
UC Berkeley
UC Berkeley Previously Published Works

Title
Overconfidence in Probability Distributions: People Know They Don’t Know but They Don’t 
Know What to Do About It

Permalink
https://escholarship.org/uc/item/3dq9h1k9

Authors
Soll, Jack B
Palley, Asa
Klayman, Joshua
et al.

Publication Date
2023-05-31
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3dq9h1k9
https://escholarship.org/uc/item/3dq9h1k9#author
https://escholarship.org
http://www.cdlib.org/


Overconfidence in Probability Distributions: 

People know they don’t know but they don’t know what to do about it 

 

Jack B. Soll 

Fuqua School of Business, Duke University, Durham, NC 27708. jsoll@duke.edu 

Asa B. Palley 

Kelley School of Business, Indiana University, Bloomington, IN 47405. apalley@indiana.edu 

Joshua Klayman 

The University of Chicago Booth School of Business, Chicago, IL 60637. fjklayma@chicagobooth.edu 

Don A. Moore 

Haas School of Business, University of California, Berkeley, CA 94720. dmoore@haas.berkeley.edu 

 
 
 
Abstract:  Quantifying uncertainty in the form of a probability distribution is a critical step in many 

managerial decision problems. However, a large body of previous work has documented pervasive 

overconfidence in subjective probability distributions (SPDs). We develop new methods to analyze 

judgments about variables which entail both epistemic and aleatory uncertainty and, in three 

experiments, study the quality of people’s SPDs in such settings. We find that although SPDs roughly 

match the aleatory concentration of the real-world distributions, people’s judgments are consistently 

overconfident because they fail to spread out probability mass to account for their own epistemic 

uncertainty about the location and other properties of the distribution. Although people are aware of this 

lack of knowledge, they do not know how to appropriately incorporate it into their SPDs. Our results offer 

new insights into the causes of overconfidence in real-world judgment domains and shed light on 

potential ways to address this fundamental bias.  
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1. Introduction 
People are too confident in the accuracy of their beliefs. For example, 90% confidence intervals 

contain the truth as little as 50% of the time—implying that judges are surer of their knowledge than 

they deserve to be (for an early review, see Lichtenstein et al. 1982). We refer to this as overprecision, 

which is one of several different types of overconfidence (Moore and Healy 2008). Overprecision arises 

when judges concentrate too much probability around their favored answer relative to their accuracy, 

underestimating the probability that the truth may be much farther away. Over the past quarter 

century, many studies across disciplines such as psychology, decision theory, and finance have shown 

that subjective probability distributions are typically too narrow and exhibit overprecision (e.g., Juslin et 

al. 1999, Soll and Klayman 2004, Teigen and Jørgensen 2005, Budescu and Du 2007, Glaser and Weber 

2007, Jain et al. 2013). At the same time, Moore, Carter, and Yang (2015) find that, when there is a 

distribution of values in a population (e.g., possible outcomes of 500 plays of a gamble), subjective 

probability distributions are less concentrated than the true distribution of outcomes. In this paper, we 

present new methods that allow us to reconcile this apparent discrepancy. The results offer insight into 

the psychological processes that lead to overprecision. 

The most popular paradigm for studying overprecision asks people to estimate factual quantities 

about which they are unsure, such as the weight of a Boeing 787 or the year in which Mozart was born. 

These types of questions entail epistemic uncertainty—doubt in the judge’s mind about information that 

is, at least in principle, knowable. The uncertainty arises from the judge having only partial information. 

For example, the judge may know that Mozart was a classical composer, and that classical composers 

lived in the eighteenth or nineteenth centuries. In contrast, with chance devices such as random number 

generators, dice, and coin flips, the best anyone can do is to specify a probability distribution of 

potential outcomes. For instance, the probability of rolling 7 with a pair of standard dice is 6/36, and the 

probability of rolling 6, 7, or 8 is 16/36. This is aleatory uncertainty—a representation of an outcome as 

inherently unpredictable, but with a knowable distribution of probabilities across instances.  

The two types of uncertainty have been shown to correspond to different reasoning processes, 

by which people conceptualize an instance either as drawn from a class of events (aleatory) or as a 

unique and knowable event (epistemic) (Fox and Ülkümen 2011). For example, most people think of a 

coin flip as an exemplar belonging to a class of possible flips, in which there are two types of outcomes, 

equally likely. Uncertainty is aleatory because, from the perceiver’s point of view, either outcome can 

potentially occur. In principle, though, the outcome of a coin flip could be represented as a unique 

event, in which uncertainty is epistemic: It arises from a lack of knowledge of the precise physical forces 
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operating in the moment on that particular coin. In contrast, most people would consider Mozart’s birth 

date to be a unique instance. The uncertainty here is epistemic because it corresponds to an assessment 

of one’s degree of knowledge. People would likely ask themselves “How much do I know about 

Mozart?” as opposed to thinking about Mozart’s birth date as a random draw from the distribution of 

birth dates of classical composers. Different types of events may evoke thoughts of aleatory uncertainty, 

epistemic uncertainty, or both, depending on factors such as repeatability (e.g., Mozart can only be born 

once) and the recognition of the role of chance in producing outcomes (Nisbett et al. 1983).   

In a series of papers, Fox, Ülkümen, and their colleagues examine the distinction between 

aleatory and epistemic uncertainty (Fox and Ülkümen 2011; Tannenbaum et al., 2017; Ülkümen et al. 

2016). It is similar to the distinction between case-based reasoning, which involves thinking about the 

causal propensities and attributes of a specific target, and class-based reasoning in which people 

calculate relative frequencies or imagine a distribution of possibilities (Howell and Burnett 1978; 

Peterson and Pitz 1988; Kahneman and Tversky 1982; Gigerenzer 1994; Teigen 1994). There are, 

however, two additional features that make the aleatory-epistemic distinction especially well-suited to 

our purposes. First, epistemic versus aleatory uncertainty captures the distinction between an 

impression of one’s own lack of knowledge and an impression of randomness in the world. Second, a 

given judgment problem can include elements of each. It is not a dichotomy, but rather a continuum 

ranging from pure aleatory uncertainty (e.g., a game of chance) to pure epistemic uncertainty (e.g., a 

trivia question). 

Many important decisions involve both epistemic and aleatory uncertainty. How much to save 

for retirement depends on how long one will live. The decision to invest in a startup venture depends on 

the probability that the business will survive and its long term-profitability. Whether to undergo a 

complicated surgery depends on the likelihoods of different potential outcomes for the patient. An 

individual who needs to specify one of these probability distributions would do well to think about 

probabilities or relative frequencies within a reference class of similar events, which is an aleatory 

representation. For instance, when planning for retirement it is useful to know how long others like you 

have lived. When valuing a startup, it is helpful to know the three-year failure rate of similar 

entrepreneurial ventures. Yet there are important elements of epistemic uncertainty in these judgments 

as well, and individuals may have varying degrees of idiosyncratic knowledge about a particular variable. 

For example, a doctor judging the probabilities of different surgical results may combine specific 

information from a patient’s medical history with knowledge of the base rates of different outcomes. 

Epistemic uncertainty can also arise because the judge is uncertain about what the relevant probability 
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distribution is. The medical literature may offer limited or conflicting data about complication rates, 

leading to uncertainty in the doctor’s mind about the base rates of those outcomes. 

Studying beliefs about aleatory uncertainty necessitates having a distribution of possible 

answers against which to compare participants’ responses. Rather than focusing on purely aleatory 

events, we introduce an epistemic component by examining beliefs about everyday domains with which 

participants might be imperfectly familiar, such as commute times, housing values, and temperatures. 

These events all have an aleatory component—for example, it is natural to think of a distribution of 

home prices in Chicago. The epistemic component arises because an individual may not know the 

distribution for sure, but rather have an imperfect impression of it. This combination of aleatory and 

epistemic uncertainty contrasts with the kinds of uncertainty studied in most of the prior literature, 

where epistemic uncertainty predominates and there is no empirical distribution to compare to (to wit, 

unless we invoke parallel universes, there is no distribution of Mozart’s birth date). Furthermore, we 

introduce a novel methodology that takes advantage of this partition of uncertainty into aleatory and 

epistemic components, and affords an opportunity to gain new insights into the psychology that 

underlies overprecision in judgment.  

2. Two Standards for Subjective Probability Distributions 

In our studies, we ask people to estimate a distribution of probabilities for a member of a class 

of events, objects, or people. For example, we ask, “If we were to randomly choose one person from 

Philadelphia with a full-time job, what would be their average daily commute time?” A judge could 

believe that it is more likely to find a person who commutes between 20 and 30 minutes each way than 

one who commutes 0 to 10 minutes or 90 to 100 minutes, and so on. We are interested in the question 

of whether subjective probability distributions (SPDs) like this are, on average, the right shape. That is, 

are probabilities systematically overly concentrated in a few favored ranges (i.e., too narrow), too 

dispersed across many ranges (i.e., too wide), or about right? In making such comparisons, two different 

standards apply.   

