.g. 
Gopnik & Wellman, 1994). The child begins with a naïve 
theory about others, sometimes referred to as a folk 
psychology, which she modifies and adapts as evidence that 
supports or refutes the theory is observed. The theory 
gradually develops from only understanding desire states, to 
belief states, to how belief and desire states influence each 
other and behavior (Bartsch & Wellman, 1995).  

Simulation Theory Under the Simulation Theory view, a 
child mentally simulates events in order to predict others’ 
actions and beliefs (Goldman, 2006), and develops by 
improvement in simulation abilities (Flavell, 2004). 
Criticisms of Simulation Theory include that errors made by 
both children and adults are not consistent with those 
predicted by Simulation Theory accounts (Saxe, 2005) and 
that simulation is not sufficient for describing observed 
developmental patterns (Perner & Howes, 1992). 

Modular Theories Another common account is that ToM 
can be explained as a single cognitive module. Scholl and 
Leslie (1999) list six characteristics of modules: they are 
domain-specific, their behavior is, at least in part non-

voluntary, their processing is fast, their outputs are shallow 
and highly constrained, they are often located in a particular 
region of the brain, and their processes may be impaired—
and selectively impaired—by neural damage. Importantly, 
according to Scholl and Leslie, modularity theories “intend 
to capture only the origin of the basic ToM abilities” (1999).  
In this sense, modularity theories do not necessarily compete 
with other theories of ToM discussed here. 

Hybrid Theories Several hybrid theories have been 
proposed to bridge the gap between Theory Theory and 
Simulation Theory. Some, which Bach (2011) calls divided-
hybrid models, alternately assign aspects of Theory of Mind 
to simulation or theorizing, depending on which is better 
supported by empirical data (e.g. Heal, 1996). This approach, 
as Bach notes, avoids discussion of acquisition. It is unclear 
how a child learns to use simulation for some tasks and theory 
for others, and how simulation and theory develop 
concurrently. Other hybrid theories, which Bach (2011) calls 
dynamic-hybrid models, focus on continued development. 
Bach’s model falls under this category. Like other dynamic-
hybrid theories, Bach’s allows for development and changes 
to ToM not only throughout childhood, but into adulthood. 
This includes switching between theorizing and simulating to 
complete the same tasks at different points in development. 
As psychologists continue to find evidence of ToM shifts 
throughout adulthood (e.g. Hess, 2006), dynamic-hybrid 
theories become more and more plausible. 

Computation Models of Theory of Mind 
Hiatt and Trafton (2010) implemented a model of Theory of 
Mind using the ACT-R cognitive architecture (Anderson, 
2007) that learned to perform the Sally-Ann task.  It extracted 
facts out of the scenario and was asked several false belief 
questions about what it saw.  It was rewarded for answering 
correctly and punished for answering incorrectly, leading it 
over time to inhibit true belief responses, producing a 
learning curve consistent with developmental data.  
However, unlike our model, the training they used did not 
follow from an empirical training study.  We note that the 
children in the Hoyos et al. (2015) study were able to learn 
aspects of false belief after seeing just three examples, only 
one of which actually was a false belief situation. 

Goodman et al. (2006) modeled ToM via two Bayesian 
networks that respectively represent a naïve and expert theory 
in a Theory Theory account. They propose the models as 
competing hypotheses in the Sally-Anne task, and show how, 
during training, the expert theory becomes preferred over the 
naïve theory. The need to hand-code both theories in the 
system’s starting endowment makes it more of a 
computational level model (Marr, 1982), whereas we provide 
a process-level model of learning.  Furthermore, our model is 
consistent with the evidence from the training study 
presented by Goodman et al. (2006), which shows that 
surprise can improve children’s ToM performance. 

2953



Future Directions 
Our results provide evidence that structure-mapping is indeed 
a plausible process-level mechanism (Marr, 1982) for ToM 
and how it is learned. As such, our future work will look 
toward developing a complete computational Theory of 
Mind, including both the theory and simulation aspects of 
Bach’s theory, using SAGE as the underlying mechanism.  
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