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Abstract

The random effects model (REM) fit to repeated measures (RM)
data is an extremely common model and data structure in current bio-
statistical practice. Modern data analysis often involves the selection
of models within broad classes of pre-specified models, but for models
beyond the generalized linear model, few model selection tools have
been developed. In a Bayesian analysis, Bayes factors are the natu-
ral tool to use to explore these classes of models. In this paper we
develop a predictive approach for specifying the priors of a RM REM
with emphasis on selecting the fixed effects. The advantage of the
predictive approach is that a single predictive specification is used to
specify priors for all models considered. The methodology is applied
to a pediatric pain data analysis.

Key Words: Bayesian Data Analysis, Elicitation, Hierarchical Model, Pre-

diction, Variable Selection.



1 Introduction

Many longitudinal studies are designed to investigate changes over time in a
characteristic which is measured repeatedly for each study participant. For
example, in medical studies, measurements such as blood pressure, choles-
terol level, or lung volume may be taken on each individual at different time
points and possibly under changing experimental conditions. There has been
some recent literature on the development of statistical models for analyzing
such data. Perhaps the most common type of model for repeated measure-
ments is the random effects linear model introduced by Laird and Ware
(1982). An early Bayesian discussion on estimation for some random effects

models is given by Broemeling (1985, chapter 4).

A major issue in Bayesian model selection is the method of quantifica-
tion or elicitation of the prior input, that is, the specification of the prior
distributions. In this article, we present a Bayesian approach for model
selection in the random effects model. Recently, there have been several ar-
ticles addressing model selection from a Bayesian viewpoint. These include
Mitchell and Beauchamp (1988), George and McCulloch (1993), Gelfand
and Dey (1993), Ibrahim and Laud (1994), Laud and Ibrahim (1995, 1996),
George, McCulloch, and Tsay (1996), and Raftery (1993). For the logistic re-
gression model with normal random effects, Karim and Zeger (1992) suggest
a method similar to Aitken’s (1991) posterior bayes factors. The Bayesian
approach to model selection is straightforward in principle. One quantifies
the prior uncertainties via probabilities for each model under consideration,
specifies a prior distribution for the parameters in each model, and then

uses Bayes theorem to calculate posterior model probabilities. In addition



to the computational issues, there are other difficulties in carrying out such
a plan. Specifying meaningful prior distributions for the parameters in each
model is an arduous task requiring contextual interpretations of a large num-
ber of parameters. A need arises then to look for some useful, automated
specifications. Reference priors can be used in many situations to address
this. Often, however, they lead to ambiguous posterior probabilities, and
require problem-specific modifications such as those in Smith and Spiegel-
halter (1980). Recently, Berger and Pericchi (1996) have proposed a set of
measures they call “intrinsic Bayes factors” that provide a generic solution
to the ambiguity problem. However, reference priors exclude the use of any

real prior information one may have.

To overcome such difficulties, Ibrahim and Laud (1994), and Laud and
[brahim (1995, 1996) advocate priors based on observables for model se-
lection in the linear model by adapting the philosophy in Geisser (1993).
Specifying priors based on observables has been advocated by many includ-
ing Geisser (1971), Kadane (1980), Oman (1985), and Winkler (1980). The
prior specification proposed by Ibrahim and Laud (1994) and Laud and
[brahim (1995, 1996) begins by using all prior knowledge to elicit a prior
point prediction for the observable Y., denoted by pg, and a scalar ¢y which
quantifies the fraction of information in this guess relative to the informa-
tion to be collected in the rest of the experiment. Then, (o, o), along with
the covariate matrix X,, for model m, are used to specify an automated
parametric informative prior for the regression coefficients. There are sev-
eral ways of eliciting a prior prediction . For example, having previous
experience with such studies, the investigator may elicit o by using expert

opinion and/or case-specific information available for each of the n cases in



the current study. Also, if a previous study was conducted with the same or
similar covariates as the current study, the investigator may take uo to be
the raw data vector or the vector of fitted values from the previous study.
The motivation behind these specifications is that the investigator often has
prior information on the observables from expert opinion, case-specific in-
formation on the subjects in the current study, or from similar past studies
measuring the same covariates and response variables. This prior informa-
tion is often quantifiable in the form of a vector of prior predictions for the
response variables in the current study. This prior prediction then yields an
automated prior specification for the regression parameters arising from the
various models. As mentioned by Geisser (1993), it is often easier to think of
observables rather than parameters when specifying prior input since there
are so many parameters arising from the different models, and all have dif-
ferent physical meaning. Generally, we call a prior a predictive prior if it is
based on a (possibly point) prediction for the observables. In particular, the
prior distributions of Ibrahim and Laud (1994) and Laud and Ibrahim (1995,
1996) are predictive prior distributions.

