
UC San Diego
UC San Diego Previously Published Works

Title
You Cannot “Count” How Many Items People Remember in Visual Working Memory: The 
Importance of Signal Detection–Based Measures for Understanding Change Detection 
Performance

Permalink
https://escholarship.org/uc/item/3dn1j848

Journal
Journal of Experimental Psychology Human Perception & Performance, 48(12)

ISSN
0096-1523

Authors
Williams, Jamal R
Robinson, Maria M
Schurgin, Mark W
et al.

Publication Date
2022-12-01

DOI
10.1037/xhp0001055
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3dn1j848
https://escholarship.org/uc/item/3dn1j848#author
https://escholarship.org
http://www.cdlib.org/


You Cannot “Count” How Many Items People Remember 
in Visual Working Memory: The Importance of Signal 
Detection–Based Measures for Understanding Change Detection 
Performance
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Mark W. Schurgin,

John T. Wixted,

Timothy F. Brady

Department of Psychology, University of California, San Diego

Abstract

Change detection tasks are commonly used to measure and understand the nature of visual 

working memory capacity. Across three experiments, we examine whether the nature of the 

memory signals used to perform change detection are continuous or all-or-none and consider the 

implications for proper measurement of performance. In Experiment 1, we find evidence from 

confidence reports that visual working memory is continuous in strength, with strong support 

for an equal variance signal detection model with no guesses or lapses. Experiments 2 and 3 

test an implication of this, which is that K should confound response criteria and memory. We 

found K values increased by roughly 30% when criteria are shifted despite no change in the 

underlying memory signals. Overall, our data call into question a large body of work using 

threshold measures, like K, to analyze change detection data. This metric confounds response bias 

with memory performance and is inconsistent with the vast majority of visual working memory 

models, which propose variations in precision or strength are present in working memory. Instead, 

our data indicate an equal variance signal detection model (and thus, d’)—without need for lapses 

or guesses—is sufficient to explain change detection performance.

Keywords

discrete-slots; models of memory; proper measurement; signal detection theory; visual working 
memory capacity

Working memory and its capacity constrains our cognitive abilities in a wide variety of 

domains (Baddeley, 2000). Individual differences in capacity and control predict differences 

in fluid intelligence, reading comprehension, and academic achievement (Alloway & 

Alloway, 2010; Daneman & Carpenter, 1980; Fukuda et al., 2010). These extensive links to 
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various cognitive abilities make the architecture and limits of working memory of particular 

interest to many fields of study (e.g., Cowan, 2001; Miyake & Shah, 1999). One especially 

well studied component of this system is visual working memory, which holds visual 

information in an active state, making it available for further processing and protecting it 

against interference. This memory system has an extremely limited capacity: We struggle 

to retain accurate information about even three to four visual objects for just a few seconds 

(Luck & Vogel, 1997; Ma et al., 2014; Schurgin, 2018; Schurgin et al., 2020).

Over the past 20 years, a vast number of studies have investigated important issues in visual 

working memory. For example, many researchers have focused on how flexibly we can 

allocate our working memory resources to different numbers of objects (e.g., “slots” vs. 

“resources”; Alvarez & Cavanagh, 2004; Awh et al., 2007) and whether different features of 

these objects are “bound” or stored separately (e.g., Baddeley et al., 2011; Luck & Vogel, 

1997). Another major area of work has demonstrated that visual working memory capacity, 

even for simple displays (Figure 1a), is predictive of fluid intelligence as well as a host 

of other important cognitive abilities (Fukuda et al., 2010; Unsworth et al., 2014). Overall, 

significant progress has been made in understanding the nature of this memory system (e.g., 

Brady et al., 2011).

Change Detection Cannot Unambiguously Measure Memory Performance

However, many of the core conclusions about the nature of visual working memory come 

from tasks known as change detection tasks. These tasks are a variant of an “old/new” 

recognition memory paradigm in which participants are probed on their memory by being 

asked “Did you previously see this item?” or are prompted to identify an item as either “old” 

or “new.” In a typical visual working memory display (see Figure 1), participants see several 

simple, isolated objects on a solid color background and are asked to hold these items in 

mind before being asked to detect whether a particular object changed after a brief delay 

(Luck & Vogel, 1997).1 Despite their ubiquity, change detection tasks cannot provide an 

unambiguous estimate of memory performance because any measure of performance from 

this task relies on assumptions about the distribution of memory signals which are often 

false and regularly unverified (see Brady et al., 2021).

Because change detection tasks provide two relevant measures of performance, hit rate 

(calling “same” items “same”) and false alarm rate (calling “different” items “same”), 

memory researchers must combine them to get a unified measure of performance. This 

introduces significant ambiguity into memory measurement since there are several choices 

for how to combine hits and false alarms into a quantitative measure of performances 

(e.g., d, A’, K values, percent correct, etc.), all of which rest on different, and sometimes 

incompatible, theoretical and/or parametric assumptions (for a review, see Brady et al., 

2021).

1In the current work we will not consider the more complicated scenario where all items reappear and all could have changed, though 
the fundamental concern with threshold modes like K raised here applies equally in such experiments.
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One of the most common ways to combine hits with false alarms is to use “K” values (N 
* [hit rate – false alarm rate]), where N is the number of objects shown (Cowan, 2001; see 

also Pashler, 1988; Rouder et al., 2011). This metric, which is technically based on double 

high-threshold theory (Rouder et al., 2011), attempts to measure “how many objects” or 

“items” people remember and, because this is a particularly intuitive concept, it has ended 

up being extremely prevalent in the study of visual working memory (for example, Alvarez 

& Cavanagh, 2004, 2008; Brady & Alvarez, 2015; Chunharas et al., 2019; Endress & 

Potter, 2014; Eriksson et al., 2015; Forsberg et al., 2020; Fukuda, Kang, & Woodman, 2016; 

Fukuda, Woodman, & Vogel, 2016; Fukuda et al., 2010; Fukuda & Vogel, 2019; Hakim et 

al., 2019; Irwin, 2014; Luria & Vogel, 2011; Ngiam et al., 2019; Norris et al., 2019; Pailian 

et al., 2020; Schurgin, 2018; Schurgin & Brady, 2019; Shipstead et al., 2014; Sligte et al., 

2008; Unsworth et al., 2014, 2015; Vogel & Machizawa, 2004; Woodman & Vogel, 2008).

However, despite the seemingly straightforward nature of K values, they depend on strong 

theoretical claims, just like any-and-all ways of combining hits and false alarms into a 

unified measure (Brady et al., 2021). These foundational claims—which are in conflict with 

a wide variety of accepted theories of working memory—deeply affect estimates of memory 

performance and the conclusions made based on K values. K is a slight variation on adjusted 

hit rate, percent correct and other measures that are all derived from a class of models 

called threshold models (Swets, 1986). K values rest on the assumption that memories 

are all-or-none: Items are either remembered in a way that is perfectly diagnostic, or not 

remembered at all. Under such a view, false alarms arise when there is zero information 

about an item in memory (i.e., they represent pure, informationless “guesses”) and, because 

false alarms tell you how often a participant was “guessing,” they can be used to adjust the 

hit rate for “lucky guesses” (hence the hits minus false alarms aspect of the K formula). 

Therefore, for K values to provide a valid measure of performance it must be the case that 

memories are never weak or strong but are perfectly described by being either completely 

present or completely absent. This point applies to all variants of K measures since they all 

rest on the same theoretical foundation (Cowan, 2001; Pashler, 1988; Rouder et al., 2011).

The processing assumptions of such a threshold model is at odds with a variety of findings 

from contemporary visual working memory studies and with nearly all visual working 

memory theories. Indeed, mainstream working memory models based on continuous 

reproduction data, rather than change detection data, accept the fact that memories vary 

in their precision: for example, an item is remembered more precisely at set size 1 than 

set size 3 (Bays et al., 2009; Schurgin et al., 2020; van den Berg et al., 2012; Zhang & 

Luck, 2008). In addition, when participants express levels of confidence in their memory, 

variation in confidence tracks both how precisely an item is being remembered and how 

likely people are to make large errors (Fougnie et al., 2012; Honig et al., 2020; Rademaker 

et al., 2012). The combination of variation in precision with variation in confidence suggests 

that memories vary continuously in how strongly they are represented and that participants 

are aware of this variation in memory strength (see Schurgin et al., 2020). Theories where 

memories vary in precision or strength and participants have access to this precision or 

strength to make their decision undermine the foundational and irrevocable principles 

of the K metric and, therefore, make it an inappropriate metric for estimating memory 

performance. That is, K as a metric is based on the idea that memories either exist or do not 
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exist, but variation in precision is critical to both models that do (Adam et al., 2017; Zhang 

& Luck, 2008) and do not (Bays, 2015; Schurgin et al., 2020; van den Berg et al., 2012) 

subscribe to “item limits” or some form of “slots.” Thus, whereas the use of K as a measure 

is extremely common, it appears to be at odds with the theories of nearly all visual working 

memory researchers.

In contrast to threshold metrics like K, variations in the precision of memory are naturally 

accommodated by Bayesian and signal detection-based models of memory that assume some 

axis of variation between memories that is used to make decisions about whether an item 

has been seen before or not (e.g., Schurgin et al., 2020; Wilken & Ma, 2004). Under a signal 

detection framework, memories are seen as continuously varying along an axis of strength 

of some kind, with decisions about whether an item has been seen made by applying a 

criterion to this axis. As a memory signal elicited by an item increases it becomes ever more 

distinguishable from noise, and this gives rise to confidence—as memory signal increases so 

too does confidence—and an observer’s decisions are based on criteria that they set based 

on their own confidence (see Wixted, 2020). This view denies the notion that memories 

are all-or-none, present or absent, instead seeing memories as varying in some way (e.g., 

in “precision” or “strength”). Variations on this signal detection framework have played a 

major role in nearly all long-term recognition memory research for over fifty years (e.g., 

Benjamin et al., 2009; Glanzer & Bowles, 1976; Heathcote, 2003; Kellen et al., 2021; 

McClelland & Chappell, 1998; Shiffrin & Steyvers, 1997; Wixted, 2020; Wickelgren & 

Norman, 1966).

