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Abstract

The histopathological evaluation of morphological features in breast tumours provides prognostic 

information to guide therapy. Adjunct molecular analyses provide further diagnostic, prognostic 

and predictive information. However, there is limited knowledge of the molecular basis of 

morphological phenotypes in invasive breast cancer. This study integrated genomic, transcriptomic 

and protein data to provide a comprehensive molecular profiling of morphological features in 

breast cancer. Fifteen pathologists assessed 850 invasive breast cancer cases from The Cancer 

Genome Atlas (TCGA). Morphological features were significantly associated with genomic 

alteration, DNA methylation subtype, PAM50 and microRNA subtypes, proliferation scores, gene 

expression and/or reverse-phase protein assay subtype. Marked nuclear pleomorphism, necrosis, 

inflammation and a high mitotic count were associated with the basal-like subtype, and had a 

similar molecular basis. Omics-based signatures were constructed to predict morphological 

features. The association of morphology transcriptome signatures with overall survival in 

oestrogen receptor (ER)-positive and ER-negative breast cancer was first assessed by use of the 

Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) dataset; signatures 

that remained prognostic in the METABRIC multivariate analysis were further evaluated in five 

additional datasets. The transcriptomic signature of poorly differentiated epithelial tubules was 

prognostic in ER-positive breast cancer. No signature was prognostic in ER-negative breast cancer. 

This study provided new insights into the molecular basis of breast cancer morphological 

phenotypes. The integration of morphological with molecular data has the potential to refine breast 

cancer classification, predict response to therapy, enhance our understanding of breast cancer 

biology, and improve clinical management. This work is publicly accessible at www.dx.ai/

tcga_breast.

Keywords

PAM50; TCGA; bioinformatics; genomics; mRNA; epithelial tubule formation; histological grade

Introduction

Histopathological analysis of breast tumours plays a central role in the diagnosis of breast 

cancer. The assessment of histological type [e.g. invasive ductal carcinoma (IDC) or invasive 

lobular carcinoma (ILC)] and histological grade (a summary score of epithelial tubule 

formation, mitotic count, and nuclear pleomorphism) are reported to guide clinical 

management [1–4]. The microscopic assessment of tumour-infiltrating lymphocytes can 

predict improved response to chemotherapy and prognosis in erb-b2 receptor tyrosine kinase 

(HER2)-positive breast cancer [5–8]. Beyond these features, breast tumours show an array of 

other morphological features such as necrosis, the clinical significance of which is not well 

characterized.
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Breast cancer is a heterogeneous disease at both the morphological and molecular levels. 

The PAM50 molecular ‘intrinsic’ subtypes, luminal A, luminal B, HER2-enriched, basal-

like, and normal-like, have distinct biological properties, epidemiological risk factors, 

responses to therapy, and prognoses, and are associated with specific morphological features 

[9–13]. The normal-like subtype is highly variable and is not reproducibly defined [14]. 

Morphological and molecular data complement the characterization of breast cancer 

phenotypes. For example, basal-like tumours show high histological grade, necrosis, tumour-

infiltrating lymphocytes, and fibrotic foci, and are generally IDCs [15–19], whereas HER2-

enriched tumours show high histological grade, and may contain apocrine features and 

ductal carcinoma in situ (DCIS) [20,21].

Few studies have analysed the molecular characteristics of morphological features. These 

studies were limited by sample sizes (n = 57–212), and investigated one to three features 

with one or two types of molecular data [22–25]. The Genomic Grade Index (GGI; i.e. 

MapQuant Dx) is a transcriptomic signature constructed by integrating histological grade 

with gene expression, and is associated with oestrogen receptor (ER)-positive breast cancer 

prognosis [22]. GGI, like most first-generation prognostic signatures, is largely a measure of 

cellular proliferation [14,26,27]. The molecular bases of histological grade components, 

nuclear pleomorphism, epithelial tubule formation, and mitotic count, as well as other breast 

tumour morphological features, remain unknown.

This study aimed to comprehensively elucidate the molecular basis of breast cancer 

morphological phenotypes by integrating genomic, transcriptomic and proteomic data with 

morphological features, and to determine whether morphology transcriptomic signatures 

were prognostic in ER-positive or ER-negative breast cancer. To achieve this, a team of 15 

international breast cancer pathology experts provided detailed histopathological annotation 

for 850 invasive breast cancer cases in The Cancer Genome Atlas (TCGA). After we had 

integrated the consensus assessments of 11 morphological features with TCGA’s molecular 

profiles, we identified genomic, transcriptomic and proteomic data associated with 

morphological features. Next, omics-based signatures representative of morphological 

features were constructed, and the prognostic value of each signature with overall survival 

was assessed by use of the Molecular Taxonomy of Breast Cancer International Consortium 

(METABRIC) database [28]. Signature(s) that remained prognostic in the METABRIC 

multivariate analysis were further evaluated in five additional datasets.

Materials and methods

Images and molecular data

TCGA data generation and processing were performed as previously described; samples 

were obtained from patients with appropriate consent from institutional review boards [29]. 

