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PERTURBATIVE ANALYSIS 
OF 

THE QCD4 MAPS1 

Zvl Bern 
and 

Hue Sun Chan 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, California 94720 

ABSTRACT 

January 1985 

LBL-19001 

The Claudson-Halpern stochastic processes for QCD" are veri­
fied to all orders of perturbation theory resulting in a number 
of new finite-time, infrared finite, perturbation expansions of the 
theory. The map viewpoint shows that the superficial quadratic 
divergences of QCD4, at least in the temporal gauge, are related 
to the choice of any particular final state configuration in the 
Feynman path integral formulation . 

1 This work ~as supported by th~ Director, Office of Energy Research, Office of High Energy 
and Nuclear Physics, Division of High Energy Physics of the US Department of E~ergy 
mtder contract DE-AC03-76SF00098. · 



1. Introduction 

Recently, Claudson and Halpern [1, 2] constructed a pair of Nicolai maps 

[3), or stochastic processes [4) for ordinary non-supersymmetric pure Y~ng­

Mills in four dimensions. The maps describe QCD4 as a nonequilibrating 
brownian motion in real (euclidean) time, and have constant Jacobians, so 

no fermions are needed for any cancellation. Only very few ordinary bosonic 

theories can have such closed form maps [2], and QCD4 iS singled out in 

this respect. The possibility of such mappings is directly traceable to the 
existence of the Loos-Greensite [5) zero-energy winding number solutions. 

The perturbative equivalence of the maps to the conventional formula­

tion is by no means obvious, since, for example, each map is an apparently 
parity-violating formulation of the theory. The major goal of this paper is 

to show the complete perturbative equivalence of the map formulation to 

the conventional functional integral formulation. In this we are successful, 

generating in the process a number of new perturbation expansions of QCD4 

in the temporal gauge, with boundary conditions at finite times. The expan­
sions may be useful, because at finite-time the temporal gauge is infrared 

finite. 

Additionally, we had the following motivation: In the map language, the 
gauge field is solved iteratively in terms of a random noise field, ,, and 

diagrams that represent correlation functions are formed by 11-contractions 
of these solutions in a way analogous to that of Parisi anc:l.Wu's fifth-time 

stoehastic quantization [6]. By a naive power count, based on imposing well 

behaved boundary conditions that prevent the runaway, instead of the re­

quired retarded boundary conditions, the Claudson-Halpern maps are such 

that the pure map diagrams appear linearly divergent at worst. This offers 
a hope that the superficial quadratic divergences of QCD4 could be avoided. 

However, in the Claudson and Halpern construction, the boundary condi­

tions are retarded and there is a final state constraint. As we shall see, it 

is this final state constraint that reintroduces the superficial quadratic di­
vergences. Since the map formulation is equivalent to QCD4, the final state 

constraint is nothing more than a choice of any particular final state in the 

Feynman functional integral formulation. Curiously, both a choice of final 
state and the superficial quadratic divergences are apparent breakdowns of 

gauge invarianee. Connected with this, we find that the stochastic regular-
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ization proposed by Claudson and Halpern fails precisely because it does not 

regularize the choice of the final state. 
The organization of this paper is as follows. Section 2 is an: overview of the 

QCD4 Nicolai maps. Diagrammatic expansion rules for the maps, as well as 
an explicit one loop example of the rules are given in section 3. In section 4, 
the map diagrams are organized into a new set.of diagrams which we call first 

order diagrams, since they correspond to a first order formalism of QCD4• In 
section 5, these first order diagrams are further reorganized into the· finite­
time Feynman diagrams of QCD4• Section 6 contains a discussion of the role 
of the initial and final. configurations. The conclusions and· comments are 

given in section 7. 

2. Overview of Nicolai maps in QCD4 

Claudson and Halpern formally established the identity, 

(2.1) 

where T = t2 - t1 and ii is the QCD4 Hamitonian. lf(i) and Ff(i) are 
respectively the initial and final configurations of At at t1 and t2. In identity 
(2.1), W and e are related to the winding number current. For our purpose 
of perturbative calculation, we can make the standard assumption that total 

divergences integrate to zero, and therefore e[Aj can be ignored [1J. SQcD is 
the usual euclidean QCD4 action in the temporal gauge, 

SQcD = l r 2 

dtjd3z [EfEf + BfBfJ , 
21h 

and the q-average is performed with the gaussian Boltzman factor, 

(2.2) 

(2.3) 

using either of the pair of Langevin-Nicolai maps discovered by Claudson 

and Halpern, 

in which, 

E._ 1· 
·-~, 

(2.4) 
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This Langevin equation (2.4) is a stochastic differential equation [4) driven by 

the random noise field 'li. The maps must be started at the initial condition 

of the transition amplitude 1;11(i), and the a-functional in eq. (2.1) (final 

state constraint) picks out only those brownian motions that end at the final 

state specified in the transition amplitude. QCD4 is thus described as a 

brownian motion from I to F, as illustrated in fig. 2-1. 