When the researcher knows the true distribution of probabilities (as we do thanks to data from 

the U.S. Census Bureau) it is possible to compare the concentration of the reported subjective 

distribution to that of the empirical distribution. There is limited research on this topic, but two sets of 

studies suggest that subjective distributions could be more dispersed than the corresponding empirical 

distributions. Nisbett and Kunda (1985) asked one group of college students to report their own 

attitudes (e.g., opinion of Ronald Reagan as president) and behaviors (e.g., frequency of going to 

concerts) and another group to estimate the distribution of one hundred of their peers’ answers to 
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those same questions. They found that the standard deviations of the estimated distributions were on 

average about 10% greater than the empirical ones. Moore, Carter, and Yang (2015) compared 

subjective and objective distributions for the outcomes of various randomizing devices. For example, 

they used a Galton Board wherein a ball dropped from a slot at the top of the machine bounces over a 

series of staggered pegs to land in a bin at the bottom, producing a binomial distribution. Similar to the 

Nisbett and Kunda result, subjective distributions for the Galton board as well as other binomial 

distributions were more dispersed than the objective ones.  

Alternatively, we can compare the expressed probabilities of finding a member in a given range 

or set of ranges to the actual probability of finding a member in that range. That is, the judge might 

assign 25% probability to finding a commuter in the 20-30 range, when in fact only 15% of commuters 

fall in that range. As noted earlier, a large body of previous research is consistent in finding that 

subjective judgments tend to be overprecise. That is, judges tend to express too much confidence that 

the target estimate will fall within a given range. Using this standard with their randomizing devices, 

Moore, Carter, and Yang (2015) found that participants’ confidence intervals were too narrow. In other 

words, they observed that SPDs fell in between two standards—they were wider than the objective 

distribution, but not wide enough to be well calibrated. 

Moore et al. interpreted these results as paradoxical, but the difference can be understood in 

terms of aleatory and epistemic uncertainty. In judging subjective probabilities of a range of possible 

events, people should consider both. They should consider that, within a class of events, individuals vary 

along any given measure (e.g., people have different incomes), and they should also consider that they 

have less-than-perfect knowledge of what that distribution is. People may misestimate the extent to 

which exemplars are concentrated in a narrow range vs. spread across a wide range (e.g., the degree of 

income inequality in a given city). They may also misestimate the central tendency of the distribution 

(e.g., the median income in that city). This combination of aleatory and epistemic uncertainty means 

that, to be well-calibrated, a judge must provide a wider distribution than the one the U.S. Census 

Bureau knows (with minimal epistemic uncertainty). If judges respond to epistemic uncertainty, but 

insufficiently, they might very well provide SPDs that are wider than the empirical distribution, but too 

narrow to be well calibrated (for a related explanation, see Camilleri and Newell 2019). 

3. The Present Research 

 We introduce a new measure, concentration, by which to compare subjective probabilities to 

each of these two standards. Concentration, which we define formally in the next section, measures the 

extent to which probability mass piles up in one part of the spectrum of possible outcomes versus being 
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spread across possible answers. We say that a subjective distribution is sub-concentrated if it is less 

concentrated than the objective or empirical distribution. Super-concentration reflects greater 

concentration in the subjective than objective distribution. Roughly speaking, sub-concentration means 

that a judge’s SPD is more spread out across possible answers compared to the actual distribution of 

outcomes. 

We examine several explanations, not mutually exclusive, for how overprecision might emerge 

from how people perceive and combine aleatory and epistemic uncertainty. First, people may believe 

that distributions of outcomes in the world are more concentrated than they really are—their 

assessments of aleatory uncertainty are too narrow. Second, people may believe that they know the 

empirical distribution better than they really do—they perceive less epistemic uncertainty than they 

should in order to be well-calibrated. Consistent with this, many authors have argued or implied that 

overprecision is the direct result of respondents’ failure to appreciate or to admit how much they do not 

know. When Alpert and Raiffa (1982) documented the low hit rates of subjective confidence intervals, 

they implored their subjects, “For heaven’s sake, Spread Those Extreme Fractiles! Be honest with 

yourselves! Admit what you don’t know!” (p. 301, emphasis in original). This quote also captures a third 

explanation. Perhaps people do perceive and appreciate epistemic uncertainty, but don’t recognize that 

they should therefore “Spread Those Extreme Fractiles!”, or they do so insufficiently. 

Testing for these three explanations requires us to develop better methods to assess the 

concentration of SPDs. To do this, we combine methods from two distinct domains, overconfidence 

research and population economics. Research in subjective confidence often has asked for X% subjective 

confidence intervals. However, these provide limited information about the full distribution. An 

alternative is the SPIES (Subjective Probability Interval EstimateS) method (Haran, Moore, and 

Morewedge, 2010), in which people estimate probabilities for given intervals, rather than reporting the 

interval size corresponding to a fixed probability (see also Goldstein & Rothschild, 2014). The SPIES 

method permits researchers to elicit detailed probability distributions by asking participants to assign 

probabilities to a set of mutually exclusive and exhaustive outcome bins. Haran et al. (2010) show this 

method to produce better-calibrated subjective distributions, compared to earlier methods eliciting a 

single interval corresponding to a fixed probability. After eliciting distributions using the SPIES method, 

we repurpose a pair of well-established statistics used by population economists to measure the 

concentration of a resource across a population, namely the Lorenz curve and its numerical summary, 

the Gini coefficient (Gastwirth, 1972; Gini, 1912; Lorenz, 1905). We compare the concentration of SPDs 

with both the concentration of the real-world target distribution and the concentration needed to be 
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well-calibrated. Having a single measure by which to make both comparisons will allow us to distinguish 

among different potential explanations. 

4. Measures of concentration and calibration 

To analyze the results of our experiments we need appropriate measures of the concentration 

and calibration of an individual’s subjective distributions. The standard deviation of the subjective 

distribution might seem a straightforward measure of concentration. However, when judgments are 

grouped into categories, estimates of standard deviation depend heavily on assumptions about the 

distribution of values within categories, especially unbounded end-categories (“greater than __”, “less 

than __”), and on the shape of the distribution. The Lorenz curve and the Gini coefficient are well suited 

to measuring concentration when such details are not knowable. Whereas economists use the Lorenz 

curve to plot the degree to which a resource such as wealth is concentrated in a few hands or many, we 

use it to plot the degree to which a judge piles up probability mass in a few categories or many. 

In our studies, judges assess probabilities for each of a set of mutually exclusive and exhaustive 

ranges, or bins. To plot Lorenz curves, we subdivide the horizontal axis from 0 to 1 into equal fractional 

increments, with each increment adding another bin cumulatively. By definition, Lorenz curves always 

begin at (0, 0) and end at (1, 1).  Between those endpoints, the first increment in our plots represents 

the bin assigned the most probability, the first two increments represent the two bins assigned the most 

probability, and so on. The notation 3/5, for example, indicates the cumulative result for top three bins 

out of five. The vertical indicates the cumulative probabilities assigned to each subset of bins. We 

compare three different Lorenz curves and associated Gini measures, the details of which are best 

explained through an example. 

Figure 1 provides an example of Lorenz and Gini calculations for an individual who has provided 

probability judgments for the likely finishing time of an individual chosen at random from among all 

those who completed the 2016 Boston Marathon, which is the same as the distribution of finishing 

times. The individual’s responses appear in orange in the upper left panel. This judge estimated finishing 

times between 5:00 and 5:59 hours to be most likely, assigning a subjective probability of 0.38 to this 

event, and finishing times under 3:00 hours to be least likely, assigning this event a subjective 

probability of 0.05. 
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Figure 1. Subjective, empirical, and calibrated Lorenz curves for a hypothetical judge estimating the 
distribution of finishing times in the 2016 Boston Marathon.  
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The judge’s Lorenz curve, plotted in the top right panel, is constructed by successively 

cumulating the subjective probabilities of the ranges, starting with the one judged most likely (5:00 to 

5:59) and ending with the one judged least likely (< 3:00). The steepness of the judge’s curve represents 

the degree to which the judge believes that some ranges are more likely than others. In the least 

concentrated possible distribution, each bin is assigned equal probability and the curve follows the 

identity line from (0,0) to (1,1). The judge’s Gini coefficient is given by 𝐺"#$%&∗ = )
)*+

(2𝐽 − 1), where J is 

the area under the judge’s Lorenz curve and N is the number of events.1 𝐺"#$%&∗ 	equals 0 when each bin 

is assigned equal probability and equals 1 when all probability is assigned to a single bin. In the Boston 

Marathon example, N = 5 and J = 0.658, yielding 𝐺"#$%&∗ = 0.395. offers several advantages for our 

present purposes. First, it provides a pure measure of a distribution’s concentration independent of hit 

rates and accuracy. Second, by summarizing concentration into a single number in units of probability, 

Gini coefficients facilitate comparisons that speak directly to overprecision. Third, it is easy to compute 

with SPIES elicitations. 

