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Population and Prevention Science

Breast Cancer Risk and Insulin Resistance: Post
Genome-Wide Gene–Environment Interaction
Study Using a Random Survival Forest
Su Yon Jung1, Jeanette C. Papp2, Eric M. Sobel2, Herbert Yu3, and Zuo-Feng Zhang4

Abstract

Obesity–insulin connections have been considered poten-
tial risk factors for postmenopausal breast cancer, and the
association between insulin resistance (IR) genotypes and
phenotypes can bemodified by obesity-lifestyle factors, affect-
ing breast cancer risk. In this study,we explored the role of IR in
those pathways at the genome-wide level. We identified IR-
genetic factors and selected lifestyles to generate risk profiles
for postmenopausal breast cancer. Using large-scale cohort
data from postmenopausal women in the Women's Health
Initiative Database for Genotypes and Phenotypes Study, our
previous genome-wide association gene–behavior interaction
study identified 58 loci for associations with IR phenotypes
(homeostatic model assessment–IR, hyperglycemia, and
hyperinsulinemia). We evaluated those single-nucleotide
polymorphisms (SNP) and additional 31 lifestyles in relation
to breast cancer risk by conducting a two-stage multimodal
random survival forest analysis. We identified the most pre-
dictive genetic and lifestyle variables in overall and subgroup

analyses [stratified by body mass index (BMI), exercise, and
dietary fat intake]. Two SNPs (LINC00460 rs17254590 and
MKLN1 rs117911989), exogenous factors related to lifetime
cumulative exposure to estrogen, BMI, and dietary alcohol
consumption were the most common influential factors
across the analyses. Individual SNPs did not have significant
associations with breast cancer, but SNPs and lifestyles com-
bined synergistically increased the risk of breast cancer in a
gene–behavior, dose-dependent manner. These findings may
contribute to more accurate predictions of breast cancer
and suggest potential intervention strategies for women with
specific genetic and lifestyle factors to reduce their breast
cancer risk.

Significance:Thesefindings identify insulin resistance SNPs
in combination with lifestyle as synergistic factors for breast
cancer risk, suggesting lifestyle changes can prevent breast
cancer in women who carry the risk genotypes.

Introduction
Insulin resistance (IR), leading to glucose intolerance, such as

high blood level of homeostatic model assessment–IR (HOMA-
IR), hyperglycemia, and compensatory hyperinsulinemia, is
thought to be central to the development of many obesity-
relevant cancers such as postmenopausal breast cancer (1–3). For
postmenopausal women, HOMA-IR, reflecting high blood levels
of both insulin and glucose, and hyperglycemia contributes to
1.5 times higher risk for breast cancer (4). Hyperinsulinemia has
been associated with a doubled risk for postmenopausal breast
cancer (5, 6).Given the relationships between IR andbreast cancer

risk, IR-related genetic variants can potentially affect the risk of
breast cancer.

Obesity is a well-established risk factor for postmenopausal
breast cancer (3), and obesity–insulin connections might be
crucial in the development of breast cancer (1). In particular,
obesity status, physical inactivity, and high dietary-fat intake
interact with the IR-related phenotypes, increasing breast cancer
susceptibility (7–10). Furthermore, recent in vitro studies have
shown IR-related gene signature and aberrantly amplified insulin
signaling in breast cancer cells of obese postmenopausal women,
implying the existence of molecular–genetic pathways between
obesity, IR, and postmenopausal breast cancer (1, 11). In addi-
tion, our previous population-based epidemiology study (12)
revealed that IR-relevant single-nucleotide polymorphisms (SNP)
have greater increases in IR phenotypes among obese, inactive,
and high-fat diet groups, suggesting that obesity modifies the
associations between IR-genetic variants and their phenotypes,
and thus jointly influences cancer susceptibility. Therefore, the
association between IR (genotype and phenotype) and cancer risk
can be modified by obesity status and obesity-related lifestyle
factors (Supplementary Fig. S1).

For gene–phenotype association with behavioral interactions,
no study at the genome-wide level in the published literature has
explored the interacting role of obesity status and related lifestyle
factors in the pathways among IR-relevant genetic variants, phe-
notypes, and postmenopausal breast cancer risk. Understanding
how those lifestyle factors modify and interact with genes and
phenotypes is important for developing a tool for use in primary
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breast cancer prevention efforts. Furthermore, few studies have
incorporated genetic and lifestyle factors to generate risk profiles
for breast cancer and to construct breast cancer risk models with
risk profiles (13). Risk models including both factors will have
greater accuracy in predicting breast cancer risk.

To address these critical gaps, by using large-scale cohort data
from postmenopausal women in the Women's Health Initiative
Database for Genotypes and Phenotypes (WHI dbGaP) Study, we
have evaluated 58 loci (Supplementary Table S1) identified for
their associations with IR phenotypes (HOMA-IR, hyperglycemia,
and hyperinsulinemia) in our previous genome-wide association
(GWA) gene–environmental (i.e., behavioral) interaction (G� E)
study (14). Briefly, the 58 genome-wide significant loci were
associated with IR phenotypes in women stratified by obesity
(4 SNPs), physical activity (36 SNPs), and dietary-fat intake
(18 SNPs).

In this study, we examined the association of these SNPs with
breast cancer risk in obesity lifestyle-stratified subgroups in which
the SNPswere associatedwith IR at genome-wide significance. It is
to evaluate whether those SNPs that interact with obesity-related
lifestyle factors in a particular behavioral setting (e.g., in obese/
physical activity/dietary-fat intake groups) are associated with
breast cancer risk in the identical behavioral setting. This may
elaborate an empirical pathway where a significant proportion of
the susceptibility of SNPs identified in the GWA study, through
interactions with specific lifestyles, influence breast cancer risk
(Supplementary Fig. S1).

