
Carbon budgets for 1.5 and 2 °C targets lowered by natural 
wetland and permafrost feedbacks

Edward Comyn-Platt 1*, Garry Hayman 1, Chris Huntingford 1, Sarah E. 
Chadburn2,3, Eleanor J. Burke 4, Anna B. Harper 3, William J. Collins 5, 
Christopher P. Webber5, Tom Powell3, Peter M. Cox 3, Nicola Gedney 6 and 
Stephen Sitch3

1 Centre for Ecology and Hydrology, Wallingford, UK.

2 University of Leeds, Leeds, UK.

3 University of Exeter, Exeter, UK.

4 Met Office Hadley Centre, Exeter, UK.

5 University of Reading, Reading, UK.

6 Met Office Hadley Centre, Joint Centre for Hydrometeorological Research, 
Wallingford, UK.

*e-mail: edwcom@ceh.ac.uk

Abstract

Global methane emissions from natural wetlands and carbon release from 
permafrost thaw have a positive feedback on climate, yet are not 
represented in most state-of-the-art climate models. Furthermore, a fraction 
of the thawed permafrost carbon is released as methane, enhancing the 
combined feedback strength. We present simulations with an inverted 
intermediate complexity climate model, which follows prescribed global 
warming pathways to stabilization at 1.5 or 2.0 °C above pre-industrial levels 
by the year 2100, and which incorporates a state-of-the-art global land 
surface model with updated descriptions of wetland and permafrost carbon 
release. We demonstrate that the climate feedbacks from those two 
processes are substantial. Specifically, permissible anthropogenic fossil fuel 
CO2 emission budgets are reduced by 9–15% (25–38 GtC) for stabilization at 
1.5 °C, and 6–10% (33–52 GtC) for 2.0 °C stabilization. In our simulations 
these feedback processes respond more quickly at temperatures below 1.5 
°C, and the differences between the 1.5 and 2 °C targets are 
disproportionately small. This key finding holds for transient emission 
pathways to 2100 and does not account for longer-term implications of these
feedback processes. We conclude that natural feedback processes from 
wetlands and permafrost must be considered in assessments of transient 
emission pathways to limit global warming.

Introduction

The 2009 meeting of the United Nations Framework Convention on Climate 
Change (UNFCCC) in Copenhagen formalized the aspiration to stabilize global
warming at no more than 2 °C above pre-industrial levels1. The subsequent 
UNFCCC Paris Agreement in 2015 raised the additional possibility of aiming 
for an even lower upper warming threshold of 1.5 °C (ref. 2). These targets 



will require large reductions in anthropogenic greenhouse gas (GHG) 
emissions, with sustained decreases of ~3% per annum3,4 and the 
development of technologies to remove CO2 from the atmosphere. This is 
because the equilibrium global warming for current GHG concentrations may
already be near 1.5 °C (ref. 5). Given the anticipated difficulty in keeping 
below the 1.5 °C threshold, two key questions are being asked. First, what 
are the implications in terms of allowable anthropogenic emissions to keep 
warming below 1.5 °C rather than 2.0 °C? Second, what is gained climatically
or environmentally by keeping below 1.5 °C; that is, are unwelcome climate 
impacts potentially avoided?

The climate change observed during recent decades has been strongly 
linked to human influences on atmospheric GHG composition, leading the 
Fifth IPCC Assessment Report to state: ‘it is extremely likely that human 
influence has been the dominant cause of the observed warming since the 
mid-20th century’6. However atmospheric GHG levels are affected both 
directly (via anthropogenic GHG emissions) and indirectly by human activity. 
Indirect effects include climate change-induced adjustments to land–
atmosphere and/or ocean–atmosphere GHG exchange fluxes. This was first 
modelled for the global carbon cycle in ref. 7, where a significant flux of 
carbon to the atmosphere via increased ecosystem respiration under 
warming was predicted for a business-as-usual scenario. Similar analyses 
have been undertaken separately for additional methane (CH4) release from 
wetlands8,9 and additional carbon released from the long-term permafrost 
store10,11,12. The increase in global warming may be underestimated for a 
prescribed anthropogenic emissions trajectory if these processes are not 
considered. In reference to policy questions, the anthropogenic fossil fuel 
emission budgets (AFFEBs) to limit global warming to 1.5 or 2.0 °C may be 
significantly reduced from current assessments6,13,14.

