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Abstract An explicit second-order finite-difference computer model was developed and
optimized for solution of the Shallow Water Equations. The model was applied to the
Feather River below the Oroville Dam and Thermalito Afterbay near Gridley, California.
Two versions of the computer model were constructed to run on either Central Processing
Units or Graphical Processing Units, utilizing Fortran, C, C++, and the NVIDIA Compute
Unified Device Architecture (CUDA) parallel computing platform. The underlying algo-
rithm utilizes a structured grid and is capable of handling the wetting and drying of cells.
It was developed with view to maximizing stability while maintaining accuracy, and allow-
ing for flexibility of the computational domain. Comparisons with analytical and observed
results showed the proposed methodology to be robust, accurate, and efficient. The models
were applied to a section of the Feather River where observations of flow depths and volu-
metric flow rates are available for multiple flood events. The domain surface was partially
developed using high-resolution photogrammetric data obtained through use of unmanned
aerial vehicles. Runtimes and results were compared to the United States Bureau of Recla-
mations’ implicit finite-volume numerical method and with field observation with generally
good correspondence.

Keywords GPU computing · Explicit · Shallow-water · Transcritical Flow · TVD

1 Introduction

Most computational models currently in use for large-scale flood simulation utilize an
implicit scheme for time integration so that the time-step size is not limited by stability
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criteria. These methods can be prone to significant diffusion and generation of artificial
velocity around areas of complex flow dynamics which can lead to inaccurate prediction
of water depths and velocities and thus produce erroneous wave arrival times (Ransom and
Younis 2015). On the other hand, explicit methods, precisely because the time-step size is
limited by stability considerations, allow accurate simulations even within areas of com-
plex or rapidly varied flow. Thus, using an explicit finite-difference method on hyperbolic
equations while satisfying the appropriate stability constraints can produce the proper solu-
tion of the weak conditions, and capture discontinuities which can take the form of shocks
or hydraulic jumps (Garcia and Kahawita 1986). The downside to explicit methods is obvi-
ous: adherence to the Courant-Friedrichs-Lewy (CFL) criteria leads to excessively long run
times when simulations are performed for large domains or over extended periods. Given the
geographic and hydraulic complexity of riverine domains, and the resolution that is neces-
sary to properly resolve small side streams and hydraulic structures, runtimes for traditional
explicit models can often be measured in days. This is often unacceptable in engineering
practice.

A number of numerical and computational adaptations have been advanced in order to
minimize runtime but not all have been satisfactory (Néelz and Pender 2013). Simplifica-
tion of the governing equations either by reducing the dimensionality of the problem or by
oversimplification of important physical processes can lead to a decrease in physical real-
ism, while techniques such as local grid refinement or dynamic grid adaptation can cause a
loss of conservation of mass and momentum (Smith and Liang 2013; Garcia and Kahawita
1986). Even then, these techniques generally speed up the simulations by only 2-3 fold
(Brodtkorb et al. 2012). Distributed computing has proven effective in reducing runtimes but
this invariably requires a large investment in hardware and is not ideal due to communica-
tion latency for information shared between cells. More recently, Graphics Processing Units
(GPU) have been utilized in the place of parallelized Central Processing Units (CPU) or
distributed computing to minimize computational runtimes. Largely, GPU based solutions
of the Shallow Water Equations (SWE) have relied on the finite-volume method (Vacondio
et al. 2014; Sastra and Brodtkorb 2012; de la Asuncion et al. 2013).

In this paper we present a two-dimensional implementation of a second-order accurate
shock-capturing finite-difference scheme designed to run efficiently on both CPU and GPU.
The underlying algorithm combines the explicit, second-order MacCormack predictor-
corrector scheme with a Total Variation Diminishing (TVD) limiter adapted from (Liang
et al. 2007). The TVD method is beneficial for its ability to maintain stability at shock
interfaces with little effect on overall accuracy or computational resources. The method is
constructed to be accurate and robust, while remaining computationally efficient and eas-
ily adaptable to changing flow conditions. Previous applications of explicit finite-difference
methods with TVDmodifications in unsteady natural flow regimes are found in (Liang et al.
2006). Another reason for the choice of the MacCormack scheme is because it is suited
for use in parallel computing operations, since each successive set of calculations is based
only on data from the previous time step and the method utilizes a compact solution stencil
(Brodtkorb et al. 2012).