The finite-time expectation values of an arbitrary functional G[A] can be 

expressed_ simply in terms of averages over the 'I field. Namely, 

(G(A]) (2.6) 

(2.7) 

Note ihat the exp(±W) factors do not contribute to this average, because of 

cancellation between the numerator and denominator. 

In order to compute these 'I averages, the gauge field A has to be solved 

as a functional of the 'I noise field, through the map equations (2.4). The 

maps are equivalent to the integral equations, 

Ai±(i, t) = (e=F(t-tt)D),Ic IZ(i) 

+ 1' dr ( e=f(C-,.)D) ·L { 'lk ± !Oflctm/116e At± ( i, T )A:,.± ( i, T)} , 
h ... 

(2.8) 
where Di; = -f.;;~ciJ,,. These integral equations explicitly contain the retarded 

Langevin boundary conditions (causality) necessary to prevent the introduc­

tion of spurious fermions, as well as the initial condition, Ai±(i, t1) = lf(i). 
The retarded Green function of the Langevin equations are 

Gtj(i- Z', t- t') = iJ(t- t') (e=F(t-t')D),io3(i- i') (2.9) 

= iJ(t- t')(L;; + T.)e=F(t-c')y'=\72 

+ T.;e±(t-t')v'=VJ o3(.i- i'), (2.10) 

where L;; and t; are respectively the standard longitudinal and transverse 
projection operators, while 1J are the transverse helicity projection opera­

tors defined by 

(2.11) 

., 
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As in Parisi and Wu's fifth-time stochastic quantization of gauge fields [6J, . 

there is no damping in the longitudinal mode of the Langevin Green function. 

However, in this case there is also an exponential runaway in the transverse 

mode associated with the nonequilibrating nature of the QCD4 maps. 

Conventionally, one believes that the precise value of the initial and final 

conditions should be irrelevant in perturbation theory at large times, T, so . 

in the first stage of the computation we shall simply assume I = F = 0. The 

effect of I, F ~ 0 in perturbation theory will be discussed in section 6. 

The integral equations (2.8) can be solved iteratively by 

(2.12) 

where 
Ai±(o)(i, t) = 1' dr (. e=F(t-r)D) . .rlj(i, r), 

h , . IJ 
(2.13) 

gA;±{l)(i, t) = ±tgflclmf"'6e i: dr (e=F(t-r)D)ik A:±(o)(i, r)A!, ±{o)(i, r), 

(2.14) 

I Ai±(2) (i, t) = ±trflclmf"'6e (' dr (e=F(t-r)D) ·L A:±(l) (i, T )A!, ±(o) (i, r) . ltt ... 
(2.15) 

These iterative solutions are represented diagrammatically as tree diagrams 

in fig. 2-2, where arrowed lines represent the Langevin Green function (2.9) 

and the crosses stand for the q noiSe field. Note that only cubic vertices are 

required in the maps, in distinction to Parisi and Wu's fifth-time formulation 

[6J, in which quartic vertices are also present. If it were not for the necessity 
of expanding the final state constraint, the expectation values could easily be 

computed in the usual way, with gaussian q-contractions. In diagrammatic 

language this is achieved by gluing together the crosses of the tree diagrams. 

For example, the two point function through order g2 could be given by the 
diagrams in fig. 2-3. 

A naive power count, based on using well behaved instead of retarded 

boundary conditions, indicates that the two point functions of fig. 2-3 are 

not quadratically divergent, but linearly divergent at worst. This is because 

the cubic coupling involves no derivative, while the Langevin Green function 

(2.16) 

where k is either a power of momentum or energy. In fact, it is misleading 
to simply assign 1/ k to each Green function in the two point correlation 

(fig. 2-3). This is because the well behaved boundary conditions ignore 
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the nonequilibration or runaway that occurs, in the maps, with the required 

retarded boundary conditions. The diagrams have extra dimensionless loop 
di'V'ergences from the runaway term, e"r, where p is the loop momentum. 

Still the argument is suggestive because, as we will see below, the final state 
constraint removes the extra. ei'T divergences while introducing the superficial 

quadratic divergences. 

3. Map G.Ja.grams 

The iterative expansion (2.12) of A in terms of q can be used to construct 

a new perturbative expansion of the Yang-Mills Green functions. In sections 
4 and 5 the complete equivalence of this new expansion to the standard 
peturba.tive expansion will be shown. A systematic way of perturbatively 

expanding the expectation values (2.6) is by making use of the map gener­

ating functional 

(6[Ai±(t2)] exp (J,'; dt J fllzJtAi±) ) .. 
zm[J] = ---~~-:------"-·· 

- · {6[Af±(t2)])'7 · 

=I DqD>. exp [.£:' dt I d3z ( -tqi(i, t)qi(i, t) + Jia(i, t)Ai±(i, t)) 

+ i I d3z>.i(i)Ai±(i, t2)] 

x {I DqD>. exp [-1:' dt I d3z t'li(i, t)qf(i, t) 