This research focuses on two feedback processes that were not included in 
most models in the fifth phase of the Coupled Model Intercomparison Project 
(CMIP5)15 and will only be included in a small fraction of models in the sixth 
phase (CMIP6). These are the effects of carbon release from the permafrost 
store as CO2 and the increased CH4 emissions from natural wetlands, and the
coupling between the two effects where carbon from thawed permafrost is 
also released as CH4 (refs 16,17). These are particularly pertinent issues given 
that CH4 has a larger global warming potential (GWP) by equivalent weight 
than CO2, and the recent resurgent growth in atmospheric CH4 (ref. 18).

In contrast to the CMIP5 simulations, which modelled climatic and 
environmental responses to prescribed atmospheric concentration pathways,
the objective here is to quantify the anthropogenic response required to 
meet a specified global warming target. We develop an inverted form of 
climate model that follows prescribed temperature trajectories19 and 
calculate corresponding AFFEBs13, including the two aforementioned 
feedback effects. The modelling framework is based on the coupled Joint UK 
Land Environment Simulator (JULES20,21) and Integrated Model of Global 



Effects Of Climatic aNomalies (IMOGEN22,23) system (see Methods). The 
approach taken is generic and may be employed in further research to 
answer a number of environmental policy-related questions in terms of 
meeting specified warming thresholds.

Simulations with prescribed trajectories

We use the JULES version 4.8 release, with the addition of a 14-layered soil 
column for both hydrothermal24 and carbon25 dynamics. The JULES 
configuration includes representations of land use and land-use change 
(LULUC) and ozone damage on plant stomata to address policy-relevant 
warming scenarios outside the scope of this paper (see Methods).

The major advancement in the IMOGEN configuration used for this study is 
the prescription of evolving global temperature trajectories. Following this 
inverted form (Supplementary Fig. 1b), changes in radiative forcing, ΔQ, are 
calculated as a function of the time-history of global warming which are then 
ascribed to compatible atmospheric compositions of GHGs. The 
anthropogenic contribution to atmospheric CO2 is calculated whilst taking in 
to account changes to the land and ocean carbon stores, together with 
prescription or calculation of non-CO2 GHGs. Additional IMOGEN 
enhancements for this analysis include the calculation of atmospheric CH4 
concentration and effective radiative forcing, capturing the climate impacts 
on CH4 release from natural wetlands (see Methods).

Critical to our analysis is understanding emission pathways available to 
stabilize at either 1.5 or 2.0 °C of warming since pre-industrial times. As this 
will be strongly influenced by anthropogenic perturbation of the climate 
system to present day, we constrain the historical global temperature (ΔTG) 
to the HadCRUT4 observational record26 and atmospheric composition to the 
Representative Concentration Pathway (RCP) record27 for the period 1850–
2015. Future projections of the non-CO2 atmospheric composition is taken 
from the IMAGE-3.0 implementation of Shared Socioeconomic Pathway (SSP) 
version 2 under RCP2.6 (SSP2_RCP-2.6_IMAGE)28 (see Methods).

We select three global warming pathways to stabilization at the 1.5 °C or 2.0 
°C targets by 2100 (Supplementary Fig. 1a and SI.2), which are described 
using the formulation in ref. 19 (see Methods). Two of the considered 
trajectories reach asymptotes at 1.5 and 2.0 °C from below. The third 
asymptotes to 1.5 °C after an overshoot to 1.75 °C, representing greater 
attempts of decarbonization of the atmosphere towards the end of the 
twenty-first century. The overshoot trajectory allows investigation into 
hysteresis effects which may have path-dependent effects on temperature 
stabilization, for example, carbon release due to permafrost thaw.



Feedbacks from natural emissions

Using our control configuration of JULES (that is, with no natural wetland CH4 
nor permafrost carbon feedbacks), we estimate the interquartile range of the
AFFEBs for 2015–2100 as 464–568 GtC to meet the 2 °C target, and 227–283 
GtC or 227–288 GtC to meet the 1.5 °C target with or without the overshoot, 
respectively (Fig. 1 and Table 1). The AFFEBs are broadly linear in ΔTG across
the three scenarios, that is, 378–480 GtC °C−1 and 421–516 GtC °C−1 for the 
1.5 and 2 °C scenarios, respectively. These results agree with previous 
estimates of AFFEBs using different methods13.

