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ABSTRACT OF THE THESIS

Fairness–Preserving Empirical Risk Minimization

by

Guanqun Yang

Master of Science in Electrical and Computer Engineering

University of California, Los Angeles, 2019

Professor Vwani P. Roychowdhury, Chair

The concerns regarding ramifications of societal bias targeted at a particular identity group

(for example, gender or race) residing in algorithmic decision-making systems have been

ever-growing in the past decade. It is a common practice of machine learning models’

participation in these systems through empirical risk minimization (ERM) principle, which is

often the cause of unfairness by trading off underrepresented groups for overall performance.

Despite the importance of preserving fairness in such systems, there is hardly consensus

in defining unified fairness metrics, designing widely-applicable bias-mitigation algorithms,

and delivering interpretable models abiding by the ERM principle. The situation is made

even more grievous when non-structural data, including text, image, and audio, is involved

in these systems due to the unavailability of the well-defined identity attribute. Current

approaches attempt to tackle algorithmic bias in non-structural settings from data itself and

intermediate representation together with the inference component within models. In this

thesis, we propose to unify all three bias-mitigation operations into one streamlined machine

learning pipeline. At the same time, to provide interpretable results, the explorations will be

made while carrying out debiasing procedures, and theoretical justifications will be provided

accordingly. By ameliorating different bias-mitigation strategies through synergistic effects

and addressing model transparency issues by investigating internal representations, we show

that the proposed pipeline could provide interpretable machine learning models that embody

fairness across different identity groups in numerous non-structural data settings.
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CHAPTER 1

Introduction and Literature Review

1.1 Background

The knowledge discovery process is increasingly more relying on data-driven approaches. As

a result, algorithmic decision-making systems have cast significant influence on people’s life

due to their quantitative nature. With the rise of mobile networks, the availability of colossal

dataset and ever-increasing computation power, all of a sudden, from something as small

as how to distribute free admissions to a movie to more consequential ones like deciding

whether to grant an individual mortgage loan, a large number of decisions are automated

through data-driven protocols without even users’ awareness.

However, despite the reduced manual labor, improved efficiency and user experiences,

some societal concerns, including fairness and privacy with regard to these systems and

corresponding decisions, arise. To name a few, the algorithms used by Goldman Sachs to

approve applications for Apple cards show alarming gender inequality [Vig19]. The resume

tracking system used by Amazon shows bias against the female, resulting in potentially

lower admission rates when male and female applicants are both qualified [Das18]. Industrial

facial recognition systems developed by Microsoft, Face++, and IBM all show a significant

disparity in accuracy across different races, where darker skin colors could cause up to 30%

performance degradation [BG18]. This list could go on while sharing the same core concern:

the machine learning algorithms we interact with on a daily basis to automate decision-

making prove to be unfair.

At the same time, as is noted in [KR19], the machine learning algorithms and underlying

empirical risk minimization (ERM) principle could probably not satisfy requirements such as
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privacy and fairness for free. As the artifacts of human inventions, despite their capacity to

work without being explicitly programmed, machine learning algorithms bearing empirical

risk minimization (ERM) principle could not resolve fairness concerns without appending

additional constraints other than minimizing empirical risk, or equivalently, maximizing

predictive accuracy.

The machine learning community, researchers from law, economics and social sciences,

and other stakeholders from the government and private sectors have recognized this chal-

lenge and initiated a series of works to tackle this problem.

1.2 Related Work

Starting from the trailblazing work by Dwork et al. in formalizing the fair machine learn-

ing problem [DHP12], researchers have previously spent extensive efforts in characterizing

bias in data and predictive results, mitigating bias in machine learning models and apply-

ing these algorithms under multiple settings, which include classification, regression, and

recommendation.

1.2.1 Fairness Metrics

The requisite to enforce fairness requirement to any algorithmic decision-making process is

to pinpoint the component to which we believe to be critical. As is observed in [KR19],

the data, learning algorithms, models given by such algorithms, and ultimate decisions (pre-

dictions) could all be questioned for potential fairness issues. However, it is not clear how

learning algorithms like gradient descent could encode human bias into the learning proce-

dure. Therefore, the categorization of fairness metrics goes into two streams.

• Bias in learned models

Zhao et al. propose to use co-occurrence frequency statistics to characterize bias am-

plification before and after training predictive models [ZWY17]. Wang et al. refine

and generalize this definition of bias amplification to a broader setting by introducing

2



the notion of information leakage, where they claim any model embodies bias amplifi-

cation whenever leakage of sensitive attributes’ information is larger than the leakage

by change under similar performance measure [WZY]. These works do not specifically

focus on bias in the machine learning pipeline but rather consider bias amplification.

This emphasis on bias amplification shifts the responsibility of fair machine learning

to the data gathering process and may better capture the dynamics of prediction.

• Bias in data and decisions

Compared to the work to characterize bias in learned models, the work towards the

definition of bias (or fairness) in data and decisions are much more abundant. As is

noted in [CR18], these definitions could be defined statistically and individually, with

the former one being practical. Some frequently used statistical definitions of fairness

include demographic parity (DP), equalized odds (EO), and statistical parity [BHJ18,

FSV19]. Despite empirical success in some applications [ABD18], the interpretation of

these metrics could be distorted when data is imbalanced. What makes things worse,

these metrics could be mutually exclusive except for degenerate cases [KMR16].

1.2.2 Bias Mitigation Strategy

Similar to the discussion of bias (fairness) metrics, current literature also focuses on miti-

gating bias in different components in the machine learning pipeline, which are called pre-

processing, in-processing, and postprocessing, respectively [BDH18].

• Preprocessing

Preprocessing algorithms is closely related to the notion of fair representation [CR18].

