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Abstract

Linking Historical Market Crashes:
A Market Microstructure Model and Statistical Evidence

by

Yuan Mao

Doctor of Philosophy in Engineering - Industrial Engineering and Operations Research

University of California, Berkeley

Professor Xin Guo, Chair

Studies of stock market crashes are as sparse as the occurrence of crashes. The main-
stream theoretical models on stock market crashes are rooted in rational expectations equi-
librium models and classical market microstructure models. Compared to theoretical works,
there are even fewer works done on the empirical side. This is because most of the theo-
retical models do not provide straightforward tests against empirical data. Secondly, the
relatively small sample size (rare occurrence) of stock market crashes is always an obstacle
for empirical testing.

In this dissertation, we build a strategic trading model to link two major US stock market
crashes: the 1987 crash and the 2010 Flash Crash. We then provide cross-sectional empirical
evidence to verify our model hypothesis and evaluate price impact due to the information
asymmetry effect and the limited risk-bearing capacity effect. We use statistical learning
methods to compare our model based predictors with other predictors for the maximum
cross-sectional price drawdown of SP500 stocks during the 2010 Flash Crash and check the
robustness of our findings.
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Chapter 1

Introduction

What is a crash? Obviously, a stock market crash is a significant drop in asset prices. Not
so obviously, a crash often occurs even without major news events. During the 200 years
of US stock market history, there were a few famous historical market crashes: one of them
being the Oct. 1987 crash, which occurred during Oct. 14-Oct. 19/20. Within a week, the
market went down about 30%. A more recent one is the May 6th 2010 Flash Crash, which
occurred intraday during the afternoon. Within roughly 15 minutes, the market drawdown
was about 5%.

Figure 1.1 is a graph of the Oct. 1987 Crash from the US Federal Reserve. It labels
important events around the crash. Oct. 19 is the infamous Black Monday and we can
see the Chicago Board Options Exchange (CBOE) and the Chicago Mercantile Exchange
(CME) trading suspensions on Oct. 20.

Figure 1.1: The Oct. 1987 Crash, Source: US Federal Reserve.
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“On Wednesday morning, October 14, 1987, the U.S. equity market began the most
severe one-week decline in its history. The Dow stood at over 2,500 on Wednesday morning.
By noon on Tuesday of the next week, it was just above 1,700, a decline of almost one third.
Worse still, at the same time on Tuesday, the S&P 500 futures contract would imply a Dow
level near 1,400...” (U.S. Presidential Task Force on Market Mechanisms 1988)

After the October 1987 stock market crash, the “Brady Report” (U.S. Presidential Task
Force on Market Mechanisms 1988) documented quantities of stock index futures contracts
and baskets of stocks sold by portfolio insurers during the crash. According to the report,
from Oct. 14 to Oct. 19, the net dollar volume of SP500 futures sold by portfolio insurers
and arbitragers is about $3 billion.

Figure 1.2 is a graph of 2010 Flash Crash. We can see the Dow Jones Index, S&P500
Index and the E-mini S&P500 Index all went down significantly between 2:32 pm-2:45 pm
ET. At 2:45:28 pm ET, trading on the E-mini was paused for five seconds when the CME
Stop Logic Functionality was triggered in order to prevent a cascade of further price declines.

Figure 1.2: The 2010 Flash Crash, Source: Staffs of the CFTC and SEC (2010b).

“On May 6, 2010, the prices of many U.S.-based equity products experienced an extraor-
dinarily rapid decline and recovery. That afternoon, major equity indices in both the futures
and securities markets, each already down over 4% from their prior-day close, suddenly plum-
meted a further 5-6% in a matter of minutes before rebounding almost as quickly...”(Staffs
of the CFTC and SEC 2010a)

After the flash crash of May 6, 2010, Staffs of the CFTC and SEC (2010a); Staffs of
the CFTC and SEC (2010b) cited as a trigger large sales of futures contracts by one entity,
identified in the press as Waddell & Reed: “At 2:32 p.m., against this backdrop of unusually
high volatility and thinning liquidity, a large fundamental trader (a mutual fund complex)
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The 1987 Crash The 2010 Crash

Figure 1.3: Comparison of the Oct. 1987 crash and the 2010 Flash Crash.

initiated a sell program to sell a total of 75,000 E-mini contracts (valued at approximately
$4.1 billion) as a hedge to an existing equity position...Between 2:32 p.m. and 2:45 p.m., as
prices of the E-mini rapidly declined, the sell algorithm sold about 35,000 E-mini contracts
(valued at approximately $1.9 billion) of the 75,000 intended...The sell algorithm continued
to execute the sell program until about 2:51 p.m. as the prices were rapidly rising in both
the E-mini and SPY...” From the above statement we can estimate that the large seller
sold around $1.9-4.1 billion dollar volume of futures between 2:32 pm-2:51 pm ET, and the
market declined about 5-6%.

Unlike another famous crash, the 1929 crash, which signaled the beginning of the 10-year
Great Depression, during the Oct. 1987 crash and the May 6, 2010 Flash Crash, the shocks
the market experienced were relatively temporary, as the price recovered in a short period
of time. Leland (2011) mentions the similarities between the events of the Flash Crash
and October 19, 1987 are remarkable in nature, if not in speed. Figure 1.3 demonstrates a
common pattern in the two crashes. Both of the crashes can be divided into several sessions:
pre-crash, crash, digestion and recovery. This motivates us to investigate and explain the
links behind the two crashes.

The remaining of this dissertation is organized as follows: Chapter 2 surveys the related
traditional market microstructure and crash literature, as well as some recent research find-
ings; in Chapter 3 we build a single asset model and a multi-asset model in a strategic trading
setting, and discuss the empirical implication and tests based on the models; in Chapter 4 we
use several statistical analysis methods to compare two model-based predictors from Chap-
ter 3, with other candidate predictors for the cross-sectional price drawdown of SP500 stock
from other literature; Chapter 5 concludes and discusses future research opportunities.
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Chapter 2

Literature

2.1 Rational Expectations Equilibrium (REE) Models

Competitive REE models are the foundation of market microstructure theories. The role
of information and learning is extensively studied. The important results in this section
are developed by multiple papers, among them: Grossman (1976); Grossman and Stiglitz
(1980); Hellwig (1980); Admati (1985). Vives (2008) provides a good review of the existing
literature.

2.1.1 The Walrasian Model

The building blocks of the modern market microstructure models are so called Rational
Expectation Models. These are static competitive models. The models are formulated as
follows:

Given two periods t = 0, 1, one risky asset pays a normal distributed dividend d in period
1, d ∼ N(d̄, σ2), and it is traded at t = 0 at a price p. The supply of the risky asset is random
S > 0. The riskless rate between periods 0 and 1 is r. There are N agents in the market,
with CARA (constant absolute risk aversion) utility and the risk aversion coefficient is α.
Among them, NI are informed and NU are uninformed, where NI +NU = N . The informed
observe a signal of the risky asset s = d + ε, ε is independent of d and ε ∼ N(0, σ2

ε ). The
uninformed observe no signal.

This structure of uncertainty enables us to study how the uninformed learn from prices.
Consider an uninformed agent with wealth W0, if at t = 0 she buys x shares, her period 1
wealth is:

W = (W0 − xp)(1 + r) + xd (2.1)

and her expected utility is:
− E exp(−αW ) (2.2)
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This form of utility (CARA) has the good property that if y ∼ N(µ, σ2), then

E exp(y) = exp(µ+
1

2
σ2)

The expected utility is therefore:

− exp[−α((W0 − xp)(1 + r) + xd̄− α

2
σ2x2)] (2.3)

Thus, the uninformed can be viewed as maximizing:

max
x

(W0 − xp)(1 + r) + xd̄− α

2
σ2x2 (2.4)

This is a concave function and by solving F.O.C, we have the uninformed demand:

xU(p) =
d̄− (1 + r)p

ασ2
(2.5)

Here the price of the risky asset enters through budget constraint and the initial wealth is
not in this demand.

The informed face a conditional probability, suppose (x, y) are jointly normal, then con-
ditional on x, y is normal and

E(y|x) = E(y) + (x− E(x))
cov(x, y)

σ2
x

(2.6)

σ2
y|x = σ2

y −
cov(x, y)2

σ2
x

(2.7)

So in this model, we have

E(d|s) = d̄+ (s− d̄)
σ2

σ2 + σ2
ε

(2.8)

σ2
d|s =

σ2σ2
ε

σ2 + σ2
ε

(2.9)

Hence, for the informed, the expected utility is:

− exp[−α((W0 − xp)(1 + r) + xE(d|s)− α

2
σ2
d|sx

2)] (2.10)

and therefore

xI(p) =
E(d|s)− (1 + r)p

ασ2
d|s

(2.11)

By equating demand with supply, NIxI(p) +NUxU(p) = S, we solve for price:

p =
d̄

1 + r
+NIk(1−

σ2
d|s

σ2
)(s− d̄)− Sαkσ2

d|s (2.12)

k =
1

(1 + r)(NI +NU

σ2
d|s
σ2 )

(2.13)

In this model, the price fully reveals the signal of the informed (price is linear in signal).
For the uninformed, they could use price to infer informed signal.
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2.1.2 Extension

The next model is an extension that let people actually learn from prices. There are N
agents, the i th agent has expected utility U i, W i

0 and signal si. A REE is a price function
p(s1, ..., sN), and a vector of demands, (x1(p), ..., xN(p)) such that

xi(p) = argmax
x

E{U i[(W i
0 − xp)(1 + r) + xd]|si, p} (2.14)

and
N∑
i=1

xi(p) = S (2.15)

In this model, agents condition on their private information and the price, not just
the private information as in the previous case. Price plays a dual role: it affects budget
constraint and also improves inferences about others’ signals (realizing that assets are not
private values but rather common values).