To demonstrate the utility of the developed model, simulations were performed for a
reach of the Feather River, California where adjacent agricultural land is being considered
for the installation of photovoltaic farms. Recent field studies have been undertaken in the
area of interest to provide data suitable for model calibration and verification. An essential
requirement for the accurate simulation of this flow requires an accurate and detailed defi-
nition of the surface involved. Large scale topology modeling is typically done using USGS
Digital Elevation Modeling (DEM) data, which is generally limited to 10 meter contours.
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This level of precision omits fine topographic data that may result in drastically different
flow than what is observed. The surface created for this model was based upon four data
sources: LiDAR data, unmanned aerial vehicle (UAV) gathered photogrammetric data, Real-
Time Kinematic Global Positioning Satellite (RTK-GPS) data, and echo sounder obtained
transects of the river bathymetry. Details are presented in Section 4.2.

The code has been applied to both analytical and naturally occurring complex flow prob-
lems that included wetting and drying and RVF. Comparison of run times between CPU
only and CPU/GPU model runs for various situations, including the natural Feather River
domain show that the overall increase in speed for the GPU code places it along side implicit
codes for run time, while maintaining shock-capturing second-order estimations of water
depth and velocity. The method presented is robust and simple to implement, and should
allow for spatially expansive models to be run on consumer grade computer equipment. The
following sections describe the construction of the algorithm and domain, and present the
outcome of tests carried out to verify its accuracy and runtime differences between CPU
and GPU implementations.

2 Governing Equations

In the computation of flows in complex domains using shock-capturing methods, numerical
instabilities are often observed (Brodtkorb et al. 2012). These arise from a number of dif-
ferent sources, some being associated with the irregular topography that characterizes flows
in natural systems, others due to inconsistent discretization of the flux-gradient and source
terms in the governing equations. Following (Liang et al. 2006; Rogers et al. 2003), in order
to more consistently discretize these terms, the deviatoric method is employed, where devi-
ation from the still-water level and discharge are taken as the dependent variables. This
method is less prone to numerically-induced flow velocities during times of RVF or where
complex bed topographies are encountered (Rogers et al. 2003; Tseng 1999). The equations
governing the conservation of mass and momentum in two dimensions can be written in the
general deviatoric form (Liang et al. 2006):
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t is time, η is the deviation of the water surface elevation with respect to the still-water level,
qx and qy are the discharge per unit width, h is the depth below the still-water datum, g is
the gravitational acceleration, and n is Manning’s n.
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2.1 MacCormack Method

The explicit, second-order, finite-difference MacCormack method was adapted for use
within the current scheme. With addition of a Total Variation Diminishing (TVD) modifi-
cation, this scheme can accurately and robustly predict transcritical flow without the use of
artificial viscosity, typically necessary when dealing with flooding and levee failure (Liang
et al. 2006; Liang et al. 2007; Fennema and Chaudhry 1989). Operator-splitting, used in
the MacCormack method, divides the two-dimensional SWEs to sets of one-dimensional
equations for each time step. Equation (1) can be decomposed into two one-dimensional
equations:

∂X
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∂x
= Ex (5)

∂X

∂t
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The following is the forward step of the x-direction MacCormack method.

The x-direction predictor sequence:
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where z is the bottom of the domain and ε is the desingularization coefficient, and typically
remains zero, unless otherwise specified.
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2.2 Boundary Conditions

Specification of the boundary conditions follows the recommendations of Fennema and
Chaudhry (Fennema and Chaudhry 1989). Fictitious grid points in the solid wall mirror the
values of points immediately interior to the boundary. By changing the sign of the normal
component of velocity within the fictitious point, reflective boundary conditions may be
created. Full-slip boundary conditions are imposed at solid walls. For subcritical flow, two
inflow and one outflow boundary condition must be maintained to satisfy the 2D SWEs. For
supercritical flow three influent boundary conditions must be provided for 2D flow (Garcia
and Kahawita 1986; Chaudhry 2007).