They try to apply a transformation to input data so that most of the task-specific in-

formation is maintained while removing sensitive information. For example, Louizos et

al. add maximum mean discrepancy regularization to variational auto-encoder (VAE)

to obtain posterior distribution that is invariant to latent variables, which preserves

the utility of resulting representation while attaining some degree of fairness [LSL15].

• In-processing
3



In-processing algorithms add additional fairness constraints to existing algorithms so

that the learned models could simultaneously satisfy some performance measure (for

example, accuracy) and fairness requirements. The works mentioned in Section 1.2.1

both adopt this approach [WZY, ZWY17].

• Postprocessing

Postprocessing maintains fairness by adjusting the predictive labels given by potentially

unfair models so that the adjusted label distribution could satisfy fairness requirements.

One foundational work is done by Hardt et al.. They try to adjust the output label

distribution using probabilities given by the solution of a linear program, which in turn

satisfies some fairness requirements [HPS16].

1.2.3 Application

• Classification

Most of the current works regarding fair machine learning systems focus on the setting

of classification because of the better-defined problem setup and already abundant

source of literature.

Zhang et al. try to remove or adjust the discriminatory features in the original dataset

through the insights given by the causal graph. By removing or adjusting one set of

nodes (features) within causal graphs, the preprocessed data empirically shows fairness

under the fairness measure [ZWW17]. Zheng et al. consider the sampling bias in elec-

tronic medical records (EMR) for predicting patients’ health conditions. For example,

patients only have medical tests when they feel sick and go to hospitals, which could

lead to misled interpretation for some chronic diseases. They apply the transforma-

tion of the original EMR time series using the HMM model and acquire unbiased data,

which shows high accuracy for predicting patients’ actual health conditions [ZGN17].

• Regression

Most efforts of algorithmic fairness are put in the classification setting, and relatively

less attention is on regression. One foundational work done by Berk et al. provides for-
4



mulation and corresponding metrics for fair regression, including the explicit measure

of the tradeoff between fairness and performance measure called the price of fairness

(PoF). They also give benchmarks on multiple datasets, which is conducive to future

research of fairness in regression [BHJ17].

• Recommendation and matching

Due to the pervasive use of recommendation and matching systems, the fairness issues

associated with such systems also raise researchers’ awareness.

In order to provide (mostly) gender-representative search results in talent acquisi-

tion, Geyik et al. deliver a system on LinkedIn by re-ranking the query results by

recruiters to satisfy some fairness constraints without statistically harming business

metrics [GAK19]. Fairness is also considered in the setting of matching submitted

papers and reviewers, Kobren et al. observe that many papers are reviewed by peo-

ple without sufficient qualification using the allocation given by conference organizers

through the maximization of some utility. By exploiting scores assigned to each re-

viewer to reflect their expertise, they add additional constraints to the original opti-

mization problem to make sure each paper is reviewed by people with sufficient relevant

experiences [KSM19].

1.3 Overview of this Work

In this work, we propose to apply the adversarial training method previously used in domain

adaptation to the mitigation of bias when non-structural data like images and texts come

into play. Importantly, we quantitatively select the particular component of the model to

apply the adversarial branch to for maximum utility. As is outlined in Figure 1.1, our main

contribution is to quantitatively select the component of interest to append the adversarial

branch in the original model Tθ so that a fairness-preserving model T adv
θ could be attained.

Throughout the text, {(xi, yi, Ai)}Ni=1 is used for a batch of N data, where xi is the

feature, yi is the associated label, and Ai stands for underlying sensitive attribute that

5



Data {(xi, yi, Ai)}Ni=1

Data Preprocessing

I(z;A) estima-

tion for each T
(j)
θ

Choose candidates{
T

(1)
θ , T

(2)
θ , · · ·

}
for

adversarial training

Vanilla model Tθ
k ← argmax I(z(k);A)

T
(k)
θ ← T

(k)
θ ◦ fadv Model T adv

θ

Evaluate fairness met-
rics in Tθ and T adv

θ

Adversarial
branch fadv

Main contribution

Figure 1.1: Organization of the system

correspond to xi. When xi is fed into network, vanilla network Tθ or the network T adv
θ

with adversarial branch f adv, a representation z is attained in the intermediate layer. When

we have representation zi and attribute Ai in hand, their mutual information I(zi;Ai) is

computable.

This remainder of this work is organized as follows. Chapter 2 describes the metrics

used in this work to objectively compare network performance in terms of fairness. Chapter

3 presents the technique used to capture the dynamics of bias during the training process.

Chapter 4 discusses the bias mitigation algorithm used in this work. Chapter 5 provides

comprehensive experimental evaluations in both text and image datasets in the classification

setting. Finally, Chapter 6 summarizes this work and provides some pointers for further

research.
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CHAPTER 2

Characterizing Bias in Machine Learning Algorithms

As is noted in Chapter 1, there is no consensus in defining a unified fairness measure because

of the complexity of the machine learning pipeline and many of these metrics’ mutually ex-

clusive nature. This chapter presents a novel fairness metric that empirically shows appealing

properties other metrics do not have.

2.1 Demographic Parity (DP) and Equalized Odds (EO)

Demographic parity (DP) and equalized odds (EO) are two frequently used metrics in mea-

suring the fairness of the predictive results. They both ask for the parity of different identity

groups. Formally

• Demographic Parity (DP)

A classifier Tθ is said to satisfy demographic parity (DP) metric when its prediction

ŷ = 1(Tθ(x) ≥ 0.5) is independent of the attribute A. Equivalently, the value of

sensitive attribute A is uncorrelated with decision ŷ.

Pr
[
ŷ = 1|A = 1

]
= Pr

[
ŷ = 1|A = 0

]
• Equalized Odds (EO)

A classifier Tθ is said to satisfy equalized odds (EO) metric when its prediction ŷ =

1(Tθ(x) ≥ 0.5) is conditionally independent of attribute A given the label y. This

is equivalent to equal true positive rate (TPR) and false positive rate (FPR) across

demographics A ∈ {0, 1}.