Once a model is used that is based on the idea that memories vary continuously and 

participants use this variation (e.g., in precision or strength) to make their decisions, the 

most natural decision is to simply apply this model to all trials without introducing any 

separate processes (like lapses or guesses). Thus, while signal detection-based models that 

also include lapses or guesses are possible (e.g., Xie & Zhang, 2017), in their most basic 

form, signal detection models generally do not involve the extra assumption that “guesses” 

are a discrete and separate state of memory, instead postulating that decisions are always 

made based on the same continuous signals, and that errors arise from the stochastic, noisy 

nature of these signals.2 Such signal detection–based views naturally accommodate the 

subjective feeling of “guessing” as a state of very low confidence, with nearly no likelihood 

of correct discrimination of signal from noise, but they do so purely based on variations 

along a single axis of memory signals. That is, in a signal detection based account, people 

should often feel as though they are guessing, even though there is no separate guess state 

(e.g., Schurgin et al., 2020).

Broadly speaking, then, signal detection-based accounts are necessary for accurate 

measurement if items vary in some way (e.g., precision) and participants use this variation 

in their decision process, rather than all memories being equally precise and exactly the 

same (as assumed by threshold theories). However, in the visual working memory literature 

2To be clear, this assumption applies to trials where the participant is “on task.” There could be a small set of trials where participants’ 
eyes were genuinely closed or they clicked accidentally, which would result in true guesses, but such true 0 signal trials are likely 
very rare (e.g., traditional psychophysical curve fitting generally assumes approximately a 1%—and no more than a 5%—lapse rate; 
Wichmann & Hill, 2001).
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most signal detection based accounts do not postulate a separate guess or lapse state—that 

is, most signal detection models in the literature presume memories just vary continuously 

in a single axis that people use to make decisions (e.g., Schurgin et al., 2020; Wilken & 

Ma, 2004; but see Xie & Zhang, 2017). An account based on this simplest signal detection 

account with just a single axis and no added lapses or guesses has recently been shown 

to straightforwardly accommodate error distributions from not only change detection and 

forced-choice tasks but also continuous reproduction tasks in visual working and visual 

long-term memory tasks (Schurgin et al., 2020).

How does one measure performance in a signal detection-based view of memory, other than 

model fitting? The most common signal detection measure of memory strength is d′, which 

rests on the assumption that the distribution of memory signals for previously seen and 

previously unseen items are both equal in variance and approximately normal (Macmillan 

& Creelman, 2005). This measure is appropriate only if there is no “guess” or “lapse” state, 

and all memories are items are approximately equally well encoded. It is no more complex 

than K: rather than subtracting hits and false alarms, d′ simply requires you subtract them 

after a simple transformation (the inverse of the normal distribution). However, d′ only 

applies to the simplest signal detection models without any variation in strength or lapses. 

More complex signal-detection-based measures are also possible if these assumptions do not 

hold for a particular situation (e.g., da; Macmillan & Creelman, 2005) or if memory is a 

mixture of continuous decisions and lapses or guesses (e.g., Xie & Zhang, 2017).

In summary, if memories vary in precision or strength, K values will confound response bias 

with underlying memory, leading to spurious estimates of working memory capacity that 

vary with changes in response strategy (i.e., criterion; how liberally or conservatively one 

responds to a change). An alternative framework based in signal detection allows for a very 

broad set of possibilities, including lapses/guesses in addition to precision variation (Xie 

& Zhang, 2017), or variability in memory strength between items (e.g., da; Macmillan & 

Creelman, 2005), but the simplest form of this view simply postulates that all decisions are 

made based on a single set of equal variance memory signals (which leads to the d′ metric). 

Thus, determining the nature of memory signals in change detection, and the extent to which 

they are all-or-none, is deeply related to the question of whether K or d′ or neither is a valid 

measure of change detection performance that isolates memory from the decision-making 

process and response bias.

ROC Curves Elucidate the Appropriate Way to Measure Performance

How then can these theories, and their associated metrics, be evaluated and compared? Is 

memory all-or none? Is it more useful to think about “guessing” as a distinct state, or more 

useful to think about a single continuum of memory strength and response bias? The critical 

test that tells these models apart, and determines which model to embrace, is the shape of 

the receiver operating characteristic (ROC) predicted by these models (Brady et al., 2021; 

Swets, 1986; Wickens, 2001). ROCs measure what happens to performance—in terms of 

hits, on the y axis, and false alarms, on the x axis (Figure 2)—as an observer becomes 

more or less likely to say “old” (or “no change” in change detection tasks), that is, as their 

response criterion changes. If an individual’s true ROC could be perfectly measured, without 
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measurement noise or reliance on simplifying and auxiliary assumptions, it would provide a 

direct window into the latent distribution of memory signals, and thus reveal which view of 

memory is correct. As a result, the importance of measuring and comparing ROCs has been 

identified and embraced in a wide range of fields including decision-making, health care, 

and artificial intelligence (Fawcett, 2006).

In the current work, we seek to evaluate which of these views of latent memory signals 

(continuous vs. discrete) is accurate and should be used to measure performance. To do so, 

we first need to determine the shape of the ROC that each model would predict: All-or-none 

threshold models (where memories cannot vary in precision or strength), like the one used 

to calculate K values, predict a linear ROC (see Figure 2) because guessing contributes to 

both hits and false alarms equally (thus generating a linear slope as a function of changes 

in response criterion) whereas remembered items only contribute to hits (which determines 

the function’s intercept; Luce, 1963; Krantz, 1969; Swets, 1986). On the other hand, the 

simplest signal detection-based models without any lapses or guesses predict a symmetric 

curvilinear ROC because as criteria change to include weaker and weaker signals, some 

previously seen and some never-before-seen items get included in the overall distribution in 

a nonlinear fashion (this nonlinearity follows from the standard parametric assumption that 

the latent distribution of memory signals is continuous and nonrectangular; Macmillan & 

Creelman, 2005; Swets, 1986; Wixted, 2020). More complex ROC curves are also possible 

for signal detection-based models that do not treat all memories as arising from the same 

simple process with a fixed memory strength across all items (e.g., unequal variance signal 

detection models; Wixted, 2007; models with a subset of all-or-none memories: Yonelinas, 

2002; models with all-or-none guessing: Xie & Zhang, 2017; etc.).

To measure the full ROC we need some way to measure response criterion. Typically, this 

is done either by eliciting confidence from participants on each trial or by manipulating 

response bias across different blocks of an experiment, usually by changing how often 

items are genuinely old versus new. In the study of long-term recognition memory, when 

trying to characterize the source of memory signals and their variability, confidence-based 

ROCs (e.g., where you simply ask people the strength of their memory on a Likert scale) 

are ubiquitous and are effectively standard practice when performing old/new memory 

tasks (e.g., Benjamin et al., 2013; Hautus et al., 2008; Jang et al., 2009; Koen et al., 

2017; Wixted, 2007; Yonelinas, 2002; Yonelinas & Parks, 2007). However, visual working 

memory researchers have often avoided collecting confidence-based ROC data and instead 

look to manipulate response bias by changing the prior probability of a “same” vs. “change” 

response (Donkin et al., 2014, 2016; Rouder et al., 2008; though see Robinson et al., 2020; 

Xie & Zhang, 2017). While results from response bias manipulations used to measure 

ROCs have varied—embracing both threshold and signal detection views at different times 

(e.g., Donkin et al., 2014, 2016; Rouder et al., 2008)—our own recent work suggests 

this is largely because the data in those studies are not particularly diagnostic (e.g., being 

very limited in their range of response bias values) and because the model comparison 

metrics used by the studies were not validated to ensure that they adequately recover the 

correct model when using simulated data (Robinson et al., 2022). By contrast, data from 

confidence-based ROCs of change detection in working memory are unequivocal: ROCs 

have always been found to be curvilinear and most consistent with equal variance signal 
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detection models (Robinson et al., 2020; Wilken & Ma, 2004; see also Xie & Zhang, 2017, 

who find visually equal variance curves but do not test this class of model directly).

Notably, identifying and characterizing the shape of these curves is critical for distinguishing 

all-or-none and continuous memories, but also for proper measurement of memory in 

change detection tasks. For example, the threshold-based model of memory predicts that 

all points on the line in Figure 2A reflect the same estimate of capacity whereas the equal 

variance signal detection model predicts that all points on the curve in Figure 2B reflect 

the same level of memory strength. Although there are areas where these functions overlap 

(particularly in the middle), they substantially diverge toward the extreme ends of the 

spectrum—and consequently give very different senses of which combinations of hits and 

false alarms correspond to the same levels of performance for subjects or conditions that 

happen to differ in response bias.

Thus, independent of arguments about the nature of the underlying memory signals, a strong 

understanding of the shape of ROCs in change detection tasks is critical to the simple act 

of computing performance and comparing it across conditions. In fact, a common critique 

of threshold models of long-term memory is that they may confound variations in response 

bias with variations in memory states, as ROCs in long-term memory are nearly always 

curvilinear (e.g., Rotello et al., 2015). If K values confound response bias with performance, 

as they would if memories genuinely vary in precision (e.g., Bays et al., 2009; Zhang & 

Luck, 2008) and thus ROCs are curvilinear, then this would potentially undermine a large 

body of work that even partially relies on K to draw strong conclusions about the nature of 

visual working memory (for example, Alvarez & Cavanagh, 2004, 2008; Brady & Alvarez, 

2015; Chunharas et al., 2019; Endress & Potter, 2014; Eriksson et al., 2015; Forsberg et 

al., 2020; Fukuda & Vogel, 2019; Fukuda et al., 2010; Fukuda, Kang, & Woodman, 2016; 

Fukuda, Woodman, & Vogel, 2016; Hakim et al., 2019; Irwin, 2014; Luria & Vogel, 2011; 

Ngiam et al., 2019; Norris et al., 2019; Pailian et al., 2020; Schurgin & Brady, 2019; 

Shipstead et al., 2014; Sligte et al., 2008; Starr et al., 2020; Unsworth et al., 2014, 2015; 

Vogel & Machizawa, 2004; Woodman & Vogel, 2008).