Given data on the frequencies of each event, we can construct a Lorenz curve representing the 

observed distribution in the real-world data. This empirical Lorenz curve is generated by ordering the 

events from most to least likely according to their observed frequencies while cumulating these 

empirical probabilities. Letting E denote the area under this curve, the empirical Gini coefficient is given 

by 𝐺89:;<;=>?∗ = )
)*+

(2𝐸 − 1). The middle panel of Figure 1 displays the observed frequencies of 

finishing times in the 2016 Boston Marathon. Finishing times between 3:00 and 3:59 hours were most 

frequent, with 57.6% of runners falling into this bin. Finishing times over 6:00 hours were least frequent, 

with only 0.4% of runners falling into this bin. The corresponding empirical Lorenz curve is constructed 

by successively cumulating the observed event frequencies in decreasing order, yielding E = 0.776 and 

𝐺89:;<;=>?∗ = 0.689. The quantity 𝐺"#$%&∗ − 𝐺89:;<;=>?∗  provides a measure of the extent to which the 

judge’s SPD is more or less concentrated than the observed distribution of events. For this judge, this 

difference is −0.294, with the negative sign indicating that the judge’s SPD is sub-concentrated—less 

concentrated than the observed distribution of finishing times. 

Finally, we consider a third Lorenz curve, constructed by cumulating the empirical frequency of 

events that fall into each bin as they were ordered by the judge. This calibrated Lorenz curve, displayed 

                                                             
1 Note that we apply an adjustment, 𝐺∗ = )

)*+
𝐺, where G is the standard Gini.  This is needed in domains in which 

the population is smaller, such as concentration of market share among companies (e.g., Collins & Preston, 1961) 
and concentration of crime in particular neighborhoods (Bernasco & Steenbeek, 2017). This correction keeps the 
Gini always bounded by 0 and 1 (Deltas, 2003). 
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in the lower panel of Figure 1, depicts the confidence levels that would be assigned to each of the 

judge’s cumulative bins by an imaginary judge named Calibra2 who knows the empirical distribution 

perfectly. The associated Gini coefficient is 𝐺E>?;F<>∗ = )
)*+

(2𝐶 − 1), where C is the area under the 

calibrated Lorenz curve. Unlike the previous two measures, 𝐺E>?;F<>∗  can take negative values, ranging 

from -1 to 1. The probabilities in our example yield an area of C = 0.452 and 𝐺E>?;F<>∗ = −0.121. The 

quantity 𝐺"#$%&∗ − 𝐺E>?;F<>∗  provides a measure of the difference between the confidence the judge 

expressed in their subjective judgments and the level of confidence they were entitled to hold given the 

event order they had expressed. A positive difference indicates overprecision, meaning that the implied 

confidence intervals generated by sets of events that the judge deemed most likely were too narrow. 

For this judge, 𝐺"#$%&∗ − 𝐺E>?;F<>∗ = 0.516. 

Comparing subjective, empirical, and calibrated Gini coefficients corresponds to, and extends, 

other well-established measures of overconfidence. For example, we can use these differences to 

calculate a measure of global overprecision, representing the difference between the judge’s subjective 

probabilities and the empirical probabilities, averaged over the judge’s top 1, top 2, …, and top N - 1 

cumulated categories. In the Boston Marathon example, overprecision for the judge’s top category is 

0.380 – 0.078 = 0.302, for the top two categories is 0.630 – 0.365 = 0.265, and so on. If we average the 

four results for overprecision calculated in this manner, we find that global overprecision equals 0.258. 

More directly, global overprecision can be equivalently calculated according to H𝐺"#$%&∗ − 𝐺E>?;F<>∗ I/2. 

These measures can be used across a variety of variable types (e.g., binary, continuous, multiple 

choice, ordinal) and elicitation formats. One caveat most be noted, however: The Lorenz curves can vary 

depending on the number of ranges used to divide up a continuous scale, and on where the “greater 

than ___” and “less than ___” end-categories begin. In the studies that follow, we mitigate this concern 

by comparing coefficients from comparable partitions and by using pre-existing, externally determined 

partitions when possible. 

5. Experiment 1 

Our first experiment had two main goals: The first goal was to test the generality of the finding 

by Moore, Carter, and Yang (2015) that judges’ subjective probabilities are less concentrated than the 

empirical distribution, but more concentrated than necessary for good calibration. The second goal was 

to test whether this pattern can be understood as a directionally correct, but insufficient, response to 

                                                             
2 The legend of Calibra was told by Soll and Klayman (2004). 
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epistemic uncertainty about the empirical distribution. Pre-registration materials for all of our 

experiments are available at https://osf.io/dt7cq. For Experiment 1 we pre-registered four hypotheses:   

• H1: 𝐺"#$%&∗ < 𝐺89:;<;=>?∗ . As observed in the Nisbett and Kunda (1985) and Moore et al. (2015) 

studies, SPDs are less concentrated than the empirical probability distribution.  

• H2: 𝐺"#$%&∗  is higher when epistemic uncertainty is lower. SPDs are more concentrated when 

judges have more information about the objective distribution (e.g., its median or mode). 

• H3: 𝐺"#$%&∗ > 𝐺E>?;F<>∗ . Based on the well-established finding of pervasive overprecision, SPDs 

are more concentrated than they would need to be for good calibration. 

We hypothesized this pattern because we expected judges to respond to epistemic uncertainty in 

the directionally-correct way, by widening their SPDs in comparison to the empirical (H1 and H2), but 

they do that insufficiently, leaving them with SPDs that are still not wide enough to be well calibrated 

(H3). For many versions of “insufficiently,” we would expect the gap between 𝐺E>?;F<>∗ 	and 𝐺"#$%&∗  to be 

bigger when the gap between 𝐺E>?;F<>∗  and 𝐺89:;<;=>?∗  is bigger. Thus: 

• H4: Overprecision, measured by 𝐺"#$%&∗ − 𝐺E>?;F<>∗ , is larger the greater the mismatch between 

the empirical distribution and the well-calibrated one, as measured by 𝐺89:;<;=>?∗ − 𝐺E>?;F<>∗ .   

To understand H4, note that for a randomly chosen stimulus it must be the case that 𝐺E>?;F<>∗  	≤ 

𝐺89:;<;=>?∗ . A person with perfect knowledge of the empirical distribution would simply report that same 

distribution, so a judge with less knowledge would need to be less concentrated than that in order to be 

well-calibrated. The gap between 𝐺E>?;F<>∗  and 𝐺89:;<;=>?∗  therefore measures how well one knows the 

empirical distribution, and H4 posits that those who have less knowledge about the distribution are 

more overprecise. This is a version of the hard-easy effect in the overconfidence literature (Klayman et 

al. 1999), which says that lesser knowledge (i.e., harder questions) corresponds to greater 

overconfidence.  

Because we were concerned about participants’ understanding of stochastic devices like the 

Galton Board used by Moore, Carter, and Yang (2015), we drew questions from five diverse domains of 

everyday knowledge. We approximated a representative sample of questions by selecting items 

randomly from well-defined populations in each domain. For example, one of the questions asked about 

the income of a randomly drawn household from a given city, selected at random from the 40 large U.S. 

cities in the Census Bureau dataset. We did this to reduce concerns that observed overconfidence could 

be attributable to the over-representation of tricky “contrary” questions—ones for which usually-valid 

information or intuition points to an incorrect answer (Klayman et al. 1999). 
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We introduced an experimental manipulation of epistemic uncertainty by telling some 

participants the medians of the population distributions (e.g., the median household income in 

Cleveland). We assume that this information reduces epistemic uncertainty, because one source of 

epistemic uncertainty is not knowing where to locate the distribution (and being aware of that). If 

people respond appropriately to epistemic uncertainty, their probability distributions should be more 

concentrated when they know the median than when they do not. 

5.1  Methods 

5.1.1. Participants. Based on a pre-registered power analysis, we aimed to recruit a sample size 

of 600 participants from Amazon Mechanical Turk, split evenly between two conditions. Of the 973 

people who began the online survey, 324 failed to successfully complete the training, either by dropping 

out before completing the training and being assigned to a condition (127) or by completing the training 

but failing to meet the criterion for passing (197). Another 55 passed the training but failed to complete 

the study. Of the 252 excluded after completing training (197 + 55), 138 were in the provide-median 

condition and 114 in the no-median condition. This left a final sample of 594. Participants received a 

base payment of $0.50 and an average bonus of $0.55 for accuracy.   