Pr
[
ŷ = 1|A = 1, y

]
= Pr

[
ŷ = 1|A = 0, y

]
, y ∈ {0, 1}

7



We could see that the equalized odds (EO) metric provides a more refined formulation

than demographic parity (DP) by additionally accessing the label of data. Importantly, this

enables equalized odds (EO) to depend on A through y, while previously demographic parity

(DP) forbids this dependence. This refinement provides ways to circumvent two major issues

associated with demographic parity (DP) [HPS16]. Specifically, consider the setting of job

applicants selection, where y, ŷ ∈ {0, 1} and they stand for rejection and admission for 0 and

1, suppose binary sensitive attribute A ∈ {0, 1}, and feature x characterizes the applicant’s

qualification for the job, then the demographic parity (DP) shows

• Unfairness for imbalanced demographics

When the distributions of A = 0 and A = 1 are skewed towards one party, demographic

parity (DP) requires the company to either reject qualified applicants or admit unqual-

ified applicants, which is not considered fair for all applicants as a whole.

• Rejection to the optimal classifier

If the optimal classifier T opt
θ is attained, it evaluates the applicant’s qualification x

correctly with probability 1 and gives the corresponding admission decision ŷ. It is not

clear how classifier T opt
θ is unfair under the demographic parity (DP) metric.

However, despite its merits over demographic parity (DP), as the following example

shows, equalized odds (EO) metric is not without its flaws.

Proceeding with the setting of job applicant selection, when evaluating the fairness of

predictive results, one could compute the violation of individual metric.

νDP =
∣∣∣Pr [ŷ = 1|A = 1

]
− Pr

[
ŷ = 1|A = 0

]∣∣∣
νEO =

∑
y∈{0,1}

∣∣∣Pr [ŷ = 1|A = 1, y
]
− Pr

[
ŷ|A = 0, y

]∣∣∣
Suppose the classifier Tθ returns probability following the distribution N (µ, 0.032) with

base µ1 = 0.2, µ2 = 0.6 and potential shifts depicted in Figure 2.1. An accurate classifier

could correctly distribute scores above and below threshold, which is often set to 0.5 by

default. As is shown in Figure 2.1, given labels of x (denoted ”positive” and ”negative”
8



in the figures), when probability Tθ(x) is distributed differently, the corresponding fairness

violation νDP and νEO could not fully capture the fairness of output. Specifically,

• Failure when optimal classifier exists

When there exists a threshold (potentially differing from 0.5) that could correctly

classify all samples, the optimal classifier T opt
θ is attained. However, both demographic

parity (DP) and equalized odds (EO) signal unfairness.

• Failure to account for different distributions

The fairness violations for distributions except ”low data separability below threshold”

are very close for both demographic parity (DP) and equalized odds (EO). A preferred

metric should provide more distribution-specific information other than fairness viola-

tion.

Note for distribution ”inseparable data below threshold”, even though both fairness violation

is 0, this does not show the flaws of either of the two metrics since they should be 0 by

definition.

However, except for the two issues mentioned above, additional subtleties arise when

there are additional complications associated with data.

• Failure to take missing value into account

Suppose we would like to train a fair text classifier with respect to attribute A. We

could not anticipate each of the gathered texts includes A, which makes A a missing

value. At the same time, both the computations of demographic parity (DP) and

equalized odds (EO) require access to A. In this case, the unavailability of A makes

neither of them computable.

• Failure to extend to the case where multiple A’s are involved

The definitions of both demographic parity (DP) and equalized odds (EO) assume that

only one A needs to be addressed in the dataset. However, it is no surprise that some

datasets could include gender, race, and age simultaneously (for example, adult income

9



dataset shown in [Koh96]). It is not clear how definitions of demographic parity (DP)

and equalized odds (EO) could be extended to this case.

Table 2.1: Violation of demographic parity (DP) and equalized odds (EO)

Small right shift

(µ1 = 0.4, µ2 = 0.7)

Large right shift

(µ1 = 0.6, µ2 = 0.9)

Inseparable data

below threshold

(µ1 = 0.2, µ2 = 0.25)

Inseparable data

above threshold

(µ1 = 0.6, µ2 = 0.65)

νDP 0.06800 0.06400 0.00000 0.06400

νEO 0.06800 0.07200 0.00000 0.07200

(a) Data distribution with subgroup shift (up:

small shift, down: large shift)

(b) Data distribution with inseparable subgroup

(up: inseparable subgroup above 0.5, down: in-

separable subgroup below 0.5)

Figure 2.1: Four typical data distributions without missing value

10



2.2 AUC-based Metric

In hope of circumventing issues presented in Section 2.1, a novel AUC-based metric is pro-

posed in [BDS19], which borrows some aspects of previous metrics while maintaining its

validity when the dataset shows skewness and missing values. At the same time, the exten-

sion of this metric is natural when multiple A’s come into play.

For a binary classification problem, suppose there are I identity groups in the dataset D

where each group is denoted as gi, i ∈ [I], then for one particular identity group m, define

• BPSN AUC (Background Positive Subgroup Negative AUC)

BPSN AUC = AUC(D+ +D−
gm), D+ = D\D+

gm

• BNSP AUC (Background Negative Subgroup Positive AUC)

BNSP AUC = AUC(D− +D+
gm), D− = D\D−

gm

• Subgroup AUC

Subgroup AUC = AUC(D+
gm +D−

gm)

• Overall AUC

Overall AUC = AUC(D+ +D−)

Since there are I identity groups, in order to integrate metrics from all subgroups, Borkan

et.al. use geometric mean (1
I

∑I
i=1 m

p
i )

1
p to all metrics except overall AUC [BDS19]. Formally,

the metric we use to evaluate our system is defined as

1

4

Overall AUC + (
1

I

I∑
i=1

BPSN AUCi)
1
p + (

1

I

I∑
i=1

BNSP AUCi)
1
p + (

1

I

I∑
i=1

Subgroup AUCi)
1
p


The distributions in Figure 2.2 follow the setting in Section 2.1, the difference is that the

base µ1 = 0.2, µ2 = 0.6 here correspond to background distributions, where A is missing.

