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MINIMAL BETTI NUMBERS

CHRISTOPHER DODD, ANDREW MARKS, VICTOR MEYERSON,
AND BEN RICHERT1

Abstract. We give conditions for determining the extremal behavior for
the (graded) Betti numbers of squarefree monomial ideals. For the case
of non-unique minima, we give several conditions which we use to produce
infinite families, exponentially growing with dimension, of Hilbert functions
which have no smallest (graded) Betti numbers among squarefree monomial
ideals and all ideals. For the case of unique minima, we give two families of
Hilbert functions, one with exponential and one with linear growth as di-
mension grows, that have unique minimal Betti numbers among squarefree
monomial ideals.

1. Introduction

Let R be a polynomial ring over a field K. Then given a Hilbert function
H it is easy to see that there can be more than one ideal I ⊂ R such that
the Hilbert function of R/I is H . One can further distinguish such ideals
by passing to a finer invariant, the graded Betti numbers, which gives rise
to the question: given a particular Hilbert function H , what sets of graded
Betti numbers actually occur? That this problem is bounded above, and hence
finite, is due to an important result by Bigatti and Hulett [B, H] (independently
in characteristic zero), and Pardue [P] (in characteristic p) which says that,
given a Hilbert function H , the lexicographic ideal attaining H has everywhere
largest graded Betti numbers. In fact, this says that the partial order on
the set of sets of graded Betti numbers of ideals attaining a given Hilbert
function has a unique maximum element. Shortly thereafter, it was shown
by Charalambous and Evans [C-E] that this order need not have a unique
minimal element. Examples of infinite families of Hilbert functions which did
not support unique minimal elements were given by Richert [R].

The structure of the partial order on graded Betti numbers has also been
considered on interesting subsets of the set of all ideals attaining a given Hilbert
function. For instance, Geramita, Harima, and Shin [G-H-S] showed that if
one restricts to the graded Betti numbers arising from a certain (dense) set
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of Gorenstein ideals, then the associated partial order has a unique maximal
element which is constructed using a lexicographic ideal (Migliore and Nagel
[M-N] were later able to extend this result to an even larger set of Gorenstein
ideals attaining a given Hilbert function) while Richert [R] showed that a
unique minimal element need not exist. For stable ideals in dimension at most
three, Francisco [F] showed that, unlike the general and Gorenstein cases, there
is always a unique smallest element.

It is a result of Aramova, Herzog, and Hibi [A-H-H1, A-H-H2] that if one
restricts to the graded Betti numbers arising from squarefree monomial ideals
attaining a given Hilbert function, then the associated partial order has a
unique maximal element (which arises, not surprisingly, from the squarefree
lexicographic ideal). Squarefree monomial ideals are particularly interesting
(to algebraists, topologists, and combinatorists alike) because to each square-
free monomial ideal I in n variables can be associated a simplicial complex ∆I

on n vertices, while the Hilbert function of R/I is related to the face counts
of ∆I and the graded Betti numbers of R/I can be computed by considering
sums of the ranks of the reduced homologies of subsets of ∆I . It was known
that (Gelvin, LaVictore, Reed, Richert [G-L-R-R]) for n ≤ 5 variables (and
after fixing a finite field), the partial orders arising from fixing a Hilbert func-
tion were totally ordered, but that this failed in six variables where, in fact,
there is an example of a partial order which does not have a unique smallest
element. In the current paper, we continue this line of inquiry. First, we gen-
erate an infinite family (the size of which grows exponentially with dimension)
of Hilbert functions for which the partial order on the graded Betti numbers
corresponding to squarefree monomial ideals fails to have a unique minimal
element. We are able to show that this same family of Hilbert functions gives
rise to partially ordered sets corresponding to all ideals (not only squarefree
monomial ideals) which fail to have a unique minimal element. We then find
an infinite family (again, growing exponentially) of Hilbert functions for which
the partial order on the Betti numbers (not graded Betti numbers) of square-
free monomial ideals fails to have a unique smallest element (and are again
able to show that this family gives posets without unique minimal elements in
the case of all ideals). Next, we find an infinite family (growing exponentially)
of Hilbert functions for which the partial order associated to the graded Betti
numbers of squarefree monomial ideals has a single element, and thus a unique
smallest element. We note an analogous family in the general case. Finally,
we find a infinite family (growing linearly) of Hilbert functions for which the
partial order associated to the graded Betti numbers of squarefree monomial
ideals has a unique smallest element, and a nontrivial poset tree.
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2. Background

Let R = K[x1, . . . , xn] where K is a field. In what follows, all ideals will
be homogeneous. In this paper, we will be studying the graded Betti numbers
of ideals with a fixed Hilbert function. Recall that given a homogeneous ideal
I ⊂ R, the Hilbert function of R/I in degree d, denoted as H(R/I, d) is given
by

H(R/I, t) = dimK(R/I)t.

