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Abstract 

Exploration is critical for discovering how the world works. 
Exploration should be particularly valuable for young children, 
who have little knowledge about the world. Theories of 
decision-making describe systematic exploration as being 
primarily sub-served by prefrontal cortex (PFC). Recent 
research suggests that systematic exploration predominates in 
young children’s choices, despite immature PFC, suggesting 
that this systematic exploration may be driven by different 
mechanisms. We hypothesize that young children’s tendency 
to distribute attention widely promotes broad information 
gathering, which in turn translates to exploratory choice 
behavior, and that interrupting distributed attention allocation 
through bottom up attentional capture would also disrupt 
systematic exploration. We test this hypothesis using a simple 
choice task in which saliency of the options was manipulated. 
Saliency disrupted systematic exploration. These results 
suggest that attentional mechanisms may drive systematic 
exploratory behavior, and may be part of a larger tendency 
toward broad information gathering in young children. 
 

Keywords: cognitive development; exploration; decision-
making; attention 

Introduction 
One crucial way in which children’s cognition differs from 
adults’ is how they allocate their attention. Adults are highly 
adept at controlling their attention, distributing it broadly or 
focusing selectively on a small subset of stimuli (e.g., Chong 
& Treisman, 2005). In contrast, young children tend to 
distribute their attention broadly (Deng & Sloutsky, 2015, 
2016; Smith & Kemler, 1977). In situations in which only a 
small amount of the available information is currently 
relevant, adults will often selectively focus on that piece of 
information, and ignore almost everything else (Rehder & 
Hoffman, 2005; Blair, Watson & Meier, 2009). Children, on 
the other hand, will distribute their attention to everything, 
even information that is not relevant for their current task or 
goals (Plebanek & Sloutsky, 2017). This tendency is likely to 
stem from immaturities of executive attention resulting in 
difficulty attending selectively and filtering out irrelevant 
environmental stimuli. While these immaturities may be 
highly limiting for learning in academic settings, it is possible 
that such immaturities of executive attention can be adaptive. 
For example, distributing attention can result in superior 
performance of children over adults in situations when 
participants have to use information that was previously 

irrelevant (Plebanek & Sloutsky, 2017; Blanco & Sloutsky, 
under review).  

Therefore, depending on the context, either selective or 
distributed attention could be advantageous. Selective 
attention is superior when one is confident that a small 
portion of the available information is sufficient to achieve 
their goals. Distributed attention is advantageous when there 
is more uncertainty about what is and is not important. For 
young children, who have much less experience and 
knowledge about how things in the world work, it may often 
be the best strategy. Given their greater uncertainty about 
what is relevant, distributing attention is a safer bet. 
Additionally, by facilitating broad information gathering, it 
serves to reduce that uncertainty and build up the rich general 
knowledge that adults rely on (which, in turn, allows for 
effective use of selective attention later in life). In other 
words, it seems that distributing attention in young children 
might sub-serve exploration. Recent research suggests that 
there is a tight link between attention and decision-making 
behavior (Gottlieb, 2012; Konovalov & Krajbich, 2016). 
Perhaps distributed attention also promotes wider distribution 
in selection of potential choices. By distributing attention 
early in life children may be sacrificing immediate 
performance in exchange for information that can be used 
later.  

There are recent reports indicating that four-year-old’s 
choices are, indeed, highly exploratory (Blanco & Sloutsky, 
under review). Interestingly, children’s exploration also 
appeared to non-random. This is surprising because research 
on exploratory behavior makes an important distinction 
between systematic and undirected (or random) exploration 
strategies (Badre, Doll, Long, & Frank, 2012; Daw, 
O’Doherty, Dayan, Seymour, & Dolan, 2006; Knox, Otto, 
Stone, & Love, 2012; Blanco, Love, Cooper, McGeary, 
Knopik, & Maddox, 2015; Somerville, Sasse, Garrad, 
Drysdale, Abi Akar, Insel, & Wilson, 2017), and converging 
evidence suggests a crucial role of prefrontal cortex in 
systematic exploration (Badre, Doll, Long, & Frank, 2012; 
Frank, Doll, Oas-Terpstra, & Moreno, 2009; Blanco et al., 
2015; Otto, Knox, Markman, & Love, 2014). Because 
prefrontal cortex exhibits substantially protracted 
development (Sowell, Thompson, Leonard, Welcome, Kan, 
& Toga, 2004; Sowell, Thompson, Holmes, Jernigan, & 
Toga, 1999), current theories predicted that young children’s 
exploration would be largely unsystematic (Somerville et al., 
2017). Due to the immaturity of PFC, young children’s 