The subgroups are samples with A but shift with respect to background distributions. As

could be seen in Table 2.2, the limitations of demographic parity (DP) and equalized odds

(EO) are mostly overcome. Specifically,
11



• Threshold adaptability

When there exists a decision threshold that could make the correct classification (for

distribution ”small right shift” and ”large right shift”), the AUC-based metric shows

high confidence in providing correct classification.

• Natural extension with missing value

As is shown in Figure 2.2, the AUC-based metric is designed to account for missing

values through background distributions D+ and D−. However, it is worthwhile to

note that the AUC-based metric is still valid when there are no missing values. This

makes it comparable with demographic parity (DP) and equalized odds (EO) metrics

discussed in Section 2.1.

• Distribution awareness

Contrary to fairness violation shown in Table 2.1, the results shown in Table 2.2 show

disparity across different distributions, which confirm the awareness of AUC-based

metric to distributions.

• Direct extensibility with multiple A’s

According to the formulation, the AUC-based metric could incorporate any number of

A’s into computation through gi.

2.3 Case Study: Empirical Comparison of Fairness Metrics

In order to demonstrate the ability to capture unfairness in real-world settings, this section

provides an empirical comparison of these metrics on adult income dataset [Koh96], a dataset

with multiple sensitive attributes A’s that is frequently used in the research of algorithmic

fairness.

The goal of the adult income dataset is to predict whether an individual could have an

annual income of more than 50 thousand dollars based on features like occupation, edu-

cation, investment decision, and many others. Importantly, this dataset includes multiple

sensitive attributes, including gender, race, and age. The prediction made from this dataset
12



(a) Data distribution with subgroup shift (up:

small shift, down: large shift)

(b) Data distribution with inseparable subgroup

(up: inseparable subgroup above 0.5, down: in-

separable subgroup below 0.5)

Figure 2.2: Four typical data distributions with missing values

Table 2.2: AUC-based metric under different distributions

Distribution Metric

Small right shift

(µ1 = 0.4, µ2 = 0.7)
0.99963

Large right shift

(µ1 = 0.6, µ2 = 0.9)
0.83886

Inseparable data below threshold

(µ1 = 0.2, µ2 = 0.25)
0.86492

Inseparable data above threshold

(µ1 = 0.6, µ2 = 0.65)
0.83886

13



Table 2.3: Predictive results on adult income dataset

Label y = 1 y = 0

Prediction ŷ = 1 ŷ = 0 ŷ = 1 ŷ = 0

Gender Male Female Male Female Male Female Male Female

Count 1202 165 771 151 437 60 3749 2510

Accuracy 1202+165+3749+2510
9045

= 84.31%

Table 2.4: Statistics of adult income dataset with respect to gender

(a) Full dataset

Annul income < 50K ≥ 50K

Male 20988 9539

Female 13026 1669

(b) Validation dataset

Annul income < 50K ≥ 50K

Male 4189 1973

Female 2570 316

may be used in applications from seemingly innocuous targeted advertising to a more con-

sequential approving mortgage loan, thus causing unfairness when classifiers fail to attain

100% accuracy.

The statistics of the label with respect to gender is shown in Table 2.4. When a Logistic

regression classifier is trained with 80% of the data, the prediction results on the 20% hold-

out set achieve 84.31% accuracy (see Table 2.3). However, as is shown in Table 2.5, the

prediction result shows unfairness from high DP violation, EO violation, and low AUC-

based metric. Furthermore, compared to DP violation and EO violation, the AUC-based

metric provides a more nuanced view about this unfairness. For example, for the ”Female”

subgroup, the lower BPSN AUC and BNSP AUC than the ”Male” subgroup show that the

classifier has difficulty classifying samples with different gender attributes.
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Table 2.5: Comparison of fairness metrics of predictions made on adult income dataset

(a) Comparison of metrics

Metric Value

DP violation νDP 0.156339

EO violation νEO 0.156339

AUC-based metric 0.210551

(b) Nuanced statistics of AUC-based metric

Subgroup Male Female

BPSN AUC 0.326572 0.178786

BNSP AUC 0.365101 0.161898

Subgroup AUC 0.161898 0.365101

Overall AUC 0.268112

Final metric 0.210551
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CHAPTER 3

Measuring Bias Dynamics through Mutual Information

Chapter 2 discuses the measurement of bias in the final predictive results. However, the

metrics introduced in Chapter 2 could not provide insights into the expression of bias during

the training process. This chapter shows that this dynamic could be captured using mutual

information.

3.1 Mutual Information

Mutual information captures the amount of information one random variable has about

another random variable or equivalently, the reduction of uncertainty of one random variable

when another random variable is given. As is shown below, zero mutual information between

two random variables indicates independence and vice versa.

I(X;Y ) = H(X)−H(X|Y ) = 0⇔ H(X) = H(X|Y )⇔ X |= Y

The use of mutual information as a measure to characterize bias dynamic naturally arise from

the demographic parity (DP) introduced from Chapter 2. It requires statistical independence

between sensitive attribute A and predictive results.