It turns out a REE is given by:

p =
d̄+ βs(s− d̄)−

Sασ2
d|s

N

(1 + r)
(2.16)

xI(p) =
d̄+ βs(s− d̄)− (1 + r)p

ασ2
d|s

(2.17)

xU(p) =
S

N
(2.18)

where βs = cov(s,d)
var(s)

= σ2

σ2+σ2
ε
.

Here is a brief proof, assume Equation 2.16 holds. Since the uninformed can learn from
price, the optimal uninformed demand is:

xU(p) =
E(d|p)− (1 + r)p

ασ2
d|p

(2.19)

=
d̄+ βp(p− p̄)− (1 + r)p

ασ2
d|p

(2.20)

=
d̄+ (1 + r)(p− p̄)− (1 + r)p

ασ2
d|s

(2.21)

=
S

N
(2.22)
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as

βp =
cov(p, d)

var(p)

=
1 + r

βs

cov(s, d)

var(s)

= 1 + r (2.23)

p̄ =
d̄

1 + r
−

Sασ2
d|s

(1 + r)N
(2.24)

σ2
d|p = var(d)− β2

pvar(p)

= var(d)− (1 + r)2(
βs

(1 + r)
)2var(s)

= var(d)− β2
svar(s)

= σ2
d|s (2.25)

The optimal informed demand is the same as previous model, as signal tells informed
everything they need to know.

xI(p) =
E(d|s)− (1 + r)p

ασ2
d|s

(2.26)

=
d̄+ βs(s− d̄)− (1 + r)p

ασ2
d|s

(2.27)

Finally, plug the assumed price Equation (2.16) in Equation (2.26) we have xI(p) = S
N

and therefore the market clearing condition Equation (2.15) holds.
Note this is one possible REE but might not be the unique one. In this REE, price

function fully reveals the information of the informed. The price is the same as it would
be in a Walrasian economy where all agents are informed. Supply allocations are the same
across agents. This is related to the Grossman-Stiglitz paradox: if agents have to pay for
information, why bother if all information gets into price anyway?

2.1.3 Noisy (Supply) REE

Now we give the supply of the risky asset a random noise: S + u and u ∼ N(0, σ2
u). This

can be interpreted as the supply from noise traders. Now, the uninformed will make lower
profits than the informed traders. This provides incentive to acquire information.

A noisy REE is a price function p(s1, ..., sN , u) and a vector of demands (x1(p), ..., xN(p))
such that :

xi(p) = argmax
x

E{U i[(W i
0 − xp)(1 + r) + xd]|si, p} (2.28)
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and
N∑
i=1

xi(p) = S + u (2.29)

Assume NI > 0, there exits a noisy supply REE in which the price is given by p =
A+ B[(s− d̄)− Cu], for three constants A,B,C. Again, by using conditional distributions
and the market clearing condition, we can show that:

A =
d̄

1 + r
−

Sασ2
d|s

(1 + r)(NI +NU

σ2
d|s
σ2
d|p

)
(2.30)

B =
NIβs

(1 + r)NI + (1 + r − βp)NU

σ2
d|s
σ2
d|p

(2.31)

C =
ασ2

d|s

NIβs
=
ασ2

ε

NI

(2.32)

The optimal uninformed demand is:

xU(p) =
E(d|p)− (1 + r)p

ασ2
d|p

(2.33)

=
d̄+ βp(p− A)− (1 + r)p

ασ2
d|p

(2.34)

The optimal informed demand is the same as previous model:

xI(p) =
E(d|s)− (1 + r)p

ασ2
d|s

(2.35)

=
d̄+ βs(s− d̄)− (1 + r)p

ασ2
d|s

(2.36)

Price informativeness is τ = 1
σ2
d|p

= σ2+σ2
ε+C2σ2

u

σ2(σ2
ε+C2σ2

u)
. It decreases in the supply noise σ2

u and

in C.
The price-sensitivity of the demand of the uninformed is:

dxU(p)

dp
=
βp − (1 + r)

ασ2
d|p

(2.37)

So, decrease in price increases demand (keeping information constant) and decrease in
price provides negative news which decreases demand. The second effect is weaker because
price is not fully informative.
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2.2 Classic Market Microstructure Models

Market microstructure studies how, in the short term, the transaction price converges to (or
deviates from) the long-term equilibrium values. Short-term deviations between transaction
prices and long-term fundamental values arise because of frictions reflecting order-handling
costs, as well as asymmetric information or strategic behavior (Biais, Glosten, and Spatt
2005).

2.2.1 Adverse Selection

Kyle (1985) proposes a sequential equilibrium model. Here we review the essence: there
are three agents in the market, a risk neutral (monopolistic) informed trader, who knows
the distribution of the payoff of the risky asset ṽ ∼ N(p0,Σ0); a noisy trader, who submits
random demand/supply ũ ∼ N(0, σ2

u); and risk neutral (competitive) market makers, who
set the price according to the order flow, but earn zero profits (indicating that the market
is efficient). That is, let x̃ be the order flow from the informed trader, then market makers
set price p̃ = E[ṽ|x̃+ ũ] = P (x̃+ ũ).

Now, the informed trader wants to solve the maximization problem

max
x

E[(v − P (x+ ũ))x|ṽ = v] (2.38)

subject to
P (x+ ũ) = E[ṽ|x+ ũ] (2.39)

It turns out that there is an equilibrium in the linear form:

p̃ = P (x̃+ ũ) = p0 + λ(x̃+ ũ) (2.40)

x̃ = X(ṽ) = − p0

2λ
+

ṽ

2λ
(2.41)

where

λ =

√
Σ0

2σu
(2.42)

var[ṽ|p̃] = 1
2
Σ0 so half the price information is revealed in price. λ is the amount market

makers adjust price if the order flow increase by 1 unit. Alternatively, 1
λ

measures the
market depth, i.e. the amount of order flow needed to increase price by $1. All trades have
impact: informed trades have permanent price impact; uninformed trades have temporary
price impact. A big advantage of this parsimonious model is that it provides a testable linear
price impact scheme.

Glosten and Milgrom (1985) provide another model explaining how information gets
impounded into price. Unlike papers in the next section, Glosten and Milgrom (1985) show
that bid-ask spread can arise purely from adverse selection. As in Kyle (1985), price is set
by risk neutral market makers who earn zero profits, and the model only considers market
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orders. By restricting that all types of market participants can trade only one unit of
security at a time, their model does not need to assume a specific form of the informed
trader’s information, and can have few restrictions on the arrival process of traders.

The model is formulated as follows: V is the unit value of a security at liquidation, which
satisfies [V ≥ 0, var(V ) <∞], let Ht be the public information available up to time t, Jt be
the private information. So the valuations Zt of the asset for informed and uninformed are:

ZI
t = ρtE[V |Ht, Jt, A,B] (2.43)

ZU
t = ρtE[V |Ht, A,B] (2.44)

Here ρt denotes a trader’s preference of future consumption with respect to current con-
sumption. It is a random variable independent of V and any information about V . The
informed or uninformed will buy if Zt > A and sell if Zt < B.

Given the trader’s behavior, and the information available to the market maker at time
t: St, the market maker’s expected profit from an arrival of trade at time t is:

E[(A− V )IZt>A + (V −B)IZt<B|St] (2.45)

Therefore under the expected zero-profit condition, the equilibrium bid and ask prices
are given as follows:

At = E[V |Zt > At] (2.46)

Bt = E[V |Zt < Bt] (2.47)

Glosten and Milgrom (1985) show that the ask price is greater and the bid price is less
than the expectation of V , i.e. At ≥ Et[V ] ≥ Bt. The inequality is strict if adverse selection
is possible. Anything that increases adverse selection would increase spread: i.e. when the
informed private information becomes better; the ratio of informed to uninformed arrival
rates is increased; the elasticity of uninformed supply and demand increases.

They also show in the model that the first difference of transaction price process is serially
uncorrelated. Thus the spreads due to monopoly power, transaction costs and risk aversion
lead to negative serial correlation, while spreads solely due to adverse selection do not.

Easley and O’Hara (1987) develop a model demonstrating that trade size also can affect
trade price, not because of market makers’ inventory imbalance, but because block trades
are correlated with adverse selection.

In their model, there are two risk neutral market makers that set the price and compe-
tition ensures they each have zero expected profit. An information event about the asset V
occurs before the trading day with probability α(0 < α ≤ 1). The event contains a signal
that the value of the asset is either H (with probability 1 − δ) or L (with probability δ).
According to the signal, we have:

V = E[V |s = H] (2.48)

V = E[V |s = L] (2.49)
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Assume µ is the fraction of trades made by the informed risk neutral traders. The market
makers and the uninformed traders do not know whether an information event has occurred,
nor do they observe the signal. But they do know the information event will eventually occur
and the information structure. So their initial unconditional expectation of the asset value
is V ∗ = δV + (1 − δ)V . They further assume the uninformed traders desire to buy (sell)
B1(S1), B2(S2), with 0 < B1 < B2 and 0 < S1 < S2. The fraction of uninformed traders for
each trade quantity is X i

S > 0 and X i
B > 0, i = 1, 2. For market maker j, she charges cj(q)

for q units and pays for dj(q) for q units. The two market makers play a simultaneous move
game against each other.

There are two forms of equilibria that can occur: a separating equilibrium if informed
traders trade only large quantities; a pooling equilibrium if the informed trade either small
or large quantities with positive probability.

This simple model explains why different trade quantities face different prices, where the
only friction is adverse selection.

2.2.2 Inventory and Order Handling Cost

While adverse selection contributes to the permanent impact on the transaction price, order
handling and inventory cost contributes to the transitory impact on price (Biais, Glosten,
and Spatt 2005).