Here, we adapt the approach of Ibrahim and Laud (1994) and Laud and
[brahim (1995, 1996) for specifying the predictive prior distributions for the
random effects model. Using the marginal likelihood as specified by Laird and
Ware (1982), we specify predictive prior distributions for the “fixed” effects.
Moreover, we also specify informative prior distributions for the variance
components arising in the marginal likelihood. The rest of the article is
organized as follows. In the next section, we briefly review the random effects
model, and describe the prior elicitation for it. In Section 3, we derive the

posterior and predictive distributions of interest, and discuss computational



techniques for these models. Section 4 gives a representative data analysis.

We conclude the article with a brief discussion.

2 Predictive Priors for The General Random
Effects Model

2.1 Model and Notation

Suppose we have n; observations on case i for 1 = 1,...,n; n is the number
of cases or subjects, while N = 3" | n; is the total number of observations.
Let o denote a p x 1 vector of unknown population parameters and X; be
a known n; x p matrix of covariates linking the i*" response Y; to a. We
call Y; a case and a single element of Y, an observation. In addition, let (3;
denote a ¢ x 1 vector of unknown random effects, and let Z; be a known
n; X g covariate matrix linking (3; to Y;. The general random effects model

for repeated measures can now be written as
Yi=Xia+Zj +¢ (2.1)

where ¢; ~ N, (0, R;), and N,(u,Y) denotes the p dimensional multivariate
normal distribution with mean g and covariance matrix . Here, R; is an
n; X n; positive definite matrix, which we assume to be of the form R; =
0%l throughout. Also, we assume that the random effects (3; are a priori
independent and identically distributed (iid) given the parameters (o2, D),
and 3; ~ N,(0,0%D), where D is a q X ¢ positive definite matrix.

Following Laird and Ware (1982), we integrate out the random effect
B; from (2.1) and work with the marginal likelihood of (2.1) for making



inferences. A straightforward calculation shows that
Yi [ a,0% D] ~ N, (Xia,0*V)

where

Vi=(I+7Z,DZ}) . (2.2)

Thus, the marginal likelihood for subject ¢ is given by

FYi [ a, 0, D) = (2m) 2|0 Vi 2 exp { (Vi = Xia) V7 (Vi — Xia) /207 } .

(2.3)
We assume that observation vectors for each case are independent. The
likelihood based on all observations is given by the product of (2.3) over i

running from 1 to n.

We specify a multivariate normal prior for [a | o2, D], which will have
hyperparameters similar to those of Ibrahim and Laud (1994). We will specify
independent priors for 02 and D. For o%, we will specify an inverse Gamma
distribution, and for D, we will specify either a Wishart or other convenient
priors as prior information requires. Letting m(-) be a generic prior density,

with different densities distinguished by their arguments, we have

m(a,0*, D) = 7w(a|o? D) n(c?) 7(D) .

Let M denote the model space and let m be a specific member in M.
Define Y = (Y{,...,Y))!, and let X,, = (X{ ..., X} )" denote the N x
P, matrix of covariates for the current experiment under model m. Define
T = diag(Z1 my -« oy Znm) as the N Xng,, block diagonal matrix of covariates

for the random effects. Under model m, let D,, be the covariance matrix



of the g, random effects, o2 1 is the covariance matrix of ¢, and V,, =
diag(Vimy ..., Viom), where each Vi, = (I + Zi7mDme7m). Finally, o™ is

the a vector under model m. Under model m, we have

{Y | m,al™, o2 D(m)} ~ NN(Xmoz(m),U;Vm) )