Pr
[
ŷ = 1|A = 1

]
= Pr

[
ŷ = 1|A = 0

]
However, as is noted in Chapter 2, there are flaws with this notion of fairness as it might not

guarantee fairness under various settings. We instead ask for the reduction of information

leakage about sensitive attribute A through the access to intermediate representation z

given by machine learning models. In the case of the neural network, the intermediate

representation z comes from each layer.
16



3.2 Mutual Information Neural Estimation

The estimation of mutual information between intermediate representation z and sensitive

attribute A involves (potentially) high dimensional vector. The accuracy of this estimation

could not be guaranteed since many of the estimation algorithms are designed for relatively

low dimensional input.

As is noted in [BBR], estimating mutual information between high dimensional random

vectors X and Z could be reduced to the maximization of the KL divergence lower bound

between joint distribution PXZ and produce of their marginal distributions PX ⊗ PZ

I(X;Z) = DKL(PXZ ||PX ⊗ PZ)

DKL(P ||Q) ≥ sup
T∈F

EP [T ]− logEQ[e
T ]

→ I(X;Z) ≥ sup
θ∈Θ

EPXZ
[Tθ]− logEPX⊗PZ

[eTθ ]︸ ︷︷ ︸
maximization of lower bound

where the function class F is replaced with neural network T parametrized by θ ∈ Θ in this

work.

In practice, PXZ and PX ⊗ PZ are replaced with their empirical counterparts P
(n)
XZ and

P
(n)
X ⊗ P

(n)
Z , which are constructed by mini-batch samples

{
(zi, Ai, yi)

}N

i=1
. Given optimal

parameter θ̂, the mutual information between X and Z is

I(X;Z) ≈ ̂I(X;Z) = E
P

(n)
XZ

[Tθ̂]− logE
P

(n)
X ⊗P

(n)
Z

[eTθ̂ ]

The architecture used to compute ̂I(X;Z), namely StatisticsNetwork shown in Table 3.1,

is chosen to be consistent with the one presented in [BBR]. The Protocol 1 describes the

estimation process using StatisticsNetwork. Specifically,

1. Preprocessing

As the input tensor z greatly increase in dimension after it is flattened. We apply

PCA to decrease the dimension of flattened tensor z̃ while keeping at 95% of its infor-

mation. Empirically, an image of (3, 224, 224) transformed by a convolution layer of

128 filters is turned into a tensor of shape (128, 112, 112). The flattened tensor is more

than 1.6 million dimensional while the same vector after reduction is only several hun-

dred dimensional. This operation largely improves the runtime of mutual information

evaluation with marginal performance tradeoff.
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2. Estimation loop

A batch of N samples constitute empirical marginal distributions of {zi}Ni=1 and {Ai}Ni=1

individually and an empirical joint distribution of {zi, Ai}Ni=1. In i-th of total M

estimation epochs, b samples are drawn of three aforementioned distributions, and

they are used to approximate the lower bound

1

b

b∑
i=1

Tθ(z̃
(i), A(i))− log

1

b

b∑
i=1

eTθ(z̄
(i)Ā(i))

which is recorded in vi. The standard gradient ascent procedure is then used to improve

this lower bound. After sufficiently many epochs (by setting M a large number like

10000), the moving average of v is output as final mutual information estimation.

In order to verify the correctness of our implementation, we utilize the Protocol 1 to

compute mutual information between Gaussian random variable x1 and x2 in x = [ x1
x2 ] ∼

N ([ 00 ],
[
1 ρ
ρ 1

]
). As is shown in Figure 3.1, the estimation given by our approach is consistent

with theoretical value−1
2
log(1−ρ2) and results given by the KSG estimator, which is another

mutual information estimation algorithm commonly used in low dimensional setting [GOV].

Table 3.1: StatisticsNetwork architecture

Operation Output dimension Activation

Input [z̃;A] (N, k) -

FC (N, 512) ELU

FC (N, 512) ELU

FC (N, 1) -

Figure 3.1: Mutual information esti-

mate between two dimensional correlated

Gaussian with varying correlation ρ
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Protocol 1 Mutual Information Neural Estimation (MINE)

1: procedure MINE(
{
(zi, Ai)

}N

i=1
,M, b)

2: z̃← Flatten(zNi=1) ▷ (N, d1, d2, · · · )→ (N,
∏

i di)

3: z̃← PCA(z̃) ▷ (N,
∏

i di)→ (N, k)

▷ reduce z̃ to the dimension k that attains 95% explained variance

▷ generally
∏

i di >> k

4: v← 0 ∈ RM

5: for i← 1 : M do

6: N mini-batch samples constitute empirical distribution P
(N)
ZA , P (N)

Z and P
(N)
A .

7: Draw b samples out of N mini-batch samples (empirical distributions).

(z̃(1), A(1)), · · · , (z̃(b), A(b)) ∼ P
(N)
ZA

z̄(1), · · · , z̄(b) ∼ P
(N)
Z , Ā(1), · · · , Ā(b) ∼ P

(N)
A

8: Record the mutual information estimation at iteration i in v

vi ← Tθ([z̃;A])

9: Evaluate the lower bound and its gradient

V(θ)← 1

b

b∑
i=1

Tθ(z̃
(i), A(i))− log

1

b

b∑
i=1

eTθ(z̄
(i)Ā(i))

∇θV(θ)

10: Apply bias correction to gradient

∇̃θV(θ)← ∇θV(θ)

11: Update parameter for network Tθ

θ ← θ + ∇̃θV(θ)

12: end for

13: return MovingAverage(v)

14: end procedure
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CHAPTER 4

Mitigating Bias through Adversarial Empirical Risk

Minimization

Chapter 2 and 3 provide tools to measure the bias in predictive results and their dynamics

during the training process. In the hope of improving the eventual bias measure, this chapter

shows the method to mitigate bias led by the insights of bias dynamics.