Here we review three papers that describe how inventory and order handling cost affect
price.

Roll (1984) assumes in an information efficient market, the fundamental value of a secu-
rity fluctuates randomly. However, trading costs can induce negative serial dependence in
successive observed market price changes.

cov(4pt,4pt−1) = −s
2

4
(2.50)

where s is the effective spread.
Ho and Stoll (1981) examine the bid ask dynamics set by a single market maker who

maximizes her expected utility of terminal wealth. The demand the market maker faces
is modeled by a continuous time Poisson jump process as in Garman (1976). And she also
faces the return risk on her stock and on the rest of her portfolio (which is modeled by
diffusion processes). Numerical solutions can be derived from dynamic programming and an
interesting result is that in an inactive stock, it is possible for the market maker to refuse to
make the market when she is required to trade a minimum amount, because the expected
profit from trading may not be enough to offset the risk.

Amihud and Mendelson (1980) build a similar model where a single market maker sets the
bid ask prices to maximize her expected average profit per unit-time. The arrivals of buy and
sell orders from liquidity traders (uninformed) are characterized by two independent Poisson
processes, with arrival rates D(Pa) and S(Pb). D and S are stationary price-dependent rate
functions representing the market demand and supply, with D′() < 0, S ′() > 0.
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Under the setting of their model, it can be shown that there exists a ‘preferred’ inventory
position for the market maker and that when the market maker finds herself in a position
different from the ‘preferred’ position, she will quote prices which will tend to bring her
back to that position. Also, they show that for linear demand and supply functions, the
transaction prices are serially correlated and that this is still consistent with the market
efficiency hypothesis.

2.2.3 A Synthetic Model

Biais, Glosten, and Spatt (2005) propose an interesting synthetic model that incorporates
both the adverse selection and inventory/order handling cost. In the model, there are risk
averse informed traders and risk averse market makers (no uninformed traders for simplicity).
The informed trader is endowed with L shares of the risky asset and has observed a signal
s on the final value of the risky asset v. The market maker is endowed with I shares of the
risky asset. Assume v = π + s + ε, and s ∼ N(0, σ2

s), ε ∼ N(0, σ2
ε ). Also, assume market

makers incur an identical cost cq2 to trade q shares.
The informed trader wants to submit a market order that maximizes her expected utility:

max
Q
−Eexp[−γ(P (Q)Q+ (L−Q)v)|s] (2.51)

subject to
P (Q) = argmax

P
−Eexp[−κ((v − P )Q+ Iv)|Q] (2.52)

It turns out the information revealed by the market order is equivalent to that contained
by the summary statistics: θ = s− γ2σ2

εL. θ reflects the valuation of the strategic informed
trader for the asset, which is increasing in her private signal, and decreasing in her inventory.
Denote:

δ =
σ2
s

σ2
s + (γσ2

ε )
2V (L)

(2.53)

δ quantifies the relative weight of the noise and signal in the summary statistic θ. It also
measures the magnitude of the adverse-selection problem. For example, δ = 0 corresponds
to the case in which there is no private information.

As in Kyle (1985), if δ < 1
2
, there exists a perfect Bayesian equilibrium that:

E[v|Q] = [δm+ (1− δ)π] + δ(2λ− γσ2
ε )Q (2.54)

Q =
(π −m) + θ

2λ− γσ2
ε

(2.55)

P = m+ λQ (2.56)

m = π − κV (v|θ)
1− δ

I (2.57)

λ =
c+ κV (v|θ) + γσ2

ε δ

1− 2δ
(2.58)
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When δ= 0, i.e., there is no private information, the result is similar to Roll (1984), Ho
and Stoll (1981). Symmetrically, in the case where market makers are risk neutral (κ = 0),
and there is no order handling cost (c = 0), we can obtain a specification similar to Kyle
(1985), where prices are equal to updated expectations of the value of the asset, conditional
on the order flow.

2.3 Crashes

After reviewing literature about how information and liquidity cost get impounded into price
in a general setting, now we move on to check the price formation process in extreme events
(e.g. stock market crashes).

Brunnermeier (2001) reviews a broad set of literature related to Crashes, here we adapt
his review of two categories of crash models that are related to the previous sections.

2.3.1 Crashes in Competitive REE Models

In a competitive REE model, many traders simultaneously submit orders. They take prices as
given and can trade any quantity of shares in each trading round. In this setting, crashes can
occur because of temporary liquidity shortage, multiple equilibria due to portfolio insurance
trading and sudden information revelation by prices.

Grossman (1988) shows a REE model where poor information about hedging demand
leads to a large price decline. The equilibrium price path and the volatility of a risky asset
are driven by news announcements about its liquidation value as well as by investors’ risk
aversion.

There are three periods, t = 1, 2, 3. There are public announcements about the value of
the stock in period t = 2, 3. After the second announcement in t = 3, every investor knows
the final liquidation value of the stock. In this model, large price movements can occur when
the market makers underestimate the extent of sales due to portfolio insurance trading and
reduce liquidity provision. Grossman’s model also predicts that the price would rebound
immediately after the temporary liquidity shortage is overcome.

Gennotte and Leland (1990) show that the market crashes because some other market
participants incorrectly interpret the price drop as a bad signal about the fundamental value
of the stock. Because of adverse selection, traders wrongly attribute the price drop to a
low fundamental value rather than to liquidity shortage. They might think that many other
traders are selling because they received bad information about the fundamental value of
the stock, while actually many sell orders are triggered by portfolio insurance trading.

They develop a static model to describe the market crashes’ dynamics. This approach has
some validity because the repetition of a static model can often be considered as a sufficient
representation of a dynamic setting. The comparative statics in a static model can be viewed
as dynamic changes over time.

In their model, there are uninformed traders and two types of informed traders:
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• price-informed traders, each of whom receives a private signal p′i = p + εi about the
liquidation value p ∼ N(p̄,Σ);

• supply informed traders, who know better whether the limit order book is due to
informed trading or uninformed noise trading.

The aggregate supply in the limit order book is given by the normally distributed random
variable m = m̄+ L+ S + π. m̄ is known to everybody, S ∼ N(0,Σs) is only known to the
supply-informed traders, and the liquidity supply L ∼ N(0,ΣL) is not known to anybody.
There is an exogenous demand from portfolio insurance traders. Their demand π(p0) rises
as the price increases and declines as price falls.

It turns out that as long as π(p0) is linear and common knowledge, the equilibrium price
p0 = f(p− p̄− k1L− k2S) is a linear function with constants k1 and k2. However, if π(p0) is
nonlinear and there is a lack of knowledge of the amount of π(p0), the demand curve is like
an “inverted S” that there are multiple equilibria for a certain range of aggregate supply.
Thus as aggregate supply shifts, the equilibrium with the high price vanishes and the price
discontinuously falls to a lower equilibrium level.

Similar to Gennotte and Leland (1990), Barlevy and Veronesi (2003) build a model with
multiple equilibria to explain stock market crashes. The difference is that in their model,
multiple equilibria is not from exogenous hedging, but from information asymmetry effect
that makes uninformed traders’ demand function to be backwards-bending.

2.3.2 Crashes in Sequential Trade Models

Sequential trade models are more tractable and thus enable us to focus on the dynamic
aspects of crashes.

Avery and Zemsky (1998) illustrate a sequential trade model where a fraction µ of traders
are informed while 1−µ are uninformed liquidity traders. Liquidity traders buy, sell or stay
inactive with equal probability. They show when each informed trader receives a noisy indi-
vidual signal about the value of the stock ν ∈ {0, 1} and the signal is correct with probability
q > 1

2
, in other words, when traders have private information on only one dimension of un-

certainty (the effect of a shock to the asset value), price adjustments prevent herd behavior.
This is because the market maker and the insiders learn at the same rate from past trading
rounds.

Then Avery and Zemsky (1998) study an information structure with higher order of
uncertainty. Informed traders receive either a perfect signal that no new information has
arrived, that is, the value of stock remains ν = 1

2
, or a noisy signal with reports the correct

liquidation value ν ∈ {0, 1} with probability q. The market maker does not know whether an
information event occurred or not. This asymmetry enables insiders to learn more from the
price process (trading sequence) than the market maker. Since market maker sets the price,
the price adjustment is slower. Consequently, traders might herd in equilibrium. However,
herding in this setting increases the market makers’ awareness of information events and
does not distort the asset price.
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In order to simulate crashes, Avery and Zemsky (1998)’s model considers a more complex
information structure, in their words, a third dimension of uncertainty (the quality of traders’
information) in addition to the existence and effect of a shock. There are two types of
informed traders. One group of them receives their signals with low precision qL, whereas
the other receives them with high precision qH = 1, that is, the signal is perfect. The
proportion of informed traders with the perfect signal is either high or low and it is not
known to the market maker. This information structure makes it difficult for the market
maker to differentiate between a market composed of well-informed traders following their
perfect signal from one with poorly informed traders who herd. When the low probability
event that poorly informed traders generate a chain of buy orders makes the market maker
think that a large fraction of traders is perfectly informed, she increases the price. If the
unlikely event occurs in with only poorly informed traders herd, the asset price may exceed
its liquidation value ν. The market maker can infer only after many trading rounds that the
uninformed traders have herded. In that case, the asset price crashes.

2.3.3 Physical Models of Crashes

Besides financial economists, physicists have done some research in market crashes too.
Feigenbaum and Freund (1996) and Johansen, Sornette, and Ledoit (1999) use discrete

scale invariance to predict crashes. They find characteristic log-periodic signatures of growing
bubbles in a variety of markets can predict subsequent market crashes.

Bouchaud and Cont (1998) propose a non-linear Langevin equation as a model for stock
market fluctuations and crashes. The model leads to a specific shape of the falldown of the
price during a crash, which they compare with the October 1987 data.

