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ABSTRACT

Network optimization problems with a “scalable” structure are examined in this report.
Scalable networks are embedded in a normed space and must belong to a closed family under
certain transformations of size (number of nodes) and scale (dimension of the norm.) The
transportation problem of linear programming (TLP) with randomly distributed points and random
demands, the earthwork minimization problem of highway design, and the distribution of currents
in an electric grid are examples of scalable network problé&sgmptotic formulas for the
optimum cost are developed for the case where one holds the scale parameter constant while
increasing the size parametsr,

As occurs in some applied probability problems such as the Ising model of statistical
mechanics, and the first passage of time of a random walk, the nature of the sollitie@arof
problems depends on the dimensionality of the space. In the linear case, we find that the cost per
node is bounded from above in 3+-dimensions (3+-D), but not in 1- and 2-D. Curiously, zone
shape has no effect (asymptotically) on the optimum cost per poifDn lut it has an effect in
1-D. Therefore, the 2-D case can be viewed as a transition case that shares some of the properties
of 1-D (unbounded cost) and some of the properties of 3-D (shape-independence). A simple
formula for the 2-D, Euclidean TLP is given. Asymptotic results are also developed for a class of
non-linear network problems with link costs that are a concave power function of flow. It is found

that if these functions are strictly concave then the solution in 2+-D is bounded.
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1. INTRODUCTION

Asymptotic formulas exist for the traveling salesman problem, or “TSP” (Eilon et al., 1971, Karp,
1977, Daganzo, 1984a), and for the vehicle routing problem, or “VRP” (Eilon et al., 1971,
Daganzo, 1984b, Haimovich et al., 1985, Newell and Daganzo, 1986a and 1986b, and Newell,
1986). The results apply to problems whidrpoints are randomly and homogeneously distributed

on a region of a metric plane with ar®aand densityy= N/A. In all cases the distance traveled

per point for the TSP, or the “detour” distance per point for the ¥®RRds to a fixed multiple of

52 asN andA are increased in a fixed ratio. Hence, this local structure of the TSP and VRP
problems allows the use of continuum approximations of the type proposed in Newell (1973) for
inhomogeneous problems. Extensions of this type can be used to design and configure many kinds
of one-to-many logistics systems; see Daganzo (1999). Hoping to extend these ideas to many-to-

many logistics systems, this paper develops similar formulas for a version of the transportation

! This is the distance traveled in excess of the lower bound. The lower bound is the product of the (round trip)
distance between the depot and a point, and the fraction of a vehicle’s capacity consumed by each point.



linear programming problem (TLP) where points lie on a region of a linear normed space. The
paper investigates whether the optimal solution of the TLP exhibits a local structure, and also
presents asymptotic results for more general network problems.

Unfortunately, the TLP is more difficult to analyze than the TSP because more data are
required to define a problem instance, and because the TLP solutions must include some long trips
to balance interregional flows. The necessity of long trips suggests that the optimum solution may
not have a local structure. Interestingly, as occurs in some applied probability problems (e.g., the
Ising model of statistical mechanics, and the first passage of time of a random walk), the nature of
the solution depends on the dimensionality of the space. It will be shown that while the TLP is not
local in one dimension (1-D), it is local in-®, and in a more limited sense in 2-D. Related
results are derived for more general network problems.

In order to mitigate the above-mentioned difficulties the simplest possible problems are
presented first, followed by incremental generalizations. Section 2 introduces terminology and
some background on dimensional analysis. Section 3 develops exact formulae for the optimum
TLP distance in the 1-D case. Section 4 presents an upper bound for K-dimensional homogeneous
problems in a cubic region. It is shown that if one hdldsonstant while increasing and the
size of the cube in a constant ratio, then the distance traveled per point is dfiil&-D, as
occurs with the TSP and the VRP, of ordteg(N) in 2-D and of orderN"? in 1-D. Section 5
introduces lower bounds and shows that the upper bounds are asymptotically exact
approximations. This section also shows that the distance formulae hold asymptoticallpfor 2
regions with non-cubic shapes, but that this is not true in 1-D. Section 6 shows how the results can
be modified for inhomogeneous problems. Finally, in Section 7, results are generalized to a class

of ‘scalable’ network problems.



2. BACKGROUND

2.1 Definitions

2.1.1 The TLP and ATLP

In this paper the TLP is defined as follows. GivenMrngoints, a set of real, non-negative inter-

point distances (or costs)iif, Ui,j = 1,...Nwith i7}, satisfying the triangle inequality, and a set of
real-valued net supplies,, at each point, measured in units of “items”. PosNj\ae interpreted

as supplies and negative values as demands. The goal is to find a set of real, nhon-negative
shipments, ¥;, Oi,j = 1,..N with i# }, that minimizes the total distance traveled while satisfying

flow balance constraints at each point. Here, a link-based network formulation is adopted.

(TLP) min  z= z d; Vv, (1a)
S. t.: z(v“_ )<V Oi (1b)
v, 20 ;O (1c)

Equations (1b) specify flow-conservation at each point, ensuring that the net flow (humber of

items) emanating from a poinhever exceeds the net supply at i.

Problem TLP is feasible only iE v, 2 ,0as can be seen by summing (1b) acrosEhe
problem is “balanced” and denoted TLP(B)X v; =0. In a balanced problem, constraints (1b)

are satisfied as pure equalities. For infeasible TLP problems, we define a feasible (and balanced)

auxiliary problem, ATLP, that includes a fictitious sour¢es 0, with positive net supply,



N
Vo = —Z v; , and distanced];,,d,; =M >>sup@; .) These distances represent a fixed penalty for

failing to ship an item. The optimal cost of the auxiliary problem, includes two parts: a
distance component corresponding to the real points, and a penalty component corresponding to
the fictitious source. Becaus$g is large, the setd}, including the fictitious source, continues to
satisfy the triangle inequality. Thus, there can be no flow into the fictitious siouaceoptimum
solution. Since the auxiliary problem is balanced, the outflow from the fictitious source nwst be
with a penalty componempM. The distance component is the least total distance that satisfies
the most demand, .