1371



systematic exploration is likely driven by different 
mechanisms than adults’. We hypothesize that children’s 
exploratory behavior is instead tied intricately to their 
immature attention allocation. exploration. 

The Current Study 
The goal of the current study is to test this idea by 

systematically manipulating saliency of a cue linked to a 
reward. More specifically our hypothesis is that children’s 
typical pattern of distributed attention promotes distributing 
choices in a way that enables systematic exploration. If 
disrupting this process through bottom-up capture of 
attention by salient stimuli results in a change in exploratory 
behavior, we would be able to infer that attention early in 
development drives exploratory behavior. In contrast, if 
attention is not a causal factor in exploratory behavior, 
manipulating attention should lead to little or no changes in 
exploratory behavior.  

In the current study, we presented children with a simple 
reward learning task under three attentional conditions in 
order to examine the interplay of attention and systematic 
exploration. On each trial of the task they chose between four 
options that gave different amounts of reward. The conditions 
differed in terms of the perceptual saliency of stimuli marking 
the choice options. In the Baseline condition, all options were 
of approximately equal salience. In the two experimental 
conditions, three choice options were represented by bland, 
invariant stimuli, while one option was represented by a 
highly salient stimulus that changed on every trial. In the 
Congruent condition the salient option was mapped to the 
option that gave the highest reward. In the Competition 
condition the salient option was mapped to the lowest reward, 
putting reward-seeking and salience in competition with each 
other.  

Methods 
Participants A total of 110 four- and five-year-olds (mean 
age = 57 months; 58 girls) participated in the experiment: 37 
in the congruent condition, 37 in the competition condition, 
and 36 in the baseline condition. Participants were recruited 
from preschools and childcare centers in the Columbus, Ohio 
area. 
 
Procedure Participants completed a simple decision-making 
task that was framed as a computer game in which they asked 
alien creatures for candy (Figure 1). The task was a simplified 
version of a standard n-armed bandit task commonly used to 
study reward-based decision-making (e.g., Daw et al. 2006). 
The goal of the game was to earn as much candy as possible. 
On each of 100 trials, participants chose one out of the four 
creatures and received (virtual) candy for their choice. 
Selections were made using a touch screen. Each creature 
gave a set number of candies that was the same on every trial: 
One option was 10 candies, while the other three options were 
3, 2, and 1 candies respectively. The locations of the reward 
values were stable across the entire experiment but were 
randomly determined for each participant. Following the 

choice, the reward received for the choice was displayed for 
3 s (Figure 1B). Then a meter that tracked the total 
accumulated reward was updated. Children were given 
tangible rewards (stickers) for every 180 candies earned, with 
benchmarks on the meter indicating these goals. When a goal 
was reached, a congratulatory screen appeared telling the 
participant that they earned a sticker. It should be noted that, 
because outcomes were stable and predictable, low levels of 
exploration would usually be expected, but we have 
previously found high levels of systematic exploration in 
young children in this task (Blanco & Sloutsky, under 
review). 

Participants were assigned to one of three conditions: 
Congruent, Competition, and Baseline, with salience 
manipulated across the conditions. In the Baseline condition, 
all creatures were approximately equally salient, whereas in 
the Congruent and Competition conditions, salience of the 
creatures was unequal. Specifically, three of the four 
creatures were simple black and white stick figures, whereas 
one was colorful and perceptually rich. In addition, on each 
trial the salient image was a different novel creature (Figure 
1C). Fifty different images were used, so each image 
appeared twice during the experiment. In the Congruent 
condition, the salient option was mapped to the highest 
reward value (10 candies), whereas in the Competition 
condition, the salient option was mapped to the lowest reward 
value (1 candy).  