The 2 °C scenario allows close to business-as-usual emissions for the coming 
decade followed by extensive emission reductions of 3.5–4.1% per year 
between 2030 and 2100. However, if society were to act more immediately, 
the AFFEB could be met with year-on-year reductions of 2.2–2.7% from 2020.
The 1.5 °C scenario with no overshoot indicates a near immediate peak in 
annual emissions followed by 3.5–4.3% year-on-year reductions from 2020. 
Despite the similarity of the AFFEB for the two 1.5 °C scenarios, the 



overshoot scenario places larger pressure on future generations. This 
pathway implies that anthropogenic activities are a net 316–382 GtC source 
of CO2 until the early 2050s, then must become a net sink, capturing 81–96 
GtC. These estimates go further than previous attempts to quantify 
AFFEB13,14 as they provide an AFFEB for each Global Circulation Model (GCM) 
in the IMOGEN ensemble, and the transient pathway, to meet the specified 
stabilized temperature.

The role of permafrost thaw in modulating the AFFEB is measured as the 
amount of carbon that was in the pre-industrial permafrost carbon store that 
is lost to the atmosphere. We define permafrost as soil layers within grid 
cells that JULES simulates as perennially frozen. We find that our estimates 
of present-day permafrost extent and loss rate agree with the models 
assessed in ref. 11 (Supplementary Fig. 3). Furthermore, a comparison with 
an observation data set29 demonstrates that our simulations reproduce a 
reasonable present-day spatial coverage of permafrost (Supplementary Fig. 
4). By 2100, the model ensemble estimates a median 138 Mha loss of 
permafrost area at 3 m depth for the 1.5 °C asymptote pathway and a 
median 239 Mha loss for the 2.0 °C pathway (Fig. 2a and Supplementary 
Table 3). This degradation of permafrost results in an additional 40.0–46.3, 
45.6–51.2 and 61.9–72.0 GtC of pre-industrial permafrost carbon that is no 
longer perennially frozen, relative to 2015, for the three temperature 
scenarios. Between 20 and 30% of this newly thermally active carbon has 
been released to the atmosphere, reducing AFFEBs by 11.6–13.8 GtC across 
the three scenarios (Fig. 2d and Table 1, boxes labelled a in the first column).
The uncertainty range presented here is the interquartile range of the 
climate ensemble. We use a model configuration very close to the upper 
extreme of the process uncertainty presented in ref. 10, so our estimates 
represent an upper limit to the potential permafrost feedback. Applying the 
findings of ref. 10 implies that a lower limit to the permafrost feedback would
be roughly half of what is presented here (~5–7 GtC).



The differences in permafrost loss between scenarios appears less than 
previous estimates30. However, our estimates represent a transient snapshot 
at 2100 and not equilibrium conditions, which will not be met for several 
centuries. The permafrost is not in equilibrium by 2100; the deeper soil 
layers in particular show a lagged response to changes in the surface air 
temperature (Fig. 2a,b). This behaviour is similarly observed in the pre-
industrial permafrost carbon stocks, which are still being significantly 
depleted by 2100 (Fig. 2c,d). The loss rate of pre-industrial permafrost 
carbon to the atmosphere is still increasing by 2100 as the total pool of soil 
carbon to respire continues to grow despite stabilization of the surface air 
temperature. This highlights the timescales involved in permafrost processes
and indicates that permafrost thaw will continue to have large implications 
on anthropogenic emissions into the twenty-second century, even if 
temperatures have stabilized.

The response of the AFFEB to permafrost thaw is nonlinear with respect to 
ΔTG, that is, 19.3–21.7 GtC °C−1 for the 1.5 °C scenarios and 11.6–12.5 GtC 
°C−1 for the 2 °C scenario. This implies that the permafrost feedback is faster 
at lower temperature changes, and keeping temperatures below 1.5 °C, 
rather than 2 °C, does not make large differences to AFFEBs to 2100. 
However, this behaviour is primarily a feature of our interest in the AFFEB to 
2100, and the additional carbon released in the 2 °C scenario will continue to
have implications into the twenty-second century.



The impact of the natural wetland CH4 feedback on the AFFEBs is the sum of 
the reduced carbon uptake of the atmosphere, ocean and land due to a 
higher atmospheric CH4 concentration. The magnitude and distribution of the
JULES natural wetland CH4 emissions are driven primarily by wetland area 
and the soil temperature and carbon content (see Methods). Our estimates 
of wetland extent and zonal distribution for the present day are within the 
range of state-of-the-art observation data sets31,32 (Supplementary Fig. 4). To 
encapsulate a range of methanogenesis process uncertainty we include a 
temperature sensitivity ensemble by varying Q10 in equation (1) (see 
Methods). We use Q10 values calibrated to represent two wetland types 
identified in ref. 33 (‘poor-fen’ and ‘rich-fen’) and a third ‘low-Q10’, which 
gives increased importance to high-latitude emissions (see Methods). Our 
ensemble spread sufficiently describes the magnitude and distribution of 
present-day CH4 emissions from natural wetlands according to the models 
assessed in a recent intercomparison study34 (Supplementary Fig. 5). 
However, there is still much uncertainty in natural wetland CH4 emissions 
and future work will look to improve our model via more rigorous 
comparisons with observational data sets.