In addition, we selected 31 lifestyle factors for this study.
We evaluated the SNPs and lifestyle factors by conducting a
two-stage random survival forest (RSF) analysis and ranked them
according to their predictive value and accuracy for breast cancer.
The RSF, a machine learning method, is a nonparametric tree-
based ensemble method and accounts for the nonlinear effects of
variables that may not be handled in a traditional regression
model (15, 16). RSF also allows for high-order interactions
among variables and has been successfully used to yield accurate
predictions (15). With the most influential SNPs and lifestyle
factors identified through the two-stage RSF, we fit predictive
models for breast cancer risk. We further examined the combined
effect of those identified variables on breast cancer risk and
evaluated a gene–behavior dose–response relationship. By apply-
ing the two complementary strategies (RSF and regression), we
ultimately tested the hypothesis that the most influential genetic
and behavioral factors identified through the RSF analysis interact
jointly to predict breast cancer risk.

Patients and Methods
Study population

Our study population is postmenopausal women who were
enrolled in the WHI Harmonized and Imputed GWA Studies, a
joint imputation and harmonization effort for GWA study within
theWHI 2 study arms, includingClinical Trials andObservational
Studies. The studies' detailed rationale and design have been
described elsewhere (17, 18), but briefly, the WHI study included
postmenopausal women enrolled between 1993 and 1998 at
40 clinical centers across the United States. Eligible women were
50–79 years old, postmenopausal, expected to live near the
clinical centers for at least three years after enrollment, and able
to provide written informed consent. Participants enrolled in the
WHI study were eligible for the dbGaP study if they had met

eligibility requirements for submission to dbGaP and provided
DNA samples. The Harmonization and Imputation GWA Studies
under the dbGaP study accession (phs000200.v11.p3) involved
six GWA Studies [MOPMAP (AS264); GARNET; GECCO-CYTO;
GECCO-INIT; HIPFX; and WHIMS]. With those six GWA studies,
we initially included 16,088 women who reported their race or
ethnicity as non-Hispanic white (Supplementary Fig. S2). In our
previousGWAG�E study for the associationwith IRphenotypes,
by applying exclusion criteria, we excluded (i) 2,714 who had
diabetes at or after enrollment; (ii) 1,271 whose genetic data were
duplicated and/or related toothers; and (iii) 309outliers basedon
principal components, resulting in 11,794 women. In this study,
we excluded an additional 685womenwhohadbeen followedup
for less than one year and/or had been diagnosedwith any type of
cancer at enrollment, leaving a total of 11,109 women (589 of
them had developed breast cancer). Participants in this study had
been followed up until August 29, 2014, with amedian follow-up
period of 16 years. This study has been approved by the Institu-
tional Review Boards of each participating clinical center of the
WHI and the University of California, Los Angeles.

Data collection and breast cancer outcome
Participants completed self-administered questionnaires at

screening, providing demographic and socioeconomic informa-
tion, medical and reproductive histories, and lifestyle behaviors.
For this study, we evaluated information on demographic factors
(age, education, marital status, family income, and family history
of breast cancer), lifestyles (depressive symptoms, physical activ-
ity, cigarettes per day, and daily diet [dietary intake of alcohol,
fiber, and total sugars, fruits, and vegetables; % calories from
protein, carbohydrates, saturated fatty acids (SFA), monounsat-
urated fatty acids (MFA), and polyunsaturated fatty acids (PFA)],
and medical (hypertension, high cholesterol, and cardiovascular
disease) and reproductive histories [hysterectomy, age at menar-
che and menopause, number of pregnancies, months of breast-
feeding, and durations of previous oral contraceptive and hor-
mone replacement therapy of unopposed (exogenous estrogen
only) and opposed estrogen use (exogenous estrogen plus
progestin)]. We also used anthropometric measurements, includ-
ing height, weight, and waist and hip circumferences that were
measured by trained staff. These 31 variables were identified by
literature review for their association with IR phenotypes and
breast cancer (19), and after multicollinearity testing and univar-
iate and stepwise regression analyses, were selected for inclusion
in this study.

Participants' breast cancer outcomes were verified via a cen-
tralized review of medical charts, and cancer sites were coded
according to the National Cancer Institute's Surveillance, Epide-
miology, and End Results guidelines (20). The breast cancer
outcome variables were (i) cancer development (yes/no) and (ii)
the time to develop the cancer, estimated as the time in days
between enrollment andbreast cancer development, censoring, or
study endpoint, and then converted into years.

Genotyping and laboratory methods
Details of the data-cleaning process applied to the genotyped

data obtained from the WHI Harmonized and Imputed studies
have been described previously (14). Briefly, the genotyped data
were normalized via the reference panelGRCh37, and imputation
was conductedvia the1000GenomesProject referencepanel (18);
SNPs for harmonization were checked for pairwise concordance
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among all samples. The initial data quality control process
included SNPs with a missing-call rate of < 3% and a Hardy–
Weinberg Equilibrium of P � 10�4. The second quality control
process included SNPs with R̂2 � 0:6 imputation quality (21)
and excluded women with a kinship estimate with R̂2 � 0:25:

At baseline, fasting blood samples from each participant were
collected by trained phlebotomists. Serum levels of glucose and
insulin were measured by the hexokinase method on a Hitachi
747 instrument (Boehringer Mannheim Diagnostics) and by
radioimmunoassay (Linco Research, Inc.), respectively, with aver-
age coefficients of variation of 1.28% and 10.93%, respectively.
HOMA-IRwas estimated as glucose (unit:mg/dL)� insulin (unit:
mIU/mL)/405 (22).