4.1 Adversarial Training of Neural Networks

Adversarial empirical risk minimization is first proposed in the study of domain adaptation

as a way to approximate H-divergence, which characterizes the amount of difference between

the source data distribution DX
S and target data distribution DX

T captured by a particular

hypothesis class H. Formally, it is defined as

dH = 2 sup
h∈H

∣∣∣∣∣ Pr
x∼DX

S

[
h(x = 1)

]
− Pr

x∼DX
T

[
h(x) = 1

]∣∣∣∣∣

x Layer1 Arbitrary layers LayerK z

Predicative
branch

ŷ → Lc(y, ŷ)

Gradient
reversal
layer R(·)

fadv Â→ Ladv(A, Â)

∇zLc

−∇zLadv

Figure 4.1: Adversarial training scheme of neural network
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In order for a model trained on the source domain to generalize well on the target do-

main, the dH has to be small [BBC07]. Ganin et al. argue that, by applying adversarial

training of the neural network, it could learn the representation that is indicative of both

source and target domain while being indiscriminate across domains [GUA]. This adversarial

training scheme provides empirically pleasing results and has successful applications in ma-

chine translation, text classification, and image classification [WXZ17], where distributional

shift and sparsity of available data are often the concerns. As is shown in Figure 4.1, the

backbone of this scheme is the novel gradient reversal layer appended at the beginning of

the auxiliary branch that predicts the auxiliary label. This architecture tries to acquire a

representation that is simultaneously

• Indicative to both source and target domain.

Since the gradient flow within the auxiliary branch follows the conventional backward

propagation protocol. After the negated gradient from the adversarial branch meets

and joins gradient flow in the predictive branch by addition. The learned representation

could still be informative to the target domain. With the combined signal transmitted

through the entire network through backward propagation, this weakens the learning

signal in the predictive branch for predicting domain labels while empowering the

overall predictive capability for target labels in the network as a whole.

• Indiscriminate across domains.

The adversarial empirical risk minimization could be seen as the modification of multi-

task learning [Rud17], where labels of related tasks (for example, sentiment analysis

and POS tagging in natural language processing) are jointly predicted on different

branches to achieve synergistic effects for individual task’s performance. With the only

difference in the gradient reversal layer, the adversarial branch reverses this synergy

and tries to reduce the discriminative power of learned representation.

Formally, the forward and backward gradient reversal layer R(·) is defined as mutually

incompatible operations

R(z) = z, ∇zR = −I
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where conventional ∇zR should be I rather than −I.

4.2 Adversarial Empirical Risk Minimization Inspired by Mutual

Information

Recently, many researchers notice the potential of adversarial training in mitigating bias in

numerous tasks [AZP19, BCZ17, WZY, ZLM, AVG19]. However, most of these works follow

the original setup proposed in [GUA] and locate the adversarial branch (often a multilayer

perceptron) at the output layer. From the information-theoretic point of view, this default

choice is not backed by strong theoretical justification. Furthermore, as is evidenced by

observation in [DBC], the information expressed in the neural network does not follow a

monotonic fashion. At the same time, there is the concern of vanishing gradient in the

deep neural network, which motivates multiple auxiliary branches in Inception architecture

[SVI16].

Therefore, we propose to learn from insights given by the mutual information between

intermediate representation z and attribute A (and target y). It is then possible to avoid

the choice of adversarial branch’s location in an ad-hoc fashion. In order to quantitatively

compare the performance of our optimal location and default one, we follow the original setup

in [GUA] by choosing a simple multilayer perceptron as the architecture of the adversarial

branch (details of this architecture could be found in Chapter 5).

As is shown in Protocol 2, for each individual task, every component of interest T
(j)
θ in

vanilla model Tθ is explored for the mutual information between representation z = T
(j)
θ (x)

and attribute A. Then the component with maximum mutual information is chosen as the

candidate to append the adversarial branch. The resulting network T adv
θ is chosen to perform

specific task.
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Protocol 2 Training Protocol
1: Hyperparameters: learning rate α, batch size N , epoch K

2: procedure Train(
{
(xi, Ai, yi)

}S

i=1
)

3: Initialize network without adversarial branch Tθ

4: repeat

5: Invoke Protocol 1 to each T
(j)
θ in Tθ and acquire representation z.

6: return Î(z;A)

7: until all components
{
T

(1)
θ , T

(2)
θ · · ·

}
of interests in Tθ are evaluated

8: Choose the component T
(j)
θ to apply adversarial branch to based on Î(z;A)

9: Initialize network with adversarial branch T adv
θ

10: for 1 : K do

11: for 1 : N do

12: Forward propagation

{ŷi}Ni=1 ,
{
Âi

}N

i=1
← T adv

θ ({xi}Ni=1)


Lc(y, ŷ)← CrossEntropyLoss({yi}Ni=1 , {ŷi}

N
i=1)

Ladv(A, Â)← CrossEntropyLoss({Ai}Ni=1 ,
{
Âi

}N

i=1
)

13: Backward propagation

θ ← Adam(Lc, Ladv, θ;α)

14: end for

15: end for

16: return Fairness-preserving network T adv
θ

17: end procedure
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CHAPTER 5

Experiments

We evaluate our adversarial empirical risk minimization (ERM) approach with text and

image datasets under the classification setting. The architecture for text and image datasets

are chosen differently, which aims to show the wide applicability of our method.

5.1 Experiment Setup

5.1.1 Datasets

The text dataset we use is Jigsaw Toxic Comment Dataset [DLS18]. Applied in the en-

vironment of toxicity comment detection in online forums, the collection of this dataset is

motivated by the observation that the vanilla predictive model could incorrectly associate

high toxicity level with particular identities that are historically underrepresented. For ex-

ample, as is shown in Table 5.1a, the non-toxic comments that share the body ”I am a

man/woman” are assigned wide range of toxicity scores, revealing the propensity of

discriminating identity groups that could be characterized as ”black”, ”female”, and ”gay”.