+ i I d3z>.i(i)Ai±(i,t2)J}-I, 

(3.1) 
where the standard Fourier representation of the final state constraint has 

been used. Note that the constraint field >.f(i) is a function of only the three 

spatial dimensions and Ft is taken to vanish. 
The perturbative calculation of this generating functional ( 3:1) is slightly 

different than usual calculations in quantum field theory. Usually the non­
trivial interactions are contained in the action; however, in this case the 
"action", !112, is trivial, while the interactions are contained in the nontriv­
ial nature of A as a functional of q. There are two contributions to the 
perturbative expansion of the generating functional (3.1). One contribution 
is from the coupling of the gauge field to the external source, J, while the 

other is from the final state constraint. The perturbative expansion is carried 
out by substituting the Langevin ,expansion (2.12) into the generating func­
tional, zm(J). It is convenient to introduce an additional external source, 
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~,a(z), in the zeroth order generating functional, to be used in the pertur­

bative expansion of the final state constraint. Using the fact that the n-th 
order gauge field, A(n)[A(0); i, t], can be written as a functional of A(o)(z, t), 
as in eq. (2.15), the generating functional (3.1) can be rewritten as: 

where 

( 5(Af±(o)(t2) -. i~t) exp ftti2 dt f rJiz Jt Af±(o)} .. 
zm( J ~] = ----...------,....,....--.......---__;_:f,.·· 

0 
' - . (o[At±(o)(t2)J}, . 

= N' j DqD.\ expu:
2 

dt j d3z ( -Jqi(z, t)qi(z, t) (3.3) 

· + Jt(z, t)A;±(o>(x, t)) 

+ i j d3z .\f(z) (A;±(o) (z, t2) - i~i(z)) ].. 

N is an appropriate normalization, so that zm(o) = 1. The exponential term 
in eq. (3.2) containing the derivative with respect to the constraint external 
source, ~t( z), generates the higher order ·corrections to the constraint. Dia­
grams containing contributions from this term we call constraint diagrams. 
Diagrams which do not contain the higher order constraint contributions we 
call basic diagrams. Note that basic diagrams implicitly contain the zeroth 
order constraint contribution. 

Since eq. (2.12) gives A(o)± linearly in terms of q, Z0 (J, ~]can he obtained 
by Gaussian integration. Namely, 
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where 

~~(i, t; t, t') = [ { ~ IJ(t'- t) (t- .tt)(t2- t') + (t .... t') }t.j 
+ {IJ(t' _ t) sinh[(t2- t')J=ViJ sinh[(t- ti)J'=ViJ 

J=Vi sinh [TJ=ViJ 

+ (t.,.. t') }t.j]b'1(i- t) , 

·~~~(it· t) = [t- t1 L·· + sinh[(t- t.)v'-'\72] T.··]b's(i _ t) 
'J ' ' T •J sinh[Tv'-'\72) •J . ' 

(3.5a) 

(3.5b) 

.u - '!!'ll - [ 1 A y'-'\1ie±T~ A+ J-V2e(Tr.;-v:~) A-] s -
~ii ( z; z ) - T L;i + sinh (T J=Vi) T;i + sinh (T y'-'\72) , T;i b' ( z - t) . 

· (3.5c) 
As delned previously, T = t2 - t1, while L;j, T.17 and 1i7 are the projection 
operators. 

A systematic way of generating all A-field correlation functions is summa­
rized by the following diagrammatic rules in (t,p) space, where (t,p) stands 
for coordinate (euclidean) time and spatial momentum. In Parisi and Wu's 
fifth-time formulation two types of propagators were needed; however, in our 
case, two extra propagators arise from the final state constraint. The four 
propa,ators are: 

p 

t•~;--~__,.~ t = b'06G1J(p, f- t') 
· 6o61J(t _ t') [L;j + eT(c-c')p T;j + e±(c-c')p T;j] . (3.6) 

The above propagator is the usual retarded Green function of the Langevin 
equation (2.4), in momentum space. As in Parisi and Wu's fifth-time stochas­
tic quantization, the directionality of the Langevin Green function follows 
from the causality imposed on the Langevin equation. However, as men­
tioned previously, these Green functions differ from the Parisi and Wu Green 
functions in that one helicity becomes unbounded for large t - t'. 

t' -:----~ t = 6'06 ~~(p, t'' f) = 6'06 a~(p, f, f1
) 

= 6'06 [~IJ(t'- t) (t- ft)(t,- t')L;i 

(J( t' _ t) sinh[(t2 - t')p)sinh[(t- lt)PJ t,.. (t.,.. t')] 
+ psinh(Tp) •J + · 

(3.7) 
Althoagh the propagator ( 3. 7) is related to the pure map zeroth order two 
point function ( • >< • ) (fig. 2-3}, it contains an extra contribution from 
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the zeroth order final state constraint, which prevents the runaway behavior. 

t :_ __ b __ ~ .. ,, = Da6 A:~.>.(p t) 
i j - tJ ' 