2.3.4 Recent Research

Huang and Wang (2009) develop an equilibrium model for stock market liquidity and its
impact on asset prices when constant market presence is costly. They show costly market
presence prevents traders from synchronizing their trades and hence gives rise to endogenous
order imbalances and the need for liquidity. Moreover, the endogenous liquidity need is
characterized by excessive selling of significant magnitudes and such liquidity-driven selling
leads to market crashes in the absence of any aggregate shocks.

Kyle and Obizhaeva (2013b) propose a Market Microstructure Invariance that the fol-
lowing relation holds for all stocks at all times:

γ−1/2σ̄ · PQ̃ ∼ Ĩ (2.59)

where γ is the bet arrival rate, σ̄ is the proportional standard deviation of returns results from
order flow imbalances, P is the price of the stock, and Q̃ is the probability distribution of the
signed size of bets of the stock. Ĩ denotes a random variable representing the “invariance”
distribution.
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With the above invariance law, Kyle and Obizhaeva (2013a) use portfolio transition
order data to extrapolate a set of benchmark parameters, and then use those parameters to
examine historical crashes.

Kyle and Obizhaeva (2013a) propose a simple formula to predict the expected percentage
price impact by input of observed daily dollar trading volume V , daily return volatility σ
and the size of an individual large bet X.

4P (X)

P
= exp[λ̄/104 · ( P · V

40 · 106
)1/3 · ( σ

0.02
)4/3 · X

0.01V
]− 1 (2.60)

Their work addresses the issue that volatility and the arrival rate of a bet affect the price
formation process. However, Kyle and Obizhaeva (2013a) point out several implementation
issues when apply the invariance to real data. Among them, it is likely that the price impact
of an order, especially its transitory component, is related to the speed with which the
order is executed. The market impact Equation (2.60) assumes that orders are executed at
a typical speed in the relevant units of business time. If execution is speeded up relative
to typical speed in business time, then Equation (2.60) may underestimate the transitory
market impact.

Madhavan (2012) shows that cross-sectional impact of the May 2010 Flash Crash is
positively related to the degree of market fragmentation. The paper highlights the role of
equity market structure and the changing nature of liquidity provision in exacerbating the
impact of an external liquidity shock, without taking a view as to its catalyst.

Easley, Prado, and O’Hara (2011) argue that the flash crash was the result of the new
dynamics at play in the current market structure. They highlight the role played by order
toxicity in affecting liquidity provision, and they show that a measure of this toxicity, the
volume synchronized probability of informed trading (VPIN), captures the increasing toxicity
of the order flow in the hours and days prior to collapse. They subsequently develop VPIN
metric in Easley, Prado, and O’Hara (2012). However, there is argument about the usefulness
of this measure for predicting market turbulence (Easley, Prado, and O’Hara 2014; Andersen
and Bondarenko 2014b; Andersen and Bondarenko 2014a; Andersen and Bondarenko 2015).

Nagel (2012) shows returns of short-term reversal strategies in equity markets can be
interpreted as a proxy for the returns from liquidity provision, and that the return of liq-
uidity provision can be predicted by VIX. He shows withdrawal of liquidity supply and an
associated increase in the expected returns from liquidity provision, as a main driver behind
the evaporation of liquidity during times of financial market turmoil.

Menkveld and Yueshen (2015) provide an alternative explanation of the flash crash. They
argue that it was the broken of cross-market arbitrage (the link that connects an E-mini seller
to SP500 buyers), that made the large fundamental seller overpaid for immediacy.

There are also some ad-hoc attempt to predict the Flash Crash, for example, Barany
et al. (2012) and Aldridge (2014) try to use the sequence and duration of trades from high
frequency data to detect market crashes.
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Chapter 3

Strategic Trading Models and
Empirical Test

3.1 A Single Asset Model and Empirical Test

In this section, we build a single asset strategic trading model to link two major US stock
market crashes: the 1987 crash and the 2010 Flash Crash. We provide empirical evidence
to verify our model hypothesis and evaluate price impact due to the information effect and
the limited risk-bearing capacity effect.

3.1.1 Model

Consider an asset market with a single risky asset in zero net supply, a riskless asset in
perfect elastic supply at zero interest rate. There are three groups of risk neutral market
participants: informed traders, market makers and liquidity traders.

The value of the risky asset at the end of period 1 is:

ṽ1 = v0 + s̃+ βs̃m (3.1)

which is paid as a terminal dividend. Here s̃ is an idiosyncratic private information compo-
nent known only to the informed trader; s̃m is a market-wide private information component
known only to the informed trader; and β is a constant to which the asset is affected by the
market-wide private information.1

The order flow imbalance for the risky asset observed by market makers is:

x̃ = ỹ + z̃ + γz̃m (3.2)

where ỹ is the demand from the informed trader; z̃ is the demand from idiosyncratic liquidity
traders; z̃m is a market-wide liquidity shock (from market-wide liquidity traders) and γ is a

1As in Kyle (1985), we use α̃ to denote a random variable α.
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constant to which the demand of the risky asset is affected by the market-wide liquidity shock.
Both z̃ and z̃m are exogenous and we assume s̃ ∼ N(0, σ2

s), s̃m ∼ N(0, σ2
sm), z̃ ∼ N(0, σ2

z),
z̃m ∼ N(0, σ2

zm), and they are independent of each other.
In equilibrium, we have the following linear solution (See proof in Section 3.4):

P = v0 + λx̃

x̃ = ỹ + z̃ + γz̃m =
1

2λ
s̃+

β

2λ
s̃m︸ ︷︷ ︸

ỹ

+z̃ + γz̃m

λ =

√
σ2
s + β2σ2

sm

2
√
σ2
z + γ2σ2

zm

(3.3)

where λ is the price impact factor. If σ2
sm = 0 and σ2

zm = 0, that is, if we assume market-wide
effects do not have impact on the individual risky asset, we get the same result as in Kyle
(1985).

3.1.2 Empirical Test of the Model

Based on our model, the empirical test consists of two steps.

Step 1: Estimate the ex-ante price impact factor

We run the following OLS regression to get realized λ from historical data (prior to crash)
for the SP500 stocks:

∆Pit = λ∆Xit + εit (3.4)

where ∆Pit is the t-interval return of the stock i and ∆Xit is the t-interval buy-sell dollar
volume imbalance (Hasbrouck 2007).

Step 2: Cross-sectional regression to estimate the market-wide liquidity shock
during crashes

We run a cross-sectional OLS regression as follows:

∆Pi = λi∆Xi + εi (3.5)

= λiγi∆zm + (
1

2
∆si +

βi
2

∆sm + λi∆zi + εi) (3.6)

= β̄∆sm + λiγi∆zm + ui (3.7)

That is:
∆Pi = α + θλiγi + ui (3.8)

As presumably for stock i, ∆Xi ≈ γi∆zm during crashes, if data fits the model, we should
have α ≈ market-wide price change and θ ≈ market-wide liquidity shock. Here we assume γi
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equals the ratio of the stock i’s market capital to the SP500 index capital at the beginning
of the crash.2

3.1.3 Empirical Implementation and Data

All the data we use are from Wharton Research Data Services (WRDS). We use intraday
trades and quotes data from the Institute for the Study of Security Markets (ISSM) database
to estimate the price impact factor λi and to calculate the price drawdown ∆Pi for the
1987 crash. For the 2010 crash, we use intraday trades and quotes data from the NYSE
Trade and Quote (TAQ) database to estimate the price impact factor λi and to calculate
the price drawdown ∆Pi during the crash. Daily SP500 index/constituent and Open/Close
information from the Center for Research in Security Prices (CRSP) database are used to
calculate the γi and the price drawdown ∆Pi during the 1987 crash.

In the data preprocessing step, for the 1987 crash, we only include SP500 stocks that
were listed on NYSE/AMEX, as for the ISSM data, intraday data quality for NASDQ
symbols is compromised. For the NYSE/AMEX stocks, we also filter out their intraday
trades and quotes that were not originated from NYSE/AMEX, as to exclude irregularity of
trades/quotes originated from regional exchanges.

We follow the 5 seconds rule of Lee and Ready (1991) and the 1 seconds rule of Henker
and Wang (2006) to label the direction of each trade for the 1987 crash and the 2010 crash
respectively.

In Step 1 regression, we use a 30-day horizon prior to crash for the 1987 crash and a
5-day horizon prior to crash for the 2010 crash. The choice is based on a balance between
estimating the most recent realization of price impact factor (so that we cannot infer on data
that is too far away in the history) and retaining enough data to get statistically significant
inference.

For the 2010 Flash Crash, we use a similar intraday time window 14:30-15:00 to control
the intraday seasonality of price impact factor.

To eliminate the noise that bid-ask spreads can bring to the estimation of price impact
factor in Step 1, we use mid-quote price for both crashes.

For both crashes, from Step 1 to Step 2 cross-sectional regression, we filter out stocks
that we cannot get a statistically significant (p-value> 0.001) price impact factor.

In Step 2 regression, a crucial issue is to determine the maximum price drawdown during
crashes. The first step is to determine the crash window. For the 1987 crash, we do not count
in Oct. 20th as the trading activity on that day was very unusual (Leland and Rubinstein
1988; Gammill and Marsh 1988). The second step is to find the minimum price during the
crash. Here we need to filter out prices that are due to broken trades. So instead of naively
using the minimum price during crashes, we use stable price minimums (if there were trades
below that price for at least 300 seconds and 30 seconds respectively for the 1987 crash and

2This assumption is discussed in Section 3.3.
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the 2010 crash). As the price drawdown is more significant for 1987 crash, it is calculated
in percent price change instead of log price difference.