The global mean atmospheric CH4 concentrations are increased by 3–9% and
6–15% (w.r.t. the control simulation) when the natural CH4 feedback is 
included for the 1.5 and 2 °C targets, respectively (see Fig. 3a for the ‘poor-
fen’ parameterization and Supplementary Fig. 6 for the other 
parameterizations). The major driver of increased CH4 emissions is increased 
soil temperatures, as changes in wetland extent and soil carbon content are 
not consistent globally (Supplementary Fig. 7). The increased atmospheric 
CH4 concentrations imply reduced atmospheric CO2 concentrations to ensure 
that simulations follow the prescribed temperature pathway (Fig. 3b). The 
reduced atmospheric CO2 concentrations result in reduced CO2 fertilization of
vegetation and a slower oceanic drawdown of CO2. Additionally, the 
increased ozone due to increased CH4 (see Methods) limits productivity 
further still. The AFFEBs are hence lowered by 12–38 GtC for the full 
temperature sensitivity ensemble (cells labelled b in Table 1 and Fig. 3d).



Similar to the permafrost feedback, the natural CH4 feedback is nonlinear 
with respect to ΔTG; that is, 20–42 GtC °C−1 for the 1.5 °C scenario and 17–34 
GtC °C−1 for the 2 °C scenario. The effects of the natural CH4 feedbacks are 
50–59% larger for the 2 °C scenario than the 1.5 °C scenarios despite a 
temperature increase that is 83% larger, from present day. Furthermore, we 
find that this nonlinear behaviour is consistent for the three temperature 
sensitivities considered in our uncertainty analysis (Fig. 3d). Therefore, in the
context of the natural wetland feedback strength, we conclude that 
constraining warming to less than 1.5 °C, rather than 2 °C, has a 
disproportionately small impact on the AFFEB.

The natural CH4 feedback strength is larger for the 1.5 °C pathway with 
overshoot in comparison to the 1.5 °C asymptote pathway (Fig. 3d). 
However, the magnitude of this difference is small (1–2 GtC), hence it is 
difficult to generalize this behaviour.

Our simulations show little interaction (where thawed permafrost is released 
as CH4) between the feedback processes; that is, the difference between the 
sum of the AFFEB differences and the AFFEB difference from the simulation 
including both feedback processes is <2 GtC. The amount of CH4 released 
from the thawed permafrost carbon is 0.2–0.6 TgCH4 per year, where the 
upper limit corresponds to the low-Q10 parameterization (Supplementary Fig. 
8), which gave a greater emphasis to CH4 emissions from cooler regions (see 



Methods). This is ~0.16–0.56% of global CH4 emissions in 2015, decreasing 
to ~0.12–0.46% in 2100 (Supplementary Fig. 8b). Similarly, the fraction of 
permafrost carbon released as CH4 is 0.15–0.59% (Supplementary Fig. 8). 
The additional atmospheric CH4 translates to changes of global atmospheric 
CO2 of the order 0.1 ppmv, which has little impact on the absolute 
atmospheric carbon sink nor the uptake of carbon by the land and ocean. 
Hence, in the context of our estimates of AFFEBs to meet the UNFCCC 
targets (200–500 GtC), the interplay of these two feedback schemes is 
largely negligible. However, our modelling framework does not account for 
thermokarst lakes created via ground subsidence following permafrost thaw. 
To provide an estimate of uncertainty regarding this omission we emulate 
the behaviour offline by linearly increasing the wetland extent in permafrost 
regions through the twenty-first century, from a factor of 1 in 2000 to a 
factor of 2 in 2100 (Supplementary Fig. 10). The increased CH4 emissions 
reduces the AFFEB by a further 0.8–2.5 GtC. However, we interpret this as an
overestimate as the emulation does not consider the reduced aerobic 
respiration due to increased saturated soil, which has been shown to 
outweigh the increased CH4 emissions16.