5.1.2. Materials. Figure 2 shows what participants saw.  They reported their subjective 

likelihoods by adjusting the slider bars, which did not need to add up to 100. Rather, participants 

adjusted the bars to indicate the relative chances of an observation being in that category (e.g., a bar 

three times as long means that it is three times as likely). We normalized reported distributions by 

dividing each bin’s assigned likelihood by the total across all bins.  

For each domain, the spectrum of possible answers was divided into a modest number of 

response categories, as with the eight categories shown in Figure 3. As we noted earlier, Gini 

coefficients can be sensitive to the widths and number of categories. Accordingly, the number of 

categories in each domain was held constant.  Four of the domains use the 7 to 12 categories by which 

the U.S. Census Bureau reported data from the American Community Survey; for the fifth domain, 

average daily high temperatures, we defined categories in increments of 10 from 0 to 100 Fahrenheit, 

with end-ranges of “less than or equal to 0” and “greater than 100.”  
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Figure 2. Example question with responses from Experiment 1. 

5.1.2. Procedure. A practice item taught participants how to use and interpret the slider bars. 

They then took a 3-item quiz to make sure that they understood that longer bars represented greater 

chances, that the relative lengths of bars represented relative chances, and that the bars did not need to 

sum to 100. Participants had two tries to correctly answer each question, and had to answer all three 

questions correctly in order to be included in the analysis. In addition, participants who were provided 

with medians received a brief explanation of the median and a quiz question to test their understanding. 

However, to ensure that we could generalize the sample in each condition to the same population of 

participants, we did not exclude any participants based on this question. Exclusions left 310 participants 

in the experimental condition in which we provided them with medians and 284 in the control 

condition. 

Participants next learned that they could maximize their expected bonus payments by setting 

the bars to reflect their true beliefs. We told participants to “set the bars to reflect your true beliefs 

about the relative chances that a random observation will fall in each category. The more accurate your 

responses, the higher your bonus will be.” We did not provide them with the details of the payoff 
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formula.3  After the instructions and comprehension questions, participants saw one question from each 

of the five domains, presented in random order. For each question, and separately for each participant, 

a new city was randomly selected from all cities in the database, with the constraint that no city would 

be duplicated across the five questions. At the conclusion of the study, participants were debriefed and 

informed that we would deliver base payments within 24 hours and bonuses within one week. 

5.2 Results  

For each question provided to each participant, we calculated three Gini coefficients: 

𝐺"#$%&∗ ,	𝐺89:;<;=>?∗ , and 𝐺E>?;F<>∗ . The means of these coefficients are presented in Table 1 and the 

results of planned analyses are shown in Table 2. The corresponding Lorenz curves (averaged across 

judges) appear in Figure 3. We hypothesized that judges’ SPDs would be less concentrated than the 

corresponding empirical distributions (H1), but more concentrated than a well-calibrated judge’s would 

be (H3). As shown in Tables 1 and 2, only the latter prediction is borne out. Global overprecision (the 

difference between 𝐺"#$%&∗
  and 𝐺E>?;F<>∗  divided by 2) averages 0.10. This means that, averaging across 

all of the nontrivial points on the Lorenz curves (i.e., the top category, the top two categories, …, and the 

top N-1 categories), participants reported confidence that averaged about 10 percentage points higher 

than their accuracy. Moreover, the judges’ average Lorenz curves in Figure 3 lie entirely above the 

calibrated curves for every domain. This means that participants overestimated the probability at every 

level of cumulation—they overestimated the chance of finding an instance in what they thought was the 

most-likely category, the two most likely, and so on, for each domain. Contrary to prediction, though, 

SPDs were also slightly more concentrated than the empirical distributions, rather than less. However, 

the average difference between 𝐺"#$%&∗
 and 𝐺89:;<;=>?∗  is small (.031), and 𝐺"#$%&∗ > 𝐺89:;<;=>?∗  in only 

three of the five domains—commutes, education, and incomes. This is apparent in Figure 3, where for 

those three domains the judge’s Lorenz curve sits entirely above the empirical curve.   

 

                                                             
3 Bonus payments were calculated for each question using an incentive-compatible extension of the 
widely-used Brier (1950) score. For each of the N categories c available for the question, we calculated 
the quadratic score the judge would receive if a randomly-chosen instance were to fall in that category: 
𝐵= = ∑ (𝑰;= − �̂�;)S)

;T+ , where �̂�;  is the probability the participant assigned to category i and the indicator 
𝑰;=  equals 1 when i = c and 0 otherwise. We then multiplied the quadratic score for each category c by 
the empirical probability 𝑝=  that a randomly-chosen member of the population would in fact fall in that 
category and summed those products to arrive at an average score for that question: 𝐸𝐵 = ∑ 𝑝=𝐵=)

=T+ . 
The bonus earned was 20(1 − 𝐸𝐵) cents for each question. 
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Table 1. Gini coefficients in Experiment 1. 

Domain 𝐺"#$%&∗  𝐺89:;<;=>?∗  𝐺E>?;F<>∗  
Medians not Provided (n = 310)  

Commutes 0.367 0.309 0.088 
Education 0.411 0.346 0.161 

Home Prices 0.473 0.476 0.243 
Incomes 0.418 0.282 0.187 

Temperatures 0.514 0.600 0.380 
Mean 0.437 0.403 0.212 

    

Medians Provided (n = 284)   

Commutes 0.386 0.311 0.161 
Education 0.394 0.344 0.172 

Home Prices 0.464 0.488 0.340 
Incomes 0.401 0.282 0.198 

Temperatures 0.520 0.603 0.461 
Mean 0.433 0.406 0.266 

  Overall Mean 
Grand mean 

0.435 0.404 0.238  
 

Table 2.  ANOVA results for differences in concentration and precision in Experiment 1.  

  
𝐺"#$%&∗ − 𝐺E>?;F<>∗  

   

Effect effect df 
adjusted 
effect df error df 

adjusted 
error df F Sig. 

Partial Eta 
Squared 

a. Mean 1  592  1794.412 <.001 .752 

b. Domain 4 3.130 2368 1852.8 66.491 <.001 .101 

c. Information 1  592  41.286 <.001 .065 

d. Domain x Information 4 3.130 2368 1852.8 5.077 <.001 .009 

  
𝐺"#$%&∗ − 𝐺89:;<;=>?∗  

   

Effect effect df 
adjusted 
effect df error df 

adjusted 
error df F Sig. 

Partial Eta 
Squared 

e. Mean 1  592  58.580 <.001 .090 

f. Domain 4 3.613 2368 2138.9 257.001 <.001 .303 

g. Information 1  592  0.649 .421 .001 

h. Domain x Information 4 3.613 2368 2138.9 2.464 .049 .004 

Note:  Adjusted degrees of freedom reflect the Greenhouse-Geisser correction for violations of sphericity; the 
resulting p-values, reported here, are slightly more conservative. 
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Figure 3. Lorenz Curves from Experiment 1 

We also hypothesized that providing participants with the medians would lead to reduced 

epistemic uncertainty, which would manifest in more concentrated SPDs (higher values of 𝐺"#$%&∗ ).  

However, as shown in Table 1, 𝐺"#$%&∗  was nearly the same when participants were told the median and 

when they were not. At the same time, providing the median produced higher 𝐺E>?;F<>∗ .  That implies 

that providing the median did, in fact, reduce epistemic uncertainty: Judges who were given the median 

were more accurate in centering their reported distributions. Because judges with more information 

were more accurate but did not give more concentrated SPDs, they were better calibrated than their 

less-informed counterparts. 

We analyzed the Gini coefficients with two planned contrasts: 𝐺"#$%&∗ − 𝐺89:;<;=>?∗ , which tests 

how the concentrations of participants’ SPDs compare to the concentrations of the underlying empirical 

distributions, and 𝐺"#$%&∗ − 𝐺E>?;F<>∗ , which tests how the SPDs compare to their corresponding well-

calibrated distributions. We analyzed each of these contrasts using a 5 (domain) x 2 (information 

condition) repeated measures ANOVA, with domain being a within-participant variable and information 

condition between-participants, representing whether the participant learned the medians of the 

distributions. Results of the two analyses, shown in Table 2, confirm the patterns observed in Table 1: 
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a) Contrary to Hypothesis 1, judges’ distributions are slightly more concentrated than the 

empirical, although the difference between 𝐺"#$%&∗  and 𝐺89:;<;=>?∗  varies strongly across 

domains.  

b) Contrary to Hypothesis 2, providing the median had little effect on judges’ relative 

concentrations, with little variation across domains. 

c) In accord with Hypothesis 3, judges’ SPDs are substantially more concentrated than they should 

be to achieve good calibration, although the degree of overprecision varies with domain. 

d) In accord with Hypothesis 4, providing the median reduces overprecision, with some domain 

differences in the degree to which this is true. However, this is not because judges responded 

insufficiently to epistemic uncertainty. Rather, judges’ accuracy increased when given additional 

information while the concentration of their SPDs remained the same.  