TCGA invasive breast cancer (n = 850) images were assessed via http://

cancer.digitalslidearchive.net/[30]. Molecular profiles were retrieved (http://

cancergenome.nih.gov/): RNAseq gene expression (Illumina HiSeq RNASeqV2 Level 

3.1.9.0); DNA methylation subtypes 1, 2, 3, 4 and 5 (Illumina Infinium DNA chips); 

microRNA subtypes 1, 2, 3, 4, 5, 6 and 7 (Illumina sequencing); and reverse-phase protein 

assay (RPPA) subtypes basal, HER2-enriched, luminal A, luminal A/B, ReacI, ReacII and 
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‘X’ (MD Anderson RPPA Core Facility). PAM50 classification and PAM50 proliferation 

score were computed [9,31,32].

Genomic alterations implicated in breast cancer (43 somatic mutations, 45 amplifications, 62 

deletions, and six multiple alterations, e.g. mutation and amplification) identified with 

Mutation Significance version 2 [33] and Genomic Identification of Significant Targets in 

Cancer [34] were retrieved from cBioPortal for Cancer Genomics [31]. Of a total of 156 

genomic alterations, 127 genomic alterations were assessed in this study after exclusion of 

multiple alterations (n = 6) and rare genomic alterations that occurred in fewer than five 

cases (n = 23). These were excluded to allow separate analyses of mutation, amplification, 

and deletion, and reduce spurious findings.

Histopathology morphological assessment

Cases were randomly assigned to the pathologists, and images were graded by use of an 

electronic scoring sheet adapted from the College of American Pathologists’ protocol for 

invasive breast examination [35] (supplementary material, Figure S1A). For routine clinical 

features such as histological type, histological grade (nuclear pleomorphism, mitotic count, 

and epithelial tubule formation), lobular carcinoma in situ (LCIS), and DCIS, the 

pathologists used criteria applied in clinical practice. For features not commonly assessed in 

clinical practice, including stromal inflammation, necrosis, the proportion of cancerous 

epithelium in the invasive portion by area (i.e. epithelial area), lymphovascular invasion, 

stromal central fibrotic foci, and apocrine features, the pathologists carried out conference 

calls to discuss the grading criteria, and circulated images for scoring. Images with high 

consensus diagnoses were circulated as examples for grading. Supplementary material, 

Figure S1B shows an annotated scoring sheet with additional pathological scoring criteria 

and details.

To define the final histological type, information from pathology reports and the pathology 

review committee were integrated [31]. Pathology assessments were converted to integer 

scores. For the proportion of cancerous epithelium, in cases with discordance, discordant 

scores were resolved by taking the minimum value. For other morphological features, if the 

most frequent feature value in the dataset was the maximum of the possible feature values, 

discordant scores were resolved by taking the minimum value; otherwise, the maximum 

value was used. This was done to obtain an even distribution of the scores in the final 

dataset. Table 1 shows the morphological features, and their grading categories and 

frequencies.

Inter-rater reliability

Inter-rater reliability was assessed for each morphological feature where cases were graded 

(using the categories shown in Table 1) by at least two pathologists. Inter-rater reliability 

was calculated according to Krippendorff’s alpha [36] (irr, version 0.84; R, version 3.2.1) 

with bootstrapping (100 iterations), and average percentage agreement.
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Subsequent exclusion of histological type and re-stratification of morphological features 
into binary groups

The molecular characterization of histological types was reported separately, and we 

demonstrated that histological type represents a morphological continuum with a significant 

proportion of cases with morphological features of both ductal and lobular cancers [31]. 

Thus, we decided to include the full range of histological types in this article to enable the 

robust identification of molecular profiles and signatures associated with the remaining 11 

morphological phenotypes across all types of invasive breast cancer. To reduce the 

complexity and to increase statistical power, morphological features were re-stratified into 

binary categories to determine the association of each morphological feature with a type of 

molecular data (Table 2). For example, we investigated the association of TP53 mutation in 

tumours with marked nuclear pleomorphism as compared with tumours with small/moderate 

nuclear pleomorphism, or genes differentially expressed in tumours with DCIS as compared 

with tumours without DCIS. All tests of statistical significance were two-sided. Statistical 

significance was achieved when the p-value was <0.05 or the false discovery rate (FDR) was 

<0.05.

Determining the association of morphological features with molecular profiles

Genomic data—The univariate associations of genomic alteration and DNA methylation 

subtype with morphological features was determined with a chi-square test with Bonferroni 

adjustment, and Fisher’s exact test with Benjamini–Hochberg multiple testing corrections, 

respectively.

Transcriptomic data—The associations of PAM50 and microRNA subtypes, PAM50 

proliferation score, differential gene expression and gene sets/pathways with morphological 

features were determined with a chi-square test with Bonferroni’s adjustment, Wilcoxon’s 

test, limmavoom with the Benjamini–Hochberg correction (version 3.22.1) [37], and piano 

(version 1.6.2) [38], respectively.