2.3 Adaptive Time Step

To minimize computational run times while satisfying the Courant-Friedrich-Lewy stability
condition, the time-step �t , is adjusted by examining the velocities and water depths within
the domain and re-evaluating �t once per x and y direction solution pass:
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√
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(13)

WhereCmax is the predetermined maximum Courant number, and the i, j indicator in the
denominator signifies all values for an iteration that arise from a single cell. As flow within
the domain trends towards critical flow conditions, time step size will decrease to maintain
the assigned Courant number, and as flow trends towards steady-state, time step size will
be maximized to speed computation. Implementation of this portion of the code is serial
in nature, and was therefore conducted through the CPU. An alternative method would be
to set the timestep and not allow for variation. Testing has shown that in situations where
shocks or other discontinuities are transient, the benefit of the variable timestep outweighs
the incurred memory handoff.

2.4 Total Variation Diminishing Method

The adopted TVD method derives from the proposals of (Davis 1984) and (Louaked and
Hanich 1998). It is implemented in the corrector step of the MacCormack method and takes
the form:
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The X in (14–18) refers to terms in (2) while (17) amd (18) represent the dot product
between the two vectors. G(x), φ(x) - the flux limiter, C, and Cl the local Courant number
are given as:

G(x) = 0.5 × C × [1 − φ(x)] (19)

φ(x) = max(0,min(2x, 1)) (20)

C =
{

Cl × (1 − Cl), Cl ≤ 0.5
0.25, Cl > 0.5

(21)

Cl = (|qx/H | + √
gH)�t

�x
(22)

This implementation of the TVDmethod requires no solution of eigenvalues or eigenvec-
tors, thus reducing the number of computational steps needed per time step making it more
efficient than other TVD schemes (Vincent et al. 2000; Benkhaldoun and Quivy 2006).

2.5 Wetting and Drying

For use in flood plains before, during, and after flood events, an algorithm needed to be
developed to handle wetting and drying of cells without being adversely effected by large
roughness values typically associated with vegetative growth. A modified version of the
wetting/drying algorithm of (Liang et al. 2006) was employed. Two examinations of cell
condition per timestep are performed. Each grid cell is examined initially for water surface
elevation below a prescribed depth Hdry . If the surface is below the cutoff depth, the cell is
deemed dry, and velocities in both the u and v directions are set to zero. The second step
involves examination of all cells surrounding the dry cells from the first step. If any of the
surrounding cells have a water surface elevation above 2Hdry , then the dry cell depth will
be increased by Hdry and the cell water depth from the donating cell will be reduced by
Hdry for overall mass conservation. For each operator-split step (either X- or Y-direction)
TVD fluxes and velocities in the direction of computation towards a dry cell are set to
zero, and velocities tangent to the direction of computation as well as water surface height
calculations are allowed to proceed as normal. Although this method prevents zero depths
from occurring in the denominator of terms, the bed friction term can still dominate at very
small water depths, causing instabilities. In order to alleviate this problem, an implicit step
is used as an approximation when the water depth falls below a user-defined level (Liang
et al. 2006).

In areas of very small depth, the momentum equation can be reduced to just the local
acceleration and bed friction terms, which can be arranged to form the semi implicit
equation:
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= −
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⎞
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It should be noted that this wetting/drying method has two distinct drawbacks. First, since
velocity of the cell adjacent to the wet/dry interfaces is dictated and not calculated, overall
conservation of momentum is affected. The effects of this velocity skewing are apparent in
the analytical test case, presented in Section 5.1.1. Repercussions of this method in large
scale physical test case scenarios are negligible, as seen in (Liang et al. 2006). Secondly, the
use of any semi-implicit method within the scope of a parallelized GPU codes is non-ideal
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since information from two time steps is required in order to evaluate the equation. The
code that has been written to deal with wetting, drying, and the relevant depth and velocity
equations has a CPU based and serial implementation. For large domains where wetting and
drying is occurring throughout the domain at all time steps this serial implementation will
have a finite impact on the overall runtime of the model. Given the robustness and simplicity
of the method, this tradeoff is acceptable.