Statistical analysis
Participants' baseline variables and allele frequencies stratified

bybreast cancerwere examined viaunpaired two-sample t tests for
continuous variables and x2 tests for categorical variables. If
continuous variables were skewed or had outliers, Wilcoxon
rank-sum test was used. Multiple Cox proportional hazards
regression, with an assumption test via a Schoenfeld residual plot
and r evaluation, was conducted to obtain HRs and 95% confi-
dence intervals (CI) for the single and combined effects of the
most influential SNPs and lifestyle factors on breast cancer with
adjustment for covariates (Table 1). For the gene–environment
interaction, our previous GWA analysis was performed in strata
defined by bodymass index (BMI), metabolic equivalents (MET)�
hours/week, and % calories from SFA, with respective cut-off
values of 30 kg/m2, 10 MET, and 7%. In this study, we evaluated
the associations of the SNPs identified in the particular behavioral
setting of obesity/physical inactivity/high-fat diet with breast
cancer risk in the identical behavioral setting.

The RSF approach generates bootstrap samples from the orig-
inal data and grows a tree from each bootstrapped sample, using
a splitting rule applied to a tree node to maximize survival

Table 1. Characteristics of participants, stratified by breast cancer

Breast cancer
cases (n ¼ 589)

Controls
(n ¼ 10,520)

Characteristics n (%) n (%)

Age in years, median (range) 67 (50–79) 67 (50–81)
Education
� High school 179 (30.4) 3,761 (35.8)a

> High school 410 (69.6) 6,759 (64.2)
Family income
< $35,000 217 (37.5) 4,674 (45.4)a

� $35,000 361 (62.5) 5,630 (54.6)
Family history of breast cancer
No 454 (77.1) 8,534 (81.1)a

Yes 135 (22.9) 1,986 (18.9)
Depressive symptomb, median
(range)

0.002 (0.001–0.880) 0.002 (0.000–0.937)

Dietary alcohol per day in g,
median (range)

1.88 (0.00–127.15) 1.06 (0.00–183.76)a

Dietary alcohol per dayc

< 1.07 258 (43.8) 5,296 (50.3)a

� 1.07 331 (56.2) 5,224 (49.7)
% calories from SFA, median
(range)

11.49 (3.73–21.50) 11.29 (2.22–32.39)

% calories from SFAd

< 7.0 50 (8.5) 960 (9.1)
� 7.0 539 (91.5) 9,560 (90.9)

% calories from carbohydrates,
median (range)

47.50 (18.98–80.77) 48.90 (1.51–85.84)a

% calories from MFA, median
(range)

12.92 (4.08–24.51) 12.78 (2.16–27.64)

% calories from PFA, median
(range)

6.55 (2.58–20.25) 6.61 (1.19–21.77)

METs�hour�week�1e 7.00 (0.00–81.67) 7.50 (0.00–134.17)
METs�hour�week�1e

� 10.0 243 (41.3) 4,415 (42.0)
< 10.0 346 (58.7) 6,105 (58.0)

How many cigarettes per day
� 15 278 (47.2) 5,960 (56.7)a

> 15 311 (52.8) 4,560 (43.3)
BMI in kg/m2, median (range) 28.00 (17.55–49.31) 26.85 (15.42–58.49)a

BMIf

< 30.0 357 (60.6) 7,505 (71.3)a

� 30.0 232 (39.4) 3,015 (28.7)
Waist-to-hip ratio, median
(range)

0.810 (0.640–1.263) 0.807 (0.444–1.393)a

Age at menarche in years,
median (range)

12 (� 9–� 17) 13 (� 9–� 17)a

Hysterectomy ever
No 414 (70.3) 6,739 (64.1)a

Yes 175 (29.7) 3,781 (35.9)
Age at menopause in years,
median (range)

50 (21–63) 50 (20–60)a

Age at menopausec

< 47 152 (25.8) 3,207 (30.5)a

� 47 437 (74.2) 7,313 (69.5)
Oral contraceptive duration in
years, median (range)

5.2 (0.1–21.0) 5.7 (0.1–47.0)a

Oral contraceptive durationc

< 5.1 266 (45.2) 3,616 (34.4)a

� 5.1 323 (54.8) 6,904 (65.6)
Exogenous estrogen use (E-only) in years
Never 451 (76.6) 7,360 (70.0)a

< 5 58 (9.8) 1,481 (14.1)
5 to < 10 18 (3.1) 546 (5.2)
� 10 62 (10.5) 1,133 (10.8)

Exogenous estrogen use (EþP) in years
Never 454 (77.1) 8,681 (82.5)a

< 5 73 (12.4) 1,010 (9.6)
5 to < 10 30 (5.1) 434 (4.1)

(Continued on the following column)

Table 1. Characteristics of participants, stratified by breast cancer (Cont'd )

Breast cancer
cases (n ¼ 589)

Controls
(n ¼ 10,520)

Characteristics n (%) n (%)

10 to < 15 21 (3.6) 244 (2.3)
� 15 11 (1.9) 151 (1.4)

Abbreviations: MFA, monounsaturated fatty acids; PFA, polyunsaturated fatty
acids.
aP < 0.05, x2 or Wilcoxon's rank-sum test.
bDepression scales were estimated using a short form of the Center for
Epidemiologic Studies Depression Scale.
cDietary alcohol per day, age at menopause, and oral contraceptive duration
were stratified using the median values of 1.07 g/day, 47 years, and 5.1 years,
respectively, as the cut-off points.
d% calories from SFAwas stratified using 7% as the cutoff value, adherent to the
American Heart Association/American College of Cardiology dietary guidelines,
which are aligned with the 2015–2020 Dietary Guidelines for Americans to help
cardiovascular and metabolic diseases reductions (50).
ePhysical activity was estimated from recreational physical activity combining
walking and mild, moderate, and strenuous physical activity. Each activity was
assigned a MET value corresponding to intensity; the total MET�hours�week�1