Differential gene expression (n = 15 398) was determined in all cases (i.e. overall, n = 826) 

and within each PAM50 subtype, except in the normal-like subtype (excluded because of 

small sample size, n = 24). Gene set enrichment analysis was performed with the C2 

Molecular Signatures Database, which includes gene sets from Reactome, BioCarta, and 

KEGG (version 4.0, n = 4646; www.broadinstitute.org/gsea/msigdb/). Gene sets that were 

distinctly upregulated or downregulated were reported.

Proteomic data—The association of RPPA subtype with morphological features was 

determined with a chi-square test with Bonferroni adjustment.

Constructing molecular signatures of morphological features

Elastic-net regularized generalized linear models (glm-net, version 2.0-2) [39] was used to 

construct molecular signatures of morphological features according to genomic alteration, 

transcriptomic or both types of data (genomic and transcriptomic). Model performances 

were assessed according to the cross-validated area under the receiver operator characteristic 

curve (ROC AUC). To determine which type of molecular data best predicted morphological 
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features, the ROC AUC of models built with genomic alterations, transcriptomic or both 

types of data were compared by use of a paired t-test.

Molecular signatures for histological grade were also constructed. A histological grade 

‘feature’ was created by summing the original scores of epithelial tubule formation, nuclear 

pleomorphism, and mitotic count. The summed scores (ranging from 3 to 9) were then 

stratified into low/medium histological grade (summed scores of 3–7) or high histological 

grade (summed scores of 8 or 9).

Transcriptomic signatures predicted morphological features with the highest ROC AUCs. 

Thus, morphology transcriptomic signatures were subjected to bootstrapping (1000 

iterations) to obtain 95% confidence intervals for gene coefficient estimates. Gene 

coefficients with 95% confidence intervals crossing zero were dropped from the signature. 

Gene set enrichment of each transcriptomic signature was performed with Gene Ontology 

Biological Processes summarized version (DAVID 6.7 [40]). Statistical significance was 

achieved when the FDR was <0.05.

Survival analyses performed with the METABRIC breast cancer dataset

To determine whether the morphological features’ transcriptomic signatures were prognostic 

for overall survival, these signatures were compared with established proliferation-based 

prognostic signatures (GGI [22], OncotypeDx [41], and MammaPrint [42]) and PAM50 

subtype determined from the METABRIC (n = 1992) dataset [28].

PAM50 subtypes for METABRIC were retrieved from Prat et al. [43]. Research-based 

classifications of GGI, OncotypeDx and MammaPrint for each woman were computed with 

genefu (version 3.1) [44]. Each morphological feature’s signature score was calculated by 

subtracting the average expression of genes with negative coefficients from the average 

expression of genes with positive coefficients.

A Cox proportional hazards model was used to assess the univariate associations of 

clinicopathological variables [age at cancer diagnosis, tumour size (in centimetres), node-

positive (spread to regional lymph nodes; yes/no) and clinical grade (1, 2 or 3)], PAM50, 

GGI, OncotypeDx, MammaPrint and morphology transcriptomic signatures with overall 

survival [45]. To ensure that the association of our morphology transcriptomic signatures 

with overall survival was not attributable to chance, the Significance Analysis of Prognostic 

Signatures (SAPS) algorithm was used to compare the prognostic utility of each morphology 

transcriptomic signature with ‘random’ transcriptomic signatures of similar size (saps, 

version 2.0.0) [46]. Hence, a morphology transcriptomic signature was only considered to be 

significant when the Cox model (Wald test) p-value was <0.05 and an absolute adjusted 

SAPS score of >1.3 was obtained.

Clinicopathological variables, PAM50, GGI, OncotypeDx and MammaPrint were considered 

to be significantly associated with survival when p-values were <0.05. Significant variables 

and/or signatures were subsequently evaluated in a multivariate model, adjusted by treatment 

(chemotherapy, hormone therapy, combined chemotherapy and hormone therapy, or 
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untreated). Analyses were performed separately in ER-positive and ER-negative breast 

cancers.

Meta-analysis of significant transcriptomic signatures

The transcriptomic signature of poorly differentiated epithelial tubules remained 

significantly prognostic in the METABRIC multivariate analysis among ER-positive women. 

This signature was further evaluated in a meta-analysis consisting of five ER-positive breast 

cancer gene expression datasets: CAL [47], PNC [48], NKI [42,49], TRANSBIG [50], and 

GSE25066 [51]. Each gene expression dataset was pre-processed with Weighted Gene Co-

Expression Network (version 1.47) [52], and annotated with lumi (version 2.20.2) [53]. 

These datasets were chosen because they had overall survival data or distant-relapse-free 

survival, clinical grade information, treatment information (for CAL, NKI, and GSE25066), 

and at least 10 000 annotated genes. The meta-analysis adjusted for clinical grade and 

treatment.

Website resource

Data are available at www.dx.ai/tcga_breast. Detailed methodologies are given in 

Supplementary materials and methods.