Proper choice of Hdry values is critical for numerical accuracy and stability. At a mini-
mum, the value should be greater than the maximum Manning’s n for the domain. Ideally,
Hdry should be chosen to be slightly larger than the bottom elevation difference between
any two adjacent cells in a large and ‘flat’ section of the domain in order to not artificially
impede flow across these surfaces. If Hdry is chosen carefully the semi-implicit calculations
for shallow flow can be omitted with minimal accuracy penalty. However, omission of the
semi implicit method has a measurable impact on code runtime, as discussed in Section 5.2.
Hdry values for real-world testing within this paper were set to 5cm or less.

Additional steps were implemented to deal with wetting and drying within the GPU code
as described in Section 3

3 Implementation

Two implementations of this methodology have been constructed for the purpose of compar-
ison. The first was written in Fortran 95 and runs only on CPUs. The second is a combination
of C and C++, and includes a set of CUDA kernels that solve the main numerical scheme
on the GPU. Following the work of Seitz (Seitz et al. 2013), the GPU implementation of the
code passes information between the GPU and CPU at every time step. These data transfers
allow for the wetting/drying algorithm and the adaptive time step to be calculated once per
time step on the CPU, and therefore avoid the runtime penalty incurred by running serial
processes on the GPU (Seitz et al. 2013). TVD terms must be calculated on the GPU once
per time step before depth and velocity calculations can occur. The predictor/corrector for-
mulation used within requires 16 sub-steps per timestep, of which each are dependent on
the previous for proper formulation. Values for each independent cell within each of the 16
sub-steps can be calculated simultaneously and in an arbitrary order without effecting the
deterministic quality of the code. Variable values for these calculations are stored in shared
memory, which has a latency that is generally on the order of 100x lower than that of global
memory. For further information refer to Seitz.

Since information must be passed between the CPU and GPU based codes at every
timestep, special attention was given to reducing the memory overhead. Defining wet and
dry cells within the CPU based code at every timestep allows for variable information of
only wet cells to be passed to the GPU. If a cell is dry, only the binary value representing
‘dry’ must be passed to the GPU shared memory for the kernel calculations. In order to
better address complex boundaries that may arise in real world models, the current code uti-
lizes array based indirect grid addressing, a graphical example of which is shown in Fig. 1.
Indirect addressing for complex boundaries can be advantageous if all cells do not have the
same number of neighbors (Jankowski 2009), or if in the future the code was extended to
operate on both one- and two-dimensional domains simultaneously.

Domain decomposition must occur before our solution kernels are launched on the GPU.
Breaking down the domain into 16 cell by 16 cell ‘blocks’ allows for solution of large
portions of the domain simultaneously. Block size is calculated based on the configuration
of the hardware on which the code is being run. For a complete discussion of hardware



268 O. T. Ransom, B. A. Younis

xs
o xe

o

xn
o

xw
o

x i
o

x i
n

x i,j-1
o x i+1,j

o

x i,j+1
o

x i-1,j
o

x i,j
o

x i,j
n

(a) (b)

Fig. 1 (a) stencil-matrix form - (b) stencil-array form

utilization refer to the CUDA Toolkit Documentation. Methodology to allow individual
blocks to calculate quickly and independent of neighboring blocks relies of the methods
described by Seitz (Seitz et al. 2013) and Brodtkorb (Brodtkorb et al. 2012). To further
optimize runtime, blocks containing dry cells only were not computed, and cells that were
dry and more than two cells away from a wet cell carried no variable information into the
shared GPU memory, reducing the memory overhead of each timestep. However, the cell
locations making up each block were passed to the GPU at each time step for determination
of state and block exclusion computations (Brodtkorb et al. 2012).

The Fortran 95 code was compiled using GFortran - a GNU compiler. The C/C++ CUDA
code was built using the CUDA toolkit on Mac OSX 10.9.5. All codes were run on a Mid
2014 15” Retina Mac Book Pro with a NVIDIA GT 750M discrete graphics card.

The United States Bureau of Reclamation’s Sedimentation and River Hydraulics (SRH-
2D) solves the SWE using finite volumes, and can handle steady, unsteady, and transcritical
flows. It can handle wetting and drying of cells and has proven to be a robust and accu-
rate modeling tool. SRH-2D is based on an unstructured mesh utilizing both triangular and
quadrilateral elements, and therefore a direct cell count comparison is not available. The
domain and all other inputs were the same in all calculations.