= .~>a6 [t- t1 L·· sinh[(t- ti)PJ "'··] 
- u T '1 + sinh[Tp) .Li1 • 

(3.8) 

Propagator (3.8} represents a mixing between the physical gauge field, Af(z, t), 
and the constraint field, .\i(z), which exists only at t2• 

Cl ~ 6 
t,c.=======•t,;: Dab A~~(p) 

i j tJ' 

- ai [ 1 ... pe±T'P ... + pe=fT'P ... ""'"] 
= D T Lij + sinh(Tp) T;i + sinh(Tp) T;i 

(3.9) 

This is the propagator of the constraint field. Both ends must join to t2 

points. Actually the propagators (3.7), (3.8) and (3.9) are the spatial Fourier 
transforms of the propagators defined in eq. (3.5). The last two propagators 

involving t 2 come explicitly from the final state constraint. 

Since A(n)[A(0); z, tJ contains n+1 factors of A(o) it may seem that the map 

generating functional (3.2) contains an infinite number of different vertices. 
However, A (n) [A (o); z, tJ is a nonlocal functional of A (o), because A (n) is related 

to A (o) through the Langevin Green functions, a±, as given, for example, 

in eq. (2.15). These nonlocal vertex factors can be rearranged into five 

local vertex factors (fig 3-1). Each three-point vertex connects to at least 
one a± propagator. As with usual Feynman diagrams three-momenta are 

-
conserved at vertices, all internal momenta are integrated, intermediate times 

are integrated from t1 to t2, and combinatoric factors are included in the 
usual fashion. If there are any a± propagators that join to external points, 

the rule is that the directions of the arrows (time) are always towards the 

external point, analogous to Parisi and Wu's stochastic quaJl.tization. 

As an explicit example to illustrate these rules, we shall exhibit the order 
{/' diagrams of the. two-point correlation function, 

(3~10) 

The diagrams are divided into two classes. The basic diagrams are those that 

do not involve any t 2 vertices (or dotted propagators), while the constraint 

diagrams are those that contain at least one t2 vertex, which occurs only 

in higher order terms in the expansion of the final state constraint. All the 

order {/' diagrams are shown in fig. 3-2. 

As we shall explain in the next section, the remaining runaway behavior 

caused by the a± propagators is, in fact, fictitious and can be removed by 
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appropriately combining propagators. On the other hand, the superficial 

quadratic divergences are real, and are contained solely in the constraint 

diagrams (d) and (h) of fig. 3-2. This is precisely the reason for the failure 

of Claudson and Halpern's [1] proposed stochastic regularization scheme. 

Their scheme does not regularize the constraint propagators (3.8) and (3.9). 

4. First order formalism diagrams 

The map diagrams of the last section are quite complicated. However, 

the number of diagrams can be drastically reduced by making ·use of two new 

propagators defined as 

Ai,/±(p, t', t) :: Gij(p, t- t')- Gfk(p, t2- t')Af}(p, t) 

= tij[9(t- t')- t;. 11
] 

A [ e=F(2T+e-t')p _ e=F(2t2 -t-t')p] 
+ T.t 9( t - t') e=F(t-t')p + -~. ----=-==---

•J 1- e=F2Tp 

(4.1) 

A [ e±(2T+e-t')p _ e±(.2t2-t-e')p] + T:: 9( t- t') e±(t-t')p + ----~=---
•J 1- e±2Tp ' 

and 

A}'l±(p, t', t) = -Gfk(p, t2 - t')A~f{p)Gij(p, t2 - t) 
- - [A 0 . .!.. • A .t e=F(2t:~ -t-t')p A:: e±(2t2 -t-t')p] 
- L,J T ± 2pT,J 1 - e=F2Tp =f 2pT,J 1 - e±2Tp • 

(4.2) 

The superscripts, ,. A and ,.,. , will be explained at the end of this section. For 

now, it is sufficient to know that these two new propagators are combinations 

of the map constraint propagators with the Langevin Green function. This 

is illustrated in fig .. 4-1. Note that these new propagators do not contain any 

runaway behavior for T -+ oo, so diagrams constructed from these propaga­

tors will not contain the ePT divergence of pure map diagrams (fig. 2-3). If 

these new propagators are used in place of the map propagators there is no 

need ror the t2 constraint vertices {fig. 3-la, 3-lb) since these are absorbed 
into the definitions of the new propagators. The three cubic couplings in the 

maps (fig. 3-1c, 3-1d, 3-1e) can be rewritten as cubic vertices connecting 

the ~~A, A"f/ and A"/j propagators, as shown in fig. 4-2. In particular, 

the sixteen order g2 map diagrams for the two-point function (fig. 3-2) are 

combined into five first order formulation diagrams (fig. 4-3). 

We note that at infinite T only diagram (b) in fig. 4-3 is quadratically 

divergent. This is because the Att propagator is O(p-2) while the A"f/ 
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propagator is O(p-1 ). The tl.'fl propagator vanishes in the infinite T limit. 