was calculated by multiplying the MET level for the activity by the hours
exercised per week and summing the values for all activities. The total MET
was stratified into two groups, with 10 METs as the cutoff according to current
American College of Sports Medicine and American Heart Association
recommendations (49).
fBMIwas categorized using 30 kg/m2,where 30.0or higher fallswithin theobese
range (https://www.cdc.gov/obesity/adult/defining.html).
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differences across daughter nodes. This process is repeated numer-
ous times (n ¼ 5,000 trees in this study) to create a forest of
trees (23, 24). Using an ensemble cumulative hazard estimate
calculated from each tree and then averaged over all trees for each
individual, we estimated a predicted cumulative incidence rate of
breast cancer. The prediction parameter (i.e., prediction error
interpreted as amisclassificationprobability)was createdbyusing
the out-of-bag (OOB) data (on average, 37% of the original data
not used for bootstrapping) to calculate the OOB concordance
index (c-index ¼ 1 – prediction error), which is a measure of
prediction performance (i.e., the probability of correctly classify-
ing two cases) conceptually similar to the area under the receiver
operating characteristic curve (23, 25). The importance of each
variable was decided by two predicted values: (i) minimal depth
(MD), where variables with a small MD split the tree close to the
root and are considered highly predictive, and (ii) variable
importance (VIMP), calculated as the difference between theOOB
c-indexes from the original OOB data and from the permuted
OOB data, where variables with larger VIMP are more predic-
tive (15, 26).

A two-stage RSF analysis was conducted. In the first stage, we
conducted an RSF on SNPs and lifestyle factors separately (Sup-
plementary Fig. S3). Only those SNPs and lifestyle factors with
significantly low MD and high VIMP values were selected for the
second stage. During stage II, we performed another RSF with the
selected SNPs and lifestyle factors from stage I. We took a mul-
timodal approach: in overall, physical activity–stratified, and SFA-
stratified subgroups, (i) estimating the values of MD and VIMP
and comparing the two measures in the plot (Fig. 1A; Supple-
mentary Fig. S4, S6, S8, and S10); (ii) generating the OOB c-index
for the nested RSF model; and (iii) estimating the incremental
error rate of each variable in the nested sequence of RSF models
starting with the top variable and calculating a dropping error rate
by the difference between the error rates from the nested sequence
models. These approaches allow us to exclude the SNPs and
lifestyle factors that may not have significant effects on breast

cancer, resulting in more statistical power with the correct type I
error rate in the stage II than the original RSF-based analysis (24).
A two-tailed P value < 0.05was considered statistically significant.
R version 3.5.1 with survival, survivalROC, randomForestSRC,
ggRandomForests, and gamlss packages was used.

Results
Participants' baseline characteristics and 58 SNPs that were

previously identified in our GWA G� E study, stratified by breast
cancer, are displayed (Table 1; Supplementary Table S1). Women
with breast cancer were more likely to have higher education,
higher family income, and family history of breast cancer; to
consume more dietary alcohol/day and less % of calories from
carbohydrates; to smoke more cigarettes/day; to be overall and
abdominally obese; and to have experienced early menarche and
late menopause. Patients with breast cancer also had shorter
durations of oral contraceptive use (< 5 years) and exogenous
estrogen (E)- only use, but a higher rate and longer duration of Eþ
progestin (P) use.

Two-stage RSF to identify the most influential SNPs and
behavioral variables in relation to breast cancer risk

With the 58 SNPs and 31 behavioral factors, we performed the
two-stage RSF analysis to identify the most dominant variables
with the highest predictive value and lowest prediction error for
breast cancer risk. We used two predicted values, MD and VIMP
measures. They use different prediction algorithms, so we
expected the variable ranking to be somewhat different. In the
first stage (Supplementary Fig. S3), we compared the two mea-
sures in a plot for each SNP and lifestyle and selected the strong
predictive variables for cancer risk that were in agreement with
high ranks: 12 of the 31 behavioral factors; 10 of the 58 SNPs in
overall analysis; 7 and 10 of the 36 SNPs in MET � 10 and < 10,
respectively; and 2 and 5 of the 18 SNPs in calories from SFA <
7.0% and � 7.0%, respectively.

Figure 1.

Overall analysis: the second stage of RSF with 10 SNPs and 12 behavioral factors selected from the first stage of RSF analysis. A, Comparing minimal depth
and VIMP rankings. B,Out-of-bag concordance index (c-index). (Improvement in out-of-bag c-index was observed when the top 6 variables [*] were added to
the model, whereas other variables [*] did not further improve the accuracy of prediction).
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Next, we performed the second RSF with the selected SNPs and
12 behavioral factors together in overall and subgroups to gen-
erate risk profiles with the most influential factors. Using a
multimodal approach, we first estimated the values of MD and
VIMP and plotted the two measures for comparison. Particularly,
in the overall analysis plot (Table 2; Fig. 1A), the red dashed line
indicates where the two measures were in agreement: both MD
and VIMP indicated the following two SNPs and four behavioral
factors as strong predictive markers of breast cancer risk:
LINC00460 rs17254590, PABPC1P2 rs10928320, OC use, BMI,
dietary alcohol, and age at menopause.

Second, we generated the OOB c-index using the nested RSF
model. It ranks variables according to their predictive value
estimated via MD. Results of the overall analysis (Fig. 1B) suggest
that the top six variables improved theOOB c-index and thus had
complementary predictive value, whereas the other variables did
not significantly improve prediction accuracy.

We further calculated a dropping error rate of each variable in
the nested sequence of RSF models (Table 2). By applying
this complementary analysis with the aforementioned two

approaches, we determined in the overall analysis the six variables
that contributed the most to decreasing the error rate, and thus
improving the prediction accuracy.