4 Feather River Model Domain Significance and Surface Creation

4.1 Hydraulic and Hydrologic Significance of the Lower Feather River

The main stem of the Feather River is a tributary to the Sacramento River in the Central
Valley of California. It is a drainage basin for approximately 16,000 km2, collecting runoff
from major portions of the Sierra Nevada mountain range, the Sacramento Valley, and a
small portion of the southern Cascade Range. Four tributaries to the Feather River combine
directly above Lake Oroville, a man-made reservoir and hydroelectric dam. The river is a
major contributor to the California State Water Project, which provides water to Central and
Southern California.
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4.1.1 Flooding

In 1967 construction of the 230 m (770 foot) high Oroville Dam was completed, submerg-
ing the confluence of the four major tributaries and forming Lake Oroville. There have been
three major floods in the last century which have resulted in levee failures on the Feather
River, occurring in 1955, 1986, and 1997. The floods of 1986 and 1997 occurred after com-
pletion of the Oroville Dam. Peak discharges and river stages as measured by the California
Department of Water Resources (CA-DWR) at gage designation ‘GRL’ (39.366577◦N, -
121.647369◦W) measured 150,000 CFS and 100.06 feet for the 1986 flood, and 163,000
and 98.83 feet for the 1997 flood event.

4.1.2 100 Year Rainfall Event

The influent contribution to Lake Oroville during the 1997 rainfall event is considered to
be the runoff from the 100 year storm. The Oroville Dam is designed to limit the effects of
the 200 year storm to 170,000 cfs. The only gaged location within the study domain is gage
‘GRL’. Additional information, provided as impacts for given flood stages are provided
by CA-DWR (site: http://www.cnrfc.noaa.gov/graphicalRVF.php?id=gric1 Supplementary
anecdotal peak flood depth measurements from the 1997 flood can be found throughout
the study area. Given the empirical nature of these measurements they were only used for
calibration and verification purposes.

4.2 Domain Surface Creation

The surface for this model comes from three major data sources, 2010 LiDAR data provided
by Butte County, California, initially collected as part of the CVFED project, transects of
the main river channel within the model domain, and UAV aerially collected data. The three
sources were combined in AutoCAD Civil 3D and ArcGIS to form the final surface for
modeling. Certain features, such as the tops of levees and road cuts were manually inserted
into the surface in order to have a continuous elevation.

4.2.1 Updates to the LiDAR Surface

Surface creation for the model presented in this paper was conducted in the Fall of 2014,
over four years after the LiDAR data was gathered. For a model to be useful for prediction
of depth and velocity in specific areas an accurate and up to date surface must be used.
Therefore, channel bathymetry, which may have been effected by high flow events of 2011
and subsequent drought years in 2013 and 2014 was verified and updated by taking transects
in the model domain every 1,000 feet. These transects were overlaid into the LiDAR surface
and interpolated to create an up to date river channel bathymetry.

Transects were measured using both a Trimble R10 RTK-GPS and a Teledyne Odom
Hydrographic Echotrac CVM. Transect accuracy meets or exceeds that of LiDAR map-
ping. Sites of interest for PV installation had updated digital terrain models (DTM) created
through the use of UAV and digital photogrammetry. Multiple 20 acre potential PV sites
were identified. For the purpose of this paper, we will focus on a single site - located near
the Gridley Waste Water Treatment Plant, on East Gridley Road.

In order to ortho-rectify the DTM and aerial photo, 16 ground control points (GCP) were
laid out on approximate equal spacing across the site. The GCP were tied into the proper
coordinate system along X,Y, and Z axis by referencing local known survey benchmarks.

http://www.cnrfc.noaa.gov/graphicalRVF.php?id=gric1
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Several flights of the area were made utilizing purpose built UAV and a modified camera.
Flight programs and patterns were pre-programmed and controlled using a combination
of GPS and magnetic compass (Westoby, (Westoby et al. 2012)). The offset and over-
lapping UAV obtained digital images were merged into one large coverage of the site. A
technique called ‘Structure-from-Motion’ (SfM) was used to obtain a densely populated
three-dimensional point cloud of the site. Eight of the 16 GCP were used to align the resul-
tant aerial photograph and point cloud. The remaining eight GCP were used to verify the
x,y, and z accuracies. The average absolute accuracy of the point cloud was 1.65 cm, 1.68
cm, and 2.24 cm for the x, y, and z directions, respectively. Further details may be found in
Westoby, (Westoby et al. 2012) and Tighe, (Tighe et al. 2014).