Results

Pathology morphological dataset and assessment of inter-rater reliability

From November 2011 to March 2014, 15 pathologists completed 1524 online scoring sheets: 

11 cases were reviewed >10 times, 15 cases were reviewed five to nine times, 357 cases 

were reviewed two to four times, and 467 cases were reviewed once. The annotations and 

frequencies of morphological assessments are shown in Table 1. The prevalence rates of 

IDC, ILC and special histological types were similar to those in previous reports (IDC, 50–

80%; ILC, 5–15%; special histological types, 1–15%). The proportion of mixed IDC/ILC 

cases (10.9%) in this study appear to be slightly higher than the 3–7% reported by a limited 

number of studies [54–59]. Supplementary material, Table S1A–D shows the frequencies 

stratified by PAM50 subtype for all cases, within IDCs, within ILCs or within special 

histological types. Raw annotation data are shown in supplementary material, Table S2. 

Inter-rater reliability was calculated for 383 cases that were reviewed at least twice. There 

was moderate agreement among pathologists, with percentage agreements ranging from 

78% (mitotic count) to 98% (LCIS) (Table 3).

Morphological features are associated with molecular data

Table 4 summarizes the associations of each morphological feature with various molecular 

data (details are shown in supplementary material, Table S3 and Figure S2). Differential 

gene expression was performed in all cases and within each PAM50 subtype, except in the 

normal-like subtype (supplementary material, Table S4A). Owing to small sample sizes, 

differential gene expression associated with the presence of LCIS was performed for all 

cases and within luminal A cases.
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Inflammation, necrosis, nuclear pleomorphism, and mitotic count

Inflammation, necrosis, marked nuclear pleomorphism and medium/high mitotic counts co-

occurred in the tumours and shared many genomic alterations (FDR of <0.05; Figure 1, 

Table 4). In the TCGA publication, DNA methylation subtypes 3 and 5 are enriched for 

luminal B and basal-like, respectively, whereas TCGA microRNA subtypes 4 and 5 are 

associated with basal-like [29]. Therefore, the presence of inflammation and necrosis, 

marked nuclear pleomorphism and medium/high mitotic counts are distinctly associated 

with the highly proliferative basal-like subtype (Table 4).

These four morphological features had 15 common upregulated genes involved in cellular 

proliferation (MYBL2, CHEK1, CENPA, MELK, MEMO1, NASP, RCC2, LTV1, and 

C1orf135) [60,61], MYC activation (CDCA7) [62–65], and DNA and RNA metabolism 

(PIF1, RBM17, AMD1, and RPIA). The function of C17orf96 is unknown. These four 

morphological features also had 13 common downregulated genes involved in membrane 

signalling (CBLN4, ELFN1, LTBP3, LRP10, TENC1, and TPCN1), including GTPase 

activity (RAPGEF3 and TBC1D13), transcription (CAMTA2, CRY2, and LOC653501), the 

cytoskeleton (KIF13B), and lysosome positioning (C10orf32). The plethora of differentially 

expressed genes associated with necrosis, marked nuclear pleomorphism and medium/high 

mitotic counts were enriched for proliferation gene sets, whereas the presence of stromal 

inflammation was enriched for inflammation gene signatures (FDR of <0.05; Figure 2; a 

detailed heatmap is shown in supplementary material, Figure S3). Collectively, molecular 

data suggest that tumorigenesis involving these four proliferative basal-like morphological 

features may be driven by MYB-regulated and MYC-regulated pathways, and, potentially in 

conjunction with TP53 pathways, in invasive breast cancer [60,66,67].

Epithelial tubule formation

Other studies reported the association of TP53, 8q24.21 (MYC), 19q12 (CCNE1), 20p13.2 

(ZNF217) and 9p21.3 (MTAP) with histologic grade [24,25]. However, when focussing on 

the individual components of histological grade, poorly differentiated epithelial tubules 

shared only a few molecular traits with medium/high mitotic counts and marked nuclear 

pleomorphism: TP53 mutation, high PAM50 proliferative score, basal-like subtype classified 

according to methylation, and microRNA data. The molecular traits of poorly differentiated 

epithelial tubules were common with those of LCIS (i.e. CDH1 mutation, PAM50 luminal A 

subtype, and inflammation gene sets), although there was no correlation between the two 

morphological features (supplementary material, Table S3B). P2RY11, which encodes a G-

protein-coupled receptor activated by extracellular adenosine and uridine [68], was the top 

differentially expressed gene (2.3-fold increase) in tumours with poorly differentiated 

epithelial tubules as compared with well-differentiated/moderately differentiated epithelial 

tubules (supplementary material, Table S4B). The role of P2RY11 in breast tissue remains 

unknown, and could be evaluated as a potential pharmacological target.

LCIS

LCISs are precursor lesions for ILCs, defined by the hallmark CDH1 loss-of-function 

mutation, and are almost exclusive to luminal A tumours [31,69]. Regardless of histological 

type, the presence of LCIS was also associated with DNA methylation subtype 1, 
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downregulation of proliferation gene sets, and enrichment for cytokines/immune-signalling 

pathways (despite not being associated with the presence of morphological inflammation). 