Consistently, in subgroup analyses, we applied the three
approaches (agreement between MD and VIMP; OOB c-index;
and contribution to dropping error rate) and determined the
following SNPs and behavioral factors as the most predictive
markers: (i) in the active group (MET� 10; Supplementary Table
S2; Supplementary Figs. S4 and S5), one SNP and seven lifestyles
(MKLN1 rs117911989; oral contraceptive use, estrogen þ pro-
gestin (EþP) use, age at menopause, BMI, waist-to-hip ratio,
dietary alcohol, and % calories from carbohydrates); (ii) in
the inactive group (MET < 10; Supplementary Table S3;
Supplementary Figs. S6 and S7), one SNP and six lifestyles
(MKLN1 rs117911989; oral contraceptive use, EþP use, age at
menarche, BMI, waist-to-hip ratio, and dietary alcohol); (iii) in
the low SFA intake group (calories from SFA < 7.0%; Supplemen-
tary Table S4; Supplementary Figs. S8 and S9), one SNP and two
lifestyles (LINC00460 rs17254590; oral contraceptive use and
% calories from carbohydrates); and (iv) in the high SFA intake
group (calories from SFA � 7.0%; Supplementary Table S5;
Supplementary Figs. S10 and S11), five SNPs, and three life-
styles (LINC00460 rs17254590, and PABPC1P2 rs75935470,
rs12052223, rs78451340, and rs77164426; oral contraceptive
use, age at menopause, and BMI).

Multivariate predictivemodel and combined effects of themost
influential variables

Using the RSF model, the nonlinear effect of each predictive
variable was accounted to estimate the cumulative incidence rate
for breast cancer (Fig. 2A–H). The genotypes of SNPs were
analyzed as a continuous variable. As shown in Fig. 2A–C,
LINC00460 rs17254590 GG, PABPC1P2 rs10928320 TT, and
MKLN1 rs117911989 GG were considered risk genotypes and
further analyzed as categorical variables. According to Fig. 2D, F,
and G, using a cut-off value diverging each variable (similar to the
median of each variable), the high-risk group was defined as < 5
years of oral contraceptive use,� 47 years atmenopause, or BMI�
28 and analyzed as a binary variable. With the six most predictive
variables in overall analysis, we developed a multivariate model
predicting breast cancer risk (Supplementary Table S6), suggest-
ing that the single effect of three lifestyleswas significant even after
adjusting for other covariates, while the single effect of two SNPs
was not significant. We further estimated the single effect of
other influential SNPs identified in the subgroup analyses
(Supplementary Table S7–S9); no significant results were found.

However, the combined or joint effects of SNPs with lifestyles
yielded different results (Supplementary Tables S3, S4, and S10).
For example, in the active group [Table 3; one SNP (MKLN1
rs117911989) and seven lifestyles], when stratified by EþP use,
EþP ever-users with one risk genotype had a doubled risk for
breast cancer than EþP never-users with null-risk genotype.
Consistently, the high-risk lifestyle group (� 4 risk behaviors)
of EþP ever-users had double the risk than the low-risk group (< 4
risk behaviors) of EþP never-users. When one SNP and seven
lifestyles were combined, the high-risk group (� 4 risk behaviors
and 1 risk genotype) had 90% excess risk for cancer than the low-
risk group (<4 risk behaviors andnull-risk genotype), suggesting a
cumulative effect of genetic and lifestyle factors in both additive
and multiplicative interaction models (effect size and P for genes
� lifestyles interaction test¼ 2.06 and 0.273, respectively). When

Table 2. Predictive values of variable in overall analysis from the second stage
of random survival forest analysis

Variablea
Minimal
depthb VIMP

C-
index Errorc

Drop
errord

LINC00460 rs17254590 2.5218 0.0573 0.5907 0.4093 0.0907
Duration of oral
contraceptive use

2.9940 0.0275 0.7437 0.2563 0.1531

BMI 3.6584 0.0079 0.7847 0.2153 0.0409
Dietary alcohol 4.0886 0.0067 0.8052 0.1948 0.0206
Age at menopause 4.3044 0.0025 0.8135 0.1865 0.0083
Daily vegetable 4.3096 0.0000 0.8178 0.1822 0.0043
% calories from protein 4.3910 -0.0001 0.8136 0.1864 -0.0042
% calories from
carbohydrates

4.4212 0.0007 0.8169 0.1831 0.0033

Waist to hip ratio 4.4474 0.0005 0.8210 0.1790 0.0041
PABPC1P2 rs10928320 4.7834 0.0157 0.8910 0.1090 0.0700
Depressive symptom 4.8368 0.0009 0.8896 0.1104 -0.0014
PABPC1P2 rs75935470 4.9046 0.0271 0.8943 0.1057 0.0047
Age at menarche 5.0908 -0.0001 0.8927 0.1073 -0.0017
Age 5.2418 -0.0003 0.8925 0.1075 -0.0002
PABPC1P2 rs12052223 5.3036 0.0230 0.8934 0.1066 0.0009
EþP use 5.9216 0.0043 0.9024 0.0976 0.0090
PABPC1P2 rs77164426 6.1010 0.0174 0.9020 0.0980 -0.0005
PABPC1P2 rs77772624 6.1854 0.0178 0.9019 0.0981 0.0000
PABPC1P2 rs79084191 6.2392 0.0171 0.9014 0.0986 -0.0005
PABPC1P2 rs78451340 6.3298 0.0163 0.9017 0.0983 0.0003
MTRR rs722025 6.4268 0.0077 0.9066 0.0934 0.0048
G6PC2 rs560887 7.4328 0.0004 0.9059 0.0941 -0.0007

Abbreviations: C-index, concordance index; EþP, exogenous estrogen þ pro-
gestin; VIMP, variable of importance.
aVariables are ordered by minimal depth.
bPredictive value of variable was assessed via minimal depth method in the
nested random survival forest models. A lower value is likely to have a greater
influence on prediction.
cThe incremental error rate of each variable was estimated in the nested
sequence of models starting with the top variable, followed by the model with
the top 2 variables, then the model with the top 3 variables, and so on. For
example, the third error rate was estimated from the third nested model
(including the 1st, 2nd, and 3rd variables).
dThe drop error rate was estimated by the difference between the error rates
from the nested models with a prior and corresponding variables. For example,
the drop error rate of the second variable was estimated by the difference
between the error rates from the first and second nested models. The error rate
for the null model is set to 0.5; thus, the drop error rate for the first variable was
obtained by subtracting the error rate (0.4093) from 0.5.
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Figure 2.