 
 

 
 

Figure 1: Trial structure. (A) After each choice, (B) the 
reward earned for the choice is presented for 3 s, (C) then 
the next trial begins. In the Congruent and Competition 

conditions one option is represented by a colorful image that 
changes on every trial, while the other three are represented 
by lower saliency images that remain stable across trials. In 
the Baseline condition, all four options are represented by 

stable images of equal saliency. 

A

B

C

CongruentBaseline Competition
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Results 
Choice Proportions Participants’ choices over the course of 
the experiment are presented in Figure 2. The analysis 
focused on the proportion of trials on which the highest 
valued option was chosen. The main purpose of this analysis 
was to assess the effect of saliency on performance across the 
three conditions. An ANOVA revealed a significant effect of 
condition, F(2, 107) = 15.40, p = 0.001, h2 = 0.22. Pairwise 
comparisons showed that participants in the Congruent 
condition (M = 0.53) chose the best option (i.e., the 10-candy 
option) significantly more often than participants in the 
Baseline condition (M = 0.28), t(71) = 4.40, p < 0.001, d = 
1.03, and the Competition condition (M = 0.30), t(72) = 3.93, 
p < 0.001, d = 0.91. Performance in the Competition 
condition was not different than in the Baseline condition, 
t(71) = 0.57, p = 0.569, d = 0.13.  

The proportion of trials in which the lowest valued option 
was chosen was also analyzed in order to assess the effect of 
saliency in the Competition condition. An ANOVA revealed 
a significant effect of condition, F(2, 107) = 5.24, p = 0.006, 
h2 = 0.09. But, pairwise tests revealed only that participants 
in the Congruent condition (M = 0.16) chose the lowest 
option less than both the Baseline (M = 0.23), t(71) = 3.22, p 
= 0.002, d = 0.75, and the Competition condition (M = 0.25), 
t(72) = 2.60, p = 0.011, d = 0.60. The Competition condition 
and the Baseline condition did not differ significantly, t(71) 
= 0.65, p = 0.516, d = 0.15. This pattern of results suggests 
that perceptual saliency facilitated reward optimization in the 
Congruent condition, but not through simple novelty-seeking 
since the salient option was not selected more frequently than 
Baseline in the Competition condition.  

 
Switch Proportions We also examined the proportion of 
trials on which participants switched responses, choosing a 
different option than on the previous trial (see Figure 3). In 
the Baseline we expected participants to switch often and do 
so systematically. This expectation is based on a previous 
study (Blanco & Sloutsky, under review) using a task similar 
to the Baseline condition. In that study, children tended to 
switch extremely often—consistent with highly elevated 
exploration levels. Systematicity in their switching was then 
established with subsequent computational modeling.  We, 
therefore, first analyze participants’ behavioral responses. In 
the next section, we report modeling results. 

An ANOVA on proportion of trials that participants 
switched responses revealed a significant effect of condition, 
F(2, 107) = 17.42, p < 0.001, h2 = 0.246. Most importantly, 
Children in the Congruent condition (M = 0.56), t(71) = 5.57, 
p < 0.001, d = 1.30 and in the Competition condition (M = 
0.77), t(71) = 3.22, p = 0.002, d = 0.75 exhibited substantially 
less switching than in the Baseline condition (M = 0.91). 
Additionally, children in the Competition condition switched 
more than those in the Congruent condition, t(72) = 3.04, p = 
0.003, d = 0.71. It is perhaps not surprising that children 
switched less in the Congruent condition compared to 
Baseline since they are often exploiting the best option, but it 

is surprising that switching is low in the Competition 
condition despite no increase in exploitation. 
 