Instead of having the quadratic divergences distributed in two diagrams as 

in the usual formulation, this first order formulation has the virtue of isolat­

ing all the quadratic divergences of the order g2 two-point function in one 

diagram. This makes it easier to deal with when analysis of the quadratic 

divergences is made. 

The relationship .between this formalism and the map formalism reveals 
the origin of the superficial quadratic divergence. The only quadratically 

divergent first order diagram (b) in fig. 4-3 is equivalent to the three map di­

agrams in fig. 4-4. These three map diagrams are constramt diagrams. That 

is, they contain higher order contributions of the perturbative expansion of 
the final state constraint on the maps. This confirms that the superficial 

quadratic divergences in the theory are related to a particular choiCe of final 

state. 

On closer examination, we found that the diagrammatic rules given in 

this section correspond to the theory described by the first order generating 

functional 

1A:(t::)=O [lt:: 1 Z"(J,K) = N DAiD1rJ exp dt d3z (-t1rf7rf 
A:(tl)=O h 

- i1ri(At ± f.sjlclJiAic =t= tf.sjTc/a6eA}Ak) + JtAi + iKi~i)] 

= exp [±~ 1::: dt f dsz gfabef.ijTc 6~f 6 ~} 6 ~;] z;(J, K) ' 

(4.3} 

where 

By gaussian integration, the A-A, 1r-A and 1f'-1f' propagators are respectively 

found to be the functions tl.~A, tl.'f/ and tl.'fl defined in eq. (3.5a), eq. 
(4.1) and eq. (4.2). We call the generating functional (4.3) a first order 

formulation of QCD4• This first order formulation serves as an intermediate 
link between the map formulation and the usual path integral formulation of 

QCD4• As mentioned previously, the importance of this formulation is that 

it reveals the connection between the final state constraint and the quadratic 
divergence. Also the one-loop superficial quadratic divergence of the theory 

is contained in a single diagram. 
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The next logical step is to show that the first order formulation diagrams 

are equivalent to the usual Feynman diagrams. Although this can be shown 
by a formal functional integration over the auxiliary field, 1r, this paper is 

concerned with making an explicit connection through perturbation theory. 
The perturbative connection will be accomplished in the next section. 

5. Finite-time Feynman diagrams 

In this section, our purpose is to reorganize the first order formalism 

diagrams of the last section into diagrams that contain only A-A propagators. 
As we shall see, the reorganized diagrams are just the finite-time Feynman 

diagrams of QCD4. To achieve this, two steps are needed: 1) Express 
the 1r-1r and r-A propagators as combinations of A-A propagators and some 
appropriate factors to be determined. 2) Absorb these factors into the 

first order formalism vertices to turn them into standard QCD4 three- and 
four-point vertices. 

The first step is accomplished by noting two identities. First, the 1r-A 

propagator ( 4.1) can be expressed as 

Ai'/±(p,t',t) = {'2 

dt"e!ic(p,t',t")Aff(p,t",t), (5.1) 
},1 

where 

(5.2) 

As required, the 1r-A propagator is decomposed into a product of an A-A 

propagator and a 9-factor as illustrated in fig. 5-l. The 1r-1r propagator can 
also be rewritten in an analogous manner. 

(5.3) 

Now we proceed with the second step of absorbing these 9-factors into 
vertex factors. Making use of the first identity (5.1), three possible permu­
tations of the first order formalism vertices (fig. 4-2) combine to form a new 
three point vertex joining three A-A propagators (3.5a) together (fig. 5-2}. 
Instead of a vertex for two A- and one 1r-field, the first order formalism vertex 
(fig. 5-2a) can be thought of as a vertex connecting three A-fields. By eq. 

(5.1), this new vertex factor is the product of a 8-factor, (iJ,,6u ± iftimPm) 
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and the first order formalism vertex factor, ±gjabef.lJTc· Adding this to the 

other two permutations, fig. 5-2 (b) and (c), gives 

±gr6e [itJTc(±if.limPm) + f.itTc(±if.tjmqm) + f.iJt(±if.tTcmrm)] , (5.4) 

resulting in the vertex factor in fig. 5-2d, 

(5.5) 

which can be recognized-as the usual three-point vertex factor of QCD4 in 
the temporal gauge. The a,, part in the 8-factor does not contribute to the 
vertex factor (5.5), because the permutations of it sum to a·total derivative, 

which is identically zero since 

(5.6) 

Next we consider the 1r-1r propagators. Since we are interested in only 

calculating expectation values of the physical A-field, 1r-1r propagators can 
occur only as internal lines in first order formalism diagrams. The identity 
(5.3), involving the 1r-1r propagator, can be expressed in terms of diagrams 
shown in fig. 5-3. The four-point interaction in fig. 5-3b arises from the 
-OiJO(t- f) term in identity (5.3). Therefore, its vertex factor is obtained 
by a simple contraction of two first order formalism vertices. That is, 

(-gf.iJmr"egf.Tctmrde) +(two other permutations) 