The expression of HMGCS2, a breast apocrine carcinoma marker involved in the anabolic 

ketogenesis pathway, was increased by 8.6-fold in tumours with LCIS (supplementary 

material, Table S4B) [70]. Other top-ranking upregulated genes were those involved in 

inflammation (GP2 and C7) [71], alcohol metabolism (ADH1B), fat metabolism (ADIPOQ) 

[72,73], transcription (TFAP2B), transmembrane proteins (TMEM132C and SLC7A4), and 

genes with unknown function (TFF1 and TUSC5) [74,75]. At the same time, the mRNA 

expression levels of extracellular matrix proteins (MMP1, CDH1, EPYC, COL11A1, 

HAPLN1, and IBSP) were significantly lower. Thus, APIPOQ and HMGCS2 
overexpression suggest that the manifestation of LCIS may reflect abnormal hormone and 

fatty acid levels in the breast tissues, impaired fatty acid oxidation, and mitochondrial 

dysfunction [76,77]. Mitochondrial dysfunction can lead to inflammation, tumorigenesis, 

dysregulation of cell–cell adhesion, discohesive morphology, and invasion [76,78–81]. 

These characteristics of mitochondrial dysregulation are supported by our differential gene 

expression analyses. It would also be interesting to investigate the association of lifestyle 

factors such as obesity or alcohol consumption with LCIS or histological type [72,82,83].

DCIS

The co-existence of DCIS with prominent features (i.e. strong molecular profiles) such as 

marked nuclear pleomorphism and poorly differentiated epithelial tubules may have masked 

our ability to decipher the molecular basis of DCIS (supplementary material, Table S3B). 

DCIS was associated with 40 differentially expressed genes, and was enriched for 

proliferation and cell–cell junction pathways (supplementary material, Figure S3). The top-

ranking upregulated genes in breast cancers associated with DCIS were those encoding 

epithelial proteins (CALML3, ANXA8L1, and ANXA8) [84,85], extracellular matrix 

proteins (KRT14, KRT6B, KRT17, and MMP10) [86], desmosomes (DSG3 and DSC3) that 

connect adjacent myoepithelial cells [87], and proteins involved in myoepithelial cell 

differentiation (ACTA1) [88] and CCL21-related chemotaxis resulting in epithelial–

mesenchymal transition and metastasis [89–91]. These results support reports that the 

progression of DCIS to invasive breast cancer is influenced by changes in 

microenvironmental factors, especially in myoepithelial cells [87,92]. Proliferating 

cancerous ductal cells exert pressure against the myoepithelial cells and basement 

membrane. When the myoepithelial cells cannot sustain the pressure and rate of basement 

membrane turnover, they lose their cell–cell adhesion capabilities and allow the cancerous 

cells to invade into the surrounding tissues [87]. The 11 downregulated genes in breast 

cancers associated with DCIS are newly associated with breast cancer [cytoskeleton-related 

(HOOK2 and ARHGEF18), mitochondrial iron–sulphur cluster assembly pathway 

(C1orf69), gene regulation (MAFG and WDR37), GTPase activity (TBC1D13 and RAB43), 

lipid synthesis (CLN8), and neuronal components (PRX, LOC100130093 and OPA3); 

supplementary material, Table S4B]. Their involvement in DCIS and/or invasive breast 

cancer warrants further elucidation.
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Apocrine features

This is the first study to characterize the molecular basis of apocrine features (Table 4). 

Upregulated genes and enriched pathways associated with marked apocrine features include 

increased lipid and membrane transport (ABCC2, ABCA12, ABCC11, HAPLN1, FIBCD1, 

and FAM155B), lipid and/or cell metabolism (DHRS2, HGD, IYD, and HHIPL2), apoptotic, 

diabetes and cholesterol pathways. Downregulated genes and pathways with marked 

apocrine features were those encoding gastropeptides (NPYIR and PI16) and serine 

peptidase (KLK11), and those involved in alcohol/drug metabolism (ADH1B and 

CYP4F22), secretion (AQP5), the extracellular matrix (HAPLN1), and cytokine signalling 

(C7 and DARC). These genes have been investigated as markers of proliferation or 

metastasis [93–99], breast cancer risk [100], prognosis [101,102], and response to therapy 

[103–106]. Our work suggests that drug resistance may occur in tumours with marked 

apocrine features with overexpression of ATP-binding cassette transporter mRNA, and new 

drugs targeting aquaporin water channels may not work in these tumours [103,107].

Lymphovascular invasion and fibrotic foci

Neither genomic alteration nor PAM50 subtype was associated with the presence of 

lymphovascular invasion [25], fibrotic foci, or a high proportion of cancerous epithelium. 

Interleukin-12-related and integrin-related neutrophil pathways and extracellular matrix 

organization gene sets were downregulated in the presence of lymphovascular invasion. The 

presence of fibrotic foci was linked to upregulated integrin and extracellular matrix 

organization gene sets, and down-regulated inflammation gene sets. The lack of distinct 

molecular profiles for lymphovascular invasion and fibrotic foci may be attributable to their 

low frequencies, and suggests that these features remain largely morphological.