The Current Work

In the current work we address the possibility that K confounds response bias with 

performance in a novel way and with minimal reliance on model comparison or other 

assumptions. We also test whether the simplest equal variance signal detection model (and 

thus, d′) is a valid metric of performance in this task, or whether a more complex ROC 

must be assumed (e.g., with both signal detection and lapses). In Experiment 1, we first 

measure confidence-based ROCs in a typical visual working memory change detection task 

to provide a baseline for simulations and for the core experiment, Experiments 2. We find 

that confidence-based ROCs are curvilinear and extremely consistent with the prediction 

of an equal variance signal detection model (replicating the results of Robinson et al., 

2020). As part of our modeling and analysis, we also describe evidence against views 

that challenge the interpretation of curvilinear ROC functions constructed from confidence 

ratings. Next, in a simulation, we investigate how each metric would vary if these curvilinear 

ROCs genuinely reflect the latent memory strength distribution of participants, consistent 
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with the most straightforward equal variance signal detection theory model of working 

memory performance (Schurgin et al., 2020; Wilken & Ma, 2004). We find that K should 

drastically misrepresent true memory in this scenario. For example, K wildly underestimates 

performance for subjects with conservative response criteria (e.g., for participants who rarely 

say “same” unless very confident) and such participants are quite common in existing 

large-scale data sets at high set sizes (Balaban et al., 2019).

In Experiments 2, a novel and preregistered study, we examined whether estimates of K 
spuriously varied across manipulations of response bias in a way that does not depend 

on model comparisons or confidence to assess latent memory strength. In particular, we 

compare K and d′ in a completely standard change detection experiment with performance 

in a different, across-participant condition where participants are adaptively encouraged 

to shift their response bias if it is excessively conservative. We find that these adaptive 

instructions increase estimates of K by a large factor (e.g., they “improve” working memory 

capacity, as measured by K, by 30%) but produce no such effect when performance is 

measured with d′. This provides strong evidence that the latent distribution of memory 

signals is best captured by the curvilinear ROC that is implied by equal variance signal 

detection models and implores the use of d′ (see Figure 2). Furthermore, this result adds 

experimental evidence against the existence of all-or-none memories and the use of K 
values. In Experiment 3, we replicate our critical result in another preregistered study with 

a different set size and with the addition of a visual mask. This experiment demonstrates 

the generality of our results across memory load demands and rules out the contribution 

of alternative memory processes (e.g., iconic memory). Overall, we suggest that a major 

rethinking of conclusions based on K values or other threshold measures is required for 

cumulative progress to be made in understanding visual working memory. Furthermore, 

we by showing that d′ appears to be a reliable measure of memory even across changes 

in response criterion, we provide evidence in favor of the simplest equal variance signal 

detection model (e.g., Schurgin et al., 2020) and evidence against models based on a mixture 

of signal detection and guesses/lapses.

Experiment 1: Receiver Operating Characteristics in Change Detection

While confidence-based ROCs are prevalent in long-term recognition memory experiments 

using the old/new paradigm they are rarely examined in visual working memory, with few 

exceptions (e.g., Robinson et al., 2020; Wilken & Ma, 2004; Xie & Zhang, 2017). This 

experiment was designed to collect such data in a prototypical visual working memory task 

using change-detection with a large number of confidence bins (see Figure 3). This provides 

a replication of previous work and serves as the basis for the simulations that motivated our 

critical test of signal detection vs. threshold views in Experiments 2.

Method

Participants—All studies were approved by the Institutional Review Board at the 

University of California, San Diego, and all participants gave informed consent before 

beginning the experiment. Experiment 1 tested 70 undergraduate volunteers in our lab at UC 
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San Diego, in exchange for course credit. Our final sample of 67 participants allowed us to 

detect a within subject effect as small as dz = .18 with power = .8 and an alpha of .5.

Stimuli—Both experiments used a circle in CIE L*a*b* color space, centered in the color 

space at (L = 54, a = 21.5, b = 11.5) with a radius of 49 (from Schurgin et al., 2020).

Procedure—Participants performed 300 trials of a change detection task, 100 at set size 1, 

100 at set size 3, and 100 at set size 6. The display consisted of 6 placeholder circles. Colors 

were then presented for 500 ms, followed by a 1,000-ms ISI. For set sizes below 6, the 

colors appeared at random locations with placeholders in place for any remaining locations 

(e.g., at set size 3, the colors appeared at 3 random locations with placeholders remaining 

in the other 3 locations). Colors were constrained to be at least 15° apart along the response 

wheel. After the ISI, a single color reappeared at one of the positions where an item had 

been presented. On 50% of trials each set size, this was the same color that had previously 

appeared at that position. On 50% of trials, it was a color from the exact opposite side of the 

color wheel, 180° along the color wheel from the shown color at that position.

Participants had to indicate whether the color that reappeared was the same or different 

than the color that had initially been presented at that location. After indicating whether the 

color was the same or different from the target in the previous array using a key response, 

participants then reported their confidence. Participants were presented an interval from 1–6 

and had been instructed that 1 meant very unsure and 6 meant very sure and to report their 

confidence using the entire scale. It is important to note that defining the signal in terms of 

detecting “changes” (i.e., correctly calling different items “different”) or “no changes” (i.e., 

correctly calling same items “same,” as we do throughout) would have no consequences for 

our results. The results of the metric-based analysis would be identical regardless of which 

was defined as a “hit.”

Three participants were excluded for performing near chance (>2 standard deviations below 

the mean, according to both K and d′), leaving a final sample of N = 67.

Data—These data were made available previously to be used in a database that consisted of 

data from confidence studies (Rahnev et al., 2020). However, except for being included in 

that public dataset, the data have not been previously published or written up.

Results

The ROC data are visually curvilinear, both at the individual subject level and the group 

level (see Figure 4). To assess the shape of the ROCs quantitatively, and thus ascertain the 

preferred measurement metric, we performed model comparisons independently for each 

participant and each set size.3 We compared three scenarios: (a) a linear, threshold-based 

ROC, as needed for K values to be a valid metric, (b) an equal variance signal detection 

model, as needed for d′ to be a valid metric, and (c) an unequal variance signal detection 

3Note that it is possible to test other aspects of the K model simultaneously with testing its shape, like how fixed it is across set sizes 
(as done by Rouder et al., 2008). However, this confounds both aspects of the model—whether ROCs are linear or curvilinear, and 
whether performance drops as expected across set sizes (Robinson et al., 2022)—and what we are interested in is the shape of the 
ROC within a set size, because this is what decides whether the K metric, the d′ metric, or neither are valid.
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model, which would suggest no single metric from a binary change detection task (“same”/

“change” with no confidence) can adequately correct for response bias (see Brady et al., 

2021, for a tutorial). To compare models we used AIC because model recovery simulations 

by Robinson et al. (2020) demonstrated that AIC was best calibrated for recovering the 

generative model from similar ROC data. Note, however, that since the threshold-based 

model (K) and the equal variance signal detection model (d′) have equal numbers of free 

parameters, comparing their AIC is the same as comparing their log likelihood directly with 

no penalty for complexity, so the use of AIC is relevant only for comparing the unequal 

variance signal detection model to the other two models.

Overall, we found strong evidence favoring signal detection-based models over the threshold 

model, and further evidence in favor of the simplest equal variance signal detection model 

underlying d′. A difference greater than 10—which provides 10 to 1 support for one model 

over the other—is considered conclusive evidence in terms of AIC. Despite an equal number 

of parameters, the equal variance signal detection model was strongly preferred to the 

threshold model, with AIC differences favoring it by 244.8 at set size 1, 1,479.2 at set 

size 3, and 1,749.5 at set size 6. These outcomes were also reliable per participant, t(66) 

= 2.81, p = .007, dz = .34; t(66) = 8.74, p < .001, dz = 1.07; t(66) = 11.96, p < .001, dz 

= 1.46. The AIC difference between the threshold model and the unequal variance signal 

detection also favored the signal detection model: 188.5, 1,548.7, and 1,694.4 across set 

sizes. Each of these was also reliable when calculated per participant instead of summed 

over all participants, t(66) = 2.12, p = .038, dz = .26; t(66) = 8.75, p < .001, dz = 1.07; 

t(66) = 11.61, p < .001, dz = 1.42. Finally, comparing equal and unequal variance signal 

detection models provided support for the equal variance model, validating d′ as a valid 

metric of change detection performance. In particular, the AIC preference for the equal 

variance model was 56.3, 30.5 and 55.2 across set sizes; and this preference was largely 

reliable across participants as well, t(66) = 6.85, p < .001, dz = .84; t(66) = 1.79, p = .077, dz 

= .22; t(66) = 4.57, p < .001, dz = .56.

Evidence for equal variance signal detection as the preferred model of the ROC data 

validates the idea that change detection alone (without confidence ratings) can be used 

to measure visual working memory, as long as d′ is used as the dependent measure. 