9 m 7

2.2 Prior for o

The prior specification begins by defining n design matrices and vectors of
observables to obtain the hyperparameters for the prior for [oz(m) | o2, Dm}.
Each covariate matrix and vector of observables will have n; rows for j =
1,...,n; each row corresponds to a single observation on a single, possibly
hypothetical, case. The number of cases 7 may be chosen for convenience.
Later, we introduce a prior parameter to adjust the weight given to the con-
structed prior distribution. Let )N(Lm, J=1,...,n, denote an n; X p,, matrix
with the same set of covariates as X,,; that is, the columns of X,, and )N(Lm
represent the same information or measurements about subjects, but there
is not necessarily any correspondence between rows. For convenience, for
m £ m', )N(Lm and )N(Lm/ will often have equal columns when the correspond-
ing covariates are the same. Similarly, let Z]‘m denote an n; X ¢, matrix with
the same set of covariates as Z,,, and let vV, = diag(VLm, cee ‘N/ﬁm)7 where
each \N/Jm = (I+ Z]mDmZ]tm) Define N = Z?:l n; as the number of prior
observations, X,, = ()N(fm, . ,)N(%m)t and 7, = diag(ZLm, el Zﬁm) and
let 110 denote an N x 1 vector of prior point predictions for a response Y.

We have then specified n prior cases which we combine to produce a prior

for [oz(m) | o2, \N/m} of the form

V] ~ Ny (0™, 65702 5,0) (2.4)



where
Vg (2.5)
and

Y, = (XEVIX,) L. (2.6)

The prior data (ﬁ,/,LO,)N(m,Zm) are potentially arbitrary and need not
involve any of the covariate values of the current study or any other study.
The vector pyg is fixed regardless of the model under consideration, and thus
does not depend on m. The specification of (u(™),%,,) depends entirely on
Lo, )N(m, and Zm There are several semi-automatic ways of choosing . For
example, if a previous experiment using the same covariates as the current
study was conducted based on sample size n* with response vector puj; and
covariate matrices X* and Z*, then we take i = n*, X,, = X, Z,, = 77,
and po = pg and substitute these into (2.5) and (2.6) to obtain (p™), %,,). If
the current study has a larger set of covariates than the previous study, then
we can modify the prior as follows. Suppose we partition « as a = (o, a,,)
where «, represents the coefficients that are common to the previous study
and «,, represents an s vector of new coefficients for covariates that were
not included in the previous study. In this case, little prior information is
available for a,,. Thus we can specify the prior in (2.4) — (2.6) for . and
specify an independent N,(0,dy'W) prior distribution for a,, where W is
a diagonal matrix and dy is a scalar parameter controlling the variance of
a,. Since we have no prior information regarding the new set of covariates,
we typically take dy small. This prior for «,, thus reflects vague prior beliefs
about «,. This construction assumes an independence between the new
covariates X,, and the old X,, such that approximately X'X. ~ 0. More

complicated constructions are the subject of ongoing research.



In (2.4), cg! is a scalar quantifying the importance one wishes to attach to
the prior guess pg. If ¢g is small, this reflects a lack of certainty about . In
particular, if ¢o = N, the prior is weighted similarly to a single observation;
if co = n~!, the prior is weighted similarly to a single multivariate case. If ¢q

is one, the prior is weighted as if it had n multivariate cases; if ¢ = N/N or

¢o = n/n, the prior and likelihood are weighted approximately equally.

If a previous study does not exist, then the investigator must rely on
expert opinion and/or case specific information on the subjects in the current
study in specifying (7, o, X, Zm) In these situations, convenient automatic
specifications include taking n = n, X,. = X,n, and Z,, = Z,,. That is, we set
7 to be the sample size of the current study, and X,,, Z,, to be the covariate
matrices of the current study. Such choices are natural in these settings. The
investigator may elicit pg directly or indirectly, depending on prior beliefs. A
direct choice is 1o = 0, which corresponds to taking a prior mean of 0 (i.e., no
regression) for the fixed effects regardless of the choice of covariate matrices.
Another direct choice for g is to take all components of g equal to the same
value, such as the predicted mean response. Direct informative choices of pg
depend on the strength of the investigator’s prior beliefs and the context of
the study, and thus no general automated specification can be recommended
here. However, in this setting, we recommend that the investigator examine
several values of pg, including informative and noninformative, and conduct
sensitivity analyses to study the behavior of the Bayes factors for each of

these choices.

It sometimes occurs that the investigator does not have direct prior in-

formation on the response vector, but has indirect information from expert



opinion on certain parameter values in the model. The prior information on
the parameter values can be turned into a prior prediction for the response
by projecting the elicited parameter vector into the response space and then
taking po to be the resultant projection. Specifically, if g is an elicited
value for a specific parameter vector a and X, is some specified covariate
matrix, then X, ag is a vector in the response space. Therefore, we take
to = X,,00. This indirect specification of pg via g is quite useful since
once (i 1s obtained, we can immediately obtain prior parameters for m € M
via (2.5). The projection of ag onto the response space automates the prior
specification and therefore is an important part of the elicitation procedure.
On the other hand, if ag is not projected into the response space, then we
would need to manually elicit parameter vectors for all m € M, which is
precisely the task we are trying to avoid. In Section 4, we demonstrate an
indirect elicitation scheme for the response by using expert opinion in an
actual study. The method of elicitation of 1y depends on the context of
the study and the prior information available to the investigator. We have
proposed here some very general and flexible methods that are quite useful

under a variety of situations.