The statistics of this dataset and some text samples are shown in Table 5.1b and Table

5.1d. For each individual identity, there are consistently more non-toxic samples than toxic

ones in the dataset.

The image dataset we use is the SCUT-FBP5500 dataset [LLJ18]. This choice is moti-

vated by the report that many researchers have observed that the error of commercial face

recognition systems is strongly correlated with the darkness of skin color [BG18]. We instead

seek to extend this study and explore a similar application in evaluating facial attractiveness
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Table 5.1: Overview of dataset

(a) Predictive toxicity of vanilla model

Sentence Toxicity Score

I am a man 20%

I am a woman 41%

I am a white man 66%

I am a white woman 77%

I am a black man 80%

I am a black woman 85%

I am a gay man 57%

I am a gay woman 66%

I am a gay white man 78%

I am a gay white woman 80%

I am a gay black man 82%

I am a gay black woman 87%

(b) Statistics of Jigsaw dataset

Identity Non-Toxic Toxic

Male 37799 6685

Female 46118 7311

Black 10223 4678

White 18044 7038

(c) Statistics of SCUT-FBP5500 dataset

Identity Non-Attractive Attractive

Asian male 1000 1000

Asian female 1000 1000

Caucasian male 375 375

Caucasian female 375 375

(d) Sample of some toxic/non-toxic comment texts

Toxic Non-toxic

Corrupt hypocrites throughout the gov-

ernment. Of the money, by the money

and for the money. Brought to you by

the jesus freaks cause birds of a feather

flock together.

Jeff Sessions is another one of Trump’s

Orwellian choices. He believes and has

believed his entire career the exact op-

posite of what the position requires.

If it walks like a duck, and quacks like

a duck....

That’s already been happening, Carl,

it’s called Fake News.

Fool. Did Mark Shore lose his job? I have not

seen his guff for quite a while now.
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(a) Positive samples (b) Negative samples

Figure 5.1: Samples of SCUT-FBP5500 dataset

and the system performance with respect to both gender and race. The statistics of this

dataset are shown in Table 5.1c.

5.1.2 Models

The network architecture in text classification is a three layer convolutional neural network,

which is outlined in Table 5.3. The architecture used for image classification is ResNet18

[HZR16], which is described in Table 5.4.

5.2 Results

5.2.1 Jigsaw Toxic Comment Dataset

As is shown in Figure 5.4, the I(zi;A), i ∈ {1, 2, 3} fluctuates above 0 and no consistent

pattern could be observed from the relationship between training progress and mutual in-

formation. However, there is indeed tendency that mutual information estimate converge to

particular value with increasing number of epochs.

The change of mutual information across layers in the last training epoch is shown in

Table 5.5 and Figure 5.2. Because of their maximum mutual information across all layers,

the layer two and layer three will be chosen to append adversarial branch f adv to attain

model T adv
θ for gender and race, respectively.
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Table 5.2: The network architecture for adversarial branch

(a) Image classification adversarial branch

Operation Output dimension Activation

Input z (N,C,H,W ) -

AdaptiveAvgPool (N,C, 7, 7) -

Flatten (N, 49C) -

Linear (N, 100) LeakyReLU

Linear (N, 100) LeakyReLU

Linear (N, 2) -

(b) Text classification adversarial branch

Operation Output dimension Activation

Input z (N,L,C) -

Flatten (N,LC) -

Linear (N, 100) LeakyReLU

Linear (N, 100) LeakyReLU

Linear (N, 2) -
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Table 5.3: Text classification network architecture.

Operation Output dimension Activation

Input x (N,L) -

Embedding (N,L, 50) -

Layer1

CONV, POOL, BN (N, 128, 50) ReLU

Layer2

CONV, POOL, BN (N, 128, 50) ReLU

Layer3

CONV, POOL, BN (N, 128, 50) ReLU

Flatten (N, 128× 50) -

Linear (N, 128) ReLU

Dropout (N, 128) -

Linear (N, 2) -
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Table 5.4: Image classification network architecture

(a) ResNet18

Operation Output dimension Activation

Input x (N, 3, 224, 224) -

Preprocessing

CONV (N, 64, 112, 112) -

BN (N, 64, 112, 112) ReLU

MaxPool (N, 64, 56, 56) -

Layer1

ResidualBlock×2 (N, 64, 56, 56) -

Layer2

ResidualBlock×2 (N, 128, 28, 28) -

Layer3

ResidualBlock×2 (N, 256, 14, 14) -

Layer4

ResidualBlock×2 (N, 512, 7, 7) -

Output

AdaptiveAvgPool (N, 512, 1, 1) ReLU

Flatten (N, 512) -

FC (N, 2) -

(b) Residual block

Input z

Shortcut

CONV

BN

ReLU

CONV

BN

Output z+ f(z)
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The results of Tθ and T adv
θ are shown in Table 5.7. The improvements in the final metric

after applying adversarial training in gender and race are 2.64% and 2.93%, respectively.

Additionally, we could observe the following

• Improvement of individual metric after applying adversarial training

When applying adversarial training over gender, there is consistent improvement for

identity ”Male” and ”Female” for all individual metrics, including BPSN AUC, BNSP

AUC, and subgroup AUC. Comparatively, when adversarial training is applied to race,

even though the improvement is not consistent for all cases, there are indeed improve-

ments for individual metrics except BPSN AUC for identity ”White” and BNSP AUC

for identity ”Black”.

• Overall performance is not traded off for fairness

After applying adversarial training, there is no drop in overall AUC, which shows that

performance degradation is not associated with applied adversarial training branch.