= -g2 [(oiTcDJz - 6ilDJTc)!a6e r" +(two other permutations)] , 
(5.7) 

which is, in fact, the usual four-point vertex of QCD4• 

As shown in fig. 5-3, 7r-1f' internal lines are equivalent to the usual QCD4 

four-point interactions of A-fields and extra three-point interactions involv-. 
ing 8-factors. Diagrams that contain the latter can be summed with the 
other diagrams of the same order in perturbation theory. The J;"esulting sum 
consists of diagrams containing only A-A propagators with 8-factors inserted 
in all three possible po.sitions around every three-point vertex. As illustrated 
in fig. 5-2, these 9-factors can be absorbed into the new three-point vertex 
(5.5). Thus, diagrams in the first order formulation are equivalent to di­
agrams that contain only A-A propagators with the usual temporal gauge 
QCD4 three and four-point interactions given by eq. (5.5) and eq. (5.7). 

To clarify these rules, we give the example of the reorganization of the 
order g2 two-point function. As discussed in- the first part of this section, 
the process of converting first order formulation diagrams into finite-time 
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Feynman diagrams consists of two steps. The first step, illustrated in fig. 5-

4, consists of replacing the r-A propagator ( 4.1) and the 1r-1r propagator ( 4.2) 
with A-A propagators (3.7) and 8-factors (5.2). From the 1r-1r propagator 

there is an additional 5-function contribution that generates the four-point 
· interaetion. The second step, illustrated in fig. 5-5, consists of absorbing the 

9-factors into the three-point vertices, in order to generate the usual QCD" 
vertex factor (5.5). · 

As previously claimed the diagrammatic rules described in this section 

are precisely the finite-time Feynman rules of QCD4 in the temporal gauge. 
We can check this as follows. In the standard temporal gauge formulation of 

QCD "' the generating functional is given by: 

(5.8) 

where the free generating functional is 

(5.9) 
From the form of the interaction it is clear that eq. (5.8) generates a three­
and four-point vertex with the same factors (5.5, 5.7) as arrived at through 
the first order formali,sm. Z0 [ J] is the finite T free generating functional. Due 

to the nontrivial nature of the finite T boundary conditions, the zeroth order 
map was employed as a simple technical tool for the computation of Zo[J], 
though other methods can be used [7]. The free gluon propagator, in Zo(J], 
tums out to be just the ~tA propagator (3.5a) that we have been using. 
Therefore, as promised, the first order diagrams are shown to be completely 
equivalent to the Feynman diagrams in the standard formulation of QCD •. 
These finite T Feynman rules are given in fig. 5-6. 

Several remarks are in order. First, the form of the finite T gluon propa­
gator shows that the infrared problem of the usual temporal gauge infinite T 

formulation does not arise as long as one is working at finite T. In fact, this 
behavior is similar to what happens in the five-dimensional gluon propagator 
of Parisi and Wu's stochastic quantization (6). When t 1 and t2 are respec-

..... 
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tively taken to negative and positive infinity, the transverse part equilibrates, 

1 . t2--+oo -lt-tliP 
. hi--T) (8(t'- t) sinh((t- t.)p) sinh((t2 - t')pj + (t +-+ t')J t 1~00 

_e __ 
P~w ~ 

(5.10) 
while the longitudinal part diverges as -t1 or t2 , 

~[8(t'- t) (t- t1)(t2- t') + (t +-+ t')J t
2
-oo -t1 + min[t,_t'J 

t 1~00 
t2 - ma.x[t, t'J . 

(5.11) 

As with Parisi and Wu's stochastic quan~ization it is not necessary to fix 

the residual gauge invariance of the maps, or equivalently the path integral 

formulation. The divergence in the longitudinal part arises for the same 
reason as in Parisi and Wu's case, and can be interpreted as a random walk 
in the gauge parameter space (6]. 

Second, as a final check, we made contact with the usual infinite T for­
mulation of QCD4 by Fourier transforming the time variables of ~~A in the 

infinite T limit. The temporal Fourier transform of its transverse part (5.10) 
is 

!
00 , !00 , 1 1 e-it-tljp 1 

dte-•wt dt'e-•wt =211'D(w+w') . (5.12) 
-oo -oo 2p w2 + p2 

The longitudiiial contribution is given by 

f f dte-iwt jf dt' e-iw
1

t
1 

[.!.e(t'- t) (t + T/2)(T/2- t') + (t +-+ t')] _.z:. _.z:. T 
2 2 -

= __ 1_sin [(w + w')T /2] + O(T-1) (5.13) 
ww' (w + w') /2 

T--+oo ( ') 1 
---+ 211'0 w + w 2 ' w 

where we have set t1 = -T /2 and t2 = T /2 for simplicity. Summing up 
these two limits, one- obtains the infinite T limit of the (w,p) space gluon 

propagator, 
qeD 1 A 1 A 

~~i (w,p) = 2Lii + 2 2 T';j' w w +p 
(5.14) 