Notably, this is unlike the result typically found in long-term recognition, where unequal 

variance signal detection models are nearly always preferred to equal variance models 

and thus d′ is rarely a universally valid metric (e.g., DeCarlo, 2010; Mickes, Wixted, & 

Wais, 2007; Starns, Ratcliff, & McKoon, 2012; Wixted, 2007; Yonelinas, 2002). Symmetric, 

equal variance ROCs are consistent with the idea that presented colors are strengthened 

to an approximately equal degree across trials, as one would expect that heterogeneity 

in added memory strength for different old items should lead to support for an unequal 

signal detection model (because there would be additional variance in familiarity for seen 

items compared with unseen items; Jang et al., 2012; Wixted, 2007). It may be that asking 

participants to split attention equally between all items by making them equally likely 

to be probed, using simple stimuli that are all approximately equally attention-grabbing, 

and presenting them briefly, encourages a strategy of splitting memory resources relatively 

equally. Thus, although d′—and equal variance—are well supported in the current task, the 

use of d′ may not be valid in other conditions, like sequential encoding (Brady & Störmer, 
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2022; Robinson et al., 2020) or when items are differentially prioritized (Emrich et al., 

2017), but has been validated as the appropriate measure here. Importantly, finding support 

for an equal variance signal detection model also provides direct evidence against more 

complicated mixture of signal detection theory and guesses or lapses (e.g., Xie & Zhang, 

2017) and provides evidence in favor of models that view all decisions as arising from a 

single signal detection process with no separate guess state (e.g., Schurgin et al., 2020).

Because of the theoretical importance of determining whether ROCs are symmetric versus 

asymmetric (for both determining whether d′ is an appropriate metric and addressing the 

conceptual question of whether there is heterogeneity across items in strength), we also used 

a nonmodel-comparison–based test to examine whether there is evidence for equal variance 

signal detection model. In particular, we computed z-ROCs by converting the hit and false 

alarm rate to z-scores using a normal distribution. We then fit the z-ROCs with a linear 

model at set sizes 3 and 6, where most participants were not at ceiling. Unequal memory 

strength between items, as in an unequal variance signal detection model, results in z-ROC 

slopes below 1.0, whereas an equal variance model predicts slopes of 1.0. We find these 

slopes are very close to 1.0 even at set size 6 (z-ROC slopes for set size 3: 1.06, SEM = .18 

and set size 6: .96, SEM = .04).

Using further descriptive analysis, we examined whether the z-ROCs were consistent with 

threshold or signal-detection models. Linear z-ROCs are predicted by signal detection theory 

and curvilinear z-ROCs are predicted by threshold theories like K. Thus, threshold models, 

but not signal detection models, predict a strong positive quadratic component when fitting 

a polynomial model to the z-ROCs (Glanzer et al., 1999). Because we had significant 

ceiling effects at set size 1 and 3 in many participants when performing this analysis (which 

precludes our ability to determine the z-ROC shape), we conducted this analysis only for 

the set size 6 data. We found no evidence of the positive quadratic component predicted 

by high-threshold models (in fact the mean z-ROC quadratic component trended negative, 

though not significantly: M = −.13, SEM = .113, t[52] = 1.28, p = .21).

Another prediction of signal detection models concerns high confidence misses and 

false alarms. Signal detection models easily accommodate—and in many ways naturally 

predict4—high confidence false alarms and high confidence misses, especially because the 

difference between previously seen and previously unseen items in familiarity gets smaller 

(i.e., as memory strength gets weaker). By contrast, threshold models do not make this 

prediction and are most consistent with a complete absence of high confidence false alarms. 

This is because in such models, false alarms are typically purported to arise from a distinct 

process such as a “guessing state” (Rouder et al., 2008), which participants are thought 

to be aware of5 (e.g., Adam et al., 2017). As shown in Figure 5, we find data consistent 

with the signal detection view: there are high confidence false alarms and high confidence 

4It has been shown across many situations that participants’ criteria tend to be more stable across conditions than expected by a strict 
likelihood ratio account (where a given confidence level always matches a precise percent correct; e.g., Stretch & Wixted, 1998), 
and this is especially true with interleaved trials, like the current experiment (Rahnev, 2021). Signal detection models with this basic 
property all predict high confidence false alarms and misses.
5Threshold accounts have alternatively attempted to explain high-confidence false alarms by assuming that they reflect implicit 
demand characteristics to use the entire confidence scale; however, when tested empirically, this assumption appears unsubstantiated 
(seen here, Figure 6, and in Delay & Wixted, 2021).

Williams et al. Page 11

J Exp Psychol Hum Percept Perform. Author manuscript; available in PMC 2023 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



misses, such trials are increasingly prevalent at high set sizes as memory gets weaker (.67% 

at set size 1; 3.54% at set size 3; 12.1% at set size 6), and this difference is reliable across 

participants (set size 3 > set size 1: t(66) = 6.37, p < .001, dz = .78; set size 6 > set size 3: 

t(66) = 6.85, p < .001, dz = .84). Although accommodations can be made to account for high 

confidence false alarms in a single condition (e.g., by asserting signal-detection-like noise 

that occurs after the memory read-out, at the confidence stage; Adam & Vogel, 2017), it is 

hard to see how to parsimoniously accommodate the fact that such errors occur only in some 

set sizes but not others within a threshold view.

A similar logic calls into question prominent accounts which have argued that it is possible 

to explain curvilinear ROCs from confidence data with all-or-none, threshold memory 

models (e.g., Kellen & Klauer, 2015; Malmberg, 2002; Province & Rouder, 2012). Such 

models postulate that even when participants are, in truth, infinitely certain of their response, 

they nevertheless give a low confidence response sometimes, for instance, because the 

presentation of a confidence scale makes “an implicit demand to distribute responses” across 

the scale (Province & Rouder, 2012). This account, however, does not predict the current 

data because participants do not, in fact, spread their responses at all at set size 1; instead 

they do so only at the highest set sizes (see Figure 6; nearly all responses cluster at the 

highest confidence at set size 1). To account for this pattern, an account based on the idea 

that people seek to distribute their responses despite truly infinitely diagnostic memories 

would have to postulate yet another factor that explains why this response strategy varies 

across different set sizes; perhaps by incorporating even more complex decision-based 

components. Our data imply that, for this to work, participants would have to decide to add 

such response noise only for the set size 6 condition, but not for the set size 1 condition. This 

seems extremely unlikely and far more complex than simply presuming that participants 

have access to continuous strength memory signals that are used to report confidence, which 

is an a priori prediction of signal detection accounts of memory (see also Delay & Wixted, 

2021).

Overall, we find clear evidence in favor of curvilinear ROCs and signal detection–based 

models, which is wholly inconsistent with K as a valid metric of working memory 

performance. Model comparison suggests the ROCs are best fit by an equal variance signal 

detection model, consistent with d′ as the appropriate measure of memory performance. The 

support for an equal variance model goes beyond support for the general class of signal 

detection models (which includes ones like mixture models, with additional guesses; Xie 

& Zhang, 2017). Instead, these data support a view where all items are represented with 

noise, rather than a model where some items are perfectly present in memory and others 

are completely absent in memory. These findings also reveal the nearly symmetric (equal 

variance) nature of the ROC curves, which provides tentative evidence that—in this task—

all items are represented with approximately the same memory strength, even at set size 

6, given the nearly equal-variance nature of the ROC curves (though this is only indirect 

evidence; see Spanton & Berry, 2020).

Simulation: Implications of Confidence-Based ROCs Reflecting Underlying 
Latent Memory Strength—We next turn to the potential implications of K values—and 

other threshold metrics, like percent correct and hits minus false alarms—being mismatched 
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with the empirical ROC. Then, in Experiments 2, we provide a critical test of whether 

the curvilinear ROCs we observe in Experiment 1 truly reflect latent memory signals, as 

opposed to arising artifactually in confidence-based ROCs.

First, what would happen if we took a binary change detection task and participants could 

only respond “same” when their confidence was at, or above, a certain criterion? For 

illustration, here we assume that a participant’s reported confidence is a direct readout 

of their memory states, which we can use to track different levels of response criteria. 

Importantly, we do not make this assumption in Experiments 2 (our core experiment) 

because it is not based on confidence judgments. Using the empirical confidence data from 

Experiment 1, we can see how performance, as measured by K or d′, would change as the 

internal criterion were shifted in Figure 7. Notably, d′ remains constant as we measure 

criterion across possible confidence values, whereas K incorrectly interprets different 

response criteria on the exact same data as changes in true memory strength and thus 

alters the working memory “capacity.” In other words, the K measure effectively conflates 

response bias with true memory strength. This occurs in part because the ROC implied by 

d′ effectively matches the actual ROCs observed in Experiment 1. Thus, calculating d′ using 

any possible confidence criterion as the cut-off for saying “same” is the same as moving 

along the ROC predicted by the equal variance signal detection model and, therefore, 

yields approximately the same d′ for different levels of response bias. By contrast, because 

the ROC implied by threshold models like K deviates from the shape of the empirical 

confidence ROC, K values are much lower when criterions are extremely high or extremely 

low compared with when they are less extreme and somewhere in the middle (except at 

set size 1, where all models agree performance is essentially perfect). This is because the 

high-threshold (linear) ROC approximates the empirically curvilinear ROC shape only in the 

center and not for extreme criteria (see Figure 9).

Our simulation also makes clear that over a wide range of performance values and biases, 

K and d′ do not strongly diverge which is one reason that it has historically been difficult 

to tell them apart (see Figure 7). They do, however, diverge primarily at high set sizes and 

for conservative response criteria (i.e., being reluctant to respond “same”). This divergence 

would not be apparent unless such extreme response criteria extemporaneously occur in real 

data. Unfortunately, they seem to be quite common. In fact, data from change detection tasks 

seem to lead to extremely conservative responding in many situations. As an example, we 

reanalyzed data from 3,849 people who completed a change detection task (Balaban et al., 

2019) and found that at set size 4, 91% of participants had false alarm rates below .2, and 

at set size 8, 68% of participants had a false alarm rate this low. By contrast, only 56% of 

participants (at set size 4) and 12% of participants (at set size 8) had miss rates this low (see 

Figure 8).