For balanced problemsg=0, TLP = ATLP, and the optimal objective of TLP and ATLP,
Z, is also the least distance required to satisfy the maximum demand; &>, In summary,

the relationship between the optimum of ATLP ands:

N
d”=2" if the TLP is feasible,Zvi > 0 (2a)

1=
N

d”=z"-vyMm ifthe TLP is infeasibleZ V==V, < 0 (2b)

2.1.2. The DTLP

In the solution of TLP and ATLR is assumed that if supply exceeds demand, the excess
supply is left at the origins. In a variant of ATLP, excess supplies are carried to the extra point, or
“depot”. This version of the problem will be called “depot-TLP”, or DTLP. The DTLP is an

ordinary TLP, where the net supply at the depot precisely balances the problem. In the DTLP the



depot distances do not have to be fixed or large but they must be non-ne@gtiug) =0, 0i, j,

and must satisfy the triangle inequality. The minimum of the DTLP objective funetonwill

be denotedi,".

Proposition 1 (DTLP as an upper bound to TLP). For any TLP and its associated DTLP,

d”<dy". Furthermore, if the TLP is balanced, th&h=d," =

Proof: Recall that if the TLP is infeasible, a fictitious source is introduced in order to pbtain

andd*. The ATLP has the same constraints as the DTLP. Therefore, a set of optimal shipments
for the DTLP, denoted/,, is a feasible solution of the ATLP. The associated ATLP distance,
including penalties, is denotez{vg). If the DTLP is now adjusted by addimg to all the depot
distancesdy; =d,; +M and di, =d,, +M , the objective function would beconk,” +v,M , since

v, is the total flow to/from the depot in the optimum solution of DTLP. All the link distances in
the ATLP are less than or equal to those of the adjusted DTLPyaiisl feasible in both cases;
therefore, it follows thatz(vDD)s do”+V,M . Sincez°< [y, ), it is also true that' < d,” +Vv,M ,

and hence thatl," = z” - v,M = d" for the infeasible case.

In the feasible case, the non-depot flogvgo, j z0) in the optimal solution of the DTLP

incur a costd, <d,"”. These non-depot flows are a feasible solution of the original TLP since the
depot cannot act as a transshipment point in the optimum DTLP solution. Therefore,

d,

v

z"=d" and it follows thatd”<d,". If the problem is balanced, they = abd the DTLP

and TLP problems coincide



In what follows, we look for the average of over a set of solutions (e.g., over an infinite
number of days) when conditions vary. It is assumed that points are embedded in a K-dimensional

normed linear space where each poiistidentified by a set of Cartesian coordinaigsand that

distancesd;, are given by the norm of the Cartesian separation between l:Ho'mtsx J. ||

When conditions vary randomly, the notatioffCand [YO will be used to denote,

respectively, the mean and variance of a random varibleross the ensemble of possibilities;

e.g., across all days. Different versions of the random TLP arise depending on which data are
allowed to vary. In the simplest version of the problem the net supplies vary but the points are
fixed on a K-dimensional square lattice (grid) with Cartesian spdcitdgnceN is fixed. If they

are independent, identically distributed (i.i.d.) random variables with mean 0 and varfartbe

problem instances will be generally unbalanced. However, if; theve zero means, variance$

and covariance§\/ivj > =-g2/(N-1), the problem is balancédUnless otherwise noted, it will also

be assumed that ti{ei} are multinormal. The modifiers “G” for “grid”, “U” for “unbalanced” and

“B” for “balanced” will sometimes be used as shorthand to specify the characteristics of a
particular problem; e.g., TLP(U,G) and TLP(B,G) will designate unbalanced and balanced

versions of the TLP where points are on a grid.

2.2. Dimensional analysis

Dimensional analysis can greatly simplify the solution task for any version of the TLP that
can be completely specified in terms of just three constants. For example, given a norm, the

constants arer,| andN for DTLP(U,G). For other, more general versions of the problem (i.e,

variations in demand that are not normal, points that are not fixed in number or location, or general



service region shapes) these constants couldrhed, andA. In general we look ford” O, or
alternatively for the average distance per point, defineghas: " [ N =" [1 5A.

Consideration shows that only two independent dimensionless parameters can be formed

with either set of constants and the solution vatpé,. The two parameters akeand %D if the

1k
constants arer,| andN; anddA andp’ 2" if the constants arg, 0 andA. It therefore follows
g

that the exact solution farp” Omust be of the form:
[p’ C=dlf (N) (in the first case) (3a)
and

p =05 K f (OA) (in the second case), (3b)

wheref is the only unknown left to be determined. This function will generally depend on the type
of problem, the norm and the dimensionality of the space. The subscript “D” will be used with

when it refers to a DTLP. In a system of units wherel andl = 1, (p"c= f(N). Thus,f has the

interpretation of a “dimensionless distance per point”.

3. EXACT RESULTS FOR THE 1-DIMENSIONAL CASE INR *

The balanced 1-D problehwith distance functiond, :|xi —xj|is simple. If one plots a

curve of cumulative supply vs. the x-coordinagéx) = zvi , as shown in Fig. 1a, theh is the

XX

absolute area betwee(x) and the x-axis. Figure 1a depicts a problem with evenly spaced points,

(although this is not required); the following is true.