5.3 Discussion  

In accord with much prior research, Experiment 1 shows that people are consistently 

overprecise, meaning their SPDs concentrate too much probability in too little of the spectrum. To be 

well calibrated, SPDs must be wider than the underlying empirical distribution, because they must 

reflect both the variability in the empirical distribution (aleatory uncertainty) and the likelihood of errors 

in estimating what that distribution is (epistemic uncertainty). Our results show that, across a variety of 

domains, SPDs are, on average, slightly narrower than their corresponding empirical distributions. More 

importantly, there are large differences among domains, suggesting that it is better to think of sub- or 

super-concentration as a characteristic of a specific domain of judgment rather than as any pervasive 

tendency.   

The experiment also sheds light on why SPDs are not sub-concentrated, as is necessary for good 

calibration. In the introduction, we posited three explanations: (a) On average, people might believe 

empirical distributions to be more concentrated than they really are; (b) people might be epistemically 

too certain–thinking they know more about the empirical distribution than they do; and (c) although 

epistemic uncertainty would demand that people widen their SPDs, people fail to do so. Our results are 

most consistent with the third explanation. On average, people are approximately unbiased in their 

impressions of how dispersed or concentrated outcomes are in the world; however, they do not 

understand that epistemic uncertainty means their SPDs should be wider than those impressions. Not 

only do participants give SPDs that are no wider than the empirical distribution, but when we 

manipulate epistemic uncertainty it has little or no effect on SPDs. That said, it is worth obtaining more 

direct evidence about whether people respond to epistemic uncertainty and, if so, how. People may 
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have intuitions about the effects of epistemic uncertainty that Experiment 1 failed to bring to mind, 

perhaps because the manipulation of epistemic uncertainty was between subjects. We designed 

Experiments 2 to make differences in epistemic uncertainty more salient and easier to apply.  

6. Experiment 2 

One reason why participants in our first experiment did not change their distributions in 

response to epistemic uncertainty may be that they did not think about it when assessing the 

distributions. In this study, we sought to increase the salience of epistemic uncertainty by varying, 

within subject, whether we provided the mode of the distribution. All participants estimated 

probabilities for a randomly selected exemplar drawn from each of six domains, in a procedure similar 

to that of Experiment 1. One group of participants was told the modal category for each of the six 

domains (mode-mode); another group was not given that information (nomode-nomode). A third group 

received the mode for the first three exemplars, but not for the last three (mode-nomode); a fourth 

group encountered the reverse pattern (nomode-mode). We predicted that losing or gaining information 

would make participants more aware of their state of knowledge following the change. Thus, if 

participants respond appropriately to epistemic uncertainty, but need to be prompted to think of it, an 

obvious change in available information should cue them to reduce the concentration of their subjective 

distributions when information is removed and to increase the concentration when information is 

added.  

For this study, we modified the materials of Experiment 1 in two ways intended to increase 

participants’ awareness to epistemic uncertainty. Instead of providing the median as in Experiment 1, 

we provided the mode as additional information. Arguably, the mode is more useful because it tells 

participants the most likely bin, whereas the median provides only a strong hint about which one it 

might be. Second, we asked participants for their “confidence” for each bin as opposed to for its 

“chances.” Because people associate the term “confidence” with epistemic uncertainty (Tannenbaum, 

Fox, and Ülkümen, 2017), specifically asking for this might prime participants to account for it. 

6.1 Method 

6.1.1. Participants. In this study, participants were assigned to a condition only if they 

successfully passed the training. Of the 1,166 participants from Amazon Mechanical Turk who began the 

online survey, 430 failed to successfully complete the training, either by dropping out (79) or by failing 

to meet the criterion for passing (351). Another 23 passed the training but failed to properly complete 

the study (7, 6, 6, and 4 in the mode-mode, mode-nomode, nomode-nomode, and nomode-mode 
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conditions, respectively). In accord with our pre-registered design, analyses included the first 2 qualified 

participants for each of the 84 unique stimulus sets in each of the 4 conditions, for a total sample of 672.  

6.1.2. Design. Experiment 2 had a 2 (Round) x 4 (Information Condition) mixed factorial design.  

Round was a within-subjects factor. There were two rounds, each with three domains. We 

systematically varied the order of the six different domains using a Latin Square. Each of the six 

orderings was duplicated seven times using a different set of randomly selected cities for the six 

domains,  subject to the restriction that each city appear 12 or 13 times and never twice in the same set. 

We then duplicated those 42 sets, interchanging the rounds (i.e., questions 1-3 became 4-6, and vice 

versa), creating 84 sets of 6 questions each. Information condition varied between subjects: Participants 

received information about the mode in Round 1 or did not, and received information about the mode 

in Round 2 or did not.   

6.1.3. Materials and Procedure. We drew questions from the five domains used in Experiment 

1, and added a sixth domain, the age of a randomly chosen individual in a selected city. Participants 

received similar training to those in Experiment 1. They were informed that they could maximize their 

bonus by setting the bars to reflect their true degree of confidence. Payments were incentive 

compatible; participants received a base payment of $0.75 and an average bonus of $0.67 for accuracy.  

Base payments were paid within 24 hours of completing the survey, and bonuses were paid within one 

week.   

At the beginning of Round 1 of questions, participants who received the mode were told, “For 

the first three items we will provide you with some helpful information. We will tell you the most 

common category for the given city. Please click below to go to the first item.” Between Rounds 1 and 2 

they were told either “For the next three items we will continue to tell you…” (mode-mode condition) or 

“For the next three items we will no longer provide you with the additional information. We will not tell 

you…” (mode-nomode condition). For participants who were not given the mode, Round 1 began with 

just the instruction, “Please click below to go to the first item.” Those in the nomode-nomode condition 

received no additional instruction at the start of Round 2. For those in the nomode-mode condition, 

Round 2 was introduced with the same instructions given at the beginning of the mode-mode condition, 

“For the next three items we will provide you with some helpful information….”.  
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Figure 4. Gini coefficients in Experiment 2. Filled bars display 𝐺"#$%&∗ , hollow bars display 𝐺E>?;F<>∗ . The 
solid horizontal line displays 𝐺89:;<;=>?∗ , which is constant across conditions because topics and cities 
were perfectly balanced. Purple bars with a solid border indicate responses with mode information 
provided to participants, gray bars with a patterned border indicate responses without mode 
information.  
 
Table 3. Repeated-measures ANOVA results for differences in concentration in Experiment 2  

𝐺"#$%&∗ − 𝐺89:;<;=>?∗  

Effect effect df error df F Sig. 
Partial Eta 
Squared 

Mean 1 668 290.58 <.001 .303 

Information condition 3 668 0.28 .842 .001 

Round 1 668 21.69 <.001 .031 

Round x Condition 3 668 0.81 .489 .004 

𝐺"#$%&∗ − 𝐺E>?;F<>∗  

Effect effect df error df F Sig. 
Partial Eta 
Squared 

Mean 1 668 2541.08 <.001 .792 

Information Condition 3 668 24.92 <.001 .101 

Round 1 668 8.91 .003 .013 

Round x Condition 3 668 22.34 .001 .091 
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6.2 Results  

As in Experiment 1, we calculated 𝐺"#$%&∗ , 𝐺89:;<;=>?∗ , and 𝐺E>?;F<>∗  for each participant’s 

responses in each domain. As before, we also analyzed two difference scores: 𝐺"#$%&∗ − 𝐺89:;<;=>?∗ , 

which compares the participant’s concentration to the empirical distribution, and 𝐺"#$%&∗ − 𝐺E>?;F<>∗ , 

which compares the judge’s concentration to the concentration needed for good calibration. For each 

measure, we averaged across the three domains in each round. The fact that the design was perfectly 

balanced meant that the average 𝐺89:;<;=>?∗  was 0.376 in all conditions and rounds. The average Gini 

coefficients are displayed in Figure 4 and the results of a repeated-measures ANOVA for differences in 

concentration are presented in Table 3. 

As in Experiment 1, participants were on average super-concentrated: 𝐺"#$%&∗ − 𝐺89:;<;=>?∗  was 

significantly positive (M = 0.026). As shown by the solid bars in Figure 4, participants were less 

concentrated in Round 2 than in Round 1, but there were no effects of information condition.    