Transcriptomic signatures of morphological features

Genomic alterations, gene expression or both data types were used to construct signatures of 

morphological features. The ROC AUCs of multivariate models built with transcriptomic 

and combined data outperformed models constructed with genomic alterations (p ≤ 0.001; 

supplementary material, Table S5A). There was no difference in the ROC AUCs between 

transcriptomic and combined data, indicating that the addition of genomic alteration data did 

not enhance the performance of transcriptomic signatures in predicting morphological 

features (p = 0.139; supplementary material, Table S5B). Thus, only transcriptomic 

signatures were subjected to bootstrapping and further explored. The transcriptomic 

signatures of morphological features ranged from one gene (LRRC32) for the proportion of 

cancerous epithelium to 110 genes for poorly differentiated epithelial tubules 

(supplementary material, Table S5C, D).

The stromal inflammation signature is enriched for the suppression of T-cell activation, 

driven by its strongest (positive) coefficient, CTLA4. The increase in the level of CTLA4 in 

breast cancer prevents the anti-tumour T-cell response [108]. Its monoclonal antibody, anti-

CTLA4, when used in synergy with other therapeutic agents (e.g. trastuzumab), blocks 

immune checkpoints, and induces anti-tumour immunity, resulting in tumour regression in 

preclinical (HER2) breast cancer models [109–112]. However, the blocking of immune 

checkpoints with antibodies against programmed cell death protein 1 and its ligand is more 
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effective than using anti-CTLA4 [109,113,114]. Future work could evaluate whether this 

inflammation signature can identify women who may benefit from anti-CTLA4 therapy, as 

well as investigating how CTLA4 contributes to tumour immunity [115].

Signatures for medium/high mitotic count, marked nuclear pleomorphism and high 

histological grade were enriched for cell proliferation, further confirming that these features 

are proliferation-related (supplementary material, Table S5E). No enrichment was obtained 

for other signatures.

The epithelial tubule formation transcriptomic signature was prognostic in ER-positive 
breast cancer

In METABRIC ER-positive women (n = 1494), age at cancer diagnosis, tumour size, node-

positive status and the transcriptomic signature for poorly differentiated epithelial tubules 

remained prognostic in the multivariate model (p < 0.05; Table 5). In ER-negative women (n 
= 434), no feature was prognostic in the multivariate model.

The transcriptomic signature for poorly differentiated epithelial tubules in ER-positive 

women was further evaluated in a meta-analysis across five publicly available gene 

expression datasets (Figure). The summary hazard ratio was 1.94 (95% confidence interval 

1.51–2.38).

The epithelial tubule formation transcriptomic signature is distinct and least correlated 
with proliferation

The transcriptomic signature for poorly differentiated epithelial tubules was distinct from the 

signatures for medium/high mitotic count, marked nuclear pleomorphism, and high 

histological grade (Figure 4). To determine whether the transcriptomic signature for poorly 

differentiated epithelial tubules was the least correlated with proliferation, the PAM50 

proliferation score for each woman in the METABRIC dataset was calculated and correlated 

with the transcriptomic signature scores of nuclear pleomorphism, mitotic count, and 

epithelial tubule formation. PAM50 proliferation scores were more highly correlated with 

medium/high mitotic count [Spearman’s rho = 0.878 (ER-positive) and Spearman’s rho = 

0.919 (ER-negative)] and marked nuclear pleomorphism (rho = 0.852 and rho = 0.904) than 

with poorly differentiated epithelial tubules (rho = 0.351 and rho = 0.616) in ER-positive 

and ER-negative invasive breast cancers (p < 0.001).

Discussion

Little is known about the molecular characteristics of various morphological features in 

invasive breast cancer. We comprehensively unravelled the molecular portraits of breast 

cancer histopathological phenotypes by bridging histopathological annotations with the 

molecular profiles in the TCGA database. This article represents the largest cross-section of 

cases and pathologists to examine breast cancer histopathological phenotypes to date. Our 

data support the central role of proliferation driving histological grade. Inflammation, 

necrosis, medium/high mitotic count and marked nuclear pleomorphism frequently co-exist 

in breast tumours, are associated with basal-like subtypes, and have similar molecular bases. 

LCIS has a distinct molecular profile that may be linked to mitochondrial dysfunction, 
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whereas genes that are differentially expressed in DCIS are intimately associated with 

myoepithelial cells. Lymphovascular invasion and fibrotic foci are mainly morphological, 

with few significant molecular traits.

Some morphological features harbour molecular traits that may confer drug resistance or 

serve as pharmacological targets. Our signatures can act as surrogate representation of 

morphological features, enabling future studies to link the signatures to response to therapy, 

with the long-term aim of improving clinical management. Personalized or refined breast 

cancer classification can be achieved by combining the observation of morphological 

features with molecular and immunohistochemistry data. Collectively, this study provides 

new insights into the molecular basis of breast cancer morphological phenotypes, and could 

potentially facilitate the future development of diagnostic and prognostic tools for breast 

cancer.

Most databases, including METABRIC, usually provide information on histological grade 

but not its components such as epithelial tubule formation. We were unable to directly 

determine whether the pathological measure of epithelial tubules is independently 

prognostic, or whether our transcriptomic signature of epithelial tubule formation adds 

prognostic information or is superior to pathological assessment. However, if high 

histological grade can function as a surrogate for poorly differentiated epithelial tubules, our 

multivariate analyses show that the epithelial tubule formation signature is more prognostic 

than clinical histological grade, and indirectly demonstrate that our signature adds 

prognostic information for ER-positive breast cancer. Nevertheless, prognostic signatures for 

ER-positive breast cancer are well established [22,41,42], and more research is needed to 

discover clinically useful prognostic signatures for ER-negative breast cancer.