Furthermore, we will write

0 −→
⊕

j∈Z

R(−j)β
I
h,j −→ · · · −→

⊕

j∈Z

R(−j)β
I
1,j −→ R −→ R/I −→ 0

to be a minimal free resolution of R/I, and βI = {βI
i,j} to be the set of graded

Betti numbers of R/I. It is useful to display graded Betti numbers in the
following table known as a Betti Diagram (using the notation of Macaulay 2
[G-S]).

s0 s1 s2 s3 . . .
0 β0,0 β1,1 β2,2 β3,3 . . .
1 β0,1 β1,2 β2,3 β3,4 . . .
2 β0,2 β1,3 β2,4 β3,5 . . .
3 β0,3 β1,4 β2,5 β3,6 . . .
...

...
...

...
...

. . .

where si is the sum of the entries in the ith column. Then S = {si} is the set of
Betti numbers. There is an obvious partial order on the Betti diagrams which
arise for ideals with a given Hilbert function. If βI and βJ are the graded
Betti numbers of the ideals I and J , then we say that βI ≥ βJ if βI

i,j ≥ βJ
i,j

for all i and j. Furthermore, βI > βJ if βI ≥ βJ and there is a pair (i, j)
such that βI

i,j > βJ
i,j. We are interested in the extremal properties of this

ordering. A useful definition in this regard is that of q-linearity: A minimal
free resolution of an ideal I is called q-linear if I is minimally generated by
q-forms and βi,j = 0 for each j 6= q + i− 1 and j 6= 0.

It turns out that the graded Betti numbers are a finer invariant than Hilbert
functions. They are related by the following useful equation.

Theorem 2.1. [S] Given an ideal I ⊂ R = K[x1, . . . , xn] with graded Betti
numbers βI ,

∞
∑

d=0

H(R/I, d)td =

∑∞
j=0

∑n

i=0(−1)iβI
i,jt

j

(1− t)n

It follows from this formula that the diagonal alternating sums of a Betti
diagram are invariant for all Betti diagrams of ideals attaining a given Hilbert
function. We define this alternating sum as follows:
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Definition 2.2. Given an ideal I, the jth diagonal alternating sum of the
Betti diagram of I is:

dj =

j
∑

i=0

(−1)iβi,j

where the βi,j are the graded Betti numbers of I.

The partial ordering on Betti diagrams has a unique maximal Betti diagram
[B, H, P]. In order to identify an ideal attaining the maximal graded Betti
numbers, we need the following notation: Let xa1

1 xa2
2 · · ·xan

n and xb1
1 x

b2
2 · · ·xbn

n

be monomials such that
∑

ai =
∑

bi (i.e. they are of the same degree). We
say xa1

1 xa2
2 · · ·xan

n >lex xb1
1 x

b2
2 · · ·xbn

n if and only if the first nonzero entry of
(a1 − b1, a2 − b2, . . . , an − bn) is positive. This is known as the lexicographic
or lex ordering on monomials. An ideal L is a lex ideal if for all monomials
m ∈ Ld and n ∈ Rd, then n ≥lex m implies n ∈ Ld. A lex ideal achieves the
maximal graded Betti numbers among all ideals attaining its Hilbert function.

In this paper we are mainly concerned with squarefree monomial ideals. A
squarefree monomial ideal is an ideal inR = K[x1, . . . , xn] minimally generated
by elements of the form xa1

1 xa2
2 · · ·xan

n , where ai ∈ {0, 1}.
We will make use of the fact that the squarefree monomial ideals are in

one-to-one correspondence with simplicial complexes. Recall the definition of
a simplicial complex: A simplicial complex ∆ on the vertex set {1, . . . , n} is a
collection of subsets called faces or simplices, closed under taking subsets; that
is if σ ∈ ∆ is a face and τ ⊆ σ, then τ ∈ ∆. A simplex σ ∈ ∆ of cardinality
|σ| = i+ 1 has dimension i and is called an i-face.