2 This is true because, with these covariances, both the mean and variawee®tero.



Result 1. (Deterministic and balanced TLP).

d" = [MOldx= Z_|v(xi W = x| (4a)

Proof: For any pointg, such as the one in Fig. Mg, is the net flow acrosg, because the

aggregate supply and demand on both sides, ofiust be satisfied. Thusiw(xp)|dx is a lower

bound to the distance traveled in any small intervg),x, +dx) wherev(x) is constant. Clearly,
the sum on the right side of (4a) is a lower boundifor

Conversely, a feasible solution can be constructed by considering horizontal slibes of
items (as shown on the figure) and transporting these quantities from the points where the slice
intersects a rising portion of curvéx) to the adjoining points where it intersects a falling portion.
In the case of the figurelv items would be carried from A to B and from C to D. Thus, the
summation of all the slices for small dv (still given by (4a)) is the distance of a feasible solution
and an upper bound t. =

If points are evenly spacelddistance units apart, (4a) reduces to
> v(x)
d* =1) v(x)|. (4b)

If the net supplies are multinormal witli =0, ;Fo? and ¥,,v, (= -0? /(N -1), as is required for

a homogeneous balanced problem, then the sum of the fiettsuppliesy(x), is a zero-mean

normal variable with variance

. i-10
Ux)0 = 1673~ )

% 1-D problems arise in connection with highway construction projects and the minimization of earthwork “haul”.



Recall too that iX is a normal random variable with zero mean, then
Ox|0= poxn/n)? . (6)

Equations (5 and 8), applied to the expectation of (4b), yield the following result.

Result 2. (Random demand and balanced TLP)For the 1-D, homogeneous, zero-mean

TLP(B,G) with normal demand,

- %ﬁmgﬁé-ﬁg (7a)

The limit of this expression fox _ w is’

N w

B
@0 L HoiN? . (7b)
B2[]

Note from (7b) that, for a given density of points, iie average distance traveled per

point for the (1-D) TLP(B),p 0= O N, satisfies:

* T
- |—dN 8
(0~ | ZetdN @)
This function increases without limit with the number of points, unlike in the TSP and the VRP,
where there is a limit. The/N dependence is caused by the long-range interactions arising from

the flow balancing requirements. Equations (7b and 8) are quite general. They hold drthe

not normal, but satisfy the conditions of the central limit theorem, and also if the point locations

4 Equation (7b) is true because its right side tends to
1

1 1
: X [12 2 21 X X X[C_[Ome
(%)%o|6§<§—ﬁ%2dx:(/n oIN !%ﬁé@ﬁ%dgﬁ@‘%gm _
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vary across days as a homogeneous Poisson process, since (5) and (6) continue to hold under these

conditions ifN - «.°

An expression for the unbalanced TLP is more difficult to obtain, but the task is easy for

the DTLP. First define the cumulative demand for the dejgo} as shown in Fig. 1b; i.e.,
Vi(X) = ~VoH (X = X%,) , 9)
whereH is the Heaviside unit step function axds the depot location. Then, the same arguments

used with result 1 establish that the absolute area between canveg is d*p:
Result 3. (Deterministic DTLP).
d; = I|v(x) ~V/(X)[dx . w (10)
If the depot is centrally located, then similar manipulations to those leading to Eq. (7b) now vyield:

Result 4. (Random demand DTLP).

. s 3 . 4 =
<dD>—>\/;JIN2 and <pD>—>\/;UIN2 - (11)

® Clearly, (6) holds asymptotically becaugg) is normal forN — o even if they; aren’t. To see that the asymptotic
expression folv(x)J remains the same note thai(¥) is the number of points in [&], then the conditional random

. . . . o (-1 y
ariable has zero mean, and varian = - . Therefore, the unconditional
vari v)li(X) z varian®x) |i(X)CEi(X)a % m u iti

variance is the expectation of this expression; i.e.,

o = o2 BN _800%CH 2 NAx 1 e e xpi)

gN-1  N-1§ B_(N—l)_N—lﬁjLD O LA

which has the same Iimit;ZN i B— 1% as Eq. (5).
Ho ¢
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Note that<d*D> ><d*>, as one might expect. In the 1-D cdiéme)~\/ﬁ; the following sections

show thaf(N) = O(log(N)) in 2-D, andf(N) = O(N®) in higher dimensions.

The following sections show thN) = O(log(N)) in 2-D, andf(N) = O(N) in higher dimensions.

4. UPPER BOUNDS

This section develops upper bounds for the distance traveled in several versions of the TLP
and DTLP. The bounds are based on a bilevel algorithm for the DTLP that is described below. It is
assumed that the service region has been partitioned into a finite number of sub@gnatts,

their own subdepots.

Bilevel algorithm. Step 1 (lower level): Solve a DLTP for each using its subdepot, and route

the items accordingly. Step 2 (upper level): Using the main depot, route the regional over- or

under-supplies of step ¥, = ;vi , from/to each subdepot as per an optimum D&EP.

Since a DTLP is solved in step 2, the net flow of every subdepot is zero; i.e., items just
pass through these points. It is therefore easy to express the result of the algorithm in path form,
by specifying the number of iterg that share the" path from origini to destination, including
any intermediate subdepots. Since each point is part of a DTLP in step 1, the flows in and out of

all points satisfy the conservation equations of the original DTLP. Therefore, the sums of the path

® The subscriptsandj are reserved for the original points, including the main depot in the case of the DTLP, but
excluding all the subdepots. Capital lettérd,are used for subdepots.
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flows for every origin-destination pair, including the main depot %/ij = Zvijk,mi,jg, are a
O O
feasible solution of the original problem with distard,g(v) = Z ;d; . If we let the combined

distance of both steps of the bilevel algorithm be dendf&dit is now easy to see that the

following is true:

Proposition 2 (Bilevel upper bound to DTLP). d® >d_ .=

Proof: From above, we see thag(v)=>d; . Since the triangle inequality ensures thats a

lower bound to the length of every path from j, dix , we have:

d® = Zvijkdijk > Zv”kd = Zvudu =d,(v)= d;.m
i

4.1 Homogeneous, unbalanced problems with independent normal demands on a K-D lattice

Consider now a K-dimensional cubic lattice Mfpoints with Cartesian spacig Let |

and | denote, respectively, the largest and smallest of the K distances between a point and its

nearest neighbors in the direction of each axis. (For the Euclidean heri=1.) Assume too

that N%< is an integer, the points form a cube with the depot at its center, and that the net supplies
are zero-mean, independent normal random variables with vaignce