Because this is the exact situation where K values and curvilinear ROCs most strongly 

diverge, if the ROCs implied by the confidence reports reflect true latent memory strengths, 

this is also the situation where K values would pick up largely on response criteria 

differences rather than genuine differences in memory strength. Since many studies use 

a similar task design, this raises the possibility that a large fraction of visual working 

memory results that rely on K values may be incorrect, overestimating the cost of higher 
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set sizes relative to low set sizes, and particularly underestimating the performance of those 

participants with particularly conservative response criteria. Even more troubling is the fact 

that in the Balaban et al. (2019) data, a full 20% of participants at set size 4, and 10% of 

participants at set size 8, had 0 false alarms in the entire condition. This technically makes 

memory strength unknowable for these conditions and while there are methods to correct for 

this problem, they each rely on assumptions that may not always hold up (see Hautus, 1995).

How can we directly test whether the confidence-based ROCs reflect the true distribution of 

latent memory strengths? Although there are many possibilities, most depend on model fits 

that are often opaque and that fundamentally depend on modeling assumptions (e.g., Rouder 

et al., 2008). Thus, in Experiments 2, we preregistered a novel and critical test of whether 

K or d′ best describes true latent memory strength distributions. Here, we use a simple 

manipulation that takes advantage of the fact that participants tend to be very conservative at 

high set sizes (i.e., less likely to say “same”).

Experiment 2: A Straightforward, Confidence-Free Test of the Nature of 

Memory Signals

Experiment 2 takes advantage of the fact that participants are naturally conservative in 

responding “same” at high set sizes and makes a critical prediction about how performance 

should change when they are encouraged to say “same” more often. Consider a participant 

(gray point in Figure 9) with very few false alarms. Such participants are typical in high 

set size change detection experiments (see Figure 8). In signal detection terms, they are 

thought to have a strong response bias. In threshold model terms, they are thought to 

nearly always say “different” when they are “guessing.” If they could be encouraged to 

shift their criterion (i.e., to say “same” more often), what would happen? Signal detection 

theory predicts a curvilinear change in performance, such that saying “same” more often 

would proportionally add more hits than false alarms, because it would involve shifting 

the criterion to allow for saying “same” to still strong but overall slightly weaker memory 

signals, and strong memory signals are more likely to be generated by items that were truly 

seen than by items that were not seen. The curvilinearity is implied by the line of constant 

d′ being curvilinear (see Figure 9). Threshold models like K instead predict that a shift in 

criterion (i.e., responding “same” more often) would change only the responder’s guessing 

strategy; since participants have no idea what the answer is on such trials (because they have 

no information about the probed item); therefore, saying “same” more often would simply 

add an equal proportion of hits and false alarms to their responses (see Figure 9).

This produces a strong potential dissociation: If the equal variance signal detection model 

provides a better account of the underlying memory signals, encouraging more “same” 

responses should result in the same d′, but considerably higher K values than the normal 

task. This latter point can be inferred from our simulation (see Figure 9); that is, if one were 

to fit the threshold model (K) to the orange point in the plot, the predicted line (parallel to 

the diagonal line of chance performance) would be well above the line projected from the 

gray point. By contrast, if the threshold, guessing-based view is correct, encouraging “same” 

responses should move along the linear K line, and should produce a large drop in d′. This 
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point can also be inferred from Figure 9, because if the equal variance signal detection 

model were fit to the red point, the corresponding projection for this model would be much 

lower than the original projection from the gray point.

To test this, in Experiment 2 we compare (a) performance in a standard change 

detection task at set size 8, with no special instructions and no requirement to report 

confidence with (b) performance in a matched change detection task that involves 

an instructional modification intended to discourage extremely conservative responding 

(adaptive instructions, where participants are encouraged to respond “same” more often if 

they have fewer false alarms than misses within a block of trials). Importantly, this design 

seeks to counterintuitively improve K, rather than hurt K. Although it is easy to imagine 

that unusual instructions could hurt performance (e.g., by making the task more confusing 

or more difficult), there is no natural mechanism for threshold models to predict that 

such instructions could improve performance relative to our baseline of a standard change 

detection task.

Method

The hypothesis, design, analysis plan, and exclusion criteria for this study were 

preregistered: https://Aspredicted.org/Blind.php?x=743fj8.

Participants—We preregistered a Bayesian analysis plan and a sequential sampling design 

(following the recommendations of Schönbrodt et al., 2017). In particular, we planned 

to initially run N = 50 nonexcluded participants for each of the two groups (Standard; 

Adaptive), and then calculate a Bayes factor comparing K values across the two groups. 

We planned to continue iterating in batches of 10 per group until our Bayes factor for the 

comparison of K was greater than 10 or less than 1/10th (e.g., provided 10:1 evidence for 

or against the null). However, we achieved this Bayes factor in our first sample of N = 50 

per group, so no sequential procedure was used in practice and N = 50 per group was our 

final sample size. The study was conducted online using participants from the UC San Diego 

undergraduate pool. Our preregistered exclusion criteria were to exclude any trials where 

reaction times were <200 ms or >5,000 ms and exclude and replace any participants who 

had more than 10% of trials excluded, had a d′ < .5, or had K < 1. This resulted in the 

exclusion of 41 participants. This is further explained and analyzed below.

Stimuli—The same color circle as Experiment 1 was used to generate stimuli, and the 

change detection task was similar to that of Experiment 1, but with eight placeholder circles 

rather than six and all trials at set size 8. Stimuli were shown for 1,000 ms with an 800-ms 

delay. The shown colors and the foil were again required to be ≥15 degrees apart on the 

color wheel.

Procedure—There were two between-subjects experimental conditions, Normal and 

Adaptive. Each group performed 450 trials of a set size eight change detection task, with all 

changes being maximally different colors (180 degrees on the color wheel). The trials were 

broken into 15 blocks of 30 trials, and after each block participants could take a short break. 

The entire task took about 45 minutes.

Williams et al. Page 15

J Exp Psychol Hum Percept Perform. Author manuscript; available in PMC 2023 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://Aspredicted.org/Blind.php?x=743fj8


In the standard-instructions group, participants simply performed this task in line with a 

completely standard change detection task. Participants were not instructed to use any kind 

of response policy, but simply told to respond “same” if they think no change occurred and 

“different” if they think that a change did occur.

In contrast, in the adaptive-instructions condition, everything was the same at the beginning 

of the experiment, with the standard instructions. However, participants were given an 

additional set of instructions after each block if they had more “misses” than “false alarms” 

in that block (of 30 trials). These instructions encouraged them to shift their criterion (e.g., 

respond “same” more often). In particular, they saw these instructions:

You have been saying “different” more than “same,” even though the trials are 50% 

same and 50% different. Focus on splitting your responses more evenly to improve 

your performance! To do this, do not try to just say “same” all the time: instead, try 

to respond “different” only if you are very sure it was different; otherwise respond 

“same.”

Analysis—Based on the effect size in our pilot data, we estimated the effect size at 

approximately a Cohen’s d of .5 and preregistered the scale of the alternative hypothesis in 

the Bayes factor analysis with that in mind. Thus, our Bayes factors were calculated with our 

preregistered Scaled-Information Bayes Factor with r = .5.

Exclusions—Forty-one of 141 participants were excluded using our preregistered criteria. 

These participants were excluded because we preregistered a criteria of d′ < .5 or K < 1 

being unsatisfactory, because such subjects are nondiagnostic of the difference in the models 

(the closer a participant is to chance, the less distinction there is between a curvilinear and 

linear ROC). In our experience, finding this level of poor performers is relatively typical 

of long online studies with difficult tasks, such as the one shown here with a set size 8 

memory task. However, a post hoc analysis of all participants, with no exclusions, gives 

a similar pattern to our main analysis (a 16% gain in K from Normal to Adaptive and a 

−5% difference in d′). Notably, however, the addition of many nondiagnostic participants 

at near chance performance level drags the effect size for the difference in K down far 

enough (from dz = .64 in our preregistered sample to dz = .22 in the full sample) to make 

the evidence nondefinitive. However, if we had planned to analyze the data this way to begin 

with—without exclusions of nondiagnostic participants—we would not have preregistered 

such a large effect size for the alternative hypothesis in the Bayes factor, nor stopped our 

iterated data collection plan with this number of participants. Therefore, in our view the 

strength of evidence favoring d′ over K is not affected in any meaningful way by the 

exclusions.

Results

Overall, we found that individuals can increase their “working memory capacity” (as 

measured by K) simply by shifting their response criteria. In particular, we found a 

substantial gain in K values for the adaptive-instruction conditions (median gain: 29.04%) 

and almost no difference in d′ between groups (median gain: 1.01%; Figure 10). A Bayes 

factor greater than 10 is considered strong and greater than 20 is considered to be decisive 
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evidence. The Bayes factor that the K value differed between the groups was favored 

by greater than 20 (BF10 = 24.43) whereas the null hypothesis of no difference between 

groups was favored for d′ (BF10 = .55). The same results were found when using standard 

frequentist statistics, with a highly reliable difference in K, t(98) = 3.19, p = .002, d = .64, 

and no difference in d’ between groups, t(98) = .96, p = .338, d = .19. We note here that 

these differences in memory estimates are based on the metrics of each measure obtained 

from direct transformations of the data, with no model fitting. Accordingly, these metrics 

are not subject to common criticisms regarding differential model flexibility or over-fitting 

(unlike the results of e.g., Rouder et al., 2008; which appear to arise from the particular 

assumptions used in the model fits: Robinson et al., 2022).

This provides strong evidence that d′, but not K, successfully adjusts for response bias 

changes. It suggests that K systematically underestimates performance when responses are 

very conservative, as they generally are at high set sizes. It also provides a strong validation 

of the confidence-based ROC curves found in Experiment 1, which seem to truly reflect 

the latent memory signals used to make “same”“/”different” judgments. Notably, this large 

change in K occurs even though we did not manipulate response criteria in the “Normal” 

group at all. Nonetheless, the on-average conservativeness of the criteria used in standard 

change detection was sufficient to create this strong dissociation between K and d′.