The (well known, see for instance [S]) procedure to pass from a simplicial
complex ∆ to a squarefree monomial ideal is to form the ideal generated by
monomials corresponding to the minimal non-faces of ∆, after renaming the
vertex set of ∆ to be {x1, . . . , xn}.

Example 2.3. The simplicial complex ∆ =
{

{1, 4}, {2, 3}, {2, 4}, {3, 4}
}

cor-
responds to the ideal I = (x1x2, x1x3, x2x3x4). We use dashed lines in the
picture to indicate minimal non-faces.

x1 x2

x3x4

←→ I = (x1x2, x1x3, x2x3x4)

This correspondence gives a bijection between simplicial complexes and
squarefree monomial ideals with no linear terms. In general, we will con-
flate simplicial complexes and ideals due to this correspondence, and so we are
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free to talk about the Betti numbers of a simplicial complex or the homology
of an ideal.

Given a simplicial complex with fi i-faces, its corresponding f -vector is the
n-tuple (f0, f1, . . . , fn−1). For example, consider the simplicial complex

(4, 4, 1, 0)

which has f -vector (4, 4, 1, 0). Here the f -vector counts the 4 0-faces (or
points), 4 1-faces (or edges), 1 2-face, and 0 3-faces (or volume).

The f -vector is an important invariant of a simplicial complex because of
the following:

Theorem 2.4. [S] Let I be the Stanley-Reisner ideal of a simplicial complex
with f -vector (f0, f1, . . . , fn−1). Then

H(R/I,m) =

{

1 m = 0,
∑n−1

i=0 fi
(

m−1
i

)

m > 0.

From the theorem, it follows that f -vectors and Hilbert functions are in
one-to-one correspondence.

Given a Hilbert function which arises for squarefree monomial ideals, we will
be particularly interested in the corresponding squarefree lex ideal (because
it always exists and is known to exhibit the maximal Betti diagram [A-H-H1,
A-H-H2]). An ideal L is a squarefree lex ideal if for squarefree monomials
m ∈ Ld and n ∈ Rd, n ≥lex m implies n ∈ Ld.

A useful tool in studying simplicial complexes (and therefore their associated
ideals) is simplicial homology. If ∆ is a simplicial complex, we let ∆l be the
set of all l-faces in ∆, and let Cl(∆) denote the K vector space whose basis
consists of ∆l. We define the boundary map ∂l :Cl(∆) → Cl−1(∆)to be

∂l({i1, . . . , il+1}) =

l+1
∑

j=1

(−1)j+1{i1, . . . , îj, . . . , il+1}

where the hat indicates omission. We define the ∆l subspaces Zl(∆) = ker(∂l)
and Bl(∆) = image(∂l+1). By standard algebraic topology, we have Bl(∆) ⊆
Zl(∆), and so we can define the l−homology of ∆, Hl(∆), to be the K vector
space Zl(∆)/Bl(∆). In addition, the reduced l− homology H̃l(∆) is given by

H0(∆) ∼= H̃0(∆)⊕K, and Hl(∆) when l > 0 . We now present the connection
between the simplicial homology of certain subsets of ∆ and graded Betti
numbers, in the form of Hochster’s formula. To properly express this formula,
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we need a new notation. If W ⊆ {1, . . . n}, then given a simplicial complex
∆, let ∆W be the simplicial complex defined by ∆W = ∆ ∩ P (W ) where P
denotes power set. Then we have

Theorem 2.5. [Ho] Let I ⊆ R be a squarefree monomial ideal, with ∆ the
associated simplicial complex. Then we have

βI
i,j =

∑

W⊆{1,...,n},|W |=j

dimK H̃j−i−1(∆W ;K)

for all i and j.

3. Non-unique Minimal Graded and Nongraded Betti Numbers

3.1. Graded Betti Numbers. In this section we construct a fast-growing
family of Hilbert functions which fail to have unique minimal graded Betti
numbers among both squarefree monomial ideals, and all ideals. We proceed
using simplicial complexes, giving a method for preserving parts of the Betti
diagrams which guarantee incomparability. Our methods allow us to double
the number of f -vectors in each dimension with this property, and so our
family of f -vectors grows exponentially with the dimension of the polynomial
ring.