Table 5.5: Change of I(z;A) with respect

to network depth in text classification

Layer Target Gender Race

1 0.01037 0.00734 0.00277

2 0.00000 0.00964 0.00293

3 0.00777 0.00798 0.00403

Figure 5.2: Change of I(z;A) with re-

spect to network depth in text classifica-

tion

5.2.2 SCUT-FBP5500 Dataset

The Figure 5.4 shows the changes of mutual information I(zi;A) (i = 1, 2, 3, 4), with respect

to number of epochs. Unlike previous experiment with text dataset, patterns are evident for

us to draw several insights.

• Non-monotonicity
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None of the mutual information change in a monotonic fashion. This confirms the

result reported in [DBC], where Dhar et al. also find similar non-monotonic changes

of mutual information.

• Synchronicity and asynchronicity

The mutual information estimates between target and representation across layers

change in an almost synchronous fashion, while for latent variables (race and gender),

this synchronicity is not evident. This disparity shows that representation zi is more

informative about the label than latent variables.

• Disparity of representation level for latent variables across layers

The mutual information between zi and gender is generally larger than that of race,

and it fluctuates in a much smoother way. This indicates that not all latent variables

are equivalently expressed in the neural network.

Besides these insights, we could also conclude that the layer we apply adversarial branch

f adv is layer three for race and layer two for gender.

The results of Tθ and T adv
θ are shown in Table 5.7. The improvement of the final metric

after applying adversarial training over gender and race is 5.00% and 7.43%. Note that

since the dataset is fully balanced (see Table 5.1c), then the statistics (Table 5.8) given by

prediction results also show symmetricity. For example, the BPSN AUC for identity ”Male”

is equal to BNSP AUC for identity ”Female”.

Besides the fact that these results still follow the observations in text classification, we

could also find

• Marked improvement for the individual metric for some identities

When we train adversarially against gender and race, the BPSN AUC shows 24.74%

and 47.79% improvement for identity ”Caucasian”. The same goes with BNSP AUC for

identity ”Asian” because of the symmetricity noted before. This significant improve-

ment shows the validity of our approach against the stochasticity of neural network

training.
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• Coupled effects of latent variables

When applying adversarial training to one particular attribute A, the resulting ef-

fects do not just specialize in the attribute we apply adversarial training to, the other

attribute is also influenced. For example, when adversarial training is over gender,

the BPSN AUC for identity ”Male” shows marginal improvement (2.66%). Yet, the

improvement for identity ”Caucasian” is as high as 24.47%, which indicates the corre-

lation between latent variables A’s.

Table 5.6: Change of I(z;A) with respect

to network depth in image classification

Layer Target Gender Race

1 0.47357 0.60357 0.43204

2 0.48108 0.59015 0.48911

3 0.52364 0.65615 0.42024

4 0.52149 0.65487 0.42874

Figure 5.3: Change of I(z;A) with re-

spect to network depth in image classi-

fication
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(a) Text classification (b) Image classification

Figure 5.4: Mutual information between representation z and attribute A for network Tθ
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Table 5.7: Final metric for text classification

No Adv Adv @ Gender Adv @ Race

BPSN AUC

Male 0.564598 0.572683 0.557217

Female 0.502665 0.511772 0.500215

White 0.523946 0.517052 0.484918

Black 0.506660 0.523065 0.526015

BNSP AUC

Male 0.489427 0.506296 0.505935

Female 0.512227 0.530751 0.526784

White 0.516937 0.543278 0.541647

Black 0.504677 0.516467 0.498857

Subgroup AUC

Male 0.484545 0.498750 0.491830

Female 0.530688 0.548902 0.533397

White 0.490080 0.505871 0.505752

Black 0.520062 0.535509 0.523264

Overall AUC 0.503984 0.517261 0.509989

Final metric 0.508647 0.522088 0.523554
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Table 5.8: Final metric for image classification

No Adv Adv @ Gender Adv @ Race

BPSN AUC

Male 0.787993 0.808955 0.820446

Female 0.594667 0.571372 0.578742

Caucasian 0.491775 0.613415 0.726789

Asian 0.875663 0.789727 0.721067

BNSP AUC

Male 0.594667 0.571372 0.578742

Female 0.787993 0.808955 0.820446

Caucasian 0.875663 0.789727 0.721067

Asian 0.491775 0.613415 0.726789

Subgroup AUC

Male 0.682254 0.671642 0.675794

Female 0.702465 0.723348 0.739000

Caucasian 0.702936 0.726024 0.748832

Asian 0.696561 0.695870 0.702294

Overall AUC 0.700596 0.704080 0.713733

Final metric 0.646979 0.677289 0.695079
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CHAPTER 6

Conclusion and Future Work

In this work, we investigate the use of the adversarial training strategy in preserving neural

networks’ fairness under the classification setting. Our conceptual contribution is to in-

troduce mutual information as a measure to quantify the amount of information expressed

through different layers of the neural network, and then objectively select the layer to apply

adversarial training. The results show as much as 7.43% of improvement under our fairness

measure.

In the future, the following directions are worth exploring

• Disentangled representation of latent variables

As is shown in our experiments, the adversarial training does not just result in the

improvement in the attribute we applied, which ascertains the entanglement of related

latent variables. In future work, we aim to work towards the disentanglement of these

latent variables and further improve the system performance.

• Partial information decomposition of intermediate representation

In order for the principled understanding of the neural network predictive process,

it is vital to understand how the information contained in each attribute propagate

towards the end of the output. There has already been preliminary work for partial

information decomposition to simple neural network architecture [TMS17]. We would

like to extend previous work to our setting.

• Theoretical understanding of adversarial training

Even though the adversarial training scheme receives empirical success, there is no

theoretical analysis with regards to capacity, generalization, and convergence of this
36



scheme as a result of the non-conventional gradient reversal layer. We believe that

follow-up work should address these concerns.
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