For the 2010 Flash Crash, we filter out stocks with maximum drawdown of more than
15%, as that can be categorized as broken trades. For 1987 crash, we filter out stocks whose
ISSM prices do not match CRSP price and also stocks with less than 30 trades on Oct. 19th.

Table 3.1 summarizes the data handling details:

The Oct. 1987 Crash The 2010 Flash Crash

Preprocess
Symbols NYSE/AMEX
Trade/Quote filter originated from NYSE/AMEX
Label buy-sell trades 5 sec (Lee and Ready 1991) 1 sec (Henker and Wang 2006)

Step 1

regression horizon 30 days prior 5 days prior
intraday window 9:30-16:00 ET 14:30-15:00 ET
regression ∆P tick by tick log-midquote difference 15 sec log-midquote difference
λ filter p-value≤0.001 p-value≤0.001

Step 2

Crash window1 Oct. 14-Oct. 19 14:30-15:00 ET
max drawdown2 trade below for at least 300 sec trade below for at least 30 sec
market capital Close Oct. 13, 1987 Open May 6, 2010
∆P calculation percent price change from Oct. 13 close price log price change from 14:30 ET price
∆P filter3 ≥-0.15

Table 3.1: Data handling details: 1We did not count Oct. 20 in the crash window as
the trading activity during Oct. 20 was very unusual. 2We define the lowest price during
the crash to be the transaction price below which the security traded for at least certain
cumulative time period during the crash window. 3For 2010 Flash Crash, we filter out stocks
with maximum drawdown of more than 15%, as that can be categorized as broken trades.
For 1987 crash, we filter out stocks whose ISSM prices do not match CRSP price and also
stocks with less than 30 trades on Oct. 19.

3.1.4 Estimation of the Market-Wide Liquidity Shock

Table 3.2 reports the market-wide liquidity shock estimation from the Step 2 cross-sectional
regression for the two crashes. It shows the data fits our model. Specifically, the estimated
α and θ are quite close to the market drawdown and the market-wide liquidity shock docu-
mented in the official reports and are both statistically significant.

The Oct. 1987 Crash The 2010 Flash Crash

Empirical Result
α -26.77*** -5.076***
θ -4.875*** -2.544***

Official Report
market drawdown about -30 about -5

market-wide liquidity shock about -3 about -1.9 to -4
Number of SP500 Stocks 436 457

Table 3.2: Estimates of α: market drawdown (percentage) and θ: market-wide liquidity
shock ($ Billion). Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure 3.1 and Figure 3.2 are graphs that contain distributions of independent and de-
pendent variables in the regression.

Figure 3.1: The Oct. 1987 Crash.
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Figure 3.2: The 2010 Flash Crash.

3.1.5 Estimation of the Limited Risk-Bearing Capacity Induced
Price Impact

Our model is about information asymmetry induced price impact, another source of price
impact is limited risk-bearing capacity (Grossman and Miller 1988; Greenwood 2005). We
would like to separate the two kinds of price impact empirically.

In Greenwood (2005), there is no information asymmetry related price impact. The
paper states3 that under a publicly informed demand shock, price can be affected by the risk
aversion of market makers. The cross-sectional regression of the affected securities’ returns
can be described as:

∆Pi = α + β(Σ∆X)i + εi (3.9)

where Σ is the covariance matrix of the fundamentals of the affected securities.
We can see from the equation that there is a spill-over risk effect that can impact prices

under a multi-asset, risk-aversion setting without any informational effect. While our previ-

3See Proposition 3 in Greenwood (2005)
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ous model is built under a single-asset, informational setting without any limited risk-bearing
effect, an intuitive way to identify the two effects is to combine the two in a linear way and
run a multivariate cross-sectional regression.

The multivariate regression is structured as follows:

∆Pi = α + β(Σ∆X)i + λi∆Xi + εi (3.10)

= α + β(Σγ∆zm)i + λiγi∆zm + εi (3.11)

= α + θ1λiγi + θ2(Σγ)i + εi (3.12)

For the 2010 Flash Crash, we use 2009/11/01-2010/05/05 CRSP daily stock return
without dividend (RETX) data to estimate covariance matrix Σ; for 1987 crash, we use
1987/01/01/-1987/10/13 CRSP RETX data to estimate covariance matrix Σ.

The results are as follows:

Oct. 1987 Crash 2010 Flash Crash

Empirical Result
α -21.90***(t=-17.069) -3.936***(t=-16.200)
θ1 -3.582***(t=-2.921) -2.393***(t=-3.522)
θ2 -620.1***(t=-4.189) -131.0***(t=-5.609)

Number of SP500 Stocks 436 457

Table 3.3: Estimates of α: percentage and θ1: market-wide liquidity shock ($ Billion). Note:
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

As in Greenwood (2005), we also look into the idiosyncratic and hedging contributions
to arbitrage risk respectively. Rewrite:

(Σ∆X)i = σ2
i ∆Xi +

∑
j 6=i

σij∆Xj (3.13)

and run a regression as follows:

∆Pi = α + θ1λiγi + θ2σ
2
i γi + θ3

∑
j 6=i

σijγj + εi (3.14)

It turns out that the hedge contributions to arbitrage risk is statistically significant, but
the idiosyncratic contribution is not. Table 3.4 shows the result.
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Oct. 1987 Crash 2010 Flash Crash

Empirical Result

α -21.90***(t=-17.069) -3.936***(t=-16.200)
θ1 -3.338**(t=-2.527) -2.272***(t=-3.157)
θ2 -3078(t=-0.623) -711.2(t=-0.628)
θ3 -608.6***(t=-4.057) -129.2***(t=-5.458)

Number of SP500 Stocks 436 457

Table 3.4: Estimates of α: percentage and θ1: market-wide liquidity shock ($ Billion). Note:
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

3.2 A Multi-Asset Model and Empirical Discussion

In this section, we build a novel multi-asset strategic trading model that captures the in-
formational price impact and the price impact from limited risk-bearing capacity of market
makers. This model is an extension of Kyle (1985)’s single asset strategic trading model and
can be reduced to special cases in the multi-asset setting of Caballé and Krishnan (1994)
and Greenwood (2005).

3.2.1 Model

There are n risky assets in the market, each risky asset is in zero net supply and we assume
the risk free rate to be zero.

We assume the ex post liquidation value of risky assets is ṽ = (ṽ1, ṽ2, ..., ṽn), which is
multivariate normally distributed with mean that we normalize to zero and a nonsingular
covariance matrix Σv.

The quantity traded by noise traders, denoted by vector ũ = (ũ1, ũ2, ..., ũn) is assumed
to be multivariate normally distributed with mean zero and nonsingular covariance matrix
Σu.

4 We also assume ũ is independent from ṽ.
As in Kyle (1985), at period 0, the exogenous values of ṽ and ũ are realized and a single

informed trader observes ṽ but not ũ. Being risk neutral, the informed trader solves the
following profit optimization problem:

max
y

E[(ṽ − p̃)Ty|ṽ] (3.15)

At period 1, the risk averse uninformed market maker5 observes the aggregate order flow

4Covariance matrices are positive semi-definite. Nonsingular covariance matrices are positive definite.
5ρ captures her degree of risk aversion.
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ỹ + ũ and solves the following CARA utility optimization problem:

max
m

E[− exp[−ρ((ṽ − p)Tm)]|ỹ + ũ, p]

⇒ max
m

E[(ṽ − p)Tm|ỹ + ũ, p]− ρ

2
var[(ṽ − p)Tm|ỹ + ũ, p] (3.16)

In equilibrium, the market maker sets the price such that we would have the market
clearing condition:

m+ y + u = 0 (3.17)

As usual, we conjecture the following linear form for equilibrium price p̃ and informed
trader’s demand ỹ.

p̃ = P (ỹ + ũ) = A(ỹ + ũ)

ỹ = Bṽ

It turns out that under this general setting, B can always be represented by B = A−1

2

from Equation (3.15) and we can solve for a symmetric linear equilibrium as follows:

Proposition 1. If a linear equilibrium with symmetric A exists, then A must satisfy the
following equation:

AΣ−1
v A− ρA =

Σ−1
u

4
(3.18)

Remark: If we do not assume A is symmetric, then we need to solve the following
equation:

ρ(A+ AT )Σu(A+ AT ) = (A+ AT )Σu(A+ AT )Σ−1
v A− AT (3.19)

Remark: For the second order condition of informed trader’s optimization problem to
be satisfied, A must be positive definite.

Proposition 2. A linear equilibrium for which A is symmetric positive definite always exists.
A symmetric solution is given by:

A =
1

2
Σ1/2
v

(
Σ−1/2
v Σ−1

u Σ−1/2
v + ρ2I

)1/2
Σ1/2
v +

ρ

2
Σv (3.20)

Proofs of Proposition 1 and Proposition 2 can be found in Section 3.5
From Proposition 2, we can see in equilibrium, the price impact matrix A is a function

of Σv, Σu and ρ. When market maker is risk neutral (i.e. ρ = 0), the solution is reduced to
the one obtained in Caballé and Krishnan (1994) in the single insider with perfect private

information case: A = 1
2
Σ

1/2
v (Σ

−1/2
v Σ−1

u Σ
−1/2
v )1/2Σ

1/2
v . While in the limit case Σ−1

u → 0, the
noise trading becomes infinite and agents rationally ignore price information (Admati 1985).
Then there are no information asymmetry, and A can be simplified as A = ρΣv, we get
similar result as in Greenwood (2005).
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3.2.2 Empirical Discussion

Our model indicates the following price impact equation: ∆P = A∆X where

A = 1
2
Σ

1/2
v

(
Σ
−1/2
v Σ−1

u Σ
−1/2
v + ρ2I

)1/2
Σ

1/2
v + ρ

2
Σv.