Definition 3.1. Let ∆ be a simplicial complex on n vertices. We define
the j-cone of ∆ on the vertex {n + 1}, denoted C(j)∆, to be the simplicial
complex on n + 1 vertices such that {i1, . . . , ik} ∈ C(j)∆ if and only if either
{i1, . . . , ik} ∈ ∆ or ik = n+1, {i1, . . . , ik−1} ∈ ∆ and k− 1 ≤ j. As suggested
by the definition, we define C(∞)∆ to be the n-cone of ∆, C∆.

Example 3.2. Let ∆ be the simplicial complex

∆ = {{1}, {2}, {3}, {4}, {1, 2}, {1, 4}, {2, 4}, {3, 4}, {1, 2, 4}}} ⊂ {1, 2, 3, 4},

with f -vector (4, 4, 1, 0). Then

C(0)(∆) = {{1}, {2}, {3}, {4}, {5}, {1, 2}, {1, 4}, {2, 4}, {3, 4}, {1, 2, 4}},

C(1)(∆) = {{1}, {2}, {3}, {4}, {5}, {1, 2}, {1, 4}, {1, 5}, {2, 4}, {2, 5}, {3, 4},

{3, 5}, {4, 5}, {1, 2, 4}},

C(2)(∆) = {{1}, {2}, {3}, {4}, {5}, {1, 2}, {1, 4}, {1, 5}, {2, 4}, {2, 5}, {3, 4},

{3, 5}, {4, 5}, {1, 2, 4}, {1, 2, 5}, {1, 4, 5}, {2, 4, 5}, {3, 4, 5}},

C(3)(∆) = {{1}, {2}, {3}, {4}, {5}, {1, 2}, {1, 4}, {1, 5}, {2, 4}, {2, 5}, {3, 4},

{3, 5}, {4, 5}, {1, 2, 4}, {1, 2, 5}, {1, 4, 5}, {2, 4, 5}, {3, 4, 5},

{1, 2, 4, 5}},
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and, of course, C(3)(∆) = C(∞)(∆). Here C(0) has f -vector (5, 4, 1, 0, 0), C(1)

has f -vector (5, 8, 1, 0, 0), C(2) has f -vector (5, 8, 5, 0, 0), and C(3) has f -vector
(5, 8, 5, 1, 0).

On of the nice things about coning a simplicial complex is that the graded
Betti numbers do not change. We show below that we can similarly preserve
certain of the graded Betti numbers of a simplicial complex after j-coning.

Lemma 3.3. Given a simplicial complex ∆, the Betti diagram of the simplicial
complex C(j)∆ will be identical to the Betti diagram of ∆ for the first j + 1
diagonals.

Proof. We employ Hochster’s formula. Let k ≤ j + 1. Then we have

β
C(j)(∆)

i,k =
∑

W⊆{1,...,n+1},|W |=k

dimK H̃k−i−1(∆W ;K)

=
∑

W⊆{1,...n},|W |=k

dimK H̃k−i−1(∆W ;K) +
∑

{n+1}∈W,|W |=k

dimK H̃k−i−1(∆W ;K)

However, from the definition of j-coning and the complex ∆W , we have that
for any W with {n + 1} ∈ W and at most j vertices in {1, . . . n}, ∆W is a
cone. By standard algebraic topology, a cone is contractible and so all of its
reduced homology spaces are zero. Therefore, the second term in the above
sum vanishes, and as the first term is β∆

i,k by Hochster’s formula, the lemma
is proved. �

Definition 3.4. Given j, and an f -vector (f0, f1, . . . , fn−1) of a simplicial

complex ∆, define f
[k]
m to be the mth entry of the f -vector (C(j))

k∆. Also, for
m > j, define

f (k)
m =

{

fm for m = j + 1 or k = 0,

f
(k−1)
m−1 + f

(k−1)
m otherwise.

Remark 3.5. If the f -vector of ∆ is (f0, f1, . . . , fn−1), then it is easy to show
that the f -vector of C(j)∆ is:

{

(1 + f0, f0 + f1, f1 + f2, . . . , fj−1 + fj , fj+1, . . . , fn−1, 0) j < n

(1 + f0, f0 + f1, f1 + f2, . . . , fn−2 + fn−1, fn−1) j ≥ n

or, in the notation of Definition 3.4,
{

(f
[1]
0 , f

[1]
1 , . . . , f

[1]
j , fj+1, . . . , fn−1, 0) j < n

(f
[1]
0 , f

[1]
1 , . . . , f

[1]
n−1, fn−1) j ≥ n

We speak of this f -vector as the one generated by j-coning the initial f -vector.
Consider the family of f -vectors derived by starting with an initial f -vector
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and at each stage, both j-coning and ∞-coning it. The first iteration of such
a tree is shown below, assuming j < n:

(f0, . . . , fn−1)

j-cone

uukkkkkkkkkkkkkk

∞-cone

**TTTTTTTTTTTTTTTT

(f
[1]
0 , . . . , f

[1]
j , fj+1, . . . , fn−1) (f

[1]
0 , . . . , f

[1]
j , f

[0]
j + f

(1)
j+1, . . . , f

(1)
n−1)

We will use this technique to generate families of f -vectors which grow expo-
nentially with dimension.