2.3 Priors for the Variance Parameters

We now specify priors for (¢2, D,,), which we assume independent a priori.

m 7
We drop the subscripts m until the end of the section, where we discuss the
case ¢, > 1. It is important to specify a proper prior for D, since an improper
prior for D may lead to an improper posterior for D (Hobert and Casella

1996), regardless of the prior for o*. We recommend an inverse gamma prior
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for o2

b ¢
2 — —
o IG(Q’Q)’ (2.7)

with density proportional to (o?)~¢/2*Y exp(—¢/(20?)). For D, we use a
convenient prior, such as a Wishart prior when ¢, > 1 and a gamma
((80/2,70/2) when q,, = 1, with density proportional to D /2= exp(—~,D/2).
Because of the nature of model (2.1), there is no prior for D that permits
a closed form expression of f(Y|m). In contrast, choosing a conjugate prior

for 0% is important and simplifies the computations.

Given the prior specification, there are many ways to elicit prior informa-
tion to select (b, ¢) and (do,v0). Most of the following assumes that ¢, = 1,
although they can be adapted to ¢, > 1, which we discuss briefly below.
Two pieces of prior information can be used to solve for dg and v in the pri-
ors for o2 and D. We list several reasonable approaches to elicitation: (a) A
point estimate for ¢ or D can be elicited. For example, the posterior mean
or mode or the maximum likelihood estimate from a previous experiment or
an elicited point estimate can be used. For a purely elicited point estimate,
it may be easier to do the elicitation for a standard deviation, o or D'/2.
Another approach, which we used in our example, is to elicit a range r for
the residuals ¢;;, and take r/4 as a point estimate for 0. A similar mechanism
can be used for D when it is univariate. The point estimate can be plugged
in as either the prior mean or mode. (b) We can elicit §y directly, since it
can be interpreted as a prior number of degrees of freedom, possibly some
fraction of the number of degrees of freedom from the previous experiment

or the prior sample size that we wish to give our prior information. (c¢) The

11



investigator may specify a probability statement such as
P(c® < a)=.95

where a is a specified constant and similarly for D. (d) A prior variance for
o? or o may be specified. Choosing 7o to be of the form vy = A7 — p,, )",
where p,, is the rank of X,,, results in a decrease of the prior mean and

precision of 7 as the number of predictors p,, in model m increases.

When 7, is a column of ones, model (2.1) is called a random intercept
model. Assuming D > o2, then one quarter of the range r of the Y; is
a reasonable point estimate for D'/2. If D and o? are comparable, then
r/4 ~ (D +0%)"? and r can be reduced slightly either formally or informally

to adjust for the variation due to 2.

For general D,,, with ¢, > 1, we specify a ¢, dimensional Wishart
prior with 1y degrees of freedom and prior mean matrix I/O_IKIIOM. We de-
note the prior distribution by D,, ~ W, (vo, Vo, ) with density p(D,,)
| D, |o=0mFD/2 expl —1/2t1(W;,E D)} If a previous study exists with data
(n*, s, X, 7% ) then one can take 1y = n* and choose the prior mean matrix

to be D*

», where D! is the maximum likelihood estimate, posterior mode,

or posterior mean of D,, using (n*, uy, X7, 7% ). If no previous experiment
exists, one can choose W, to be a diagonal matrix and choose vy small to
reflect vague prior beliefs. The prior for o2 would still be specified as before.
Possibly the most common model when ¢,, = 2 would be a random intercept
and slope model. The prior for D could be specified as Wishart with a diag-
onal Wy. The prior mean for D}{z could come from an estimate of the range
of Y; at time ¢ = 0 divided by 4 and D%éz could come from an estimate of

the range of the slopes, again divided by 4.
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3 Posteriors and Computations

In this section we first give the posteriors for a,c?, D given the likelihood
(2.3) and priors (2.4) — (2.6), (2.7), and the prior for D of the previous section

and indicate how we calculate
Fm) = [ F(Ylaw D,o* m)plalo, D, m)p(o?|m)p(Dlm) do do* dD - (3.8)

given the model specification. Formally, D = DU, X =X, Z = Z,,, ¥ =
Yoy o = al™, 02 = 62 and p = pt™ depend on the model specification m,
but the dependence on m is omitted in this section to reduce the complexity

of the notation.