Now we make some assumptions to simplify the structure of Σv and Σu, by decomposing
the ṽi and the ũi into an idiosyncratic component and a market-wide component as in
Section 3.1.

Assume ṽi = s̃i + βis̃m and ũi = z̃i + γiz̃m, with s̃i ∼ N(0, σ2
si

), s̃m ∼ N(0, σ2
sm),

z̃i ∼ N(0, σ2
zi

), z̃m ∼ N(0, σ2
zm), and they are independent of each other. We have:

∆X =
1

2
A−1(s̃+ βs̃m) + z̃ + γz̃m (3.21)

∆P =
1

2
(s̃+ βs̃m) + A(z̃ + γz̃m) (3.22)

var(∆P ) =
1

4
Σv + AΣuA

=
1

4
Σv(I + (I − ρA−1Σv)

−1) (3.23)

with

Σv =


σ2
s1

+ β2
1σ

2
sm β1β2σ

2
sm · · · β1βnσ

2
sm

β2β1σ
2
sm σ2

s2
+ β2

2σ
2
sm · · · β2βnσ

2
sm

...
...

. . .
...

βnβ1σ
2
sm βnβ2σ

2
sm · · · σ2

sn + β2
nσ

2
sm

 (3.24)

Σu =


σ2
z1

+ γ2
1σ

2
zm γ1γ2σ

2
zm · · · γ1γnσ

2
zm

γ2γ1σ
2
zm σ2

z2
+ γ2

2σ
2
zm · · · γ2γnσ

2
zm

...
...

. . .
...

γnγ1σ
2
zm γnγ2σ

2
zm · · · σ2

zn + γ2
nσ

2
zm

 (3.25)

Estimation of the market wide liquidity shock

Step 1: Before crash

Given ∆P = A∆X in our model, presumably we have:

∆Pit = (A∆Xt)i

=
n∑
j=1

Aij∆Xjt (3.26)

= λi∆Xit +
∑
j 6=i

Aij∆Xjt (3.27)
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where λi := Aii is the idiosyncratic price impact factor.
If cov(∆Xit,∆Xjt) = 0 for every j 6= i, then we can run a following OLS regression to

get an unbiased estimator of λi.

∆Pit = α + λi∆Xit + εit (3.28)

However if cov(∆Xit,∆Xjt) 6= 0 for every j 6= i, we need to run a full scale regression to
estimate λi.

∆Pit = α + λi∆Xit +
∑
j 6=i

Aij∆Xjt + εit (3.29)

From our specified structure of ∆X, cov(∆Xi,∆Xj) 6= 0, and therefore ideally we need
to run Equation (3.36) to get an unbiased estimator of λi.

Step 2: During crash

∆Pi = (A∆X)i

= α + (Aγ∆zm)i + εi

= α + (diag(A)γ∆zm)i + ((A− diag(A))γ∆zm)i + εi

= α + λiγi∆zm + ηi

= α + θ1λiγi + ηi (3.30)

Let A = M + ρ
2
Σv, where M = 1

2
Σ

1/2
v

(
Σ
−1/2
v Σ−1

u Σ
−1/2
v + ρ2I

)1/2
Σ

1/2
v .

Since A− diag(A) = M − diag(M) + ρ
2
(Σv − diag(Σv)), and λi = diag(A)i = diag(M +

ρ
2
Σv)i, by the structure of Σv, E[ηi|λiγi] 6= 0, we have endogeneity in the cross-sectional

regression. So θ1 is a biased estimator of ∆zm.
To see E[ηi|λiγi] 6= 0, we have:

diag(Σv)γ =


(σ2

s1
+ β2

1σ
2
sm)γ1

(σ2
s2

+ β2
2σ

2
sm)γ2

...
(σ2

sn + β2
nσ

2
sm)γn

 =


σ2
s1
γ1

σ2
s2
γ2

...
σ2
snγn

+ φ (3.31)

(Σv − diag(Σv))γ∆zm =


β1(β2γ2 + β3γ3 + · · ·+ βnγn)
β2(β1γ1 + β3γ3 + · · ·+ βnγn)

...
βn(β1γ1 + β2γ2 + · · ·+ βn−1γn−1)

σ2
sm∆zm

=


β1(K − β1γ1)
β2(K − β2γ2)

...
βn(K − βnγn)

σ2
sm∆zm =


β1

β2
...
βn

Kσ2
sm∆zm − φ∆zm (3.32)
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where

K =
n∑
i=1

βiγi (3.33)

φ =


β2

1γ1

β2
2γ2
...

β2
nγn

σ2
sm (3.34)

The error term η has been contaminated by the off-diagonal terms of Σv and can be
correlated with the regressor.

Add risk aversion effect:

Let Σhedge = Σv−diag(Σv). To get a better estimator of θ1 as well as checking the role of
risk aversion effect predicted by our model, we use the historical return covariance estimation
var(∆P ) = 1

4
Σv(I + (I − ρA−1Σv)

−1) as a proxy of Σv and run the following regression:

∆Pi = (A∆X)i

= α + (Aγ∆zm)i + εi

= α + (diag(A)γ∆zm)i + ((A− diag(A))γ∆zm)i + εi

= α + (diag(A)γ∆zm)i + ((Σv − diag(Σv))
ρ

2
γ∆zm)i + ((M − diag(M))γ∆zm)i + εi

= α + λiγi∆zm +
ρ∆zm

2
(Σhedgeγ)i + ηi

= α + θ1λiγi + θ2(Σhedgeγ)i + ηi (3.35)

Strictly speaking, the θ1 and θ2 estimated by the above equation are still biased as the
error term η is still contaminated.

Unless we can estimate the full price impact matrix A, it is difficult to fully separate the
information effect and the risk aversion effect in the regression.

We derive the following corollaries that can potentially simplify the structure of matrix
A and facilitate the estimation. Proofs can be found in Section 3.5.

Corollary 1. If Σv and Σu commute, then there exists a unique symmetric linear equilibrium,
with A = (1

4
Σ−1
u Σv + ρ2

4
Σ2
v)

1
2 + ρ

2
Σv.

Corollary 2. If Σv and Σu commute, and their corresponding eigenvalues satisfy: ρ2λv,iλu,i �
1 for every i, then we have A ≈ ρΣv + 1

4ρ
Σ−1
u .

Corollary 3. If Σv and Σu commute, and their corresponding eigenvalues satisfy: ρ2λv,iλu,i �
1 for every i, then we have A ≈ 1

2
Σ

1
2
v Σ
− 1

2
u + ρ2

4
Σ

3
2
v Σ

1
2
u + ρ

2
Σv.
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Below, we make a few simplification assumptions so that the above corollaries may hold
and see if they can shed some light on achieving our goal of a better estimation.

Assumption 1 (a.k.a. Corollary 1): If σ2
zi

= σ2
u � σ2

zm , that is, if the idiosyncratic noise
trading is far larger than the market-wide noise trading, then Σu ≈ σ2

uI and ΣvΣu ≈ ΣuΣv.

A ≈ (1
4
Σ−1
u Σv + ρ2

4
Σ2
v)

1
2 + ρ

2
Σv.

Assumption 1 basically assumes the variance of idiosyncratic liquidity shock is far larger
than the market wide liquidity shock. Then the liquidity covariance matrix Σu can be approx-
imated by a diagonal matrix. Therefore, Σv and Σu approximately commute and Corollary
1 holds.

Assumption 2(a) (a.k.a. Corollary 2): In addition to Assumption 1, if ρ2λv,iλu,i � 1

for every i, then A ≈ ρΣv + 1
4ρ

Σ−1
u = ρΣv︸︷︷︸

hedge

+
1

4ρσ2
u

I︸ ︷︷ ︸
hedge:infor

.

Under Assumption 2(a), the price impact matrix can be decomposed into a hedge (risk
aversion) component and a hedge and information interaction component.

Test of Assumption 2(a):
Based on Assumption 2(a), we can run the following two-step empirical test:
Step 1:

∆Pit = α + λi∆Xit +
∑
j 6=i

Aij∆Xjt + εit (3.36)

Step 2:

∆Pi = α + λiγi∆zm +
ρ∆zm

2
(Σhedgeγ)i + εi

= α + θ1λiγi + θ2(Σhedgeγ)i + εi (3.37)

where λi ≈ ρΣv(i, i) + 1
4ρσ2

u
= ρ(σ2

si
+ β2

i σ
2
sm) + 1

4ρσ2
u
.

Basically this suggests a similar test as is shown previously (Equation (3.35)), but the
endogeneity problem disappears under the assumptions.

Assumption 2(b) (a.k.a. Corollary 3): In addition to Assumption 1, if ρ2λv,iλu,i � 1

for every i, then A ≈ 1
2
Σ

1
2
v Σ
− 1

2
u + ρ2

4
Σ

3
2
v Σ

1
2
u + ρ

2
Σv =

1

2σu
Σ

1
2
v︸ ︷︷ ︸

infor

+
ρ2σu

4
Σ

3
2
v︸ ︷︷ ︸

hedge:infor

+
ρ

2
Σv︸︷︷︸

hedge

.

Assumption 2(b) separates the price impact matrix into three components: a hedge, an
information and an interaction component.

Test of Assumption 2(b):
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Under Assumption 2(b), we can run the following empirical test:

∆Pi = (A∆X)i

= α + (Aγ∆zm)i + εi

= α +
∆zm
2σu

(Σ
1
2
v γ)i +

ρ2σu∆zm
4

(Σ
3
2
v γ)i +

ρ∆zm
2

(Σvγ)i + εi

= α + β1(Σ
1
2
v γ)i + β2(Σ

3
2
v γ)i + β3(Σvγ)i + εi (3.38)

However, in practice, as Σ
1
2
v γ, Σvγ and Σ

3
2
v γ can be highly correlated, it is difficult to

separate them in linear regression.