Definition 3.6. Given a simplicial complex ∆ and a k-tuple (m0, m1, . . . , mk)
where each m is either a nonnegative integer or ∞, define C(m0,m1,...,mk)∆ to
be the simplicial complex generated by m0-coning, then m1-coning, and so on.
Similarly, if I is the associated ideal of ∆, define C(m0,m1,...,mk)I to be the ideal
associated to C(m0,m1,...,mk)∆.

Lemma 3.7. Given an f -vector (f0, f1, . . . , fj , . . . , fc, . . . ) of a simplicial com-
plex ∆ where fc is the last nonzero element of the f -vector and j ≤ c, the f -
vectors of the simplicial complexes in the tree generated by repeatedly j-coning
and ∞-coning ∆ are distinct.

Proof. We can index each f -vector in the tree with the k-tuple (m0, m1, . . . , mk)
where each m is either j or ∞ and C(m0,m1,...,mk)∆ is the corresponding sim-
plicial complex. Let {ti}, 0 ≤ i < r be the t such that mti = ∞ so that r is
the number of times we ∞-cone. Then the f -vector of C(m0,m1,...,mk)∆ is:

(f
[k]
0 , f

[k]
1 , . . . , f

[k]
j ,

r−1
∑

i=0

f
[ti]
j + f

(r)
j+1,

r−2
∑

i=0

f
[ti]
j + f

(r)
j+2,

. . . , f
[t0]
j + f

(r)
j+r, f

(r)
j+r+1, . . . , f

(r)
c+r, . . . ).

From this f -vector we can read r from the index of the last nonzero entry
minus c. Further, as the f p

j are monotonically increasing and thus distinct,

the elements at position j+1 through j+ r determine the {ti}, and as the jth

element gives k, the f -vector uniquely determines (m0, m1, . . . , mk). �

Remark 3.8. This Lemma ensures that j-coning and ∞-coning a suitable
f -vector gives a family of Hilbert functions which grows as 2n with dimension.
It can be shown that this growth is not necessarily achieved if we j-cone and
l-cone for arbitrary j and l.

Theorem 3.9. Given a set of squarefree monomial ideals Ik corresponding to
an f -vector −⇀v , if for some j their Betti diagrams have jth diagonal such that
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the alternating sum dj is nonzero and, for each i, min
k

βIk
i,j = 0, then each f -

vector in the tree created by (j− 1)-coning and ∞-coning −⇀v has an associated
Hilbert function such that the poset tree of graded Betti numbers of all ideals
attaining this Hilbert function will fail to have a unique minimum. The poset
tree of each Hilbert function also fails to have a unique minimum if we restrict
to the graded Betti numbers of all squarefree monomial ideals.

Proof. We show that this condition on the jth diagonal guarantees that a
unique minimum cannot exist among the graded Betti numbers. As this diag-
onal is preserved under both (j−1)-coning and ∞-coning and the C(m0,...,mk)Ik
are squarefree monomial ideals, the theorem follows. As minβIk

i,j = 0 for all i,

any diagram that is less than all βIk in the partial order has all zeros on its
jth diagonal. However, as dj is nonzero, no Betti diagram can have all zeros
along the jth diagonal and attain dj. Thus, no ideal can be less than all βIk

and attain this Hilbert function, and as the conditions on the Ik imply that
at least two of the Ik are incomparable, a unique minimum cannot exist. �

Remark 3.10. The number of (not necessarily distinct) f -vectors in the tree
constructed in Theorem 3.9 grows as 2c where c is the number of times the
initial f -vector has been coned. If the initial f -vector satisfies the hypothesis
of Lemma 3.7, then we are guaranteed that these f -vectors will be distinct,
and so this family grows exponentially with the dimension of the polynomial
ring. We can enlarge this family by (j − 1), . . . , (j + c− 1)-coning as well as
∞-coning where c is the number of times we have coned already, however, our
computational evidence suggests that this family still grows exponentially.