recovering the standard temporal gauge result of QCD4• 

Third, we restate our observation concerning the superficial quadratic 
divergences in QCD4• All through the computation we kept track of the one­
loop superficial quadratic divergence, and it can be traced back to the higher 
order contributions of the final state constraint. This observation is made 
possible only through the map viewpoint. Once the map diagrams are reor­
ganized, the intuition of this fact is lost because the t2 vertices are absorbed 
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into the definition of the new propagators. The usual Feynman diagram 

formulation is simpler in the sense that there are fewer diagrams. However, 
for the purpose of understanding the connection of the final state constraint 

to the superficial quadratic divergence, the Feynman formulation is not as 

helpful as the first order formulation, because both the constraint and ba­

sic diagrams are combined. In the first order formulation the quadratically 
divergent diagram comes purely from map diagrams that include constraint 

propagators. 

So far, we bave shown the connection between the superficial quadratic 
divergence and a particular choice of final and initial states; namely, I = 
F = 0. In the next section we will check that the divergence persists for any 

· choice of I and F. 

6. Nonzero initial and final states 

In all of the preceding calculations, the initial and final field configurations 
were a.ssumed to be zero. As can be expected, inclusion of the nonzero 
initial and final configurations give rise to new Feynman diagrams at finite 
T. One usually expects, in field theory, that in the infinite T limit, any 
expectation value is independent of the choice of .initial and final states. 
HoweTer, this is not strictly true in gauge theories, because there does not 
exist a mass gap without gauge fixing. As we shall see here, large T does not 

wipe out dependence on the longitudinal parts of I and F, which generates 
new "boundary diagrams" for all n-point correlation functions, even at large 

T. 
Following the same procedure as in the case of zero initial and final states, 

the corrections to the map diagrams (section 3) can be found. These addi­
tional diagrams can be rearranged to give extra contributions to the finite­
time Feynman diagrams. Alternatively, the finite-time QCD• generating 

functional including the I, F =F 0 contributions can be evaluated. As for the 
generating functional with I, F = 0 (5.8), the interacting part of the gener­
ating functional with I, F =F 0 can be pulled out of the functional integral. 
The free generating functional, including the nontrivial boundary conditions, 

can be evaluated with the aid of the map. 

z:(J) = exp[i 1:2 

dtdt' f d3zd3z1 Jt(z, t)a~A(z, t; i', t')Jj(i', t') 

+ 1:2 

dt j d1z J1°( z, t)s;( i, t)] , 
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where the boundary term, St, is related to the initial and final states by the 

equation 

S lf(- ) = ['-It L·· sinh(( I- lt)J=Vi] T.··] Fl!( ... ) 
• z, 1 T •J + sinh[TJ="Vi] •J 1 z 

[
12 - I L·· sinh[(l2- I)J=Vi] T.··] II!( ... ) 

+ T •J + sinh[TJ=Vi) '1 1 z · 

(6.2) 

Because of the boundary term (6.2), there are new contributions to every n­

point correlation function. For example, the expectation value of the A-field, 
which is zero in the case of vanishing boundary terms, becomes 

(Ai(i, 1)) = Si(i, I)+ O(g) . (6.3) 

The general diagrammatic rules in (I, P) space for calculating the new 

contributions to the n-point correlation function, 

(6.4) 

are as follows. The boundary insertion St(P, 1), which is the spatiai Fourier 
transform of St(i, 1), is represented by a wavy line with a small ci~cle at­
tached, as shown in fig. 6-1. By inspecting the free generating functional 

(6.1) and the interaction of eq. (5.8), one sees that an I, F -::fi 0 insertion 
can be connected to other I, F -::fi 0 insertions or gluon propagators through 
the usual three- and four-point vertices of QCD4 • These new vertices are 

depicted in fig. 6-2. 

Since the I, F -::fi 0 terms in the free generating funCtional do not affect the 
interactions, the vertex factors for the nonzero I and F vertices in fig. 6-2 are 
just the usual three- and four-point vertex factors of QCD4 • As in the case 
of I, F = 0, spatial momenta are conserved at all vertices, all intermediate 
times are integrated from 11 to 12 and all internal momenta are integrated. 
Combinatoric factors for identical gluons, as well as combinatoric factors for 

I, F -::fi 0 insertions should also be included as usual. As an example, the 
order g contribution to the two-point function is given in fig. 6-3, which is 

equivalent to the equation, 

I d3z I d3z' e-ii1·ie-iq·i' (Ai(i, I)A~(.t, t') )(I) 

= -iar6
e L(r- q), .. 611e + (q- p)k6.,l + (p- r),6Tc,.,] {6.5) 

x 1'2 

draf..,A(p,l,r)aft(q,t',r)S:(r,r), 
ltl 
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where r = -(p+q). To further illustrate the procedure, the order !I I, F ::/: 0 
contributions to the two-point functions are depicted in fig. 6-4. These 
diagrams are tree diagrams, which are finite, and therefore, can not affect 

the older g2 quadratic divergences of the two point function. 