Cumulative breast cancer incidence rate for the 8most influential variables (3 SNPs and 5 behavioral factors) based on a random survival forest analysis. Dashed
red lines indicate 95% confidence intervals.

Table 3. Physical activity–stratified analysis: combined effect of risk genotype of MKLN1 rs117911989 GG and 7 behavioral factors (oral contraceptive use, EþP use,
age at menopause, BMI, waist-to-hip ratio, dietary alcohol, and in active group only, % calories from carbohydrates) on breast cancer risk

Total Never use of E þ P E þ P ever use
na HRb (95% CI) P n HRb (95% CI) P n HRb (95% CI) P

Active Group (MET � 10) (n ¼ 4,658)
Risk genotype
0 reference 311 reference 62 2.00 (0.64–6.31) 0.235
1 1.33 (0.79–2.25) 0.284 3,409 1.37 (0.74–2.53) 0.312 876 2.31 (1.21–4.39) 0.011

Behavioral factorsc

0 reference 2,974 reference 777 1.83 (1.33–2.53) <0.001
1 1.62 (1.24–2.12) <0.001 746 1.67 (1.19–2.33) 0.003 161 2.25 (1.29–3.94) 0.004

Risk genotypes combined with behavioral factorsd

0 reference 69 reference 234 1.97 (0.62–6.27) 0.254
1 1.09 (0.61–1.97) 0.763 812 1.03 (0.54–1.97) 0.925 2,706 1.89 (0.96–3.72) 0.067
2 1.86 (1.01–3.41) 0.047 554 1.87 (0.94–3.70) 0.073 283 2.49 (1.10–5.64) 0.029

Inactive Group (MET < 10) (n ¼ 6,451)
Risk genotype
0 reference 426 reference 78 1.00 (0.34–2.89) 0.997
1 0.96 (0.65–1.41) 0.824 4,989 0.93 (0.61–1.42) 0.747 958 1.12 (0.69–1.81) 0.647

Behavioral factorsc

0 reference 4,319 reference 868 1.04 (0.75–1.45) 0.810
1 1.68 (1.35–2.10) <0.001 1,096 1.49 (1.14–1.93) 0.003 168 2.13 (1.32–3.43) 0.002

Risk genotypes combined with behavioral factorsd

0 reference 337 reference 71 1.16 (0.39–3.48) 0.789
1 1.02 (0.63–1.66) 0.925 4071 1.04 (0.63–1.73) 0.878 804 1.04 (0.58–1.87) 0.891
2 1.67 (1.01–2.75) 0.044 1,007 1.48 (0.86–2.54) 0.159 161 2.25 (1.15–4.41) 0.018

NOTE: Numbers in boldface are statistically significant.
Abbreviations: EþP, exogenous estrogen þ progestin.
aThe n indicates the cumulative number of risk genotypes or behavioral factors.
bMultivariate regression for behavioral factors was adjusted by age, depressive symptom, age at menarche, daily vegetables, % calories from protein, and % calories
from carbohydrates (in inactive group); and in risk genotype analysis, 6 additional behavioral factors [oral contraceptive use, age at menopause, BMI, waist-to-hip
ratio, dietary alcohol, and EþP use (in total analysis)] were added as covariates.
cThe number of behavioral factors defined as 0 (low risk: � 3 risk behaviors) and 1 (high risk: � 4 risk behaviors).
dThe combined number of risk genotypes andbehavioral factorswere estimatedbased on risk genotypes defined as0 (low risk: none) and 1 (high risk: 1 risk allele) and
behavioral factors defined as 0 (low risk: � 3 risk behaviors) and 1 (high risk: � 4 risk behaviors). The ultimate number of risk genotypes combined with behavioral
factors defined as 0 (low risk of genotypes and behaviors), 1 (high risk of either genotypes or behaviors), and 2 (high risk of both genotypes and behaviors).
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stratified by EþP use, EþP ever-users with high risk by both
lifestyles and genotype had 2.5 times greater risk, compared with
EþP never-users with low risk by both lifestyles and genotype.
This indicates a gene and lifestyle dose–response relationship and
a significant joint effect of EþP use with SNP and lifestyles on
cancer risk. The inactive group analysis (Table 3) produced similar
results.

Interestingly, the SFA-stratified analyses yielded a stronger
combined effect of SNPs and lifestyles (Table 4). Specifically, in
the low-SFA group [one SNP (LINC00460 rs17254590) and two
lifestyles], when stratified by the duration of oral contraceptive
use, women who used < 5 years with one risk genotype had 3.6
times higher risk for breast cancer thanwomenwhoused�5 years
with null-risk genotype. Similarly, women using oral contracep-
tives for a shorter period with one risk lifestyle had 5.8 times
greater risk for cancer than those using for a longer period with
null-risk lifestyle.When one SNP andone lifestylewere combined
and stratified by oral contraceptive use, shorter oral contraceptive
users with both one risk genotype and one lifestyle had 6.3 times
higher risk than longer oral contraceptive users with either a risk
genotype or risk lifestyle. This suggests the combined effect of SNP
and lifestyles in both additive and multiplicative interaction

models (effect size and P for genes � lifestyles interaction ¼
1.10 and 0.887, respectively) and the joint effect of these factors
with oral contraceptive use on breast cancer risk. The high-SFA
group (Table 4) provided similar but attenuated combined
results.

On the basis of a RSF model using the strongest variables
(MKLN1 rs117911989, LINC00460 rs17254590, oral contracep-
tive use, and EþP use), we further constructed contour plots to
provide the cumulative incidence rate for different combinations
of SNP and hormone use by physical activity (Fig. 3A and B) and
SFA intake (Supplementary Fig. S12), yielding consistent results.