Example 3.11. From an exhaustive computational search, several examples
were found that satisfy the hypothesis of the above theorem. The programs
written to find these examples are available from the authors on request. The
first example occurring in lex order was with the f -vector (6, 8, 4, 0, 0, 0), and
had previously been noted by Gelvin, LaVictore, Reed, Richert [G-L-R-R].
Two ideals attaining this f -vector are:

I = (x1x2, x1x3, x2x3, x3x4, x3x5, x3x6, x4x5)

J = (x1x2, x1x4, x2x3, x2x5, x3x4, x4x5, x4x6, x1x3x5x6)

with graded Betti numbers (calculated over Z101 with Macaulay 2):

βI =

1 7 13 11 5 1
0 1 0 0 0 0 0
1 0 7 12 10 5 1
2 0 0 1 1 0 0

βJ =

1 8 14 9 2
0 1 0 0 0 0
1 0 7 12 8 2
2 0 0 0 0 0
3 0 1 2 1 0
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The 6th diagonal of these Betti diagrams satisfies the condition that their
alternating sums are not zero, but the minimum in each position on the di-
agonal is zero. Furthermore, (C(∞))

3(6, 8, 4, 0, 0, 0) has a nonzero entry in the
5th position of its f -vector. Thus, the family of f -vectors created by 5-coning
and∞-coning (C(∞))

3(6, 8, 4, 0, 0, 0) has associated Hilbert functions with non-
unique minimal graded Betti numbers for both the squarefree and general case
and grows exponentially with dimension.

3.2. Betti Numbers. In this section we provide a method for constructing
families of Hilbert functions without unique minimal Betti numbers among
both squarefree monomial ideals, and all ideals. Again, we use methods for
preserving the properties of the Betti diagrams which guarantee incompara-
bility. Our family of f -vectors grows exponentially with the dimension of the
polynomial ring.

Lemma 3.12. If an ideal I has the Betti diagram:

βI =

s0 s1 s2 . . .
0 β0,0 β1,1 β2,2 . . .
1 β0,1 β1,2 β2,3 . . .
2 β0,2 β1,3 β2,4 . . .
...

...
...

...
. . .

such that

j
∑

i=0

βi,j =| dj | for all j, then if L is an ideal with the same Hilbert

function,
∑

i

sLi ≥
∑

i

si .

Proof. Given an ideal L with the same Hilbert function as I,
∑

j

sLj =
∑

i,j

βL
i,j ≥

∑

j

| dj|. As
∑

j

sj =
∑

j

| dj| for I, if L had Betti numbers sLi such that

∑

i

sLi <
∑

i

si, then
∑

i

sLi <
∑

j | dj|, a contradiction. �

Lemma 3.13. Let ∆ be a simplicial complex, and let I be its associated ideal.
The graded Betti numbers of C(0)∆ can be computed as:

β
C(0)∆

i,j =











βI
i,j for i = 0,

βI
i−1,j−1 + βI

i,j +
(

n

i

)

for i = j − 1,

βI
i−1,j−1 + βI

i,j otherwise.

where n is the number of vertices of ∆.
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Proof. Recall that C(0)∆ is the simplicial complex obtained by adding a point

to ∆. By definition, we have that H̃l(C(0)∆) = H̃l(∆) if l > 0 and H̃0(C(0)∆) =

H̃0(∆) + 1. By Hochster’s formula:

β
C(0)∆

i,j =
∑

W⊆{1,...n},|W |=j

dimK H̃j−i−1(∆W ;K)

+
∑

{n+1}∈W,|W |=j

dimK H̃j−i−1(∆W ;K)

= βI
i,j +

∑

{n+1}∈W,|W |=j

dimK H̃(j−1)−i(∆W ;K)

However, subsets of size j containing {n+1} are in bijective correspondence
with subsets of {1, . . . , n} of size j − 1. If j > i + 1, then by the above
formula for adding a point we have that each of the vector spaces in the
last term above are isomorphic to the corresponding spaces H̃(j−1)−i(∆W ′;K)
where W ′ = W \ {n + 1}, and so the last sum is just βI

i−1,j−1. Finally, if

j = i + 1, then in addition to βI
i−1,j−1, we add 1 for each subset of {1, . . . , n}

of size j − 1 = i, so this gives the second line of the formula. �

Lemma 3.14. Suppose that two squarefree monomial ideals I and J have the
same f -vector −⇀v and have Betti numbers sI and sJ such that for some k,
sI0 = sJ0 , s

I
1 > sJ1 , s

I
k < sJk , s

I
k+i ≤ sJk+i for all positive i, and βI

i,j = 0 when j− i
is even and j > 0. Then each f -vector in the tree created by 0-coning and ∞-
coning −⇀v has a Hilbert function such that the poset tree of all Betti numbers
of ideals with this Hilbert function will not have a unique minimum. This will
remain true if we restrict to the Betti numbers of squarefree monomial ideals.