Define now two positive integersandm such thainm“ = N, and a partition of the cube
into 1 =1, 2,...m" identical cubesC;, with n points to a side and centrally located subdepots; see

Fig.2. Since N=n“m", we see from (3a) that the optimum total expected cost is

[y = mKnKoﬁD(nKmK ) A similar expression is now developed for the bilevel ca$?,0.
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Scalability of the bilevel algorithmBecause the normal distribution is infinitely divisible
the two subproblems of the bilevel algorithm have normal demand. Furthermore, since both
subproblems pertain to cubic lattices with centrally located subdepots and the same norm, they are
DTLP’s of the same type as the original problem. Therefore, they obey (3a) with th& sasne

the original, but different data, and this allows the expected total cost to be expressed as follows:
m(b)D:mKnKoﬁD(nK)+ mK Ech/2 @nl)fD(mK), (12)

where the first term is the aggregate cost ofrtfidower-level problems and the second term the
cost of the high-level problem. The two parenthetical factors of the second term are the standard
deviation and the lattice spacing of the upper level problem.
Proposition 2 implies that® =@, 0. Thus,
fD(nK)+ n(l_K/z)fD(mK)z fD(mKnK) ; m,n=1,2,3 ... (13)
It is now possible to establish the following.

Theorem 1 (Upper bound for DTLP).If there is anN, = 1such that f, is monotone for

N >N,, then fD(N):O(\/W) in 1-D, O(log(N) ) in 2-D andO(N% in 3-D. u

Proof. Consider the following subset of (13), correspondimg+a2 andn= 2, 4, 8 ...

o (<) nt59 1 (292 1, (2n)), n=2 =12 ), (14a)
and the related set of equalities,

£ (< )+t (2¢)= 1, (2n)), n=2G=12 ..). (14b)
We look for the highest possible function with domBir- {nK n=2,j=1 2} that satisfies

(14a) and matchef, whenn = 2. Since (14a and 14b) have a recursive structure such a
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function,?D , can be constructed by iterating (14b) starting with the given initial valu® for2".

The result, given below, is an upper boundffan D.
- Eh(l—KIZ) -10 _
)= 1@ ) B0 If K#2, (15a)
_1|:|
= 1, (2)log, () if K=2. (15b)
Upon changingN for nin (15) it becomes apparent thg,_I,(N) is O(\/W) if K=1, O(log(N) ) if

K = 2, andO(N°) if K= 3. Sincefp is bounded byi‘yD in D, fp satisfies the conditions of the

theorem inD. The monotonicity ofp guarantees that these conditions are also satisfied over the
set of natural numbers’
In view of Proposition 1, it is easy to see that the bounds also apply to the TLP(U).

Corollary 1 (Upper bounds for TLP(U) )Under the conditions of Theorem 1 stated at the outset

of this section,f(N) is O(\/W) in 1-D, O(log(N) ) in 2-D, andO(N®) in 3*-D. m

4.2 Balanced problems, random point locations and other extensions

4.2.1 Balanced problems

Consider now the balanced TLP (still on a grid), Wh<@/rq>: -0?/(N -1). Recall that the

associated DTLP, also balanced, is now identical to the TLP. The bilevel algorithm is not
scalable now because the upper level problem is a DTLP(B), like the original problem, but the
lower level subproblems exhibit correlations without being balanced. To avoid this difficulty,
bounds will be used for the lower level problem instead of the exact result. These bounds are

tightest whem = 2; therefore, we will set= 2 in (12).
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The cost of a feasible solution of a subproblem can be bounded by assigning to every pick-

up and delivery the distance from the centroid. Since this distance is boundé(l_m), and

since the expected number of pick-ups and deliveries in a subregiuih<|i§|> = nK\/Ea, the
T

. 2 - . L ,
total lower level distance cannot exceatfm \ﬁm % . This quantity will replace the first term
T

on the right side of (12).

The variance of the upper level net supplies is

ve)= <i’;Ivivj> - 5 )= 3 () =072

where the inequality results from neglecting the (negative) covariance terms.di{is,is an

upper bound for the standard deviatiorvafand the second term of (12), which use$’? as the
standard deviation, is now an upper bound for the total high-level distance. The subscript “B” is
used to designate the optimal solution of the balanced DTLP.

Hence, instead of (12) we have:

K

<déb)> <2*mtol o

%2" m<a 122 fB(mK), form=1,2, ... (16)
and since(dy) = (dy ) = (2m)“a If, ((2m)*). it follows that:

(I_/I2)K +2% 1 ()= £, (2m)), form=1,2, ... (17)
7T

The arguments of Theorem 1 can now be repeated to obtain a recursive relation for the

supremum ofg, with essentially the same result. Therefore, we state without proof the following.

" The monotonicity assumption is needed because (13) can be satisfied with arbitrarily large v )of
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Theorem 2 (Upper bound for balanced problemH)there is arlNg such thafg is monotone for

N >N, 21, then f4 (N)=0[/N) in 1-D, O(log(N) ) in 2-D and O(N° in 3"-D. =

Since the TLP(B) and its associated DTLP are equivalent, Theorem 2 applies to both.

4.2.2 Random point locations

In this subsection points are randomly distributed in a cube as a homogeneous Poisson process
with densityd so that (3b) holds for the DTLP. The subscript “R” will be used where appropriate
to stress the changed nature of the problem.