1.5 °C versus 2 °C targets

The combined effect of these feedback processes has large implications for 
AFFEBs: 9.3–15.1% (24.8–37.8 GtC) and 6.4–10.1% (33.4–51.5 GtC) 
reductions for the 1.5 and 2 °C scenarios from the control runs, respectively 
(Table 1, cells labelled c). In terms of mitigation pathways, this corresponds 
to 3.6–4.5% year-on-year reductions in anthropogenic emissions beginning in
2020 to meet the 1.5 °C emission budget. To meet the 2 °C warming target, 
the allowable emissions would require year-on-year reductions of 3.6–4.3% 
beginning in 2030, or 2.3–2.7% starting in 2020. This represents a 0.1–0.5% 
increase in reduction rates for the 1.5 °C and a <2% increase in reduction 
rates for the 2 °C scenario. The 1.5 °C overshoot pathway indicates that total 
allowable anthropogenic emissions would need to be no more than 291–361 
GtC prior to the mid-2050s followed by a removal of 87.1–102 GtC.

We find that to fulfil a 1.5 °C warming threshold with no overshoot, increased
CH4 emissions from natural wetlands reduce the AFFEB between now and 
2100 by 7.6–8.3%. Carbon released from the long-term permafrost store 
reduces the AFFEB by an additional 4.1–5.3%, and the interplay between the 
two processes a further 0.5–1%. This leaves AFFEBs of 194–257 GtC to 2100, 
a total reduction of 9.3–14.5%. Allowing for an overshoot to 1.75 °C, but still 
leading ultimately to 1.5 °C warming, makes little difference to the AFFEB 
(191–261 GtC to 2100). However, such an eventuality would require 
significant developments of carbon capture technologies in the second half 
of the twenty-first century, during which the net anthropogenic contribution 
to the carbon cycle would have to be a 87–102 GtC sink. The reduction in 
AFFEB for stabilization at 2.0 °C is, in absolute terms, slightly larger than the 
reductions required to meet the 1.5 °C target, 33.4–51.5 GtC. However, this is
a lower fraction of the AFFEB (6.4–10.1). Our overall findings are that the 



natural climate feedbacks considered here are nonlinear with respect to the 
AFFEB to meet a given temperature target by 2100. Therefore, the roles of 
the natural CH4 and permafrost thaw feedback processes become 
increasingly more important when considering the lower stabilization 
temperature target of 1.5 °C.

Methods

The JULES model

Model version and configuration

JULES is a process-based land surface model that simulates energy, water 
and carbon fluxes at the land–atmosphere boundary20,21. JULES can be run as 
a standalone model using given meteorological driving variables or as the 
land surface component of climate modelling systems of varying degrees of 
complexity, such as Earth system models (ESMs)35 or IMOGEN18. We use the 
JULES version 4.8 release with the addition of a 14-layered soil column of 
over 3 m for both hydrothermal24 and carbon dynamics25. Ref. 25 
demonstrated that modelling the soil carbon fluxes as a multilayered scheme
improves estimates of soil carbon stocks and net ecosystem exchange. In 
addition to the vertically discretized respiration and litter input terms, the 
soil carbon balance also includes a diffusivity term that represents 
cryoturbation/bioturbation processes. The freeze–thaw processes of 
cryoturbation are particularly important in cold-permafrost-type soils10.

The multilayered methanogenesis scheme improves the representation of 
high-latitude CH4 emissions (previous studies underestimated production at 
cold permafrost sites during ‘shoulder seasons’)36. The multilayered scheme 
allows an insulated subsurface layer of active methanogenesis to continue 
after the surface has frozen. These model developments not only improve 
the seasonality of the emissions, but more importantly for this study capture 
the release of carbon as CH4 from deep soil layers, including thawed 
permafrost. The formulation of the multilayered scheme gives the local land–
atmosphere CH4 flux, ECH4 (kgC m−2 s−1), as

where z is the depth in the soil column (in m), i is the soil carbon pool, fwetl (–)
is the fraction of wetland area in the grid cell, κi (s−1) is the specific 
respiration rate of each pool (table 8 in ref. 21), Cs (kg m−2) is soil carbon, 
and Tsoil (K) is the soil temperature. γ (=0.4 m−1) is a constant that describes 
the reduced contribution of CH4 emission at deeper soil layers due to 
inhibited transport and increased oxidation through the overlying soil layers. 
This is a simplification; however, previous work that explicitly represented 
these processes showed little to no improvement compared with in situ 
observations37. The four soil carbon pools (i) in JULES are decomposable plant



material, resistant plant material, microbial biomass, and humus. As JULES is 
a process based model, the carbon emitted as CH4 is therefore removed from
the soil carbon stock. Furthermore, as described in ref. 38, soil respiration is 
non-zero in fully saturated soils, so in anaerobic conditions JULES produces 
CO2 in addition to CH4.