Overall, participants were also overprecise: 𝐺"#$%&∗ − 𝐺E>?;F<>∗  was significantly positive (M = 

0.185). This effect varied by condition and round. As shown in Figure 4, these findings reflect a 

consistent effect: There is a small, but statistically significant, main effect of round because, as noted 

earlier, judges were more concentrated in Round 1 than Round 2, whereas 𝐺E>?;F<>∗  was virtually the 

same (.245 and .241, respectively). There is less overprecision when the mode was provided. This is 

represented by the Round x Condition interaction: The effect of round depended on the presence or 

absence of information in that round. We followed up on the interaction with separate comparisons of 

𝐺"#$%&∗ − 𝐺E>?;F<>∗ 	for each round. In both rounds, 𝐺"#$%&∗ − 𝐺E>?;F<>∗  was greater without the mode than 

with it (M = 0.230 vs. 0.159, t(670) = 7.29, p < .001, Cohen’s d = .562, in Round 1 and M = 0.220 vs. 

0.132, t(670) = 9.31, p < .001, Cohen’s d = .718,  in Round 2). 

6.3 Discussion 

 The overall results are consistent with those of Experiment 1. Participants’ distributions were 

more concentrated than the empirical distributions. At the same time, the calibrated distributions were 

much less concentrated than the empirical distributions, reflecting the fact that participants were 

imperfect in estimating the shape and location of the distribution across categories. Both of these 

factors contributed to overprecision. Unsurprisingly, provision of information improved accuracy as 

measured by the concentration of the calibrated distribution; participants were less overprecise with 

the mode than without it. However, there is no evidence in our results that participants incorporated 

uncertainty about the distribution by having less concentrated subjective distributions. Even a strong 
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hint in the form of previously available information being taken away did not have a measurable impact 

on their level of confidence. 

7. Experiment 3 

In our third experiment, we sought to address remaining explanations for why people fail to 

properly account for epistemic uncertainty. To be well calibrated, judges must provide SPDs that are 

wider than they believe the empirical distribution to be. That requires them to appreciate that (a) the 

SPD is, in principle, different from one’s best guess about the distribution, (b) the difference between 

them involves epistemic uncertainty, and (c) the appropriate response to epistemic uncertainty is to 

make SPDs wider. A failure on any of these three prerequisites could underlie judges’ failure to respond 

to epistemic uncertainty.  

In this experiment, we sought to make the distinction between judgments of probability and 

judgments of concentration as clear as we could. Rather than elicit the entire belief distribution, we 

asked participants to focus on the single most likely bin for a randomly selected exemplar (e.g., the most 

likely bin for the commute time of a randomly selected working adult in Austin, Texas). We asked one 

group of participants (the probability condition) to choose the category that they believed was most 

likely for the exemplar, and then to estimate the chances that the exemplar would be in the chosen 

category. As in our previous studies, this estimate should take into account both the aleatory 

uncertainty (what proportion of the population is in the most likely category) and empirical uncertainty 

(the probability that some other bin is in fact more likely). We asked another group (the concentration 

condition) to estimate the percentage of exemplars in the most common category, whichever category 

that happened to be. Participants do not need to account for uncertainty about which category is 

empirically the most likely when answering this question. If, for example, the judge‘s best guess is that 

40% of Austin commuters are in the most common category of commute times, she should answer 40% 

to this question, even if she is uncertain about which category is in fact most common.  

Note that the difference between these conditions makes a strong normative prediction. 

Reports in the probability condition should be lower than in the concentration condition. In the case of 

zero epistemic uncertainty—that is, when the respondent is absolutely certain they know the modal 

category—the two might be the same. But so long as there is any epistemic uncertainty, the probability 

reported in the probability condition must be lower than the probability reported in the concentration 

condition. This prediction depends on participants understanding the experimental instructions. As we 

explain in the next subsection, we took a number of additional steps to ensure that people understood 
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the questions as we intended. We sought to reduce, in so far as we could, the possibility that 

participants merely misunderstood what we were asking for.  

If participants do distinguish between probability and concentration questions, do they also 

recognize that epistemic uncertainty is relevant to the difference? We gave some participants an 

epistemic prompt. Specifically, we asked them how confident they were that they correctly chose the 

most common category (probability condition) or could correctly choose the most common category if 

asked to do so (concentration condition). If such a direct prompt has no effect on judgments of either 

probability or concentration, it would suggest that judges do not see epistemic uncertainty as relevant 

to either type of question. If the prompt does affect either type of judgment, then we can observe 

whether the difference resembles the normative difference. That will provide evidence on whether 

people have any valid intuition about how to respond to combinations of epistemic and aleatory 

uncertainty.  

7.1 Method 

7.1.1. Participants. Our pre-registered research plan (https://osf.io/7b6m5/) called for a sample 

size of 960 participants from the ROI Rocket – ClearVoice online research panel. For this study, we 

wanted to ensure, to the extent possible, that participants would understand the distinction between 

probability and concentration and be comfortable working with numerical information. All potential 

participants were advised in advance that they would have to pass a math quiz to continue to the main 

study. Only those who passed were randomly assigned to a condition; those who failed were shown 

their responses along with the correct answers and informed that they could not continue. About 60% 

of potential participants (1,682 out of 2,720) passed the test and were randomly assigned to a condition.  

An additional 131 participants in the concentration condition, and 140 in the probability condition, 

dropped out during the course of the study. Our pre-registered research plan set quotas for each cell (a 

unique stimulus-condition combination), so prior to analysis we randomly dropped participants in 

groups where quotas were surpassed until the cell size was as required. In addition to a standard base 

payment of $0.50 from the survey company, participants also received an average bonus of $0.87 for 

accuracy. Demographic information was available for 97% of the participants. Of these, 65% were 

female; their average age was 49.3 (S.D. = 11.8). 

7.1.2. Design. Each participant made probability estimate in response to six questions from the 

same set of domains and cities as in Experiment 2. Participants were evenly divided across the four 

between-subjects conditions in a 2 (estimate type: probability vs. concentration) x 2 (prompt: present 

vs. absent) design. Among those who received a prompt, half reported how confident they were that 
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that they had correctly chosen the most common category before they provided each estimate and half 

were asked after. Analyses that included the timing of the prompt showed no effects of that variable, so 

the analyses we report here collapse across the two timings.  

We created sets of questions using a Latin Square for the order of domains, and six different 

cities were randomly chosen for each order. We repeated this process 20 times using the same original 

square of domain orders but pairing with new groups of cities. This resulted in 120 unique sets of six 

questions; later, each participant would receive one of these sets. The total collection of 720 questions 

(120 sets times 6 questions per set) featured each of the 40 candidate cities in 18 of these sets, and no 

set included the same city more than once. 

7.1.3. Materials and procedures. The materials included screening questions, training 

questions, and estimate questions. The screening questions comprised five multiple-choice questions to 

assess numeracy (e.g., “Take 20% of 100, and then 50% of that. What do you get?”). Potential 

participants were required to answer at least four of five questions correctly. Those who did so received 

instructions appropriate to their condition, along with three questions to make sure that they 

understood the basic concepts of either probability or concentration and understood all the elements of 

the procedure. After answering each of these training questions, participants saw the correct answers 

alongside their own. (Consistent with our pre-registered research plan, participants were included in the 

sample regardless of their answers to these three questions.) Participants read that they should try to 

be as accurate as possible, and that they could earn up to an additional $0.20 cents for each of the three 

questions based on their accuracy.4 The screening and training questions are available in the 

supplemental materials (https://osf.io/dt7cq/). 

The estimate questions were like those used in Study 2, except that we reorganized the ranges 

of values in five of the six domains so that each question would have five total categories with three 

middle categories of equal width. For example, the ranges for commute times were < 15, 15-29, 30-44, 

45-59, and ≥ 60 minutes. These modifications served to simplify the task for participants and to make 

results for different questions more comparable. Since the education domain is categorical, we simply 

                                                             
4 Analogous to the payment scheme in Experiment 1, bonus payments were calculated for each question using an 
incentive-compatible extension of the Brier score. For each item, participants provided a probability judgment �̂� 
(for either the category they chose, or the most likely category, whichever category that happens to be, in the 
probability and concentration conditions, respectively). We used the true probability 𝑝 for that particular question 
to calculate an expected Brier score according to 𝐸𝐵 = 𝑝(1 − �̂�)S + (1 − 𝑝)�̂�S. The bonus earned was 20(1 −
𝐸𝐵) cents for each of the six items. 



Soll, Palley, Klayman, Moore: Overconfidence in probability distributions  25 
 

reduced the number of categories to five (e.g., two of the original categories were combined into “Did 

not complete high school”).  

In the concentration condition, the estimate questions took this form: “In Atlanta, Georgia, what 

is the percentage of adult workers in the most common category of commuting times, whichever 

category that happens to be?” (Emphases were included in the actual stimuli.) Participants responded 

by selecting one of 21 radio buttons labeled 0% to 100% in increments of 5%. Those who received a 

prompt for this question were asked this either before or after each concentration question: “How 

confident are you that you could correctly choose the most common category of commuting times in 

Atlanta, Georgia.” They responded by selecting one of five confidence levels, ranging from “Not at all 

confident” to “Extremely confident.” 