If the cube is partitioned into® subcubes, with their centroids arranged in a cubic lattice
(as before), and the bilevel algorithm is applied, then the expected total cost for the lower level
problem is an aggregation of the costsbfscaled-down, random DTLP problems. Equation (3b)
applies to each one of these subproblendsisf replaced by\/m¥. Therefore, the expected total

lower level cost is

i A
(d¥) =aag5 ¥ fDR%WE}, (18a)

since the expected number of total points at the lower leél is
The high level problem is a fixed location (grid) problem with points and lattice
spacingAY*/m. The variance of the net supply at each point is that of the excess demand in one

cube, which i€ sa02/m* . Thus, (3a) now vyields:

K

8 The conditional mean and variance of excess demand in one culiepwittits are 0 andﬂ'azrespectively.
Therefore, the unconditional variance is the mean of the conditional variancéA&é./ m® .

wheneverN’¥ is a prime number; e.g. left, (N)= M - oo if N}/K is prime, andf (N)= 0, otherwise
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b
(af) =m" (MazlmK)%%%%fD(mK). (18b)
Note as well that the original DTLP problem satisfies:

(doe) = (0805~ for (30). (18c)
Since Proposition 2 holds for each instance of the problem, it also holds for the expectation. Thus,

(d9) +(d), =(dps). Substituting (18a- 18c) for these terms, and dividing both sides of the
resulting inequality b)6A06_%< , we find:

fDR§5miK§+®Ag%fD(mK)z for(04), forsa=o,m=2,3, ... (19)

This system of inequalities has the same structure as (13), as can be seen by the change of
variable 6A=n*m" (wheren is now real and non-negative). The result is:
fDR(nK)+nl_%fD(mK )2 fDR(nKmK), forn=0,m=1, 2,3, ... (20)
The proof of Theorem 1 can now be repeated step by step with the same conclusion. Thus, the

following is true.

Theorem 3 (Upper bounds for random location problemsYhe functionfpr of the random
DTLP(U) obeys Theorem 1. Furthermore, insofar as the DTLP(U) distance bounds from above

the TLP(U) distance, the result also holds for the laiter.

The results can be extended to different variants of the problem using similar logic; e.g. if

the number of points is fixed but their location is random and also if the problem is balanced.
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4.2.3 Non-normal demand and the assignment problem

The results can also be extended to the case of non-normal demand byskettingand

then decomposing the problem in two levels, each with many points; i.e., mhsreuch that
(mK,5A/ mK) - oo, Only the logic behind the formal arguments is outlined here. If the main cube

is partitioned as before, then the lower level problems are scaled-down versions of the main
problem. This is true for both lattice and random problems. Therefore, Egs.(18a and 18c) continue

to hold for both types of problems; i.e., we can write
- OA . §
(a®) =(oa)o0 Kty @m—,(@ and (d") =805 1, (0),

where the subscripX” signifies non-normal demand.
Since the expected number of points in the lower level problem terédstte distribution
of subcentroid supplies tends to the normal, and the high level problem should behave as in prior

sections for large. In other words, for any desired tolerance level there should be anvadueh

that<d(b)>H is given by (18b) to within the prescribed tolerance forralim, .

Thus, fx satisfies the same functional relationfgs Eqg. (18), albeit only form=m, and
within a tolerance. The arguments of Theorem 1 can then be modified slightly fasingy
instead ofm = 2 as the fixed value ah, and incorporating the effect of the tolerance) with the
same final result. Thereforig,also obeys Theorem 1.

Note that in the special case where the net supplies are binary random vasiable$,or
-1 with probability 1/2, the TLP becomes the “assignment” LP. Therefore, Theorems 1 and 2 also

apply to the assignment problem.
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5. ASYMPTOTIC FORMULAE

Here we develop asymptotic formulae and investigate the effects of zone shape in 1-, 2-

and 3- D spaces.

5.1 A lower bound

A lower bound to<p*> for balanced problems, including the DTLP(U), is the product of
the expected distance from a nearest neighbor and the mean absolute value of the net supply from
a point. In all the problems studied, this product is a multiplce_gfo. Thus,

<p*>2c6_%<a, (21)

where c is a problem-specific constant. The same result holds asymptotically for the TLP(U),
since the amount not shipped becomes negligible as- .

We have also found that i8" - D, <p*>205_%< f(3) where f () is bounded above by
some constang, for all A exceeding a certain value which we derdteEquation (21) indicates
that f(3A) is also bounded from below by a positive numisesso that iff is monotone in the
sense of Theorem 1, then for all the problems studied there is a problem-specific positive constant

Co such that:

im (p")=ce8 o, if K >3. (22)

OA-

5.2 Asymptotic behavior of the bilevel algorithm

It is shown in this section that the bilevel algorithm is asymptotically optimal in all cases

where comparisons can be made with known asymptotic solutions. Therefore, it may be
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conjectured that it is also asymptotically optimal in the remaining cases discussed in this paper.
This conjecture is tested in Section 5.3.

Assume that the bilevel algorithm is applied to a DTLP(U) problem whose dimensionless
distance per point satisfies the monotonicity condition, so that either Theorem 1 or Theorem 3

holds, and |etg(nK,mK) be the dimensionless distance per point obtained with the algdrithm.

(Note thatg is just an abbreviation for the left-hand side of either (13) or (20).) Then, the

following is true.

Lemma 1. For the DTLP(U) in3* -D, (g(nK,mK)— f(nK))/ f(n")ﬁ 0 asn - «, uniformly for all

values ofm’. m

Proof: Equations (13) and (20) reveal that the ratio in questi(IJrlfK/éfD(mK )/ f (nK). Since

f,(m“)<C for m“>N,, and f(n)<c (see Sec. 5.1), the ratio is bounded rblil%C/cif

m* >N,. Since1i- K/2 <0, this function tends to zero as- «, and the lemma is provem.

Theorem 4. In R* and 3* -D, the relative expected error of the bilevel algorithm for DTLP(U)

tends to zero asy,n - « .m

Proof: It follows from the monotonicity property and from (13), (20) that:

0< f(nK)s f(nKmK )s g(nK,mK) if n*>N,. (23)

° Recall than® is the average number of points per subzarle £ oA/ m" in Sec. 3.2.2) if points are random
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Consider now the3” - D case. The relative expected error, define(i<d§’)>—<d;>)/<d;>, is
(g, m* )£ (a*m* )}/ £ [0*m* ). Equation (23) guarantees that it satisfies

0< (g(nK ,mK )— f(nKmK ))/ f(nKmK )s (g(nK , mK )— f(nK ))/ f(nK )
Since the right side of the above expression tends to zefpnas~ by virtue of Lemma 1, so

does the relative expected error.