fwetl is calculated using the JULES implementation of TOPMODEL39 as the 
integral of a normalized gamma distribution of a prescribed topographic 
index data set40, G(τ), between a critical, τcrit (ln(m)), and a maximum, τmax 
(ln(m)), topographic index, that is,

τcrit is dependent on the local water table as

where Ψ(0) and  (m2 s−1) are the transmissivities of the entire 

soil column and the soil column below the mean water table depth, (m). 
The τmax limit excludes regions where the water table is sufficiently high 
enough for stream flow and are therefore assumed to be negligible emitters 
of CH4. This is calculated as

 is incrementally updated based on the balance of water flux processes on

each JULES time step. When  is in the deep store (a singular 15 m below 
the 14 modelled layers) it is updated as the balance between the infiltration 
water, IDeep, and the baseflow, BDeep, as

where ρ is the density of water and θsat is the saturated volumetric water 

content. If the deep layer is fully saturated  is calculated diagnostically to 
be in the deepest unsaturated model soil layer. The water content of each 



layer, j, is updated at each time step as the balance of the vertical flux 

processes (infiltration Ij and evapotranspiration Ej) and, for layers below , 
a horizontal baseflow flux Bj:

where Δzj is the thickness and θj is the volumetric water content of the jth 
soil layer. For full details of the process-based JULES hydrology see refs 
20,39.

In addition, the JULES configuration includes prescribed LULUC, where land 
used for agriculture can only grow C3 and C4 grasses to represent crops and 
pasture. The land-use mask consists of an annual fraction of agricultural land
in each grid cell. Historical LULUC is based on the HYDE 3.1 data set41, and 
future LULUC is based on SSP2_RCP-2.6_IMAGE28. When natural vegetation is 
converted to managed agricultural land, the removed vegetation carbon is 
placed into woody product pools that decay at various rates back into the 
atmosphere35. The carbon flux from LULUC is therefore not lost from the 
system.

We use a JULES configuration including ozone deposition damage to plant 
stomata, which then affects land–atmosphere CO2 exchange42. JULES requires
surface atmospheric ozone concentrations, O3 (ppb), for the duration of the 
simulation period (1850–2100). Here, we use two sets of monthly O3 
concentration fields calculated using the HADGEM3-A GA4.0 model for low 
(1,285 ppbv) and high (2,062 ppbv) global mean atmospheric CH4 
concentrations43. We regrid these fields (1.875° × 1.25° horizontal grid) to 
the spatial grid of IMOGEN-JULES (3.75° × 2.5° horizontal grid). We then 
linearly interpolate between the respective months in the regridded O3 fields 
using the global annual atmospheric CH4 concentration. The CH4 
concentration is taken from the prescribed SSP2_RCP-2.6_IMAGE plus the 
natural CH4 modulation when the interactive scheme is in use.

Wetland CH4 emission scheme calibration

We calibrate the temperature sensitivity of the multilayered methanogenesis

scheme (k and Q10(Tsoil) =   in equation (1)) for each CMIP5 model in 
the IMOGEN ensemble to ensure the wetland CH4 production rates match 
present-day observations33,34. Ref. 33 fit observed surface CH4 fluxes, ECH4, 
against temperature to equation (7) using data from 71 sites:

where Tsoil-10cm is the temperature of the top 10 cm of soil.



To capture temperature sensitivity uncertainty we calibrate Q10 in equation 
(1) against equation (7) for two of the wetland types identified in ref. 33 
(‘Poor-fen’ and ‘Rich-fen’) using the daily output from the JULES simulations 
at year 2000 for each GCM. We select Q10 values that maximize the 
Pearson’s correlation coefficient. k is then calculated such that the global 
total for year 2000 is 180 TgCH4 to match our assumptions of the 
atmospheric growth rate of CH4 in the IMOGEN CH4 feedback calculations 
(see IMOGEN description below). We selected the ‘Poor-fen’ and ‘Rich-fen’ 
parameterizations for our ensemble as these gave the best representation of
the global distribution of CH4 emissions when compared with the output from
ref. 34 (Supplementary Fig. 9). A ‘Bog’ parameterization was ruled out as this
tended towards unrealistically high tropical emissions, and a ‘Swamp’ 
parameterization was ruled out due to the high levels of uncertainty reported
in ref. 33. The optimized parameter values are given in Supplementary Table
2. In addition to the two calibrated parameterizations we include a ‘lowQ10’ 
(Q10 = 2.0, k = 1.625 × 10–9) parameterization, which gave a larger fraction of 
global emissions to lower-temperature regions (Supplementary Fig. 9).