 

 
 
Figure 2: Choice proportions. The proportion of trials on 

which each option was chosen is presented for blocks of 20 
trials. Compared to baseline, children in the congruent 

condition selected the highest valued option more 
frequently. Children in the competition condition selected 
the highest valued option less often that either the baseline 

or congruent conditions. Interestingly, children in the 
competition condition did not select the lowest valued 

option (which was salient in that condition) more often than 
in the other conditions where it was less salient. This 

suggests that pure novelty/saliency seeking did not drive 
children’s choices. Error bars reflect standard errors of the 

mean. 
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Figure 3: Response Switching. The proportion of trials on 
which participants made a switch response, choosing a 

different option than the previous trial, is presented. The 
pink shaded region represents 95% probability density of 

switch responses given random responding. Extreme switch 
proportions in the Baseline condition suggest elevated 
exploration levels. Switch proportions are less than the 

Baseline in both Saliency conditions. Dots represent 
individual participants. 

 

Computational Modeling 
In order to better understand children’s choice strategies, 

and to examine the effect of the saliency manipulation of 
directed exploration, participants’ choices were evaluated in 
relation to a Reinforcement Learning model (Sutton & Barto, 
1998) that included the potential for both systematic (or 
directed) and random exploration. The model learned the 
reward values by updating expected values for each option 
based on the prediction error using the following equation: 

 
𝑉",$%& = 	𝑉",$ + 	𝛼 𝑅",$ − 	𝑉",$  

 
where Vi,t  is the expected value of option i on trial t, Ri,t is the 
reward is the reward on trial t earned for choosing option i, 
and  a is the learning rate (a free parameter). It then made 
choices according to the following function: 

 

𝑃 𝑎",$ = 	
𝑒0∗[34,5∗ &6f %74,5∗f]

𝑒0∗[39,5∗ &6f %79,5∗f]:
;<&

 

 
where P(ai,t) is the probability of choosing option i on trial t. 
Li,t is the lag term—a proxy for uncertainty—that simply 
encodes the number of trials since option i was last chosen. 

 f is the weight parameter mediating the relative extent to 
which the expected values and lags influence choices and is 
constrained to be between 0 and 1, inclusive. Greater values 
of f indicate greater influence of systematic exploration. 
When f is 0, the model chooses based only on expected 
value; when f  is 1 it chooses only based on the lag. b is the 
inverse temperature parameter that controls random 
exploration. At b = 0 choice probabilities become completely 
random (i.e. equal between all options irrespective of value 
or lag), and as b approaches infinity the model chooses the 
most favorable option (based on the weighted combination of 
expected value and lag described above) on every trial. Both 
b and f were free parameters.  

This model is similar to the ‘exploration bonus’ models 
used in some previous studies (Daw et al. 2006; Kakade & 
Dayan, 2002), but with lag as a proxy for uncertainty and with 
slightly different parameterization. The model was fit to each 
individual participant by finding the set of parameters that 
maximized the likelihood of producing the participant’s data 
given the model. 

The full model described above was first compared to a 
simplified model that did not include systematic exploration, 
where f was set equal to 0. In the simplified model choice 
probabilities reduce to a standard Softmax choice rule (Sutton 
& Barto, 1998) on expected reward value: 

 

𝑃 𝑎",$ = 	
𝑒0∗34,5

𝑒0∗39,5:
;<&

 

The Aikaike Information Criterion (AIC) was used to 
determine best-fitting model for each participant (Akaike, 
1974). A large majority of children in the Baseline (31 out of 
36) condition were better fit by the full model that included 
systematic exploration, while only about half of children 
were better fit by the full model in both the Congruent (18 out 
of 37) and Competition (20 out of 37) conditions. A chi-
squared test confirmed that these proportions were different, 
C2 (2; N = 110) = 12.75, p = 0.002. 

The best-fitting parameter values were also compared 
between the three different conditions (see Figure 4 for 
distribution of parameter values across the conditions). 
Because data in Figure 4 suggest that the best-fitting 
parameter values were not normally distributed, we report 
median values (see Table 1) and compare groups using 
Wilcoxon rank sum tests. Best-fitting f  parameter (reflecting 
systematic exploration) was significantly lower in the 
Congruent, W = 1044, p < 0.001 and the Competition 
conditions, W = 886, p = 0.015 than in the Baseline condition. 
The Congruent and Competition conditions did not differ in 
best-fitting f value, W = 606, p = 0.401. The b parameter was 
lower in the Competition condition compared to both the 
Baseline, W = 935, p = 0.002, and the Congruent conditions, 
W = 906, p = 0.016. The Baseline and Congruent conditions 
were not different, W = 743, p = 0.400.  