Proof. We first observe that the conditions of the theorem still hold under
0-coning and ∞-coning. Graded Betti numbers are unchanged under ∞-
coning, and using Lemma 3.13, it is easy to show that the conditions still
hold under 0-coning. Thus, for all choices mi ∈ {0,∞}, the Betti numbers
of C(m0,...,mk)I and C(m0,...,mk)J will be incomparable and C(m0,...,mk)I will al-

ways satisfy
∑

j

s
C(m0,...,mk)I

j =
∑

j

| d
C(m0,...,mk)I

j |. As Lemma 3.12 proves that

no ideal can have smaller Betti numbers than C(m0,...,mk)I, unique minimal
Betti numbers cannot exist for the family of f -vectors created by 0-coning and
∞-coning −⇀v . �

Remark 3.15. The theorem remains true with a nearly identical proof if we
replace the clause βI

i,j = 0 if j − i is an even number and j > 0 with βJ
i,j = 0

if j − i is an even number and j > 0.
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Example 3.16. Recall from example 3.11 that the ideals

I = (x1x2, x1x3, x2x3, x3x4, x3x5, x3x6, x4x5), and

J = (x1x2, x1x4, x2x3, x2x5, x3x4, x4x5, x4x6, x1x3x5x6),

corresponded to the f -vector (6, 8, 4, 0, 0, 0) and have graded Betti numbers
(over Z101)

βI =

1 7 13 11 5 1
0 1 0 0 0 0 0
1 0 7 12 10 5 1
2 0 0 1 1 0 0

βJ =

1 8 14 9 2
0 1 0 0 0 0
1 0 7 12 8 2
2 0 0 0 0 0
3 0 1 2 1 0

These Betti numbers satisfying the conditions laid out in Lemma 3.14 (with
the roles of I and J reversed). Thus, the family generated by 0-coning and ∞-
coning (6, 8, 4, 0, 0, 0) consists of f -vectors corresponding to Hilbert functions
whose poset trees of Betti numbers fail to have unique minimums. This family
grows exponentially with dimension by Lemma 3.7.

Remark 3.17. The infinite family given above is also an infinite family of
Hilbert functions with non-unique minimal graded Betti numbers, as incom-
parable Betti numbers implies incomparable graded Betti numbers.

4. Unique Minimal Betti Numbers

4.1. Squarefree Monomial Ideals. One of the simplest ways to construct
Hilbert functions for squarefree monomial ideals with unique minimal graded
Betti numbers is to find those for which the graded Betti numbers of the
squarefree lex ideal are minimal. As the squarefree lex ideal always gives max-
imal graded Betti numbers (among squarefree monomial ideals), uniqueness
follows immediately.

To proceed, we observe that a minimal free resolution of a squarefree lex
ideal generated in a single degree d is d-linear (this was proved by Aramova,
Hibi, and Herzog [A-H-H1]). In fact, it is true (see Herzog, Reiner, and Welker
in [H-R-W]) that squarefree lex ideals are componentwise linear (an ideal I
is componentwise linear if Id is d-linear for all d). In particular, this implies
that if L is a squarefree lex ideal with no minimal generators in degree t, then
βL
i,j = 0 for j = t + i − 1—or in words, the Betti diagram of a squarefree lex

ideal L may contain a nonzero entry in row i only if i = 0 or L has a minimal
generator in degree i+ 1.

We now give a family, growing exponentially with dimension, of f -vectors
for which the corresponding poset tree of graded Betti numbers (for squarefree
monomial ideals) has a unique (and hence a unique minimal) element.
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Theorem 4.1. Suppose that L is a squarefree lex ideal generated in a single
degree. Then the poset tree of graded Betti numbers of squarefree monomial
ideals with the same Hilbert function as R/L consists of a unique element
(which is thus uniquely minimal). The family of f -vectors which give rise to
such L grows exponentially with dimension.