Overall, then, Experiments 2 shows that K conflates response bias with memory, whereas 

d′ does not. This provides evidence both against the threshold model underlying K, but also 

in favor of the equal variance signal detection model (as opposed to more complex signal 

detection–based models that allow for guesses or lapses).

Experiment 3: Excluding Contributions From Limitless Memory Storage

Some previous work has claimed that—even with delays that are longer than the 

commonly accepted limitations of iconic memory (e.g., 800 ms, in Experiment 2)—a 

residual perceptual trace can contribute to performance thus adding to the computations 

and limitations of working memory alone. In theory, this could cause memory to look 

more continuous when it is actually discrete (e.g., Rouder et al., 2008). Thus, to test 

this hypothesis and to thoroughly explore the dichotomy between discrete and continuous 

memories, in Experiment 3, we replicated Experiment 2 but followed the methods of Rouder 

et al. (2008)—one of the few articles claiming evidence for threshold-like performance 

(though see Robinson et al., 2022)—in adding a visual mask before the change detection 

test.

Here, our logic was otherwise the same as in Experiment 2: We assessed the shape of the 

ROC curve underlying memory performance without the need for model comparisons or 

confidence. We used instructions that should improve performance relative to the baseline of 

a standard change detection task, if and only if a measure implies the wrong ROC. Because 

the task was harder with the masks, we used set size 6 instead of set size 8; which also 

allowed us to assess the generality of our conclusions with regard to set size.
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Method

The hypothesis, design, analysis plan and exclusion criteria for this study were preregistered: 

https://aspredicted.org/DDL_5FP.

Participants—This study was conducted online using participants from the UC San Diego 

undergraduate pool. We expected a smaller effect size in comparing the conditions here 

since we expect that, at set size 6, participants should have less extreme response criterion 

in the standard condition, so K should underestimate their performance less-so than when 

working memory is taxed with eight items. However, because we were using a sequential 

sampling procedure, this expectation of reduced effect size also affected our sample size 

planning, compared with Experiment 2. In particular, we again preregistered a Bayesian 

analysis plan and a sequential sampling design. We again planned to initially run N = 50 

nonexcluded participants for each of the two groups (Standard; Adaptive), and then calculate 

a Bayes factor comparing K values across the two groups. As in Experiment 2, our Bayes 

factors were calculated with our preregistered Scaled-Information Bayes Factor with r = .5. 

We continued iterating in batches of 10 per group until our Bayes factor for the comparison 

of K was greater than 10 or less than 1/10th (e.g., provided 10:1 evidence for or against the 

null). In this case, we iterated until we had N = 80 participants per group (total sample size 

of 160), where we achieved the required Bayes factor. Our preregistered exclusion criteria 

were to exclude any trials where reaction times were <200 ms or >5,000 ms and exclude and 

replace any participants who had more than 10% of trials excluded, had a d′ < .5, or had K 
< 1. This resulted in the exclusion of 36 participants. This is further explained and analyzed 

below.

Stimuli—The change detection task was similar to that of Experiments 2, but with six 

placeholder circles and all trials at set size 6. Stimuli were shown for 1,000 ms with a 

500-ms delay and then a 300-ms visual mask (see Figure 11). The shown colors and the foil 

were again required to be ≥15 degrees apart on the color wheel.

Procedure—There were two between-subjects experimental conditions, Normal and 

Adaptive. Each group performed 450 trials of a set size 6 change detection task, with all 

changes being maximally different colors (180 degrees on the color wheel). The trials were 

broken into 15 blocks of 30 trials, and after each block participants could take a short break. 

The entire task took about 45 minutes.

In the standard-instructions group, participants simply performed this task in line with a 

completely standard change detection task. Participants were not instructed to use any kind 

of response strategy and were simply told to respond “same” if they think no change 

occurred and “different” if they think that a change did occur. In contrast, in the adaptive-

instructions condition, everything was the same at the beginning of the experiment, with 

the standard instructions. Here, at the end of a particular block, participants were given an 

additional set of instructions if they had more “misses” than “false alarms” in that block 

(30 trials). These instructions encouraged them to shift their criterion from conservative to 

neutral (e.g., respond “same” more often). In particular, they saw these instructions:
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You have been saying “different” more than “same,” even though the trials are 50% 

same and 50% different. Focus on splitting your responses more evenly to improve 

your performance! To do this, do not try to just say “same” all the time: instead, try 

to respond “different” only if you are very sure it was different; otherwise respond 

“same.”

Exclusions—Thirty-six of 196 participants were excluded using our preregistered criteria. 

These participants were excluded because we preregistered a criteria of d′ < .5 or K < 1 

being unsatisfactory, because such subjects are nondiagnostic of the difference in the models 

(the closer a participant is to chance, the less distinction there is between a curvilinear 

and linear ROC). Once again, a post hoc analysis of all participants, with no exclusions, 

produces a similar pattern to our main analysis (a 13.6% gain in K from Normal to Adaptive 

and a decrease of −5.8% in d′).

Results

As in Experiments 2, we again found that individuals can increase their “working memory 

capacity” (as measured by K) simply by shifting their response criteria. In particular, we 

found a substantial gain in K values for the adaptive-instruction conditions (median gain: 

14%) with no reliable difference in d′ (median change: −4%; see Figure 12). A Bayes 

factor greater than 10 is considered strong and greater than 20 is considered to be decisive 

evidence. The Bayes factor that the K value differed between the groups was favored 

by greater than 20 (BF10 = 27.83) whereas the null hypothesis of no difference between 

groups was favored for d′ (BF10 = .31). The same results were found when using standard 

frequentist statistics, with a highly reliable difference in K, t(158) = −3.16, p = .002, d = .50, 

and no difference in d′ between groups, t(158) = −.30, p = .765, d = .05.

Although the results for the improvement in K were statistically significant in the frequentist 

test—even with the original N = 50 groups, t(98) = −2.60, p = .011, d = .52—our sequential 

sampling design led to much more decisive evidence as we increased the samples to meet 

our preregistered Bayes criterion. At each sequential sampling step (N = 50, 60, and 70 per 

group), the Bayes factor was 6.3, 7.9, and 9.9, respectively; which is considerably lower than 

the strength of evidence that we found in our final sample (N = 80; 27.83 to 1). The Bayes 

factors for d′ favored the null for all four sample steps .37, .34, .32, and .31, respectively.

Overall, we replicated Experiment 2 and found that visual masks do not obscure the 

continuous nature of visual working memories. Once again, we found strong evidence that 

d′, but not K, successfully adjusts for response bias changes, and that K systematically 

underestimates performance when responses are very conservative, as they generally are 

at high set sizes. Overall, then, Experiment 3 again shows that K conflates response bias 

with memory, whereas d′ does not. This again provides evidence both against the threshold 

model underlying K, but also in favor of the equal variance signal detection model (as 

opposed to more complex signal detection-based models that allow for guesses or lapses).
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General Discussion

Across three experiments, we examined the nature of the latent memory signals used in 

change detection tasks and the implications for proper measurement of performance in 

change detection. We compared a theory that sees these signals as continuous in strength

—signal detection theory—with a threshold-based view, where memory signals are all-or-

none. In Experiment 1, we found evidence from confidence reports that memory was 

continuous in strength, with support for equal variance signal detection models, suggesting 

not only that signal detection theory was a more accurate measure of performance but also 

that there is no need for additional assumptions about guesses or lapses to be added to 

the simplest instantiation of signal detection theory. We then tested a critical implication 

of this result in Experiment 2: that, whereas d′ should remain constant, K values should 

systematically underestimate performance in standard change detection experiments for 

participants who rarely false alarm. We found strong evidence for this hypothesis, with 

a Bayes factor of 24 to 1 in favor of the finding that K is not fixed across simple 

instruction changes. This provides strong evidence against threshold-based measures like 

K because, while it is possible to imagine that instructional changes could hurt performance, 

there is no natural mechanism for threshold models to predict that such instructions could 

increase memory capacity. Furthermore, d′ was nearly constant, which suggests that the 

confidence-based ROCs observed in Experiment 1 straightforwardly underlie performance 

in Experiments 2, and that a single decision axis that applies to all trials is sufficient to 

explain performance without added assumptions about guesses or lapses. We then replicated 

Experiments 2 at a different set size and with a visual mask in Experiment 3 and again 

found strong evidence that d′ is fixed across response criterion changes whereas K is not. 

Thus, our findings suggest that visual working memories are best thought of as continuous 

in strength and best analyzed in terms of signal detection measures, and that there is no need 

for added guess or lapse parameters to account for change detection performance even at the 

highest set sizes (see also Brady et al., 2021; Robinson et al., 2020; Schurgin et al., 2020).

In terms of proper measurement of performance, we find that K values are not a good match 

to the actual shape of ROCs in change detection since ROCs are curvilinear and are thus 

best characterized by d′, not K. Unfortunately, this means nearly all conclusions based on K 
values are potentially suspect, because they do not properly discount differences in response 

criteria and thus measure a combination of response criteria and memory performance. 

Furthermore, Experiment 2 shows this effect is not subtle: Comparing a completely 

typical response criteria to one that is more symmetric (with respect to misses and false 

alarms) results in an underestimate of performance when using K by 30%. Conditions that 

induce even more conservative responding, or that include individual subjects with more 

conservative criteria, will be even more influenced by the failure of K to correctly adjust 

performance for response criteria.

How much of K is a measure of response bias rather than a memory measure under 

typical conditions? A multiple regression, comparing K values computed in all subjects in 

Experiments 2 and 3’s normal, nonadaptive condition, with the true measure of memory 

strength that matches the ROC (d′) and with response criterion (c), suggests that K values 

are about 1/3rd measures of response bias and two-thirds measures of memory strength 
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(after centering and scaling, a participant’s K is best predicted by a .77 wt on d′ and a −.45 

wt on c, both p < .001). Thus, under standard change detection conditions, a participant’s K 
is extremely strongly influenced by that participant’ s response bias, and K is nearly as much 

a measure of response bias as it is a measure of memory performance.