Consider now the 1-D case where the second inequality of (23) has the form

f(hm)< f(n)+ n%f(m). Recall from (8) thatf(N)=(m/32)2 in R%. Thus, the inequality becomes

BTBJ/Zm}/2 < BTB%§+ m% D, and the relative error im_}/z , which also tendsto O asn - . m
820 820 B

5.3 Approximate formulae for 2-D problems

Theorem 4 suggests that the bilevel algorithm withm is also asymptotically optimal in
2-D, and therefore that for large valuesnafndm, f(n>m?)= f(n2)+ f(n?). If this is true,f cannot
be bounded from above. Instead, it would increase logarithmically. Therefore, we propose the

following.

Conjecture.If N is large, an approximation for the dimensionless distance per point in 2-D is:
(p')67%210 = £(N)=K, +K,log(N), (24)

whereK; andK; are dependent on the version of the probkem.

To test this conjecture, a battery of Euclidean TLP(B) problems with random point

locations and fixed\ were solved. The data for these problems are described in the appendix.
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Figure 3 displays the results on a diagram<pT>5}/2/o vs. log(N). The results speak for

themselves. The equation of the line is:
f(N)=0.42+0.031log,(N), for N O[255004 (25)

The deviations from the line are consistent with the standard errors estimated from the simulation.

Since the average number of items supplied per poiré(vii§+>=%/? in the case of
7T

normal demands, we see that the average distance traveled per item in the Euclidean case is

estimated to be (N W25 72, Thatis,

< distance per item> = 572 (1+0.078log,(N)).
As a point of reference, this distance is about twice as long as for the Euclidean TSP, for values of

N one is likely to encounter in actual logistics problems.

5.4 Size and shape effects

This subsection explores the effect of zone size and shape. It shows thas ithe
dimensionless distance per point function in a region of a specific size and shape, then

lim fs(N)/ f(N)=1 in 2-D, but not in 1-D. Therefore, the 2-D case can be viewed as a transition

N - o0

case that shares some of the properties of 1-D (unbouifidi¢cnd some of the properties of 3-D
(shape-independence).
The analysis is based on the conjecture that the DTLP and TLP, with either regular or

random point locations, satisfy the following:
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Strong monotonicity conjecturellf S is a region formed by a non-overlapping assembl§ of
volumeA cubes, it is conjectured that there is a nunigrfor which the dimensionless distance

per point for the regionfs(dAQ), satisfies:

f.(0AQ)= f(A), 0 OA> Nert m (26)

This conjecture states that the dimensionless distance per point is larger in a region than in any
component cube, if one holds the density of points constant. When the arrangement is itself a cube,
as in Figs. 4a and 4b, (26) simply restates the monotonicity ®he conjecture is also true for
arrangements, such as those of Figs. 4c and 4d, whose points can be put in a 1:1 correspondence
with those of a cube of identical volume by means of a mapping that preserves volume without
increasing the distance between any pair of pdthts.

The following lemma relates the normalized distance functions for the Dffldhdfps,

and the diameter of the regiop= su;ﬂ|x1 - x2||).

Lemma 2. For some positive constantthe expressiorf, (A)+ w5k (68)72 is an upper bound

to the normalized distance function of the DTLR (3AQ) .=

Proof. If the bilevel algorithm is applied to the assembly with individual cubes as subregions,
Proposition 2 ensures th&®) = (dy ). The lower level cost ofd®) is Qo3 (3n)f, (am).

(The functionfy depends on the statistical distribution of the net supply). The upper level cost is

19'To see this note that for regions with this weak contraction property, the optimum solution of a TLP or DTLP has a
mapped equivalent in the cubic arrangement with lower or equal cost. flf#eQ) = f(JAQ). Eq. (26) follows per
the monotonicity off.
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bounded above by the product of the diameter of the regipand the expected number of items

shipped from the subcentroids, which(@ac(azéA)y2 for some constant. (This constant would

depend of the particulars of the problem; e.g., on the net supply distribution.) Therefore,
Qa3 7k ()1, (38)+ gQca (88)2 = (d®) 2 (dy ) = 05 7K (3AQ)f,s (BAQ),
which implies
£, (08)+ @d % (3A) 7 = . (3AQ). m 27)

It is now possible to prove the following theorem.

Theorem 5 (Asymptotic shape independence)lf (26) holds thenf . (0AQ)/ f,(dA) -~ 1 as

5 - o (with A andQ constant) in2* -p, but not in R. m

Proof. Consider the* -D case first. Then Egs. (26) and (27) imply that

fOI'5A = Ncrit y (28)

wherec, = CA_%<(p.

Since f, (A) increases without bound ar(ﬁh)%‘% is bounded from above fok =2, we

see that the last member of (28) tends to & as». Thus, the theorem is proven forD.

To see that the shape independence result does not hofdcamstder a DTLP for two
segments of lengtA that are separated end to end by a distarwigh the depot in the middle; see
Fig.4d. Consideration of the logic behind Fig.1b and Eq.(10) shows that the separation of the two
segments does not change the optinwirbut increases the total distance traveled by an amount

L/2 for each item shipped out of a zone and a like amount for each item received extra-zonally.
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(Items transshipped from one zone to the otherlpaytra distance units, but items shipped from

the depot only pal/2). Thus, the expected distance is(A)|>L and we have:
(ds)=(dp )+ L{MA))  (dp)+ L(2/n)20(BA) 2.

The last expression follows from the central limit theorem and the formulavf@)[| in the case

of normal independent demand; see (6).