The high values of f in the Baseline condition suggest a 
large influence of systematic exploration on participants’ 
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choices, while the substantially lower values of f in both the 
Congruent and Competition conditions suggest much lower 
levels of systematic exploration in these two conditions. 
While the choice proportions suggest that in the Congruent 
condition systematic exploration was largely replaced with 
reward maximizing choices (i.e. exploitation), in the 
Competition condition the low value of b suggests a greater 
amount of random exploration in that condition. Importantly, 
the salience manipulation dramatically decreased systematic 
exploration in the Congruent and Competition conditions 
compared to the Baseline, although this reduction was 
achieved by different mechanism – through increased 
exploitation in the Congruent condition and through 
increased random explorations in the Competition condition. 
These results suggest a direct link between attention and 
exploratory behavior early in development. 

 
 

Table 1: Median best-fitting parameter values (with 
standard deviations in parentheses) 

 
 Baseline Competition Congruent 
f 0.701 0.213 (0.40) 0.045 (0.31) 
b 1.348 (6.1) 0.367 (12) 0.680 (876)* 

*Note: While the medians suggest most values were small, b has no 
upper limit, and infrequent large outliers (which are consistent with 
reward maximization) result in large standard deviations. This large 
value is mainly due to two such outliers, without which the standard 
deviation of the remaining sample is 12. 

 

Discussion 
In this study, we examined the effects of an attentional 
manipulation on young children’s choices and exploratory 
behavior. The goal of the current study was to examine the 
link between systematic exploration and attention by 
manipulating attention and observing effects of such 
manipulation on systematic exploration. The reported results 
suggest that attentional manipulation (i.e., exogenously 
capturing attention through large differences in salience) 
decreased the level of systematic exploration that young 
children exhibited in the Baseline condition.  

In addition, children’s choices did not indicate that they 
were simply salience-seeking in their choice strategy. Instead 
the effect of saliency was dependent on whether or not it was 
congruent with or in competition with reward maximization. 
When the salient option was also highly valuable, children 
chose that option more often than in the other conditions. But, 
when the salient option was low in value, it was not chosen 
any more often than in the other conditions. This interaction 
suggests a complex role of attention in determining young 
children’s choices.  

Together these results suggest that attentional mechanisms 
are a major determinant of exploratory behavior in young 
children. When saliency and/or novelty are otherwise equal, 
systematic exploration dominates choices (as in the Baseline 
condition), with options that were less recently sampled being 

more likely to be selected. A manipulation affecting bottom-
up attentional seems to disrupt this process, leading to a 
reduction in systematic exploration. Once disrupted, if the 
salient stimulus signals a rewarding option, it can act as a cue 
that facilitates reward learning.  

These results point to an integral role of attentional 
mechanisms in systematic exploratory behavior in young 
children, in contrast to the top-down PFC mediated processes 
involved in systematic exploration in adults. Despite PFC 
being immature, young children’s tendency to distribute 
attention seems to support systematic exploration. 
Attentional mechanisms and exploratory decision-making 
may be part of a larger general pattern in young children in 
which their cognition and behavior are specifically tuned to 
facilitate broad information gathering—something that is 
particularly critical early in life. 

 
 

 
Figure 4: Best-fitting f parameter. Histograms of the best-
fitting f parameter for each group are presented. Both 

saliency conditions have a large proportion of participants 
with very low values of f, indicating little systematic 
exploration, while the Baseline condition has a larger 

proportion of participants with high values of f, indicating 
greater systematic exploration. 

 

1375



Acknowledgments 
This research was supported by National Institutes of Health 
Grants R01HD078545 and P01HD080679 to V. M. Sloutsky.  

References  
Akaike, H. (1974). A new look at the statistical model 

identification. IEEE transactions on automatic 
control, 19(6), 716-723. 

Badre, D., Doll, B. B., Long, N. M., & Frank, M. J. (2012). 
Rostrolateral prefrontal cortex and individual differences 
in uncertainty-driven exploration. Neuron, 73(3), 595-607. 