A posteriori, [a|o?, D, Y, m] is normal, and [¢%| D, Y, m] is inverse Gamma,
but p(D|Y,m) is not of standard form. Therefore, in (3.8), we integrate out
a and o0? in closed form and use numerical integration to integrate out D.

The posterior of [a|o?, D,Y,m] is

{oz | 0%, D,Y, m} ~ N, (r,0*\) (3.9)
where
v=(X'QzX + XY U X'QzY + coX7'p),
and
A= (COZ_I + XtQZX)_l ,
where

Qz=(Z(IeoD)Z'+1)"".
The posterior of o2 is

N+b Q(Y)

5 5 ), (3.10)

[0 | D,Y,m] ~ IG(

13



where
QYY) = (Y = Xa")'Qz(Y — Xa*) + (o — 1)’ AX Q7 X (" — pi) + ¢

and o = (X'QzX)'X'QzY is the estimate of o based on the likelihood

alone. After integrating out a and o? algebraically, the remaining integral is

F(Y|m) = /f(Y,D|m) dD (3.11)

and
()" IAV2[Q 7] PT((N 4 b)/2)p(D)
T2l TSI 2(Q(Y )N HIL (b2)

JY.D) =

The case of ¢, > 1 is briefly discussed in section 5. When ¢,, = 1, the
integral in (3.11) is one dimensional, and we use standard one dimensional
numerical integration tools to calculate f(Y'|m) after plotting f(Y, D|m) and
finding the value Dpayx that maximizes f(Y, D|m) as a function of D. Since
the values are quite small, we divide f(Y, D|m) by a suitable constant such
as f(Y, Dmax|m) before executing further calculations. To further simplify
calculations, we often first calculated f(Y'|m = 0), where the model m = 0
is the model with @ = 0. Depending on context, we may report any of
FYm); f(Y]m)/f(Y]m*) and f(Y|m*), where m* is some default, possibly
null model; or f(Y|m = k+1)/f(Y|m = k), for appropriate choices of k. We
also perform a sensitivity analysis with respect to the specifications pg and
co. The advantage of reporting f(Y|m) or f(Y|m)/f(Y|m*) is that Bayes
factors between different prior specifications may also be calculated; since

this is not of great interest in our example, we report Bayes factors of the

form f(Y|im=k+1)/f(Y|m = k).
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4 Data Analysis

We illustrate our methodology on a repeated measures data set from Pediatric
Pain. The response for each of the n = 58 children with complete data is a 4-
vector of the log times that the children were able to immerse an arm in cold
water. The covariance structure is a random intercept model for all models
with ¢,, = 1 and Z,, a 4-vector of ones. The children are classified into one
of two groups, attenders or distracters (A or D), depending on their style of
coping (CS) with the pain of the cold. Attenders pay attention to their arm in
the water and the experimental apparatus during the trial; distracters think
about topics unrelated to the trial. Prior to the fourth trial, an intervention
occurs. The intervention (treatment or TMT) is a short counseling session.
Three types of counseling are given: counseling to attend (A); counseling to
distract (D); or a null counseling without instructions (N). If TMT has any
affect, then a priori, CS and TMT were presumed to interact. Interest lies in
whether the two CS groups have different baseline response times, and given

that CS has an effect, whether treatment effects the response time.

We consider 3 major models for the data, My, My, Ms. Model M; has an
intercept; M, also includes a CS baseline effect; and Mg also includes both the
TMT main effects and CS by TMT interaction effects. We are particularly
interested in comparing M; to M; and in comparing Mg to M,. The subscript
m on M,, indicates the number of columns in the X; predictors. In Mg, X;
is 4 x 8. The four rows correspond to the four trials for each child. The
first column of X; is a vector of ones for the intercept. The second column
is either a vector of zeros or ones for the coping style (CS) baseline effect.

Columns 3-8 are all zeros, except for a single 1 in the last row, indicating

15



which of the 6 = (2 % 3) CS*TMT combinations AA, AD, AN, DA, DD, or
DN the child belongs to. Treatment was randomized, but came out nearly
balanced. The CS is split nearly 50-50 in the sample. The matrix V,, =V
is the 58 x4 by 58 * 4 block diagonal covariance matrix of V;’s and is the
same for all three models. The X, are the 58 x4 by m matrix of stacked X;

matrices for each model.