At the molecular level, epithelial tubule formation is least similar to mitotic count and 

nuclear pleomorphism, and shares traits with LCIS and inflammation. The transcriptomic 

signature for poorly differentiated epithelial tubules is distinct from high histological grade, 

but not significantly enriched for any gene sets. The signature’s genes are involved in 

proliferation, mitochondrial metabolism, membrane signalling, cellular adhesion, oxidative 

stress, extracellular matrix organization, and inflammation. These gene functions are a mix 

of selective molecular traits associated with medium/high mitotic count, marked nuclear 

pleomorphism, LCIS, and inflammation. We speculate that our transcriptomic signature for 

poorly differentiated epithelial tubules is unique and prognostically superior, because it 

contains genes that represent a wide range of tumour biology.

The failure to detect any association of DCIS, fibrotic foci or apocrine features with PAM50 

subtypes may be attributable to our study utilizing PAM50 classification by molecular data 

instead of immunohistochemistry, using different grading criteria, and investigating these 

features within tumours of invasive breast cancer [116–119]. Our transcriptomic signature 

for fibrotic foci was not prognostic, despite previous studies reporting that IDCs or luminal 

B tumours with fibrotic foci have a poorer prognosis [120,121]. The relevance of fibrotic 

foci as a prognostic factor requires further investigation, which should take into 

consideration its size, breast cancer histological type, and PAM50 classification.
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Fourteen TCGA cases were inadequate for scoring, owing to poor image quality or 

insufficient invasive cancer being present. Despite adherence to clinical definitions or agreed 

consensus scoring criteria, our histopathological analyses may be influenced by the variation 

in histology quality and the use of images instead of slides for scoring. For example, the 

high-power field used to count mitotic bodies at the highest magnification (×40) on a web 

browser is infuenced by computer monitor size (hence, the high-power field for each 

pathologist varies) and the difficulty in distinguishing between mitotic figures from 

pynknotic nuclei, owing to the lack of a Z-axis. The pathologists used their best judgement 

in counting cells in mitosis. However, the mitotic count (as it was scored) was highly 

concordant with the PAM50 proliferation score and enrichment for proliferation gene sets in 

this study, signifying that both mitotic count and gene expression were adequately tracking 

proliferation. Another limitation of this study is that we focused exclusively on a set of 

known morphological features that could be scored manually by experienced breast 

pathologists. It is likely that there are additional morphological patterns (e.g. various types 

of stromal reaction pattern) beyond those included in our study that are biologically 

important and will provide additional insights into the molecular underpinnings of breast 

cancer pathology.

In conclusion, breast tumour pathological phenotypes are driven by distinct underlying sets 

of molecular alterations. The integration of morphological with molecular data has great 

potential to refine breast cancer classification, predict response to therapy, enhance our 

understanding of breast cancer biology, and improve clinical management.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Heatmap and unsupervised hierarchical clustering of the 38 significant genomic alterations 

and 11 morphological features based on the degree and direction of the associations. 

Inflammation and necrosis, marked nuclear pleomorphism and medium/high mitotic counts 

are clustered together, as they share many common genomic alterations.
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Figure 2. 
Heatmap summarizing the FDRs of 485 significant pathways and unsupervised hierarchical 

clustering of morphological features. Features are clustered into two groups characterized 

mainly by proliferation and inflammation. Detailed pathways are presented in 

supplementary material, Figure S3. The proliferation cluster had increased cell proliferation 

and metabolism, and decreased inflammation and membrane receptor signalling. The 

inflammation cluster comprised largely immune-related signatures.
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Figure 3. 
The prognostic significance of the transcriptomic signature for poorly differentiated 

epithelial tubules in ER-positive women was further validated in a meta-analysis across five 

cohorts. *The endpoint for GSE25066 is distant relapse-free survival; the endpoints for all 

other datasets are overall survival. The summary hazard ratio estimate is a weighted average. 

Weights are the reciprocal of the estimated variance (square of standard error for the 

analysis). CI, confidence interval.
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Figure 4. 
(A) There were 17 overlapping genes between the transcriptomic signatures for medium/

high mitotic count and marked nuclear pleomorphism, whereas genes predictive of poorly 

differentiated epithelial tubules were distinct. (B) Most of the genes in the transcriptomic 

signature for high histological grade were common to the signatures for medium/high 

mitotic count and marked nuclear pleomorphism, but were distinct from of poorly 

differentiated epithelial tubules.
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Table 2

The re-stratification of the 11 morphological features into binary grading levels for integration with molecular 

data

Morphological features Binary categories

Histological grade

 Epithelial tubule formation >10% (well/moderately differentiated)

<10% (poorly differentiated)

 Nuclear pleomorphism Small regular nuclei/moderate increase in size

Moderate to marked variation in size

 Mitotic count 0–5 per 10 HPFs (low)