Discussion
Understanding how lifestyle factors modify and interact with

genes and phenotypes, affecting breast cancer risk, and further
incorporating both genetic and lifestyle factors to generate risk
profiles for breast cancer is important for developing a gene–
behavior tool to use in primary breast cancer prevention efforts.
Our two-stage multimodal RSF approach identified the most
predictive genetic and lifestyle variables in overall and subgroup
analyses (stratified by a well-established effect modifier such as

Table 4. SFA-stratified analysis: combined effect of risk genotypes of LINC00460 rs17254590 GG, PABPC1P2 rs75935470 TT, PABPC1P2 rs12052223 GG, PABPC1P2
rs78451340 GG, and PABPC1P2 rs77164426 AA and 3 behavioral factors (oral contraceptive use; in low SFA intake group, % calories from carbohydrates; and in high
SFA intake group, age at menopause and BMI) on breast cancer risk

Total Oral contraceptive use � 5 years Oral contraceptive use < 5 years
na HRb (95% CI) P n HRb (95% CI) P n HRb (95% CI) P

% calories from SFA < 7.0 % (n ¼ 1,010)
Risk genotype
0 reference 440 reference 338 5.36 (2.44–11.78) <0.001
1 1.03 (0.52–2.01) 0.940 112 2.41 (0.79–7.32) 0.122 120 3.60 (1.25–10.32) 0.017

Behavioral factorsc

0 reference 196 reference 169 3.04 (0.91–10.17) 0.070
1 3.47 (1.91–6.30) <0.001 356 1.38 (0.41–4.59) 0.602 289 5.75 (1.90–17.41) 0.002

Risk genotypes combined with behavioral factorsc

0 reference 475 reference 389 4.48 (2.10–9.57) <0.001
1 2.31 (1.00–5.33) 0.049 77 2.64 (0.81–8.61) 0.107 69 6.29 (2.27–17.45) <0.001

% calories from SFA � 7.0 % (n ¼ 10,099)
Risk genotyped

0 reference 75 reference 39 0.49 (0.06–4.43) 0.528
1 1.44 (0.59–3.48) 0.421 5,413 0.97 (0.36–2.61) 0.953 2,739 1.65 (0.61–4.46) 0.322
2 1.42 (0.57–3.50) 0.448 1,054 0.99 (0.36–2.77) 0.992 779 1.53 (0.55–4.26) 0.417

Behavioral factorse

0 reference 825 reference 340 2.72 (1.46–5.06) 0.002
1 2.13 (1.36–3.35) 0.001 3,086 1.60 (1.00–2.57) 0.051 1,812 2.97 (1.84–4.79) <0.001
2 3.08 (1.89–5.01) <0.001 2,631 2.28 (1.43–3.66) <0.001 1,405 3.22 (1.97–5.24) <0.001

Risk genotypes combined with behavioral factorse

0 reference 3,280 reference 1,682 2.00 (1.54–2.59) <0.001
1 1.24 (1.02–1.50) 0.029 2,839 1.43 (1.12–1.83) 0.004 1,566 2.13 (1.63–2.79) <0.001
2 1.37 (0.87–2.16) 0.179 423 1.54 (0.98–2.42) 0.060 309 2.00 (1.23–3.24) 0.005

NOTE: Numbers in boldface are statistically significant.
Abbreviation: SFA, saturated fatty acids.
aThe n indicates the cumulative number of risk genotypes or behavioral factors.
bMultivariate regression for behavioral factors was adjusted by age, depressive symptom, age at menarche, daily vegetables, % calories from protein, waist-to-hip
ratio, dietary alcohol, exogenous estrogenþ progestin, age atmenopause and BMI (in low SFA-intake group), and% calories from carbohydrates (in high SFA-intake
group); and in risk-genotype analysis, 1 additional behavioral factor (oral contraceptive use in total analysis) was added as covariates.
cLow SFA intake group: the number of behavioral factors defined as 0 (low risk: 0 or 1 risk behavior) and 1 (high risk: 2 risk behaviors). The combined number of risk
genotypes and behavioral factorswere estimated based on risk genotypes defined as 0 (low risk: none) and 1 (high risk: 1 risk allele) and behavioral factors defined as
0 (low risk: 0 or 1 risk behavior) and 1 (high risk: 2 risk behaviors). The ultimate number of risk genotypes combinedwith behavioral factors defined as0 (none of risk or
high risk of either genotypes or behaviors) and 1 (high risk of both genotypes and behaviors).
dThe number of risk genotypes defined as 0 (none), 1 (moderate risk: � 4 risk alleles), and 2 (high risk: 5 risk alleles).
eHigh SFA intake group: the number of behavioral factors defined as 0 (low risk: none), 1 (moderate risk:� 2 risk behaviors), and 2 (high risk: 3 risk behaviors). On the
basis of risk genotypes (0: low/moderate risk with � 4 risk alleles and 1: high risk with 5 risk alleles) and behavioral factors (0: low/moderate risk with � 2 risk
behaviors and 1: high risk with 3 risk behaviors), the ultimate number of risk genotypes combined with behavioral factors defined as 0 (low/moderate risk of both
genotypes and behaviors), 1 (high risk of either genotypes or behaviors), and 2 (high risks of both genotypes and behaviors).
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BMI, exercise, and dietary fat intake; refs. 19, 27–29). Two SNPs
(LINC00460 rs17254590 and MKLN1 rs117911989), lifestyle
factors related to lifetime cumulative exposure to estrogen (oral
contraceptive use, EþP use, and older age at menopause), BMI,
and dietary alcohol consumption were the most common influ-
ential factors across the analyses. With those strongest variables,
we constructed overall and within-subgroup risk profiles for
breast cancer. In the individual SNP analyses, no significant
associations were observed, but the combination of the SNPs
and lifestyle factors synergistically increased the risk of breast
cancer.