Table 1 contains B(8,2) = f(Y|Mg)/f(Y|Mz) and B(2,1) = f(Y|My)/f(Y|My)
for several choices of priors for [a|o?, D]. For our priors, we took X, =
(X]

fmre s XNm)' = Xip. The columns correspond to five choices for ¢y in

the prior (2.4) for [a™]|o2,V,,]. Rows are discussed beginning with the next
paragraph. Moving from left to right in Table 1, the prior contains decreasing
information, with ¢ = N/8 producing a very informative prior with mean
p\™): this choice gives the prior a weight comparable to a likelihood with
(N/8) *n = 29 % 58 data cases, since N = 4n and n = n = 58. In com-
parison, the data always represents n = 58 cases with 4 observations each
for a total of N = 232 observations. This informative prior was chosen to
illustrate how strong the prior would need to be to produce Bayes factors
that strongly favored a treatment effect. The setting ¢y = 1 represents equal
weight between data and prior, 58 cases each. This still represents substan-
tially stronger prior information than actually was held at the beginning of
the study. The setting ¢g = 8/N gives the prior a weight corresponding to
two complete data cases or 8 observations. This setting is approximately
what was believed was the actual strength of our initial prior information.
Two diffuse but still informative settings for ¢y are also considered. Setting
co = 1/N gives the prior the weight of a single observation; and ¢y = (8N)™*

gives the prior the weight of 1/8'" of an observation.
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The outer rows in Table 1 correspond to different choices for the prior
prediction po in (2.5). For all rows, the prior prediction was in the form
to = X,,w with X, = Xs, with various choices for w, labeled w; up to
wr given in Table 2. Note that pg is our prior point prediction and it stays
the same for all models M} and that w; has 8 elements regardless of the
model — by including additional variables such as age in months, we could
have had X, with 9 or more columns. The choice w; = (wy;)" is an actual
elicitation specified by the first author based on information supplied by
the original investigator. Along with the choice ¢g = 8/N, this represents
the actual single choice of priors for this data analysis. The choice of w,
represents a prior with a prior mean of wy; = log(16 seconds) for attenders
at baseline and since w2 = log(1.2), a 20% longer baseline pain tolerance
for distracters over attenders. There is a prior belief that attenders taught
to attend (AA group) and distracters taught to distract (DD) will also have
an improvement of 20%; this corresponds to values wis = wyr = log(1.20).
There is a prior belief that non-matching treatments, attenders taught to
distract (AD) and distracters taught to attend (DA) would reduce tolerance
by 10% corresponding to coefficients of log(.9). The prior belief for the null
counseling session is that they would not change the pain tolerance, so the

coeflicients in columns AN and DN are zero.

Our other choices for w can be considered both as sensitivity analysis
and as illustration of other reasonable choices for the prior specification.
The vector ws 1s a more extreme version of w;. The choice w; illustrates use
of the estimated posterior mean from a flat prior based on a Gibbs sample
of size 1000 (see Table 3). Rows wy and ws are variants of w; and wq that

support M,, they have the treatment parameter means wys, ..., wis set to

17



zero. Row wg supports model M;, with only the intercept having a non-
zero value, and wy; illustrates the use of the zero vector. Prior inputs wg
and wr; represent what we expect to be common prior specifications under
our priors, a vector o of constant predictions (wg), as might happen in the
absence of any knowledge about subjects or covariates and the important
special case where pg is the vector of zeros (wr), especially useful for data
that is somehow centered. The parameters of the priors for D and o? are
do =4, 70 = 1.6, b = 4, ¢ = .68 corresponding to point estimates D = 2.5
and 0% = .17, the posterior means based on flat priors and model Mg. The
values of the different wy, are tabulated in Table 2. Two other priors for p(a?)
and p(D) were tried without substantially different results and are discussed

briefly later.