IMOGEN, EBM inversion and the CMIP5 models selected for its calibration

IMOGEN23 is a climate-carbon cycle model of intermediate complexity that 
uses pattern scaling of the seven meteorological variables required to drive 
JULES. Ref. 23 assumes that changes in local temperature, precipitation, 
humidity, wind speed, surface shortwave and longwave radiation, and 
pressure are linear in global warming. Patterns are multiplied by the amount 
of global warming over land, ΔTL, to give local monthly predictions of climate 
change. When using IMOGEN in forward mode, ΔTL is calculated with an 
energy balance model (EBM) as a function of the overall changes in radiative
forcing, ΔQ (W m−2). ΔQ is the sum of the atmospheric GHG contributions44, 
updated with a yearly time step.

Our simulations include a CH4 feedback system that captures the climate 
impacts on CH4 emissions from natural wetland sources. The approach here 
follows that of ref. 8 where prescribed CH4 concentrations, which assume a 
non-varying natural wetland CH4 component28, are perturbed using the 
anomaly in modelled natural wetland CH4 emission. To ensure consistency 
with the observed atmospheric CH4 growth rate we calibrate our model to 
produce 180 TgCH4 per year for the year 2000, as detailed in the model 
calibration description above. The increased/reduced atmospheric CH4 
concentration will have corresponding longer/shorter atmospheric lifetime λ 
than the prescribed concentration pathway. We account for changes in λ 
following the formulation and parameterization of ref. 45; that is, λ = 8.4 yr−1 
for an atmospheric CH4 concentration of 1,745 ppb. The changes in radiative 
forcing were calculated using the formulation in ref. 44. There is large 
uncertainty in the natural wetland contribution to global CH4 emissions; for 
this study we scale to 180 TgCH4 per year, an approximation based on a 
recent model intercomparison study34 (Supplementary Fig. 6). Additionally, 
the effect of increased atmospheric CH4 concentrations on tropospheric 



ozone levels is also taken into account, both in terms of radiative forcing and
the impact on surface functioning through stomatal damage (see the 
description of JULES in the first section of the Methods).

Previous IMOGEN studies10,23 used 22 of the ESMs involved in CMIP3 (phase 3 
of the Coupled Model Intercomparison Project). Here, we update and extend 
IMOGEN to use ESMs involved in CMIP5. We downloaded CMIP5 data from the
mirror database held on the UK JASMIN computer during Autumn 2015. 
Supplementary Table 1 lists every model for which historical monthly surface
temperature fields were available.

The key criteria for inclusion of the output from a given CMIP5 GCM 
simulation are as follows (see Supplementary Information and 
Supplementary Table 1):

1. Availability for the internal EBM of surface temperature, top of the 
atmosphere (TOA) incoming shortwave radiation, outgoing TOA shortwave 
and longwave radiation

2. Availability of meteorological parameters to drive JULES: surface 
temperature, precipitation, surface relative humidity, surface downward 
shortwave radiation, surface downward longwave radiation, surface wind 
speeds and surface pressure

3. Availability of two RCP scenarios for calibration and testing

EBM inversion

The EBM was inverted such that a change in radiative forcing, ΔQ, is 
calculated as a function of a change in the global temperature, ΔTG (K). Re-
ordering of equation (10) from Huntingford and Cox22 gives

where ΔQ(t) is the change in radiative forcing (W m−2) at time t, f is the 
fraction of Earth that is ocean, λl and λo are the climate sensitivities over land
and ocean, respectively (W m−2 K−1), ν is the land–sea contrast and κ is the 
ocean diffusivity (W m−1 K−1). The values of parameters f, λλl, λo, ν and κ are 
unique to each GCM in the ensemble and are listed in Supplementary Table 
2.