3.3 Modified γ∗ under imperfect hedging

In Section 3.1, we have assumed that γi equals the ratio of the stock i’s market capital to the
SP500 index capital at the beginning of the crash. This assumes the index futures arbitragers
can perfectly hedge their risk and transmit the E-mini 500 sale into SP500 underlying stocks.
What if they cannot be perfectly hedged? What will the modified γ∗i ’s be?

We consider a three-period model:

• At period 0, the arbitrager has a wealth shock of Q dollar amount of E-mini 500 futures.

• At period 1, the arbitrager sells Qi = x1ip0i dollar amount of each underlying stock i
to hedge the risk.

• At period 2, each stock i pays off a dividend with independent normal distribution
εi ∼ N(0, σ2

i ) and the arbitrager finalizes the hedge.

We assume the arbitrager has CARA utility of risk aversion constant α.

• At period 0: W0 = Q =
∑

i γiQ =
∑

i x0ip0i.

• At period 1: W1 =
∑

i(x0i − x1i)p0i + (x1ip0i − 1
2
λix

2
1i).

• At period 2: W2 =
∑

i(x0i − x1i)(p0i + εi) + (x1ip0i − 1
2
λix

2
1i).

And the arbitrager is to solve the following maximization problem:

max
x1i
−Eexp[−αW2] (3.39)

which is equivalent to:

max
x1i

αE[W2]− 1

2
α2var[W2]

⇐⇒ max
x1i

α(Q− 1

2

∑
i

λix
2
1i)−

1

2
α2
∑
i

(x0i − x1i)
2σ2

i

(3.40)
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This is a concave function and by taking the derivative with respect to x1i, we can solve for
the optimal with the first order condition:

− λix1i + ασ2
i (x0i − x1i) = 0,∀i (3.41)

Therefore, we have:

x1i =
ασ2

i

λi + ασ2
i

x0i (3.42)

γ∗i =
ασ2

i

λi + ασ2
i

γi < γi (3.43)

We can see that if λi = 0, ∀i, then γ∗i = γi. The existence of the price impact factor λi
makes the arbitrager hedge the risk with a smaller amount on the underlying stock i.

Now if we assume the returns of SP500 stocks follow a general form of covariance matrix
Σn×n such that they are not necessarily independent. Then the maximization problem
becomes:

max
x1

α(Q− 1

2
xT1 Λx1)− 1

2
α2(x0 − x1)TΣ(x0 − x1) (3.44)

and we have:
x1 = (αΣ + Λ)−1αΣx0 (3.45)

and the modified γ∗ = xT1 p0/Q.

3.4 Proofs for Section 3.1

Proof. Conjecture a linear equilibrium. The risk neutral competitive market makers set the
price conditioning on the aggregate order flow imbalance:

P (x) = E[ṽ1|x] = E[ṽ1|x = ỹ + z̃ + γz̃m]

= v0 + λx (3.46)

where y is the demand from risk neutral informed traders given by:

y = argmax
y

E[y(ṽ1 − P (y + z̃ + γz̃m))|s̃ = s, s̃m = sm] (3.47)

Plug in the linear form of the price into the informed trader’s maximization problem
(which becomes quadratic) and solve for the first order condition we have:

y = argmax
y

[y(s+ βsm − λy)]

=
1

2λ
s+

β

2λ
sm (3.48)
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Plug y = 1
2λ
s+ β

2λ
sm in Equation (3.46) and apply the Projection Theorem, we have:

λ =

√
σ2
s + β2σ2

sm

2
√
σ2
z + γ2σ2

zm

(3.49)

3.5 Proofs for Section 3.2

Proof of Proposition 1. First, for the informed trader’s optimization problem, with the linear
conjecture, we have:

max
y

E[(ṽ − p̃)Ty|ṽ] = max
y

E[(ṽ − A(y + ũ))Ty|ṽ = v] (3.50)

And the first order condition is:
v − 2Ay = 0 (3.51)

where we have used the symmetry of A.
And therefore we have:

y =
A−1

2
v

B =
A−1

2
(3.52)

Second, for the market maker’s optimization problem, we have m that satisfies the first
order condition:

m =
1

ρ
var[ṽ|ỹ + ũ]−1(E[ṽ|ỹ + ũ]− p)

=
1

ρ
var[ṽ|ỹ + ũ]−1(E[ṽ|ỹ + ũ]− A(ỹ + ũ))

= −(ỹ + ũ) (3.53)

The last equality is the market clearing condition.
By Projection theorem, we know:

E[ṽ|(ỹ + ũ)] = 2Σv(A
−1)T (A−1Σv(A

−1)T + 4Σu)
−1(ỹ + ũ) (3.54)

var[ṽ|(ỹ + ũ)] = Σv − Σv(A
−1)T (A−1Σv(A

−1)T + 4Σu)
−1A−1Σv (3.55)

Therefore in equilibrium, from Equation (3.53), A should satisfy:

A− 2Σv(A
−1)T (A−1Σv(A

−1)T + 4Σu)
−1

= ρΣv − ρΣv(A
−1)T (A−1Σv(A

−1)T + 4Σu)
−1A−1Σv

(3.56)
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Since (A−1)T = (AT )−1, we have:

Σv(A
−1)T (A−1Σv(A

−1)T + 4Σu)
−1 = (ATΣ−1

v )−1(A−1Σv(A
−1)T + 4Σu)

−1

= [(A−1Σv(A
−1)T + 4Σu) · (ATΣ−1

v )]−1

= [A−1 + 4ΣuA
TΣ−1

v ]−1 (3.57)

Plug (3.57) into the LHS of (3.56), we have:

A− 2[A−1 + 4ΣuA
TΣ−1

v ]−1 = A− 2[A−1(I + 4AΣuA
TΣ−1

v )]−1

= [I − 2(I + 4AΣuA
TΣ−1

v )−1]A (3.58)

Plug (3.57) into the RHS of (3.56), we have:

ρΣv − ρΣv(A
−1)T (A−1Σv(A

−1)T + 4Σu)
−1A−1Σv = ρΣv − ρ[A−1 + 4ΣuA

TΣ−1
v ]−1A−1Σv

= ρΣv − ρ[Σ−1
v A · (A−1 + 4ΣuA

TΣ−1
v )]−1

= ρΣv − ρ[Σ−1
v + 4Σ−1

v AΣuA
TΣ−1

v )]−1

= ρΣv − ρ[Σ−1
v (I + 4AΣuA

TΣ−1
v )]−1

= ρ[I − (I + 4AΣuA
TΣ−1

v )−1]Σv (3.59)

Multiplying both sides by (I + 4AΣuA
TΣ−1

v ), we get:

(I + 4AΣuA
TΣ−1

v − 2I)A = ρ[4AΣuA
TΣ−1

v ]Σv

⇔ 4AΣuA
TΣ−1

v A− A = 4ρAΣuA
T

⇔ ATΣ−1
v A− ρAT − 1

4
Σ−1
u = 0

⇔ AΣ−1
v A− ρA− 1

4
Σ−1
u = 0 (3.60)

The last equality is again by the symmetry of A.

Proof of Proposition 2. Let G := 1
4
Σ−1
u + ρ2

4
Σv, then G is symmetric and positive definite.

Let A = Σ
1/2
v

(
Σ
−1/2
v GΣ

−1/2
v

)1/2
Σ

1/2
v + ρ

2
Σv, and Σ

1/2
v , Σ

−1/2
v be the unique symmetric positive

definite square root of Σv and Σ−1
v , then by definition we know A is symmetric positive

definite.
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Now we have:

AΣ−1
v A− ρA− 1

4
Σ−1
u

=AΣ−1/2
v Σ−1/2

v A− ρA− 1

4
Σ−1
u

=
(
Σ1/2
v (Σ−1/2

v GΣ−1/2
v )1/2 +

ρ

2
Σ1/2
v

)(
(Σ−1/2

v GΣ−1/2
v )1/2Σ1/2

v +
ρ

2
Σ1/2
v

)
− ρA− 1

4
Σ−1
u

=Σ1/2
v (Σ−1/2

v GΣ−1/2
v )Σ1/2

v + ρΣ1/2
v (Σ−1/2

v GΣ−1/2
v )Σ1/2

v +
ρ2

4
Σv − ρA−

1

4
Σ−1
u

=G+ ρA− ρ2

4
Σv − ρA−

1

4
Σ−1
u

=G+ ρA− ρA−G = 0 (3.61)

And it is easy to show that:

A = Σ1/2
v

(
Σ−1/2
v GΣ−1/2

v

)1/2
Σ1/2
v +

ρ

2
Σv

=
1

2
Σ1/2
v

(
Σ−1/2
v Σ−1

u Σ−1/2
v + ρ2I

)1/2
Σ1/2
v +

ρ

2
Σv (3.62)

Remark: Mathematically, this equation belongs to a larger family of algebraic Riccati
equations in control theory. General discussions can be found in Lancaster and Rodman
(1995). A special case without linear terms is discussed as a symmetric word equation in
Armstrong and Hillar (2007).

Proof of Corollary 1. Since Σv and Σu commute, and they are both symmetric positive def-
inite, we know they can be simultaneously diagonalized. Then it is easy to see that G can
commute with Σ

1/2
v and Σ

−1/2
v as well.