Several conclusions follow from the analysis. Generally, for the very dif-
fuse priors with ¢g = 1/(8N) or ¢ = 1/N, the choice of w does not matter.
These values of ¢y generally favor model My, modestly over My and strongly
over model Mg. For both of these choices of ¢y, we would conclude that
there is no treatment effect, and that the data were equivocal on whether
there was even a baseline effect or not. For ¢ = 8/N, the data generally
favor model M, over Mg with Bayes factors B(8,2) of around .01 to .05;
also for ¢g = 8/N, the data slightly favor M, over M; with Bayes factors
of around 2.5. Again we conclude no treatment effect, and equivocal results
on whether there is a baseline coping style effect, this time slightly favoring
the possibility of an effect. For the informative priors with ¢ = 1 we do
get Bayes factors favoring a treatment effect; for example, for pg = Xgwy
we have B(8,2) = 18.71, lending support for a non-zero treatment effect.

For ¢g = 1 and ¢ = N/8, the choice of w matters. The choices of wy and
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Bayes

prior Factor
w1 B(8,2)
B(2,1)
Wo B(8,2)
B(2,1)
w3 B(8,2)
B(2,1)
Wy B(8,2)
B(2,1)
ws B(8,2)
B(2,1)
we B(8,2)
B(2,1)
wr B(8,2)

N/8

20.3
3.92

1.87x1071
509

1250
117.

1.13
3.85

1.14
.H64

1.12
1.04

956
995

1

18.7
4.73

1.83x1077
1.74

173.
31.0

3.88
4.66

4.21
1.83

3.68
1.99

A87
943

Co

8/N

0438
2.50

011
2.36

0513
2.87

.0392
2.50

.0398
2.36

0388
2.31

0207
.896

1/N

1.07x107*
948

8.97x107°
941

1.09x10~*
965

1.06x10~*
948

1.06x10~*
941

1.06x10~*
938

9.36x107°
752

1/(8N)

2.16x1077
338

2.11x1077
338

2.16x1077
339

2.15x1077
338

2.15x1077
338

2.15x1077
338

2.12x1077
328

Table 1: Bayes factors B(8,2) in favor of Mg against My and B(2,1), the
Bayes factors in favor of M, against My, for different choices of o = Xgwy

and cg.
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coeflicient intercept CS AA AD AN DA DD DN

wy log 16 logl.2 logl.2 log0.9 0 log0.9 logl.2 O
Wy log 16 log2.4 log2.4 log0.45 0 log0.45 log2.4 0
w3 3.12 0.42 0.091  0.036 -0.10 -0.25  0.39 —-0.29
Wy log 16 logl.2 0 0 0 0 0 0
Ws log 16 log2.4 0 0 0 0 0 0
We log 16 0 0 0 0 0 0 0
wr 0 0 0 0 0 0 0 0

Table 2: Vectors of coefficients wy, for input to prior for a. Coeflicients for
wy are rounded to 2 significant digits. Actual calculations used all digits
output from the estimated posterior mean based on a Gibbs sample of size
2001 using a flat prior.

ws, in particular, behave differently from the other choices, with w, strongly
against Mg and ws strongly favoring Ms. To obtain a large Bayes factor in
favor of a non-zero treatment effect, we must take pg = Xgws, where we have

used the data more than once.

Two other choices for the priors for o2 and D were considered. The sub-
stantive conclusions regarding the relative preference of the data for model
M, were the same as in Table 1, unless as in Table 1, the prior was overly
diffuse or strongly favored Ms. One prior included an ad hoc choice of pa-
rameters, b = ¢ = dg = v = 2. The other prior was chosen with b = 4,
and ¢ = .4356, corresponding to an elicited point estimate for o* of .33
where .4356/4 ~ .33% and 4 degrees of freedom in the prior. For the prior
for D the choices were dg = 4 degrees of freedom in the prior, and vo = .512,
corresponding to a point estimate of Do? = .85. The choice of .85 comes
from (.85)'/% ~ (log 240 — log 6)/4, where log 240 — log 6 is roughly the range
of the observed data on the log scale, and so D' & .33?/.85 ~ .512/4. The

data generally preferred the reported prior to the two alternate priors for o*
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and D. All three priors for the variance parameters are quite weak.

Our take on the results is based primarily on ¢g = N/8 and w;. The
data seem to have a mild preference for model M; over M;, and that the
data strongly prefer My or My over Mg. In terms of the problem, this means
that we find no effect due to treatment, and that we are unsure, a posteriori,

whether there is a baseline CS effect.