4.3 Digital Terrain Model Creation

The combined surface was imported into AutoCAD Civil 3D and break lines along promi-
nent features were created. This surface was then imported into ArcGIS, where it was
trimmed to the final domain size and resampled to have 20 meter by 20 meter cell dimen-
sions, resulting in 743,000 total domain cells. The final DTM and domain is shown in
Fig. 2. The same surface was used in SRH-2D. SRH-2D employs an unstructured mesh, and
although max cell edge lengths can be dictated, an exact number of cells is not reported as
part of the output.

Fig. 2 Model Domain and Final Surface
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Table 1 Manning’s n values for
different land uses Manning’s n Land Type

0.015 Road Surface

0.020 River channel /disced and rolled land / flat dirt land

0.025 Disced land, grass land

0.030 Reeded areas, dense scrub land

0.040 Young orchard

0.045 Mature orchard

For the initial conditions of the Feather River, the wet/dry designator and initial water
depth were assigned to cells in the river area whose land surface elevations were below
a calculated depth-in-channel, based on gage elevations and bed slopes. Mannings n

was assigned based on land use classification and observed conditions. Table 1 lists the
Manning’s n values used for land use categories in the model.

5 Results

5.1 Analytical Tests for the Presented Method

5.1.1 Oscillating Water in a Parabolic Basin

In order to assess the accuracy of the proposed method, a two-dimensional free surface flow
problem with known analytical solutions was modeled. The chosen problem follows the
case initially presented by Thacker (Thacker 1981). This test case has been widely used for
analysis of two dimensional shallow water numerical solutions, for example in: (Liang and
Marche 2009; Sampson et al. 2006). The setup for this test case is exactly the same as what
is found in Holdahl, (Holdahl et al. 1999).

The basin geometry for the given test case is parabolic, and given by the equation:

B(x, y) = D0

(
x2 + y2

L2 − 1

)
(24)

Water surface elevation (h), and u and v direction velocities are given as:

h = 2AD0

(
x cos ωt ± y sin ωt + LB0

L2

)
(25)

u = −Aω sin ωt (26)

v = ±Aω cos ωt (27)

Where ω = √
2D0/L2, D0 = 1, L = 2500, A = L/2, and B0 = −A/2L. Manning’s

coefficient is set to zero for this test, ε is set to 0.01. �x and �y are each set to 100m. The
Courant number is set at 0.01.

All geometries were created for a 101x101 cell area on the domain [-50:50] in both the
x and y directions. The results plotted in Fig. 3 are taken from the 1D cut located at y = 0.
There is good agreement between the calculated and analytical solution for water surface
elevation except near the dry/wet interface, as seen in the top row of Fig. 3. However, u

direction velocities show disagreement at the drying/wetting interface. This is a common
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Fig. 3 (A) 1300 seconds (B) 2700 seconds (C) 4200 seconds

error, and one that is difficult to avoid for any shallow water scheme that includes wetting
and drying (Holdahl et al. 1999). Results of this test are encouraging and show that the
numerical method will adequately perform under conditions of wetting and drying within a
basin. Absolute errors for the three tests of both h and u are given in Table 2.

5.1.2 Five Drops

An easily scalable and computationally intensive test was chosen to evaluate the speed
increases between CPU and GPU code evaluation for the presented method. The chosen
domain consisted of 1,002,001 computational cells arranged in a 1001x1001 cells with �x
and �y of 1.0 meters. The initial condition was five columns of water 10m high with a 5m
radius centered on ([501,501] [251,251] [751,251] [251,751] [751,751]). At time t = 0 the
columns were released creating five circular shocks within the 5m deep domain. This test
is considered an extreme example of shocks and transcritical flow within a domain. Frames
from 5.0, 18.0, and 500 seconds can be seen in Fig. 4 below.