The change in the depth-dependent ocean temperature (ΔTo) (K) must satisfy
the diffusivity equation:



where cp (J K−1 m−3) is the specific heat capacity of salt water and z (m) is 
ocean depth (positive downwards). The change in the global mean surface 
ocean temperature (z = 0) is then calculated from the global temperature 
ΔTG as22

The global mean land temperature, ΔTL, required for pattern scaling is 
calculated as

Etminan CO2 radiative forcing inversion

Etminan et al.44 present a formulation to calculate the change in radiative 
forcing, ΔQCO2ΔQCO2, from a given change in the global mean atmospheric 
CO2 concentration. There is no exact solution for the inverse of this, that is, 
to calculate the change in CO2 for a given ΔQCO2ΔQCO2. We find the 
solution iteratively using equation (12):

We assume convergence has occurred if the CO2 concentration changes by 
less than 0.001 ppm. The initial CO2 concentration for the iteration is taken to
be the CO2 concentration for the previous year. We typically find that no 
more than five iterations are required for a change of 10 ppm from the 
starting concentration.

Q non-CO2 calculation

Changes in radiative forcing, ΔQ (W m−2) calculated by the inverted IMOGEN 
EBM must be ascribed to changes in the atmospheric composition of GHGs. 
For this simplified description we consider two forcing contributions: the CO2 
forcing ΔQCO2 (W m−2) and the forcing of all other agents, ΔQnonCO2 (W m−2). In 
the simplest case (not considering interactive CH4), a prescribed ΔQnonCO2 is 
removed from ΔQ to give ΔQCO2 as

The non-CO2 composition is taken from the SSP2_RCP-2.6_IMAGE pathway28. 
The SSP2_RCP-2.6_IMAGE pathway was chosen as it assumes very high GHG 



mitigation and the global warming pathway is reasonably close to the 1.5 or 
2.0 °C targets of interest (that is, 1.8 °C by 2100). This prescribed non-CO2 
radiative forcing is subtracted from ΔQ to give the CO2 radiative forcing 
(ΔQCO2 = ΔQ – ΔQnon CO2). The CO2 concentration is then derived using an 
iterated inversion of the CO2 radiative forcing equation in ref. 44. For a given 
ΔQnon CO2, we then estimate the CO2 concentration iteratively, as described 
above, using equation (12).

Each of the 34 GCMs that IMOGEN emulates has a different set of EBM 
parameters: λl, λo, ν, κ and f. Hence, each GCM has a different ΔQ estimate 
for a given ΔTG(t) pathway. When IMOGEN is driven with a historical record of
ΔTG, the range of ΔQ for the present day (2015) is 1.13 W m−2 
(Supplementary Fig. 5a). For this work, we require the historical period 1850–
2015 to match observations of both ΔTG and the atmospheric composition for
all GCMs. We therefore attribute the spread in ΔQ to uncertainty in ΔQnon CO2, 
in particular the atmospheric aerosol contribution, which has an uncertainty 
range of −0.5 to −4 W m−2 (ref. 6). Given this, and to ensure continuous 
functions of ΔQCO2 and ΔQnon CO2, we calculated the contributions as

where the subscript SSP indicates that the value is sourced from SSP2_RCP-
2.6_IMAGE. c (W m−2) is a GCM-specific offset that ensures continuous ΔQCO2 
or ΔQnon CO2 and was calculated at the transitional year (2015) as

Supplementary Fig. 5 shows the allocation of the ΔQ and the resultant 
atmospheric CO2 concentration pathways for the 2 °C stabilization 
temperature. We include the GCM-specific 2015 aerosol offsets in 
Supplementary Table 2.

Temperature profile formulation

Ref. 19 provides a framework to create temperature trajectories based on 
two parameters that model the efforts of humanity to limit emissions and, if 
necessary, capture atmospheric carbon, that is,



where ΔT(t) is the change in temperature from pre-industrial levels at year t, 
ΔT0 is the temperature change at a given initial point (in this case ΔT0 = 0.89 
°C for 2015), ΔTLim is the final prescribed warming limit and

where β (=0.00128) is the current rate of warming, and µ0 and μ1 are tuning 
parameters that describe anthropogenic attempts to stabilize global 
temperatures19. The selected parameterizations of the three trajectories are 
based on comparisons with CMIP5 simulations for the RCP2.6 scenario (grey 
lines in Supplementary Fig. 2). The parameter values used for the three 
profiles selected are also shown in Supplementary Fig. 2.

Data availability

The data that support the findings of this study are available from the 
corresponding author upon request.

Code availability

JULES is an open-source model and the code branch used in this work is 
available from the Met Office science repository using the following URL 
(registration required): 
https://code.metoffice.gov.uk/trac/jules/browser/main/branches/dev/edwardc
omynplatt/vn4.8_1P5_DEGREES?rev=11764.

The parameterizations used herein are also permanently stored on the met-
office science repository. Given the complexities in accessing the specific 
revision and machine configuration required, these will be made available 
upon request to the corresponding author.
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