Then, since(d; ) = (a/97) 205 (1) 2 = (as9m) 2 0A(3A) > (see Eq. (7)), we find:
((d2)~(d)) =1+ LEME:: lm
(ds) A

Theorem 5 implies size and shape independencé-ih or a given density of points)

because the limiting ratio is 1 for aQyandS. Note as well that, by letting - «, regions with

smooth boundaries can be considered. Therefore, the result is quite general. Similar results can be
developed for the TLP.

A second order approximation tgin EuclideanK-space is proposed below, based on the

example of Fig. 4c. IIK > 2 and L >> A% then at optimality the items sent across cubes should
be minimized, as occurred in the 1-D case. Therefore, the solution in each cube continues to be

independent of, and we can write:

<d;>: (term independent df) + Lc,0(04)%2,
wherec, - \/% for the DTLP. It can also be shown thattakes the same value for the TLP(B).

Note that in 2-DL is proportional to the semi-perimeter of the region. Therefore, one may
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speculate that iK = 2, then a second order approximation for zones of irregular shape may be

(ds)=(d")= Ac,0(A)'2, wherea is the change in semi-perimeter; i.e.,

(ds)= o5 (6A)§f (oA)+c, Eﬁf%%

Thus, for the random location TLP(B) with normal demands and Euclidean distances, the

following is proposed:

- 2HA
f.(A)=0.42+ \/; E@%O'Sllogz (am), (29)

where (25) has been used instead @h). For a rectangle with an aspect ratio of 2, the

correction term is approximately 0.1; i.e. about 15% of the original value for problems of the size

one is likely to encounter in logistics applications.

6. INHOMOGENEOUS PROBLEMS

In actual problems point locations may be fixed but irregular, and the supply data may be
inhomogeneous, i.e., one may know statistics sudljjgsm #0, ¥, Z o and(vyv;) =mm; +o7.
Section 6.1 presents an approximation for situations where only a few parameters summarizing the

general distribution of they , o7 ando; are known, and Sec. 6.2, develops bounds for problems

where the detailed statistics are available.

6.1 Confidence interval approximations based on summary data

Assume first that the problem has independent dem{n*fdso) and is homogeneous.

Assume too that the data,:{xi = (m ,aiz);i =12,... N}, can be visualized as the realization of a
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K-D homogeneous compound Poisson process over the régieith independent batch sizes

(m ,af). Thus, the net supplies become conditional random varie{bjets}. Only the moments
of X are known, i.e.((m,0?)) =(0,52), andtim, 0?)0= (S*,Z ).

This set up is quite flexible. We have not said anything for example about the distribution

of {m}, which can be asymmetric and therefore capture problems with many more origins and
destinations (or vice versa). Deterministic supply problems are also included, if one just sets

52=z=0. We desire a formula fofd" |x) where the variations come from the different net

supplies{vi |><} that would be observed on each realization. It will turn out that Z is not needed

for the approximation.

Consider first the unconditional random varialie,whose variations come from those of

the unconditiona¥; . These are obtained by first chooskignd then{v, [x}. The unconditional

mean distanc<<ed*> is given by the random-location results of Sec. 4.2.2 because the unconditional
v; are independent random variables with zero méans (m) =0, and identical variances *.
The latter arey” = (v, 0= [ O+ (07) =S* +57°.

Since (d') is the mean of (d"|x), a confidence interval for(d"|x) is

XQ D)%, wherek is an appropriate number of standard deviations (e.g., 2 or 3)

() 2ic (o

for a desired confidence level. Although the variancédofix ) in the 2 term of this expression
is unknown, this variance is bounded by the variancel ofThis is true becauséd’ 0=

@ X0 O Thus, an approximation fdas" |X Ois:

X0 O+ O |XQoz O
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o X = (d) £ k(@ D)2,

Obviously, a similar expression holds for the normalized distance per point:

xO=(p) (D",

It is reasonable to expecp 0 to be bounded or perhaps even decline with problem size,

b

oA, because larger problems include more data. This was confirmed by the simulations, where it
was estimated that

[ 02 <0505 72; (30)
see Fig.3b. Sincgp’)declines withs more slowly than([p*[)% (except in 1-D), the error
committed by using aggregate information goes to zero as the problem size increases; i.e.,
Elim Ep*|x 0/p 0= 1. (31)
Similar results can be developed for balanced problems and problems where only a subset

of X is fixed. Note in particular that the perfectly deterministic problem, where te fixed,

obeys the same asymptotic formulae. In this case one would@pii= 5> =0.

6.2 Bounds for the detailed problem

It is assumed here that is known. The results are based on the following self-evident

property of Egs. (1).

Superposition property of TLP:If u = {u; } andy = {y, } are feasible solutions of two TLP’s with

u={u}andy ={y.} as data, them=u +y is a feasible solution of the TLP with= u +y as data
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SinceX is known, let us decompose the net supplies as follows,m +u,, wherem is

fixed and known and; varies across realizations. Define too, the “perturbation” funatitv),
which returnsd* as a function of the data,= {v;}. This function is convex in our case, because
our problems always involve the minimization of a linear function over a convex set. It is now

possible to show that the following is true.

Theorem 6 (Bounds for random demand and detailed data).
d"(m) < @ kd"(m)+ @ (u)O=d (m)+a0 % (0a)f, (aA), (32)

whereg? is the average ofju;( across all pointa.

Proof: Sinced* is a convex function, Jensen’s inequality guaranteesd'l‘(ﬁv[)s @ (V3 i.e.,

that d"(m) < [@" 0 Therefore, the lower bound holds.
For any realization, the superposition of the optimum (deterministic) solutionnwéh

data (and distana# (m)), and the optimum (random) solution wiitas data (and distanag (u ) )

is a feasible solution of the real problem wittas data. Therefored (v)<d’(m)+d"(u) for
every realization. Clearly, the inequality must also hold for the averages across realizations and
hence, @' [k d" (m)+ @ (u)C=d" (m)+ a0 ™% (6A)f(6A), which proves the theorem. (The last

equality is based on the results of Sec. 5.1, since, tre net supplies with zero meams.)