Manning’s n was set to 0.025, ε was set to 0, and timesteps were adapted to a Courant
number of 0.35.

Three different time variants were run in order to calculate an average speed increase for
a fully-wet domain with trans critical flow. Runtimes of 500, 1000, and 2000 seconds were
run for the 1001x1001 cell domain. Speed increases can be observed in Table 4.

Table 2 Absolute error for
parabolic test case time h error (absolute) u error (absolute)

1300s 0.0541 0.2162

2700s 0.0012 0.1225

4200s 0.0936 0.1647
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Fig. 4 (a) 5.0 seconds, (b) 18.0 seconds, (c) 500.0 seconds

5.1.3 Application to Feather River Surface

After determining the accuracy of the model it was calibrated to the Feather
River surface. Three domain wide input layers were input, Bottom Elevation,
Surf ace Water Elevation, and Mannings n, and two upstream boundary conditions
and two downstream boundary condition were dictated. Surface Water Elevation is dictated
as zero in initially dry cells. The upstream boundary conditions were depth and veloc-
ity, and were based on extrapolated depths and volumetric flow rates of the hydrograph
from NOAA, and found at: http://www.cnrfc.noaa.gov/images/storm summaries/jan1997/
hydrographs/ordc1 inflow outflow.gif .

Any cells below the calculated river depth at the upper boundary are deemed wet, and
given a velocity based on the ratio of the volumetric flow rate and the wet cross-sectional
area on the upstream boundary. The downstream boundary was set to open, achieved by
assigning the same flow velocities and η’s to the cells immediately to the north. The west-
ern and eastern boundaries are set to be closed and full slip, meaning the tangent velocity
component is set to zero in the boundary, while the parallel component is set to that of the
adjacent cell. The only calibration parameters used was adjustment Manning’s n values, and
inserting break lines into the original surface.

The CFL number used was 0.035, which was necessary to maintain stability without
using any type of relaxation in the method or artificially smoothing the domain surface.

A table comparing gage and anecdotal depths to calculated values is given as Table 3.
This table also includes the results of the SRH-2D run, demonstrating that the water surface
elevation absolute error calculated by SRH-2D and the presented method generally differs

Table 3 Absolute error measured against max recorded flood depth, January 2, 1997

Station Measured 1997 h absolute error h absolute error

Flood Elevation (CPU/GPU)1 (SRH-2D)

(feet) (feet) (feet)

GRL 98.83 0.12 0.13

WWTP 98.6 0.2 0.1

KS1052 100.3 0.3 0.2

Robinson’s Corner 100.4 0.1 0.0

1Results from CPU and GPU code were typically within one hundredth of a foot due to round-off errors
being handled differently between the codes CPU results reported here

http://www.cnrfc.noaa.gov/images/storm_{s}ummaries/jan1997/hydrographs/ordc1_{i}nflow_{o}utflow.gif
http://www.cnrfc.noaa.gov/images/storm_{s}ummaries/jan1997/hydrographs/ordc1_{i}nflow_{o}utflow.gif
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by less than 0.1 foot. The only gage measured data point in this table is from Station GRL,
however, comparisons at the other measured locations are relevant when the present model
and SRH-2D are compared against each other.

The resulting figures showing flood depth at time t = 4 Days and directly after the peak
flow event are shown in Fig. 5. The flow outside the levee top (visible as a thick white
line) in Fig. 5a is due to the algorithm used to determine inlet depth creating a flood wave
elevation greater than that of the levee elevation. The pooled water eventually dissipates.

5.2 Runtime Comparison

Both code variants, CPU and GPU, were compiled and run for all tests within this paper.
Table 4 lists all run variants and their respective runtimes.

The wetting/drying parabolic test case of Section 5.1.1 had extremely short computation
times for both CPU and GPU implementations. The average overall speed increase for this
test case for the three runtimes was only 1.55x. This is due in large part to the effects of the
read time and preprocessing time of the two codes. Although provided, due to the overall
speed of computation, these numbers should not be used for determining GPU processing
effectiveness.