In the probability condition, estimates were elicited using a two-part question, such as, “In your 

judgment, which of the five commuting time categories is the most common one in Atlanta, Georgia?,” 

followed by, “We’re going to select a working adult in Atlanta, Georgia at random. What are the chances 

that this person was in the commuting time category that you chose?” They responded using the same 

0%-100% scale as in the concentration condition. Participants who received a prompt were also asked 

(either before or after the probability question), “How confident are you that you correctly chose the 

most common commuting time category in Atlanta, Georgia?” They responded on the same 5-point 

confidence scale as described previously. 

7.2 Results  

We begin with an analysis of estimates, either of probability or of concentration, depending on 

the condition. We analyzed the data with a mixed model, with estimate type (probability vs. 

concentration) and prompt (present vs. absent) as the between-subject factors, and domain as within-

subject factors. Results are shown in Table 4 and analyses in Table 5. If participants complied with 

Bayesian norms, estimates should be lower for probability than for concentration. We observe a small 

main effect of estimate type in that direction, but it is not statistically significant. If judges are more 

Bayesian when prompted to think of epistemic uncertainty, that will lead them to lower their estimates 

of probability, but not concentration. Thus, we would see a main effect of Prompt and an Estimate Type 

x Prompt interaction. We find no hint of either effect. Naturally, estimates differ from one domain to 

another. However, we did not predict the Type x Prompt interaction. For four of the five domains, 

assessments of concentration are slightly higher than assessments of probability; the reverse is true for 

the temperatures domain.  
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Table 4.  Assessed probability mass vs. actual, collapsed across prompt conditions 
  

 
Concentration Condition: 

Mass of Maximum Category  
Probability Condition 

Mass of Chosen Category 

Topic Reported Actual 
Sub/Super- 

concentration   Reported Actual 
Over- 

precision 

Ages 0.375 0.326 0.049  0.364 0.275 0.089 

Commutes 0.430 0.434 -0.004  0.412 0.257 0.155 

Education 0.426 0.297 0.128  0.409 0.247 0.161 

Home Prices 0.438 0.425 0.013  0.408 0.278 0.129 

Incomes 0.429 0.506 -0.077  0.404 0.281 0.124 

Temperatures 0.446 0.471 -0.025  0.461 0.344 0.117 

Mean 0.424 0.410 0.014   0.410 0.280 0.129 

 

 
Table 5. Repeated measures ANOVA results for Experiment 3 

Effect effect df 
adjusted 
effect df error df 

adjusted 
error df F Sig. 

Partial Eta 
Squared 

Mean 1  956  5555.37 <.001 .853 

Domain 5 4.667 4780 4461.7 36.68 <.001 .037 

Estimate Type 1    1.60 .201 .002 

Prompt 1  592  0.00 .956 <.001 

Type x Prompt 1    0.89 .346 .001 

Domain x Type 5 4.667 4780 4461.7 3.17 .009 .003 

Domain x Prompt 5 4.667 4780 4461.7 0.66 .644 .001 

Domain x Type x 
Prompt 5 4.667 4780 4461.7 0.22 .946 <.001 

Note.  Adjusted degrees of freedom reflect the Greenhouse-Geisser correction for violations of sphericity. 

 

Thus far, we have established that participants reported similar estimates on average regardless 

of whether they were evaluating concentration or probability. We next compare their estimates to the 

empirical distribution to determine their estimates’ accuracy (concentration condition) and calibration 

(probability condition). In the concentration condition, we looked at the difference between estimated 
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and empirical concentration in a mixed 2 (prompt) x 6 (domain) ANOVA model. As in Experiments 1 and 

2, there was a slight tendency toward super-concentration, M = .014, F(1, 478) = 3.19, p = .075, 𝜂WS  = 

0.007. Not surprisingly, the domains differed from one another, F(4.31, 2058) = 91.04, p < .001, 𝜂WS  = 

0.160.5 However, as shown in Table 5, the tendency toward super-concentration was driven almost 

entirely by the education domain. The prompt had no bearing on super-concentration, F(1, 478) = 0.39, 

p = .531, 𝜂WS  = 0.001, nor was there a Prompt x Domain interaction, F(4.31, 2058) = 0.41, p = .802, 𝜂WS  = 

0.001.   

Next, using the data from the probability condition, we examined overprecision, the difference 

between the estimated and empirical probability mass in the category chosen as most common. Overall, 

participants overestimated the probability in the chosen category by 0.129, significantly different from 

zero, F(1, 478) =238.01, p = .001, 𝜂WS  = 0.332. Domains differed from one another in overprecision, 

F(4.56, 2180) = 10.14, p <.001, 𝜂WS  = 0.021. The prompt had no main effect, F(1, 478) = 0.73, p = .393, 𝜂WS  

= 0.002, nor did it interact with domain, F(4.56, 2180) = .44, p = .807, 𝜂WS  = 0.001.  

It appears from these findings that prompting people to consider their epistemic uncertainty 

had no effect. However, these are the net results across judges with different levels of confidence. 

When we take into account the judge’s degree of confidence in correctly identifying the most common 

category, a different pattern emerges, shown in Figure 6. We performed a regression analysis on 

estimates with estimate type (concentration or probability), confidence, and domain as independent 

variables, along with the Estimate Type x Confidence interaction6. Estimates of concentration increased 

somewhat with greater confidence about which was the leading category, b = 0.024, S.E.  = .012, t(479) 

= 2.00, p = .046. Estimates of probability increased with confidence more so, b = 0.097, with a significant 

Type x Confidence interaction, S.E.  = .016, t(479) = 4.66, p < .001. 

                                                             
5 Fractional degrees of freedom reflect the Greenhouse-Geisser correction for violations of sphericity. 
6 Type was dummy coded with 0 = concentration, domain was effect-coded, and clustered standard errors were 
used to deal with the possible interdependence of multiple responses from a single participant.  
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Figure 6.  Relationships between confidence in identifying the most common category and estimates of 
(solid line) the probability of a randomly chosen item falling into the category believed most likely, or 
(dashed line) concentration, that is, the probability that a randomly chosen item falling in the most likely 
category, whichever category that is. Confidence in identifying the most likely category is not assessed in 
the no-prompt conditions (triangles).  
 

The results make clear that participants’ intuitions comply with normative prescriptions in two 

key respects: Their subjective probabilities are lower with greater epistemic uncertainty (i.e., with lower 

confidence about which is the most popular category, r = .336) and their estimates of the concentration 

are not sensitive to that variable. However, their intuitions are wrong in a way that explains the lack of 

overall difference between the two types of judgment. Judges violate the principle that the effect of 

epistemic uncertainty is unidirectional—probability judgments should only be lower than concentration 

judgments, or at most equal in the case of zero epistemic uncertainty. That is, the solid line should 

always be below the dashed line in Figure 6. Instead, a spotlight analysis shows that, although 

probability estimates were lower than concentration estimates when participants were “Slightly 

confident” (bcondition = -.068, t(479) = -4.62, p < .001) and “Not at all confident” about which is the leading 

category (bcondition = -.141, t(479) = -5.54, p < .001), the opposite was true when they were “Very 

               Probability with confidence prompt 

                Concentration with confidence prompt 

               Probability without prompt 

               Concentration without prompt 

Estimate 
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confident” (bcondition = .078, t(479) = 2.72 p = .007) and “Extremely confident” (bcondition = .151, t(479) = 

4.49, p = .001). When, in the probability condition, participants estimate the chance of finding an 

instance in their chosen category, their probability estimates are well calibrated with empirical 

probabilities only for those who are “not at all confident.” 

7.3 Discussion 

Experiment 3 provides further insight into where judges go wrong when epistemic and aleatory 

uncertainty combine. Subjective probability judgments should take into account both the aleatory 

distribution of possibilities in the population and one’s uncertainty about what that distribution is. The 

presence of any degree of epistemic uncertainty means the judge’s subjective probability of an event 

falling in the specific range believed to be most likely should be lower than the judge’s best guess about 

the proportion of the population that is contained in its most likely range, whichever that happens to be. 

We find that judges do take epistemic uncertainty into account when estimating the probability of an 

event, at least when its presence is brought to their attention. With high epistemic uncertainty (i.e., low 

confidence about the population distribution), judges’ subjective probabilities are indeed less 

concentrated than they believe the population to be. However, their intuitions about what to do about 

epistemic uncertainty seem to be wrong in one important respect. With high confidence (low epistemic 

uncertainty), judges’ probabilities are more concentrated than their beliefs about the population. 

Intuitive judgments resemble an averaging of aleatory and epistemic uncertainty, rather than the 

unidirectional combination a statistician would prescribe. 