Proof. We know that a squarefree monomial lex ideal, L, generated in a single
degree has a d-linear resolution. Thus, by Lemma 3.12, no other ideal with the
same f -vector can have smaller Betti numbers than L and so it is the unique
minimum. For a polynomial ring with n variables, there are

(

n

i

)

squarefree
monomials of degree i and thus 2n − n − 1 distinct squarefree monomial lex
ideals generated in a single degree. This gives the exponential growth with
dimension. �

Remark 4.2. The same techniques can be used to show that Hilbert functions
containing lex ideals generated in a single degree will have unique minimal
graded Betti numbers among all ideals.

4.2. Unique Mins via Hochster’s formula. We now present a new method
for finding unique minima among squarefree ideals using Hochster’s formula.

Lemma 4.3. Suppose that L is a squarefree lex ideal with βL
i,j 6= 0 iff i, j = 0

or j − i = 1 or 2. Then if an ideal exists that attains the same f -vector as L,
and satisfies the hypothesis of Lemma 3.12, it will have the unique minimal
graded Betti numbers among all squarefree monomial ideals with this f -vector.

Proof. The conditions on L imply that any ideal with the same f -vector will
have at most two nonzero Betti numbers in each of its diagonal alternating
sums, and these will have opposite signs in the summation. Thus, if an ideal I
satisfies the hypothesis of Lemma 3.12, it will have at most one nonzero graded
Betti number on each diagonal and so no other ideal can have a smaller graded
Betti number than I while preserving the dj. �

Theorem 4.4. In the polynomial ring of dimension n, the Hilbert function
corresponding to the f -vector (n, k, 0, . . . , 0) for 0 ≤ k ≤ n has an ideal which
attains minimal graded Betti numbers among all squarefree monomial ideals
with the same Hilbert function.

Proof. If k = 0 we have that the given simplicial complex is the only one with
the corresponding f -vector, and hence is minimal. For k > 0, we note that the
squarefree lex ideal for this f -vector can only be generated in degree 2 and 3,
as a generator in degree 4 would correspond to a minimal non-3-face, which
would certainly imply that this simplicial complex has 2-faces; but the above
f -vector has none. By Lemma 4.3, it remains to show that there exist ideals
attaining (n, k, 0, . . . , 0) for each 1 ≤ k ≤ n which satisfy the hypothesis of
Lemma 3.12. We do this in the following two results. �
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In this first lemma, we show that for each 1 ≤ k ≤ n− 1, there is an ideal
attaining (n, k, 0, . . . , 0) which satisfies the hypothesis of Lemma 3.12.

Lemma 4.5. Let 1 ≤ k ≤ n− 1. Then the simplicial complex

∆ = {{1}, . . . , {n}, {1, 2}, {2, 3}, . . . , {k, k + 1}}

has a 2-linear resolution.

Proof. By Hochster’s formula, a resolution will be 2-linear if there is no reduced
l-homology for l ≥ 1, for any sub-complex ∆W (because in that case βi,j = 0

for i = j and βi,j, which for j > i+ 1 depends only on the spaces H̃j−i−1, are
all zero). But note that for any W ⊆ {1, . . . n} the simplicial complex ∆W is
homotopy equivalent to a finite set of points. Since a finite set of points never
has reduced l-homology for l ≥ 1, the lemma is proved. �

We now demonstrate that there is an ideal attaining (n, n, 0, . . . , 0) which
satisfies the hypothesis of Lemma 3.12.

Lemma 4.6. The only graded Betti numbers of the simplicial complex

{{1}, . . . , {n}, {1, 2}, {2, 3}, . . . , {n, 1}}

which can be nonzero are β0,0, βi,i+1 for 1 ≤ i ≤ n− 2 and βn−2,n.

Proof. The case βi,j for j < n is done above as if W ⊂ {1, . . . , n} (strict con-
tainment) then ∆W is a simplicial complex in the form of the above lemma.

If j = n, then βi,n depends only the space H̃n−i−1(∆, K). However, this sim-
plicial complex is homotopy equivalent to a circle, so its only nonzero reduced
homology space is H̃1, which occurs in Hochster’s formula when i = n−2. �

Remark 4.7. This family of Hilbert functions with unique minimal graded
Betti numbers grows linearly with dimension; from Theorem 4.4, we have n+1
Hilbert functions in each dimension.
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