>6 per 10 HPFs (medium/high)

In situ cancer

 DCIS Present or absent

 LCIS Present or absent

Other features

 Stromal inflammation Present or absent

 Necrosis Present or absent

 % Cancerous epithelium <75% (low/moderate)

>75% (high)

 Apocrine features Absent/1–50% (minimum/moderate)

>50% (marked)

 Lymphovascular invasion Present or absent

 Stromal central fibrotic focus Present or absent

DCIS, ductal carcinoma in situ; HPF, high-power field; LCIS, lobular carcinoma in situ.
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Table 3

Inter-rater reliability on cases graded by at least two pathologists and Krippendorff’s alpha with bootstrap 

resampling and percentage agreement; each morphological feature’s grading categories are shown in Table 1

Morphological feature Cases (n) Krippendorff’s alpha

Krippendorff’s alpha with 
bootstrap resampling (95% 

confidence interval) Agreement (%)

Histological type 358 0.471 0.472 (0.402–0.532) 85.6

Histological grade

 Epithelial tubule formation 316 0.544 0.547 (0.463–0.621) 87.4

 Nuclear pleomorphism 318 0.522 0.520 (0.457–0.590) 80.8

 Mitotic count 311 0.488 0.493 (0.421–0.576) 77.7

In situ cancer

 Ductal carcinoma in situ 317 0.526 0.521 (0.451–0.592) 89.0

 Lobular carcinoma in situ 317 0.298 0.303 (0.088–0.507) 97.5

Other features

 Stromal inflammation 315 0.544 0.534 (0.442–0.593) 89.8

 Necrosis 317 0.591 0.581 (0.474–0.669) 90.6

 Proportion of cancerous epithelium in invasive 
portion by area (excluding areas of necrosis)

312 0.472 0.467 (0.387–0.538) 79.2

 Apocrine features 314 0.164 0.189 (0.076–0.318) 90.3

 Lymphovascular invasion 312 0.423 0.413 (0.327–0.515) 90.1

 Stromal central fibrotic focus 311 0.256 0.262 (0.155–0.367) 82.7
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Table 4

An overview of molecular data significantly associated with morphological features

Stromal inflammation, necrosis, nuclear pleomorphism, and mitotic count

The presence of necrosis and inflammation, a medium/high mitotic count and marked nuclear pleomorphism was associated with the following:

• TP53 loss-of-function mutation, and chr12p13.3, ch8q24.21 (MYC) and chr3q26.3 amplifications

• PAM50 basal-like subtype, higher PAM50 proliferation score

• DNA methylation subtypes 4 and 5, microRNA subtype 4 (these subtypes are linked to basal-like subtypes [29])

• RPPA (basal-like subtype)

• Presence of necrosis, medium/high mitotic count and marked nuclear pleomorphism were enriched for proliferation gene sets

• Presence of inflammation was enriched for inflammation gene setsIn general, these four features are linked to Basal-like subtypes 
and have similar molecular bases

Epithelial tubule formation

Poorly differentiated epithelial tubules were associated with:

• TP53 and CDH1 loss-of-function mutations

• chr12p13.3, ch8q24.21 (MYC) and chr3q26.3 amplifications

• PAM50 luminal A subtype, higher PAM50 proliferation score

• DNA methylation subtypes 4 and 5, microRNA subtype 4

• Enrichment for inflammation gene setsPoorly differentiated epithelial tubules share selective molecular traits with medium/high 
mitotic count, marked nuclear pleomorphism, and LCIS

LCIS

The presence of LCIS was associated with:

• CDH1 loss-of-function mutation

• PAM50 luminal A subtype, lower PAM50 proliferation score

• DNA methylation subtype 1

• Downregulation of proliferation gene setsThe molecular profile of LCIS may be linked to mitochondrial dysfunction

DCIS

Tumours with DCIS were enriched for proliferation gene sets
Upregulated genes in DCIS are linked to the breast microenvironment, especially myoepithelial cells

Apocrine features

The presence of marked apocrine features was associated with:

• chr20q13.2 and chr17q11.2.q12.17q21.1 amplifications

• Enriched gene sets linked to lipid and membrane transport, and lipid and/or cell metabolism

• Downregulated alcohol/drug metabolism gene sets and cytokine signalling

• Tumours with marked apocrine features overexpress ATP-binding cassette transporters

Lymphovascular invasion

The lymphovascular invasion feature remains mainly morphological but was also associated with:

• RPPA basal subtype

• Downregulation of IL-12 and integrin-related neutrophil pathways, and extracellular matrix organization gene sets

Stromal central fibrotic foci

The presence of fibrotic foci remains mainly morphological
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Fibrotic focus was not associated with any gene, but showed downregulated inflammation gene sets

Proportion of cancerous epithelium in invasive portion by area (excluding areas of necrosis)

A high proportion of cancerous epithelium was associated with:

• PAM50 luminal A, higher PAM50 proliferation score

• RPPA luminal A/B subtype

chr, chromosome; DCIS, ductal carcinoma in situ; IL, interleukin; LCIS, lobular carcinoma in situ.
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