One SNP in LINC00460, in relation to IR phenotypes, by
interacting with SFA intake, is associated with increased risk for
breast cancer. LINC00460 is long intergenic noncoding RNA
(lncRNA) 460 (30). Several lncRNAs are involved in tumorigen-

esis via regulating oncogenes or tumor-suppressive genes' expres-
sion (31). Recently, cancer-related lncRNA LINC00460 has been
found in associationwith nasopharyngeal cancer (NPC; ref. 30). It
was significantly upregulated in NPC tissues, and silencing of
LINC00460 repressed NPC cell proliferations, suggesting its func-
tion as an oncogene. miR-149 repressed tumor-suppressive
miRNA, dysregulating AKT1 and cyclin D1 in cellular path-
ways (32). LINC00460 produces its effect through sponging the
miR-149-5p and then activating the IL6 gene, which promotes cell
proliferation, migration, and invasion (33). Our study is the first
to report that this lncRNA is associated with breast cancer risk. In
addition, LINC00460 was associated with subcutaneous adipose
tissue in a previous GWA study (34), supporting our finding of its
associations with IR phenotypes and breast cancer observed in
fatty acids strata.

Figure 3.

Contour plot of cumulative breast cancer incidence rate for the combination of SNP (MKLN1 rs117911989) and oral contraceptive use or EþP use, stratified by
physical activity. Cumulative incidence rate estimated from the random survival forest model was adjusted by age, BMI, waist-to-hip ratio, depressive symptom,
age at menarche, age at menopause, dietary alcohol, daily vegetables, % calories from protein, and % calories from carbohydrates. A1, Active Group (MET� 10);
A2,Active Group (MET� 10); B1, Inactive Group (MET < 10); B2, Inactive Group (MET < 10).
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MKLN1 is an intracellular protein that mediates cell responses
to the extracellular matrix, influencing cell adhesion and cyto-
skeleton organization (35, 36). It has been associated with pan-
creatic (36) and lung cancer (37) and is a novel marker for
cardiovascular risk (38). It has also been associated with type II
diabetes (39). Our findings of its association with IR phenotypes
are consistent with previous results, but our study newly reports
the association ofMKLN1with breast cancer risk. This association
would have been missed without the incorporation of the phys-
ical activity factor, which will require further biologic functional
study.

Because lifetime cumulative exposure to estrogen is a key factor
for breast cancer risk, it is not surprising to find that oral con-
traceptive use was an important predictor in this study. Previous
results for past oral contraceptive use in postmenopausal women
in relation to breast cancer risk are conflicting: no associa-
tions (40–42) and slightly or modestly increased risk with longer
duration of oral contraceptive use (29, 43). An in vivo study
reported the use of oral contraceptive (especially combined EþP)
increased the proliferation of human breast epithelial cells (44).
The previous mixed findings may partly result from a lack of
consideration of the duration of oral contraceptive use by
accounting for its nonlinear effect. Our RSF analysis showed that
the cumulative breast cancer incidence rate increases with up to 5
years of oral contraceptive use, but drops thereafter. According to
previous studies reporting a higher risk for breast cancer only in
active and recent oral contraceptive users (40, 42, 44), ourfindings
may be confounded by the recency of use. In addition, because
progestin formulations in oral contraceptive have changed, earlier
preparation could have a different effect on cancer risk than those
currently used. However, we had no data on the recency and the
type of oral contraceptive preparation that our participants had
taken, thus warranting future studies that examine the potential
different effect on cancer risk according to time lags since last use
and specific oral contraceptive configuration.

Using the cut-off value of oral contraceptive use (5 years), we
further examined the combined effect of SNPs and lifestyles
within the strata, suggesting the joint effect of the genetic and
lifestyle factors with the duration of oral contraceptive use on
breast cancer. Moreover, the joint effect was attenuated in high-
SFA intake group, which may support potential trade-off path-
ways between sex hormones and fatty acids (i.e., the effect of
estrogen levels minimized with high fatty acid levels).

Another strong exogenous factor we found that contributes to
the women's lifetime exposure to estrogen is the use of EþP, a
well-known risk factor for breast cancer (44–46). Synthetic pro-
gestin differs structurally from natural progesterone, resulting in
different actions at the cellular level, such as cell proliferation and
antiapoptosis by having an affinity for androgen, glucocorticoid,
and mineralocorticoid receptors (44, 47). Furthermore, the joint
effect of gene and lifestyles with EþP use on breast cancer was
attenuated in an inactive group, implicating obesity–sex hormone
pathways (48); that is, in obesewomenwhohave relatively higher
levels of estrogen, the effect of EþP use can be reduced.

Our study population was confined to non-Hispanic white
postmenopausal women, so the generalizability of ourfindings to
other populations is limited. Also, owing to insufficient statistical
power, we did not examine any breast cancer molecular subtypes.
A two-stage RSF provides greater statistical power to identify the
most predictive variables for breast cancer risk. Despite that

benefit, it can over-fit themodel due tonoisy taskswith a relatively
small sample size, so our results need to be replicated in inde-
pendent studies with a large sample size.

This study suggests that IR SNPs identified at the GWA level
interact with lifestyle factors, including exogenous lifetime expo-
sures to estrogen, obesity, and dietary alcohol, to influence risk for
breast cancer. The identified SNPs in combination with those
lifestyles have a possible synergistic effect on breast cancer risk,
which calls for further biologic mechanism studies such as gene
regulation and aberrant cell signaling in relation to breast cancer
cells of obese women with a history of estrogen use and alcohol
intake. Our findings may contribute to greater accuracy in pre-
dicting breast cancer and suggest intervention strategies for the
womenwho carry the risk genotypes, such as a shorter duration of
exogenous estrogen use and reduced body weight and alcohol
intake, which may lead to reduced potential impact of such risk
factors on the epigenome and thus reduce their risk for breast
cancer.
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