These I, F ::/: 0 contributions to the n-point functions do not conserve 
spatial momentum, because initial and final configurations other than con­

stants break spatial translation invariance. Although spatial momentum is 
conserved at each vertex, the I, F ::/: 0 insertions act as sources or sinks of 
momentum. As a result the sum of all external momenta does not necessarily 

vanish. Moreover, the definition {6.4) is different from the usual definition 

of the momentum space n-point function-in which the overall momentum 
6-function is factored out. The n-point function generated by the diagram­
matic rules of the last section is of the latter type. To consistently add these 

new I, F ::/: 0 contributions to the I, F = 0 contributions of the last sec­

tion, extra overall momentum conserving 6-functions, (211")363 (Ep), should 
be multiplied onto the diagrams of the last section. • 

In the infinite T limit, the transverse part of the boundary term, St, 
damps out and only the longitudinal part persists. This fact is intimately 
connected to the residual spatial gauge invariance of the theory. As with 
Parisi and Wu 's stochastic quantization, one can expect that if one calcu­
lates only gauge invariant quantities, the boundary term will not affect the 

result (6). In fact, what is usually done in QCD• is to set these contributions 
to zero by implicitly choosing the longitudinal part of I and F to vanish. 
Alternatively, as emphasized by Claudson and Halpem, the amplitudes sat­
isfy Gauss' law when smeared over a gauge invariant initial or final state, so 
with this prescription, the large T limits should be independent of I and F. 

7. Conclusions and comments 

The major points presented in this paper were: 
1) The explicit reorganization of the Claudson-Halpern QCD• map diagrams 
into temporal gauge finite-time Feynman diagrams. 
2) Three finite-time, infrared finite, perturbation expansions of QCD4 are 
discussed. In one of these formulations, the first order formulation, the one 
loop superficial quadratic divergences are found in a single diagram. 

3) The superficial quadratic divergences of QCD4, at least in the temporal 
gauge, are related to a choice of any particular final state in the Feynman 
path integral. This can only be seen in the map formulation. 
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4) By working at finite-t1me, we have seen that there is no need to fix the 

residual spatial gauge invariance in the maps (or equivalently the path inte­
gral formulation in the temporal gauge). The result is a random ·walk in the 

gauge parameter space, exactly as in Parisi and Wu's fifth-time stochastic 
quantization. The "miracle" of not having to gauge fix is not particular to 

the (artificial) fifth-time stochastic quantization. 
5) In the infinite-time limit, the longitudinal part of boundary terms persist. 
These terms are not expected to affect the gauge invariant quantities, in 

analogy with Parisi and Wu's stochastic quantization. The phenomenon of 
lonr;itudinal memory is common to any system with longitudinal zero modes. 
6) The stochastic regularization proposed'by Claudson and Halpern [1] fails 
because their scheme does not regularize the quadratically divergent con­
straint diagrams. 

Less formal studies of the maps will require a regularization scheme . 

.. ~ 
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Figure 2-1 

Figure 2-2 

Figure 2-3 

Figure 3-1 

. Figure 3-2 

Figure 4-1 

Figure 4-2 

Figure 4-3 

Figure Captions 

QCD 4 as a brownian motion: Only those paths that end at 

F are accepted. 

Diagrammatic representation of the iterative solution to the 

maps. 

Two-point "pure map" diagrams ignoring the final state con-
straint. 

Vertex factors in map formulation. 

Map diagrams for the two-point function . 

First order formulation propagators as combinations of map 
propagators. 

Three-point couplings in the first order formulation. 

First order formulation diagrams for the order g2 two-point 

function~ 

Figure 4-4 Quadratic divergence in map and first order formulation. 

Figure 5-1 • Decomposition of. n--A propagator into an A-A propagator 

and E>-factor. 
Figure 5-2 Decomposition of first order formulation vertices into QCD4 

three-point vertices. 

Figure 5-3 Decomposition of internal n--n- propagator into A-A propa-

Figure 5-4 

Figure 5-5 

Figure 5-6 

Figure 6-1 
Figure 6-2 

Figure 6-3 

Figure 6-4 

gator. The diagrams in (a) represent part of an arbitrary 

first order formalism diagram. 

The first step in conversion to usual Feynman diagrams con­

sists of replacing n--A and 1r-1r propagators with A-A prop­

agators. . The n--n- propagator produces an additional 6-. 
function contribution that generates the four-point interac­

tion. Diagram (a) includes an implicit combinatoric factor 

of 1/2. 
The second step consists of absorbing the E>-factors shown in 

fig. 5-4 into three-point vertices. 

Temporal gauge Feynman rules for all T in ( t, p) space. Inte-

gration over intermediate times from t1 to t2 is implied. 

Diagrammatic representation of the I, F :f:. 0 insertions. 
I, F :f:. 0 vertices. 

Order g contribution to the two-point function. 

Order g2 I, F =F 0 contribution to the two-point function. 
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Figure 3-2 
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