Blair, M. R., Watson, M. R., & Meier, K. M. (2009). Errors, 
efficiency, and the interplay between attention and 
category learning. Cognition, 112(2), 330-336. 

Blanco, N. J., Love, B. C., Cooper, J. A., McGeary, J. E., 
Knopik, V. S., & Maddox, W. T. (2015). A frontal 
dopamine system for reflective exploratory 
behavior. Neurobiology of learning and memory, 123, 84-
91. 

Blanco & Sloutsky (under review). Advantages of 
developmental limitations: Exploration dominates choices 
in young children. 

Blanco & Sloutsky (under review). Adaptive Flexibility in 
Category Learning? Young Children Exhibit Smaller Costs 
of Selective Attention than Adults. 

Chong, S. C., & Treisman, A. (2005). Attentional spread in 
the statistical processing of visual displays. Perception & 
Psychophysics, 67, 1–13. 

Daw, N. D., O'doherty, J. P., Dayan, P., Seymour, B., & 
Dolan, R. J. (2006). Cortical substrates for exploratory 
decisions in humans. Nature, 441(7095), 876-879. 

Deng, W. S., & Sloutsky, V. M. (2015). The development of 
categorization: Effects of classification and inference 
training on category representation. Developmental 
Psychology, 51(3), 392-405. 

Deng, W. S., & Sloutsky, V. M. (2016). Selective attention, 
diffused attention, and the development of 
categorization. Cognitive Psychology, 91, 24-62. 

Frank, M.J., Doll, B.B., Oas-Terpstra, J., & Moreno, F. 
(2009). Prefrontal and striatal dopaminergic genes predict 
individual differences in exploration and exploitation. 
Nature Neuroscience, 12, 1062–1068.  

Gottlieb, J. (2012). Attention, learning, and the value of 
information. Neuron, 76(2), 281-295. 

Kakade, S., & Dayan, P. (2002). Dopamine: Generalization 
and bonuses. Neural Networks, 15, 549–559.  

Konovalov, A., & Krajbich, I. (2016a). Gaze data reveal 
distinct choice processes underlying model-based and 
model-free reinforcement learning. Nature 
communications, 7. 

Knox, W. B., Otto, A. R., Stone, P., & Love, B. (2012). The 
nature of belief-directed exploratory choice in human 
decision-making. Frontiers in psychology, 2, 398. 

Otto, A. R., Knox, W. B., Markman, A. B., & Love, B. C. 
(2014). Physiological and behavioral signatures of 
reflective exploratory choice. Cognitive, Affective, & 
Behavioral Neuroscience, 14, 1167–1183.  

Plebanek, D. J., & Sloutsky, V. M. (2017). Costs of selective 
attention: when children notice what adults 
miss. Psychological Science, 28(6), 723-732. 

Rehder, B., & Hoffman, A. B. (2005). Eyetracking and 
selective attention in category learning. Cognitive 
Psychology, 51(1), 1-41.  

Smith, L. B., & Kemler, D. G. (1977). Developmental trends 
in free classification: Evidence for a new conceptualization 
of perceptual development. Journal of Experimental Child 
Psychology, 24(2), 279-298. 

Somerville, L. H., Sasse, S. F., Garrad, M. C., Drysdale, A. 
T., Abi Akar, N., Insel, C., & Wilson, R. C. (2017). 
Charting the expansion of strategic exploratory behavior 
during adolescence. Journal of experimental psychology: 
general, 146(2), 155. 

Sowell, E. R., Thompson, P. M., Holmes, C. J., Jernigan, T. 
L., & Toga, A. W. (1999). In vivo evidence for post-
adolescent brain maturation in frontal and striatal 
regions. Nature neuroscience, 2(10), 859-861. 

Sowell, E. R., Thompson, P. M., Leonard, C. M., Welcome, 
S. E., Kan, E., & Toga, A. W. (2004). Longitudinal 
mapping of cortical thickness and brain growth in normal 
children. Journal of Neuroscience, 24(38), 8223-8231. 

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: 
An introduction. Cambridge: MIT press. 

 
 

 

1376