Throughout the article, we focus on K values because they have been, and continue to be, 

extremely common in visual working memory experiments (see Alvarez & Cavanagh, 2004, 

2008; Brady & Alvarez, 2015; Endress & Potter, 2014; Forsberg et al., 2020; Fukuda & 

Vogel, 2019; Irwin, 2014; Luria & Vogel, 2011; Ngiam et al., 2019; Norris et al., 2019; 

Pailian et al., 2020; Schurgin & Brady, 2019; Shipstead et al., 2014; Sligte et al., 2008; 

Unsworth et al., 2014; Vogel & Machizawa, 2004; Woodman & Vogel, 2008). However, 

percent correct and corrected hit rate (i.e., hits minus false alarms) also predict linear ROC 

curves (e.g., Swets, 1986) and thus are also invalid measures of memory performance 

according to our data. Another popular metric of performance in related tasks is A’ (e.g., 

Fisher & Sloutsky, 2005; Hudon et al., 2009; Lind & Bowler, 2009; MacLin & MacLin, 

2004; Poon & Fozard, 1980; Potter et al., 2002), and although this measure is claimed 

to be “atheoretical” and nonparametric by its proponents (Hudon et al., 2009; Pollack & 

Norman, 1964; Snodgrass & Corwin, 1988), in truth there exists no measure of memory 

derived from a single hit and false alarm rate that is atheoretical and nonparametric 

(Macmillan & Creelman,1996). Unlike K, A’ predicts ROC curves that are curvilinear, 

though differently curvilinear than d′ (Stanislaw & Todorov, 1999), and so may be less 

likely to confound response bias and memory strength than K. Unlike d′, however, which 

is based on theoretically plausible assumptions (latent memory signals for old and new 

items are distributed as equal-variance Gaussian distributions with different means), A’ 

embraces theoretical assumptions that are implausible when made explicit (e.g., Macmillan 

& Creelman, 1996; Pastore et al., 2003; Wixted, 2020).

Overall, our results suggest d′ should be the preferred measurement metric for change 

detection data, as d′ was constant across changes in response bias (Experiment 2 and 3) and 

matched the shape of the ROC (in Experiment 1). This provided evidence not only in favor 

of signal detection models but also in favor of the simplest kind of single-process signal 

detection model, without any additional need for lapses or guesses.

However, even though the current studies find evidence for equal variance signal detection 

models, and thus d′, it may not be the case that an equal variance signal detection model 

is always appropriate (see also Robinson et al., 2020). It may be that our experiments are 

ideal for finding equal variance because memory resources tend to be split relatively evenly 

between items in this task: we ask participants to split attention equally between all items by 

making them equally likely to be tested; by using simple stimuli that are all approximately 

equally attention-grabbing and thus likely to be encoded and maintained with roughly equal 

resources; and by presenting these stimuli only briefly. The use of d′ may not be valid 

in other conditions, like sequential encoding (Brady & Störmer, 2022; Smith et al., 2016; 

Robinson et al., 2020) or when items are differentially prioritized (Emrich et al., 2017). 

Thus, in general, two-alternative forced-choice, rather than change detection, is likely a 

better “default” method for a range of working memory tasks (see Brady et al., 2021).
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Another possibility is that continuity in memory strength is related to the stimulus space; 

that, by using categorical stimuli, instead of continuous spaces (like we’ ve done here with 

color), one might find evidence for discreteness in memory. However, recent work which 

has used discrete, categorical stimuli in visual working memory has also found curvilinearity 

in the ROC and rejected discrete models as adequately explaining the data (e.g., Robinson 

et al., 2020, used eight discrete colors). In general, the notion of discrete or categorical 

stimuli and discrete or all-or-none memory strength are different notions of discreteness: 

even for discrete stimuli, like words, memory strength is usually thought to be continuous 

(e.g., Mickes et al., 2007).

Although we have found strong evidence in favor of curvilinear ROC curves here, previous 

work that investigated ROC curves in change detection has found mixed results. Confidence-

based ROC curves have reliably been found to be curvilinear and approximately in line with 

equal variance signal detection models (e.g., in Robinson et al., 2020, and visually in Xie & 

Zhang, 2017)6; however, results from response bias manipulations across a small range of 

values have provided data that were initially taken to support threshold views (Rouder et al., 

2008). Interestingly, when followed up on, other results have provided more mixed results, 

with less certain support for threshold models of memory (Donkin et al., 2014, 2016). 

Our own reanalysis of the data from these studies suggest that when model comparisons 

are properly calibrated to ensure accurate model recovery from simulated data, they all 

provide support for signal-detection views and are largely in agreement with confidence 

ROCs (Robinson et al., 2022). Experiment 2 and 3 are unique in taking an approach that is 

independent of any model comparisons to ask whether changes in response bias are naturally 

accounted for by threshold and/or signal detection views. The results from this experiment 

provided strong support for the curvilinear nature of ROCs and thus for d′ as the standard 

metric of visual working memory performance when using change detection tasks.

Above and beyond the question of whether K measures (Cowan, 2001; Pashler, 1988; 

Rouder et al., 2011) are valid, it is important to ask whether curvilinear ROCs—as 

we observe in both confidence and response bias manipulations—sufficient to reject high-

threshold views altogether? There is substantial convergent evidence to suggest that they are. 

When considering confidence-based ROCs at a single level of performance at a time, it is 

possible to construct high-threshold models of curvilinear ROCs. For example, Province and 

Rouder (2012) propose that even when participants are, in truth, completely certain of their 

response, they may nevertheless give a low confidence response because the experimenter, 

by presenting a confidence scale, is making “an implicit demand to distribute responses” 

across the provided scale. However, in the context of mixed set size trials like the current 

Experiment 1, this account cannot predict the data we have observed here. This is because 

participants do not, in fact, spread their responses at all at set size 1, and instead do so only 

at the highest set sizes.

Even more compelling, however, is that if memories were truly high-threshold and it is 

only confidence reports that are noisy and lead to biased estimates of memory, this account 

6Note that these authors do not attempt to fit an equal variance signal detection model, but their ROC is visually consistent with such a 
model.
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predicts that in Experiments 2—where there is no confidence elicited—K, and not d′, would 

be fixed across our response criteria manipulation. Instead, we again found strong evidence 

for d′, not K as the measure which appropriately accounts for response bias. Altogether, 

our results are deeply incompatible with threshold-based views in several ways. They are 

not only consistent with explanations based on signal detection models but are directly in 

line with a priori predictions from such models (as evidenced by our preregistration). For 

example, our results align with recent work by Winiger et al. (2021), who used a novel 

critical test with minimal assumptions to test between discrete-slot and signal detection 

models in a change detection paradigm. Like us, these researchers found evidence for pure 

resource models of visual-working memory using a test that eschews the limitations of 

fitting models to empirical ROCs. Our work adds to and extends these findings by directly 

underscoring the profound practical limitations, as well as the detrimental consequences for 

theory building that arise when researchers use K to quantify the capacity of visual working 

memory.

In this context, we also highlight a major misconception in the working memory literature, 

which is that discrete-slot models are equivalent to or can be used as “proxies” for mixture 

models of working memory. The fact that pure discrete-slot models are implicitly endorsed 

in change detection paradigms through the use of K metrics, likely reflects a heuristic 

assumption that these metrics are “good enough” approximations of mixture models. 

Importantly, however, this assumption is misguided, because one cannot choose which 

fundamental aspects of a model to embrace, and ultimately leads to a situation where 

response bias is heavily conflated with memory performance, as we have shown here. 

Although both threshold and mixture models are consistent with item-limits in working 

memory, threshold models and mixture models that postulate variations in precision differ 

fundamentally; they predict different ROC curves and they predict different distributions 

of errors in delayed estimation tasks (Xie & Zhang, 2017). Indeed, the observation that 

precision varies monotonically with set size is why threshold-based discrete-slot models 

were ruled out over a decade ago in delayed estimation tasks in favor of, at minimum, 

mixture models that treat memory as variable in strength up to a certain number of items 

(e.g., Pratte et al., 2017; Zhang & Luck, 2008), or more recently most successful models 

have been completely continuous models without additional assumptions about complete 

failures (e.g., Schurgin et al., 2020; van den Berg et al., 2012).

We suspect that most working memory researchers would endorse the view that working 

memory representations do not vary in precision. Nevertheless, that is precisely the view 

they implicitly endorse by using K, and this is one fundamental point of our article: 

Measures of unobservable cognitive processes are constrained by theory, and researchers 

must carefully consider the theoretical assumptions on which their metrics are based before 

using them (for in-depth discussion of this issue see: Falmagne & Doble, 2016; Falmagne 

& Narens, 1983; Irvine, 2021; Kellen et al., 2021; Narens, 2002, 2007; Roberts, 1985; 

Roberts & Rosenbaum, 1986; van Frassen, 2008). We believe a failure to do so will only 

perpetuate invalid measurement practices in the psychological and cognitive sciences, and 

perpetuate the “replication crisis” in psychology (for similar points in recent articles see, 

e.g., Brady et al., 2021; Kellen et al., 2021; Regenwetter & Robinson, 2017; Rotello et al., 

2015; Schimmack, 2021).
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In effect, our work highlights that a choice between these models and metrics is not simply 

a fickle theoretical concern; instead, the finding that K fails to dissociate variations in 

memory strength from variations in response bias, whereas d′ does not, entails that a choice 

between these models can qualitatively change the inferences researchers draw regarding 

how memory strength varies as a function of individual differences or experimental 

manipulations. Overall, this suggests that, as in long-term recognition memory, visual 

working memory researchers should consider memories as continuous in strength and use 

signal detection to measure performance.