The Five Drops test was the most rigorously tested in terms of CPU/GPU comparison.
The test was easily scaled with meaningful results for both test duration and domain size.
The average speed increase, measured as a ratio of CPU runtime to GPU runtime was 62.86x
for the 201 x 201 domain test, and 38.19x for the larger domains tested. It is hypothesized
that the difference between the two codes has to do with the amount of information that
enters and exits the GPU shared memory at every time step. As run time increases, the speed

Fig. 5 (a) Flood extent and depth, t = 4 days. (b) Flood extent and depth, 2 hours after peak flood depth
(January 2, 1997, 06:00) Gage GRL, and supplementary depth locations: WWTP, KS1052, and Robinsion’s
Corner
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Table 4 Code and test varient runtimes

Test Domain Time Fortran 95 CUDA Speed SRH-2D

size runtime runtime increase runtime

(cell x cell) (seconds) (seconds) (seconds) (ratio F95:CUDA) (seconds)

Parabolic 101 x 101 1,300 2.63 1.84 1.43 NA

2,700 5.71 3.24 1.76 NA

4,200 9.01 5.08 1.45 NA

Five Drops 1001 x 1001 500 3,101.88 85.46 36.30 NA

1,000 6,194.21 161.11 38.45 NA

2,000 12,362.22 315.11 39.23 NA

Feather River 1000 x 743 172,800 59,453.96 12,234.64 4.86 13,560.0

(NA) Not applicable, code type was not run for this testcase

at which the GPU solution kernels execute outweigh the memory read/write penalty, and the
ratio increases. The theoretical speed increase for fully-wet and large domains (>1,000,000
cells) seems to be on the order of 40x for this code comparison.

The complexity of the Feather River test case involves wetting and drying of large por-
tions of the domain at any given time step. As the domain is initially dry, the number of
blocks that contain executed kernels begins near zero. Due to the shape of this bypass rel-
ative to the flood event modeled within, a large portion of the domain remains dry for the
duration of the run. These dry areas penalize the GPU code at a much higher rate than its
CPU counterpart. The cells and corresponding blocks of the GPU code are effectively eval-
uated three times for every time step, twice in the serial portion of code; once to check if
they should be considered dry, once to check if they will wet, and once as part of the block
check portion of the GPU code. Additionally, even though the domain is largely dry, iden-
tifiers for the the cell condition (wet or dry) must be swapped from CPU to GPU memory
and back at each time step. The summation of these penalties results in a markedly lower
overall speed increase for this test case - 4.86x.

6 Conclusions

A robust and efficient second-order accurate explicit algorithm for solving the shallow water
equations was developed. Two versions of the algorithm were compared, one based solely
on the CPU for computation, and one that utilized both CPU and GPU computation. Com-
parison between the two versions showed that speed increases of the order of 40 fold can
be achieved for idealized, rectangular, fully-wet conditions. For floods in complex geome-
tries with constant drying, wetting, and transcritical flow, the speed increase, although still
substantial, is reduced.

Comparisons of model predictions with existing measurements showed that SRH-2D
performed generally better in the floodplain, but was matched in accuracy for in-bank flow.
The non in-bank locations that had observed water surface elevations were in areas of typ-
ically sub-critical and non-rapidly-varying flow; i.e., areas where the accuracy of implicit
methods have been proven. It would be valuable to compare these methods in a large and
spatially accurate domain where depths and velocities in areas of transcritical flow are
known. Also of interest would be assessment of the performance of the models developed
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herein when interfaced to a three dimensional hydrological model for applications over
extended periods of time (Haahti et al. 2014)

Completing calculations on the GPU cores of a consumer-level graphics card yielded an
overall faster runtime than using the implicit method of SRH-2D. Although more rigorous
comparisons should occur between the code and implicit methods, this paper demonstrates
that a high-accuracy second-order explicit in time method, its type generally historically
ignored due to runtime limitations, can complete model runs at similar speeds to implicit
methods if the GPU is utilized for calculation.

7 Compliance with Ethical Standards

This paper has not been previously been published nor is it currently under consideration
for publication elsewhere. The authors affirm that the work performed and its reporting in
this manuscript is free of any and all conflicts of interest.
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