We can compare this result with the results from other traditional anal-
yses. Posterior summaries under model My using flat priors are presented in
Table 3. Calculations in Table 3 are based on a posterior Gibbs sample of size
1000 after ignoring the first 100 samples. Suppose we define Bayesian signif-
icance as the posterior probability that the coefficient is less than some fixed
value. This corresponds approximately to a one sided classical p-value. From
Table 3, we see that the coefficient of the CS baseline is significant with a tail
area of .01. Among the 6 treatment parameters, the three treatments AA,
AD, and AN applied to attenders are not particularly different from zero;
the posterior means are all less than one posterior standard deviation away
from zero. Of the treatments DA, DD, DN in the distractor population, DA
and DN have a one-sided p-value approximately .05 (respectively .047 and
.055) and DD is quite significant with a p-value of .004. In addition to the
expected results that the A treatment decreased distractors’ pain tolerance
and the D treatment increased pain tolerance, this includes the surprising

result that the N treatment produced a decrease in pain tolerance.

We can also compare our results to results based on likelihood ratio tests

and AIC and BIC. Table 4 gives for each model the maximized log likelihood
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source mean sd  P(parameter > 0]Y)
intercept 3.12 .12 1.00

CS 42 A8 .99
AA 072 15 .69
AD 036 .15 .60
AN -.10 A6 .26
DA -.25 A5 .047
DD .39 14996
DN -.29 A8 .055

Table 3: Posterior means, standard deviations, and P(parameter > 0|Y)
based on Mg with a flat prior.

value (max lik), the number of parameters in the model (#parms), basically
m + 2; the number of observations, #obs, which is N = 232 for all models;
AIC, which is the maximized log likelihood minus the number of parameters;
BIC which is the maximized log likelihood minus log(N) * #parms/2. The
likelihood ratio test between consecutive nested models is given in the column
LRT, along with the degrees of freedom for the test, df; and the p-value
associated with the LRT based on the y? distribution with df degrees of
freedom. Our #parms included fixed effects and variance parameters in the
count. Using a tail area of .05 for a cutoff, stepwise procedures would lead to
forward and backward selection of model Ms. Reducing the tail area cutoff
to .01 leads to selection of model M;. In contrast, AIC picks M first, then
Mg and then M;, while BIC does not distinguish between M; or M, as a
preferred model. Model My in Table 4 is the model with no fixed effect at
all, not even an intercept. Model My is never selected by any procedure as
the best model.

The Bayes factor B(8,1) in favor of Mg against M; can be obtained by
multiplying B(8,2) * B(2,1). Model My could have also been used as a
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Model  max lik #parms F#obs AIC BIC LRT df p-value

Mg -186.727 10 232 -196.727 -213.961 14.464 6 .025
M, -193.959 4 232 -197.959 -204.852 5328 1 .021
My -196.623 3 232 -193.623 -204.793 183.642 1 .000
My -288.444 2 232 -290.444 -293.890

Table 4: Comparison of models based on AIC, BIC, and the likelihood ratio
test, LRT. In the column headed LRT, the tabulated figure is the difference
between the maximized likelihood for the model of the current row and the
row below. The p-values are tail areas based on the y? distribution with the
stated degrees of freedom.

reference point for our results. Reporting the Bayes factors in favor of model
My, against My would also permit comparison of different priors using Bayes
factors. We omit this table of numbers since it is not of great interest in
our example. Generally, the data supported priors based on w; through wg
equally, for each choice of ¢o € (8/N,1/N,1/(8N)), and the data supported
the choice ¢g = 8/N slightly more than the other two. The data preferred the
choices ¢g € (N/8,1) with ws,ws, and to a lesser extent ws, but as discussed

before, prior information could not be used to justify these choices for ¢q.

5 Discussion

The case of ¢, = 1 covers a great many important situations as illustrated by
our example in the previous section. When ¢, is greater than 1, we would
consider some sort of importance sampling procedure. One method starts

with a sample Dy, k =1,..., K from the posterior of p(D). We might use

[F(Y|m)] ™ ~ K —12 (Y, D¥|m)]~
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which is adapted from Newton and Raftery (1994) and Gelfand and Dey
(1994). Alternatively, if we have a sample C}, of ¢,,, X ¢, matrices distributed
with density function ¢(C') which approximates f(D]Y"), we could use

~ 771 i f(Yv Ck|m)
(V) e K 3T

The obvious candidate for ¢(C') is the Wishart distribution with mean es-
timated by an estimate of E[D]Y] from a Gibbs sample Dj. The degrees
of freedom parameter would have to be selected to give good properties for
the approximation. Other potentially promising methods for computing the
marginal density of the data include those proposed by Chen (1994), Chen
and Shao (1995), or Chib (1995). We mention that all of these are prelimi-

nary suggestions which need much further investigation.
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