8. General Discussion 

Managers are regularly confronted with decision problems involving variables about which they 

have uncertainty. To make well-reasoned decisions, they must draw on their knowledge and beliefs 

about these variables to quantify the likelihood of different outcomes in the form of a subjective 

probability distribution. Often, this representation of lack of knowledge about the variable involves 

elements of both epistemic and aleatory uncertainty. 

Most prior work on subjective confidence has focused only on epistemic uncertainty. Typically, 

there is a unique correct value (e.g., the year in which Mozart was born) and the only uncertainty arises 

from the judge’s own lack of knowledge. However, people often face a second kind of uncertainty: 

aleatory, due to stochastic processes (e.g., how long it will take to get to work today). Many situations 

involve elements of both. Testing beliefs about aleatory uncertainty lay bare the distribution of 

outcomes and allow for tests of how precise or concentrated reported belief distributions are, relative 

to the true distribution of possible outcomes.  
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8.1 Empirical contributions 

Our work provides insight into how judges take account of epistemic and aleatory uncertainty in 

thinking about a distribution of possible occurrences. Judges have imperfect knowledge about the 

distribution of values within any class of items or events, be it commute times or temperatures or 

prices. Their best guesses about these distributions are never exactly the right shape and size, and in 

exactly the right location. And, of course, judges do not know exactly what their errors may be. These 

sources of epistemic uncertainty mean that they should not try to match their subjective probability 

distributions to the concentration of the empirical distributions. Rather, well-calibrated judges should 

spread out their SPDs to account for the range of possibilities for what the empirical distributions are.   

Moore, Carter, and Yang (2015) report that subjective probability distributions are less 

concentrated than the underlying empirical distributions, yet still too concentrated to be well-calibrated 

because they are placed, or centered, so badly. Our results suggest that, in general, people may be even 

further off the mark. Across a variety of more familiar domains, we found that SPDs were, on average, 

slightly more concentrated than the corresponding empirical distributions. This effect of super-

concentration is not consistent across domains, but the finding that judges’ SPDs are overprecise is quite 

robust in our data. 

We examine several different explanations for why this is the case. Across studies, we vary the 

level of epistemic uncertainty, sometimes very transparently, and we provide hints and cues to bring 

epistemic uncertainty to front of mind. None of those manipulations had any appreciable effect. It does 

not, however, appear to be the case that judges simply neglect to consider epistemic uncertainty. Yet if 

they are aware of it, why don’t they use their epistemic uncertainty to make their judgments of 

subjective probability less concentrated? Bayesian principles are notoriously unintuitive, so perhaps 

judges don’t know that epistemic uncertainty should affect estimates of distributions, or perhaps they 

don’t know how. Our final experiment favors the latter explanation. We find that judges do apply their 

sense of epistemic uncertainty to their subjective probabilities, but they have incorrect intuitions about 

how to do so. They spread out their SPDs in the presence of high epistemic uncertainty, but they 

concentrate them when epistemic uncertainty is low. Roughly speaking, judges seem to average 

different sources of uncertainty (aleatory and epistemic) rather than aggregating them (Soll 1999).  

This interpretation comports with Tannenbaum et al. (2017), who show that people map 

epistemic and aleatory uncertainty into the 0-1 probability scale differently. Pure epistemic uncertainty 

gets mapped into the full scale—people tend to use extreme judgments when they perceive that they 

have complete knowledge about a situation. In contrast, pure aleatory uncertainty gets mapped into 
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more moderate probabilities that reflect perceptions of randomness. Tannenbaum et al. suggest that 

people employ an intermediate mapping (i.e., an average) for situations that involve a mixture of 

epistemic and aleatory uncertainty. We believe that this mapping error, combined with a tendency to 

overestimate one’s knowledge about the distribution, is a major contributor toward overprecision. 

8.2 Methodological contributions 

We introduce a new method for characterizing the concentration of a probability distribution 

which allows a researcher to evaluate both (a) the concentration of a subjective distribution relative to 

the empirical distribution and (b) whether the subjective distribution is overprecise—too concentrated 

to achieve good calibration. These assessments rely on comparisons between three Gini coefficients, 

each of which measures the extent to which the probabilities from a particular distribution coalesce 

around a specific set of outcomes rather than being spread evenly across all outcomes. Comparisons of 

subjective, empirical, and calibrated Gini coefficients provide a novel viewpoint on the relationship 

between the concentration and calibration of a subjective distribution, offering insights into the causes 

of overprecision that are not available from existing metrics such as absolute deviations and interval hit 

rates. Furthermore, each Gini coefficient is measured in units of probability, thereby allowing for 

standardized comparisons across different distributions with different units, which facilitates analysis of 

judgments from a variety of domains. 

 8.1 Limitations and future directions 

Our online samples provided greater diversity and larger sample sizes than would be possible in 

a laboratory. However, as with any online sample, there is room to be concerned about both their 

numerical sophistication and their motivation to be accurate. We attempted to address concerns about 

participants’ numerical sophistication by screening participants with tests of numeracy. However, we 

cannot be certain that the screening ruled out all relevant misunderstandings of necessary numerical 

concepts. We attempted to motivate accuracy by providing monetary incentives that rewarded accurate 

responses. Although the size of these incentives was in line with recent norms for online participants, 

we cannot be certain that those modest monetary incentives were sufficient to insure strong accuracy 

motivation. It would be interesting to examine the possible effects of larger incentives and more training 

in mathematics and statistics. That said, we are interested in how probability judgments are made in the 

general population, with an ordinary range of skills and effort levels.  

Like much of the prior literature, our experiments utilize assessments of probability distributions 

(Experiments 1 and 2) and numerical probabilities (Experiment 3). It has long been established that 

ordinary people misunderstand numerical probabilities (e.g., Fischhoff, 1991), and it is unlikely that 



Soll, Palley, Klayman, Moore: Overconfidence in probability distributions  32 
 

many people naturally think of uncertainty in terms of probability distributions. Thus, the elicitation 

methods we, and many previous investigators, use are unfamiliar to participants. Given how many 

decisions in life, from investment to clothing choices, depend on understanding probability and hedging 

risks, important questions remain about whether behavioral measures of certainty, such as choices 

under risk, might reveal more accurate intuitions (Mamassian, 2008; Mannes & Moore, 2013), and 

whether domain experts familiar with assessing risk are susceptible to the same errors when combining 

aleatory and epistemic uncertainty. 

We have focused in this paper on the difficulty people have in combining aleatory and epistemic 

uncertainty. The distinction may also shed light on other findings in the overprecision literature, which 

future research should investigate. For example, there is less overprecision when participants learn by 

experience rather a description of events (Camilleri and Newell 2019), and when participants forecast 

future values (e.g., stock prices) based on time series as opposed to answering general knowledge 

questions (Budescu and Du 2007). In both cases, the direct observation of data is likely to favor an 

aleatory representation of the problem, which based on our findings should reduce but not eliminate 

overprecision. Future research might also investigate the implications for the accuracy-informativeness 

tradeoff (Yaniv and Foster 1995), which says that people avoid very wide confidence intervals because 

they are unhelpful to the listener (e.g., “90% confident that travel time is between 3 hours and 5 days”).  

Epistemic representations seem more flexible in assessing how much one knows, and are therefore 

more likely to favor informativeness over accuracy.   

8.3 Conclusions 

Our work touches on fundamental questions about how people know what they know. We find 

that people’s estimates about a range of possible outcomes are systematically different from what 

norms suggest. Their probability judgments are overprecise, meaning that people underestimate the 

magnitude of their errors (Soll and Klayman, 2004). Subjective probability distributions do not properly 

reflect the degree of (in)accuracy in the judge’s knowledge. We can easily imagine our participants 

objecting to our characterization of them. How could we expect them to know what they do not know? 

And yet, an appropriate level of confidence requires the application of exactly that kind of 

metacognition. How to do so is not at all obvious. Statistical reality demands that uncertainty in the 

placement of a distribution widen the distribution of possible outcomes, but this reality is not intuitively 

obvious to most people, at least not to our participants. And people are unlikely to get the kind of 

explicit, timely, and plentiful feedback needed to learn that fact through first-hand experience. Calibra, 

the perfectly calibrated judge, is imaginary precisely because the conditions permitting perfect 
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calibration are imaginary. As long as there are things people do not know, it will be difficult for them to 

fully take the lack of that unknown information into account when calibrating their confidence 

judgments. 

Overconfidence in subjective probability distributions poses a key challenge for managerial 

decision making. Our analysis of variables involving both epistemic and aleatory uncertainty reveals 

novel insights about why and how judges’ subjective probability distributions are overprecise. Future 

research should build on these findings to improve judgments about uncertain quantities. Identifying 

ways to reduce overconfidence remains a fundamental question, and we hope that our work inspires 

new approaches that are effective at overcoming this pervasive bias. 
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