Whenever the second term of (32) is small relative to the first term, deterministic

approximations are reasonable. Otherwise, since the depende<m§§ of d is very weak in 2-D

(and non-existent in 3-D fow - «) the exact cost of the problem may perhaps still be
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approximated by a formula where the dependence is ignored. One may then be able to use
continuum approximations for inhomogeneous problems where the spatial data change slowly

with location. These practical matters, however, are left to future work.

7. SCALABLE NETWORKS

Here, the supply points are nodesith net supplies; in a mixed graph with edges Assume
first that the graph is directed, and is characterized by input and outpuk(igetsid O(i), that
identify the edge pointing in and out of each noddt is assumed that points are identified by
Cartesian coordinates and that the non-negative edge distdnaes given by a norm. The
collection of all this information without the net supplies, {edges, nodes, depot, coordinates, horm
andp}, will be called a “network”. For any given set of net supplies and edge distances, we solve

for the edge flowse, for the following network problem (NP), whepe> 0.

(NP) min  z= Z de (V)" (33a)
s. t.. Vi ~ Zv(e) <v , i (33b)

&I07i) &)
Vg 20 , Ce. (33c)

Note the similarity to (1). As in that case, one can define feasible, auxiliary (ANP) versions of the
problem, and DNP versions where one of the nodes is designated as a “depot”.

The results in prior sections for fixed-point locations extend to this version of problem NP
if the network is “scalable”; i.e., a network belonging to a family whose members are fully

characterized by a scale paramdtemd a size parametdt = mn®, with the following two
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properties. First, the graph can be partitioned inftddentical subgraphs that define subnetworks
in the family, with scale parameteand size parametef. Second, paths can be extracted from
the original graph to connect the subdepots and form a graph that belongs to the original family,
with scale parametar and size parameter. This definition of scalability is more general than
the definition presented in Section 4.1 because depots are no longer required to be centrally
located; see the 1-D example in Figure 5. The networks in this figure belong to a family of equally
spaced nodes, which are connected from the left to the nearest neighbor and from the right by the
second nearest neighbor. Note that the subnetworks are tiles that can be joined to fill the space and
make larger networks. This is also true in 2 and 3 dimensions.

For these types of problems, dimensional analysis yields the following general solution:

[ =m“n“la®f,(N), (34)

where the subscript “N” indicates that the dimensionless distance per point pertains to a network
problem with a specific structure. The bilevel algorithm for the DNP yields flpwasdvy at each
level that are feasible solutions to (33). Scalability implies that the resulting average total costs can

be expressed as follows:

(d®) =(zv,))=m mn“Ia” f, (n°), (35a)

(d®)  =(z(v,) ﬁ:m/ﬁo (n)f, (m<). (35b)

If p< 1, we can writgz(v, )) + (z(v,,)) = (z(v, +v,)) , and since\( + v) is a feasible solution
of the original problem{z(v,_ +v,,)) = <z> . Thus, ifp < 1, then the sum of (35) is an upper

bound for (34), and the following inequality results:

fN(nK)+ nitk@-pl fN(mK)z fN(mK K) ; m,n=1,2,3... (36)
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This is the same as (13) when NP is linga=(1). Thus, Theorem 1 applies to linear NPs.
Consideration shows that Theorems 2 and 4 also apply to the linear case.

Recall from the proof of Theorem 1 that the solution was bounded from above when the
coefficient off in the second term of the left side of (13) declined withThis is also true now.
Thus, in the nonlinear case the solution is boundéd K (1- p/2)< 0. Note in particular that if

p < 0 (diseconomies of scale), the 2-D problem is bounded.
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Figure 2. Partition of a 2-D lattice with N = 64 points
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Figure 4. Shape effects
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APPENDIX

The total distance per point traveled was estimated using a Monte Carlo simulation of a

single commodity transportation problem. It is assumed first that the service region is

square and node coordinates were drawn from a uniform distribution over the service

area. The net supply of all items at each point is normally distributed with mean 0 and

standard deviatiow. The problem is assumed to be balanced, i.e., total supply equals

total demand over the service area. A Euclidean metric was used to calculate distance.
Twenty-five test runs at various levelsf the following three parameters were

performed: number of nodes (N), service area (A), and standard deviation inafems

In total, 769 simulations were run, with area ranging from 4000 to 90,000 area-units, 25

to 5,000 nodes, and standard deviation from 4.9 to 12.6.

* For N=4000, only 19 runs were performed
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distance per point

Test set N A o sample | sample

mean | standard

deviation
1 25 5000 8.9 65.9 13/9
2 25 5000 6.3 47.3 10.1
3 50 5000 8.9 51.8 13/1
4 50 5000 6.3 39.6 7.6
5 100 4000 6.3 25.2 4.6
6 100 1000¢ 8.9 56.6 96
7 200 1000¢ 6.3 313 6,0
8 200 1000C 8.9 411 7.5
9 250 5000 6.3 19.3 29
10 250 500C 4.9 14.3 2.2
11 500 75000 6.3 55.2 7.0
12 500 40000 8.9 56.4 3.8
13 500 40000 6.9 447 7.3
14 1000 40000 5.7 25,2 2.2
15 1000 50000 8.9 45,7 5.1
16 1000 50000 12.6 64.3 8.3
17 1500 50000 8.2 36.1 4.4
18 1500 50000 6.3 27.8 3.3
19 1500 50000 5.8 25.1 4.2
20 2000 50000 8.9 34,2 4.3
21 2000 75000 8.9 42,1 5.5
22 2000 75000 6.3 29.5 3.8
23 2500 75000 5.7 23.8 2.9
24 2500 90000 6.9 32.6 3.8
25 2500 75000 8.2 33,5 3.8
26 3000 75000 5.8 22.3 2.1
27 3000 75000 8.2 30.9 3.3
28 4000 90000 7.9 29.5 2.5
29 5000 75000 6.3 19.1 2.9
30 5000 75000 8.9 26.9 3.4
31 5000 90000 7.1 23,2 3.5