There are potentially broad implications for the fact that K values confound response bias 

with memory performance, as K values underlie many critical conclusions about visual 

working memory (Alvarez & Cavanagh, 2004, 2008; Brady & Alvarez, 2015; Chunharas et 

al., 2019; Endress & Potter, 2014; Eriksson et al., 2015; Forsberg et al., 2020; Fukuda & 

Vogel, 2019; Fukuda et al., 2010; Fukuda, Kang, & Woodman, 2016; Fukuda, Woodman, 

& Vogel, 2016; Hakim et al., 2019; Irwin, 2014; Luria & Vogel, 2011; Ngiam et al., 2019; 

Norris et al., 2019; Pailian et al., 2020; Schurgin & Brady, 2019; Shipstead et al., 2014; 

Sligte et al., 2008; Unsworth et al., 2014; Unsworth et al., 2015; Vogel & Machizawa, 2004; 

Woodman & Vogel, 2008). For example, one major research domain for which our results 

could have profound implications is the study of how visual working memory capacity 

relates to global indices of cognitive function (Luck & Vogel, 1997; Vogel & Awh, 2008). 

As a case in point, much of the foundational work that examines the relationship between 

visual working memory limits and general intelligence has used K in change detection 

paradigms to quantify visual working memory limits (e.g., Fukuda et al., 2010). Such studies 

tend to use high memory loads with the goal of placing sufficiently high memory demands 

to detect individual differences in visual working memory capacity. Our simulations and 

empirical results reveal that these types of memory demands are precisely the kind that 

can lead to changes in response bias, and that variations in K estimates lead to spurious 

conclusions as to the source of these purported correlations with intelligence. Given that 

much prior works suggests that there are substantial individual differences in response 

bias (Aminoff et al., 2012; Kantner & Lindsay, 2012; Miller & Kantner, 2020), it follows 

that a substantial part of the shared variance between intelligence and VWM capacity in 

such studies could instead reflect an association between intelligence and response bias. 

An analogous criticism has been repeatedly made in the study of the relationship between 

intelligence and cognitive control, where it remains unclear whether associations between 

intelligence and performance on cognitive control (e.g., Eriksen Flanker tasks) reveal shared 

variance between executive function and intelligence, or shared variance between individual 

differences in third variables, such as response policies (e.g., speed/accuracy tradeoffs 

in cognitive control tasks) and intelligence (e.g., Burgoyne & Engle, 2020; Frischkorn 

& Schubert, 2018). We are not attempting to promote the view that all of the shared 

variance between intelligence and visual working memory capacity is due to response bias. 

Instead, we view this as an open empirical question that needs to be examined further with 

alternative measures of visual working memory capacity. More broadly, we emphasize that 

much of the work on individual differences and VWM capacity should be reevaluated with a 

much heavier focus on proper measurement.
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Overall, we show that in change detection, K values substantially confound response bias 

with memory performance and should not be used. Instead, d′ should be the preferred 

metric of change detection performance. More broadly, this work shows how using the 

proper metric to understand memory performance is critical, since incorrect metrics can 

give extremely misleading conclusions (e.g., underestimating performance by ~30%), with 

potentially broad implications for the literature. Furthermore, our work suggests that an 

equal variance signal detection model—with no additional guess or lapse processes—is 

sufficient to explain change detection performance at high set sizes.
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Public Significance Statement

Visual working memory is an essential, capacity-limited system that has been linked to 

many cognitive abilities such as fluid intelligence and reading comprehension. Because 

of its importance, researchers need valid measures of its capacity that separate true 

differences in memory performance from other factors, like participants’ response 

strategies. Here we show that the most common measure of visual working memory 

capacity does not accurately separate response strategy from memory performance. We 

demonstrate this by showing we can artificially inflate estimates of capacity using this 

metric with a simple instruction change, which should have no effect on memory. We 

show an alternative metric is more accurate and suggest it should be used instead. These 

findings call into question research that has used this flawed metric to make connections 

between working memory capacity and other cognitive functions.
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Figure 1. 
Change Detection Tasks Have Been Critical to Nearly All Areas of the Visual Working 

Memory Literature, From Early Work by Luck and Vogel (1997) Arguing for Object-Based 

Limits on Working Memory Capacity; to Later Work Arguing for Important Effects 

of Object Complexity (Alvarez & Cavanagh, 2004); to Work Investigating Benefits of 

Knowledge About Real-World Objects to Performance (e.g., Brady et al., 2009)
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Figure 2. ROC Curves of Memory Performance Predicted by the Two Models
Note. ROC = receiver operating characteristic. A threshold model of working memory (e.g., 

K) predicts that ROC curves should be linear, because remembered items contribute only to 

hit rate, whereas forgotten items contribute to both hit rate (from lucky guesses) and false 

alarm rate (from unlucky guesses). By contrast, the most straightforward signal detection 

theories without lapses or guesses dictate that while, on average, previously seen items feel 

more familiar than previously unseen items (by an amount denoted by d′), noise corrupts 

the familiarity signal for both previously seen and previously unseen items, which leads to 

an overlap of familiarity strengths. Thus, the ROC should be curvilinear if all items are 

represented with approximately equal d′, and so the variation in familiarity is the same for 

previously seen and previously unseen items, the curves should also be symmetric, as shown 

here.
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Figure 3. Experiment 1 Task
Note. Participants completed a change detection task at set sizes 1, 3 and 6 with 180-degree 

changes on the color wheel. After reporting whether the test item was old or new (i.e., same 

or different), participants then reported the confidence of their decisions on a 1–6 scale (1 = 

no confidence, 6 = extremely confident), giving an overall 12-point confidence scale.
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Figure 4. Empirical Receiver Operating Curves From
Experiment 1 Note. The top panel shows individual data and the bottom panel shows 

aggregate data.
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Figure 5. Confidence-Accuracy Curves, With Error Bars Being Across-Subject Standard Errors 
of the Mean
Note. These curves use a value for each participant only if that participant used that 

confidence value on ≥3 trials and include only points where at least 25% of participants 

had values assigned. Confidence closely tracks accuracy, and even at set size 6, the highest 

confidence trials are quite accurate (89% overall for confidence level 6). However, as 

uniquely predicted by signal detection models but not threshold models, there are high 

confidence false alarms and high confidence misses, and such trials are increasingly 

prevalent at high set sizes, where memory gets weaker (0.67% at set size 1; 3.54% at set size 

3; 12.1% at set size 6).
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Figure 6. Confidence Values Given by Participants Are Spread More Widely as Set Size 
Increases
Note. As in most change detection studies (see Simulation and Experiments 2), participants 

have a response bias toward believing there was a change at high set sizes (e.g., being 

conservative in responding with confidence in “same”/“old”).
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Figure 7. Metrics of Visual Working Memory Performance Plotted for the Group Mean Data 
From Experiment 1, as a Function of Response Criteria (Applied to the Confidence Data)
Note. Because the receiver operating characteristic (ROC) implied by d′ closely matches the 

actual ROCs observed in Experiment 1, calculating d′ using any possible confidence criteria 

as the cut-off for saying “same” gives approximately the same d′. By contrast, because the 

ROC implied by threshold models like K deviates from the shape of the confidence ROC, 

K values are lower when the criteria are extremely high or extremely low compared with 

the middle (except at set size 1, where all models agree performance is essentially perfect). 

This is because the linear ROC predicted by K approximates the true confidence-based ROC 

shape only in the center, and not for extreme criteria (see Figure 2).
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Figure 8. Nearly All Participants Have Low False Alarm Rates at Both Set Size 4 and 8, 
Exacerbating the Difference Between d′ and K as Metrics of Performance
Note. Response criteria are particularly conservative at set size 8, where “misses” are quite 

common (i.e., hit rates are low) but false alarms remain extremely rare.

Williams et al. Page 40

J Exp Psychol Hum Percept Perform. Author manuscript; available in PMC 2023 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 9. An Exaggerated Potential Outcome of Shifting a Naturally Conservative Participant 
(Gray) to Say “Same” More Often, in Terms of the Prediction of Signal Detection (d′) and 
Threshold View (K)
Note. The more conservative the initial responding pattern is, the more the two models 

dissociate in their prediction. By computing participants’ performance in the baseline 

condition—the gray dot—in terms of K and d′, and comparing with to their performance 

(again in K and d′) when their decision criteria are shifted leftward, and thus their false 

alarm rates move rightward, we can distinguish these models: An ideal metric would find 

the same level of performance despite the shift, whereas a model that suggested memory had 

changed would be dispreferred.
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Figure 10. Results of Experiments 2
Note. (A) The group average for normal and adaptive conditions show that the adaptive 

condition was effective in getting participants to respond “same” more often. The best fit d′ 
and best fit K lines are shown for both conditions, though because as their d′ was nearly 

identical, the orange d′ is obscured by the red one. (B) Violin plots of the distribution of 

K and d′ values for each participant in each condition. The median K value (black line) 

“improved” by nearly 30% with the adaptive instructions, whereas the median d′ was nearly 

identical between conditions.
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Figure 11. Task in Experiment 3
Note. Participants saw six colored circles, then after a brief delay a visual mask appeared 

before the change detection test display appeared. Here, as in Experiments 2, participants 

simply responded whether the probed item was the same or different; compared with the 

item that was shown in that location (a “same” response would elicit a hit for the above 

example).
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Figure 12. Results of Experiment 3
Note. (A) The group average for normal and adaptive conditions show that the adaptive 

condition was effective in getting participants to respond “same” more often. The best fit 

d′ and best fit K lines are shown for both conditions, though because their d′ was nearly 

identical, the orange d′ is obscured by the red one. (B) Violin plots of the distribution of 

K and d′ values for each participant in each condition. The median K value (black line) 

“improved” by nearly 30% with the adaptive instructions, whereas the median d′ was nearly 

identical between conditions.
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