So A can be expressed as:

A = (
1

4
Σ−1
u Σv +

ρ2

4
Σ2
v)

1
2 +

ρ

2
Σv (3.63)

Proof of Corollary 2. By spectral theorem, we can rewrite A = QΛAQ
T , where ΛA = 1

2
( Λv

Λu
+
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ρ2Λ2
v)

1
2 + ρ

2
Λv. Moreover, if ρ2λv,iλu,i � 1 for every i, then by Taylor expansion, we have:

ΛA =
1

2
(
Λv

Λu

+ ρ2Λ2
v)

1
2 +

ρ

2
Λv

=
ρ

2
Λv(1 +

1

ρ2ΛvΛu

)
1
2 +

ρ

2
Λv

≈ ρ

2
Λv(1 +

1

2ρ2ΛvΛu

) +
ρ

2
Λv

= ρΛv +
1

4ρΛu

(3.64)

So

A = QΛAQ
T ≈ Q(ρΛv +

1

4ρΛu

)QT = ρΣv +
1

4ρ
Σ−1
u (3.65)

Proof of Corollary 3. By spectral theorem, we can rewrite A = QΛAQ
T , where ΛA = 1

2
( Λv

Λu
+

ρ2Λ2
v)

1
2 + ρ

2
Λv. Moreover, if ρ2λv,iλu,i � 1 for every i, then by Taylor expansion, we have:

ΛA =
1

2
(
Λv

Λu

+ ρ2Λ2
v)

1
2 +

ρ

2
Λv

=
1

2
(
Λv

Λu

)
1
2 (1 + ρ2ΛvΛu)

1
2 +

ρ

2
Λv

≈ 1

2
(
Λv

Λu

)
1
2 (1 +

ρ2ΛvΛu

2
) +

ρ

2
Λv

=
1

2
(
Λv

Λu

)
1
2 +

ρ2

4
Λ

3
2
v Λ

1
2
u +

ρ

2
Λv (3.66)

So

A = QΛAQ
T ≈ Q(

1

2
(
Λv

Λu

)
1
2 +

ρ2

4
Λ

3
2
v Λ

1
2
u +

ρ

2
Λv)Q

T =
1

2
Σ

1
2
v Σ
− 1

2
u +

ρ2

4
Σ

3
2
v Σ

1
2
u +

ρ

2
Σv (3.67)
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3.6 Summary

In this chapter, we build a single period, single asset strategic trading model that captures
the information asymmetry induced price impact. Our model prediction that a temporary
market wide liquidity shock can lead to the cross-sectional price drawdown of SP500 stocks
is verified empirically. We also incorporate the limited risk-bearing capacity induced price
impact in the empirical test and show that it is another important factor.

In addition, we build a more general single period, multi-asset strategic trading model
and solve for a symmetric linear equilibrium. We show that under certain assumptions, the
price impact matrix can be decomposed into an information component, a hedge component
and their interaction component analytically. However, the empirical test of this model is
difficult.

We also build a simple model to calculate the constant to which the demand of an
individual risky asset is affected by the market-wide liquidity shock, under imperfect hedging.
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Chapter 4

Statistical Data Analysis

In this section, we present some modern machine learning technique applications on market
crashes. We use association analysis as an unsupervised learning method to explore the
association patterns behind the two crashes. We also use statistical model selection methods
to compare previous model based information asymmetry and risk aversion effect predictors
with other plausible predictors in finance literature.

4.1 Association Analysis

Association analysis is the task of finding interesting relationships in large data sets. These
interesting relationships can take two forms: frequent item sets or association rules. Fre-
quent item sets are a collection of items that frequently occur together. A second way to
view interesting relationships is association rules. Association rules suggest that a strong
relationship exists between two frequent items.

4.1.1 Data

For the 2010 Flash Crash, we collect the following parameters (Table A.1) from different
data sources that represent the as-is state for SP500 stocks during the crash.

We can group the parameters into three categories:

• Numerical parameters collected during the crash:
PRC CHG, ESPRD, VOLUME RATIO

• Numerical parameters collected right before the crash:
EPS RATIO, FEPS RATIO, INST HHI, INST PERC, LAMBDA,
MKTCAP, MEANREC, SELLPCT, VOLATILITY

• Categorical parameters: GSECTOR, PRIMEXCH, SPCSRC
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For the 1987 crash, the parameters are the same as those of the 2010 crash, except
we do not have MEANREC, SELLPCT, and EPS RATIO for the 1987 crash. Also in the
association analysis we do not include the PRIMEXCH parameter, as more than 90% of
sample stocks are listed in NYSE. Table A.2 lists the details about the parameters.

4.1.2 Exploratory Data Analysis

Exploratory data analysis (EDA) is a useful way to visualize patterns that may be otherwise
not obvious in traditional summary statistics of parameters.

The 2010 Flash Crash

Figure 4.1 shows the absolute frequency of observations on each of the three categorical
parameters respectively. Specifically, we can see that over 80% of the SP500 stocks are
primarily listed in NYSE.

Figure 4.1: Barplot of frequency of three categorical parameters for the 2010 Flash Crash.

We use boxplots to reflect the variations of in-crash parameter distribution across different
categorical parameters.1 Figure 4.2 shows the box-plot of the three in-crash parameters
against GSECTOR. We can see the medians of PRC CHG and ESPRD do not vary much
across GSECTOR.

1We exclude an outlier stock CNP with extreme PRC CHG and ESPRD
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Figure 4.2: Boxplots of PRC CHG, ESPRD, and VOLUME RATIO, grouped by GSECTOR
for the 2010 Flash Crash. Sector definition: 10-Energy; 15-Materials; 20-Industrials; 25-
Consumer discretionary; 30-Consumer staples; 35-Healthcare; 40-Financials; 45-Information
technology; 50-Telecommunication services; 55-Utilities.

Figure 4.3: Boxplots of PRC CHG, ESPRD, and VOLUME RATIO, grouped by
PRIMEXCH for the 2010 Flash Crash.
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Figure 4.4: Boxplots of PRC CHG, ESPRD, and VOLUME RATIO, grouped by SPCSRC
for the 2010 Flash Crash (NA means stocks without a SPCSRC).

Figure 4.3 shows the boxplots of three in-crash parameters against PRIMEXCH. The
medians are similar, with stocks primarily listed on NASDAQ have larger variation of VOL-
UME RATIO. Figure 4.4 shows the boxplots of the three numerical in-crash parameters
distribution grouped by SPCSRC.

The correlation matrix of numerical parameters is presented in Figure 4.5. It is not
surprising to see that PRC CHG is highly (negatively) correlated with ESPRD, as the higher
the effective spread, the more illiquid the stock during the crash, and that associates with
larger price decline. Not surprisingly, we also see the price impact factor LAMBDA is
negatively correlated with MKTCAP.
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Figure 4.5: Correlation matrix of numerical parameters in the 2010 Flash Crash.

The 1987 Crash

Figure 4.6 shows the absolute frequency of observations on GSECTOR and SPCSRC respec-
tively.

We use boxplots to reflect the variations of in-crash parameter distribution across GSEC-
TOR and SPCSRC. Figure 4.7 shows the boxplots of the three in-crash parameters against
GSECTOR. As in the 2010 Flash Crash, the medians of PRC CHG and ESPRD do not
vary much across GSECTOR. Figure 4.8 shows the boxplots of the three numerical in-crash
parameters distribution grouped by SPCSRC.
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Figure 4.6: Barplot of frequency of GSECTOR and SPCSRC for the 1987 crash.

Figure 4.7: Boxplots of PRC CHG, ESPRD, and VOLUME RATIO, grouped by GSECTOR
for the 1987 crash. Sector definition: 10-Energy; 15-Materials; 20-Industrials; 25-Consumer
discretionary; 30-Consumer staples; 35-Healthcare; 40-Financials; 45-Information technol-
ogy; 50-Telecommunication services; 55-Utilities.
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Figure 4.8: Boxplots of PRC CHG, ESPRD, and VOLUME RATIO, grouped by SPCSRC
for the 1987 crash (NA means stocks without a SPCSRC).

The correlation matrix of numerical parameters is presented in Figure 4.9. PRC CHG is
negatively correlated with ESPRD and VOLATILITY. It is also interesting to see FEPS RATIO
seems to have relatively high correlation with the volatility of the stock.
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Figure 4.9: Correlation matrix of numerical parameters in the 1987 crash.

4.1.3 Association Analysis Results

For association analysis, we use the Apriori algorithm mentioned in Harrington (2012) and
Hastie, Tibshirani, and Friedman (2008).

We use the same data set as in Section 4.1.1, with one additional parameter:
SHOCK = LAMBDA ×MKTCAP . The purpose is to see if this additional parameter
can play a role in our association analysis.

To apply the Apriori algorithm, we convert each numerical parameter into two categories:
above and below the median of the original numerical parameter. We keep the original
categorical parameters.

After removing observations of missing parameter values, we got a 475×16 matrix of 475
stocks on 16 categorical parameters.

The criteria we use to select frequent itemsets or association rules has three main concepts:

• The support of an itemset is defined as the percentage of the data set that contains
this itemset.

• The confidence is defined for an association rule like A⇒B. The confidence for this
rule is defined as support({A, B})/support({A}), which can be viewed as an estimate
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of Pr(B|A).

• The lift for an association rule A⇒B is defined as
support({A, B})/(support({A})×support({B})), which can be viewed as an estimate
of the association measure Pr(A and B)/Pr(A)Pr(B).

We are interested in getting a relatively high support frequent itemset, which indicates
a frequent pattern in the observation; we are also interested in producing association rules
with both relatively high confidence and lift, which can reveal potentially important relations
between parameters.

We find 60 frequent itemsets of more than two items with support of at least 30%, to list
a few:

• {PRC CHG below (above) median, ESPRD above (below) median}

• {SELLPCT above median, MEANREC above median}

• {MKTCAP below (above) median, INSTOWN HHI above (below) median}

• {VOLUME RATIO below (above) median, VOLATILITY above (below) median}

• {LAMBDA below (above) median, MKTCAP above (below) median}

These frequent itemsets are all quite intuitively interpretable:
SELLPCT is positively correlated with MEANREC by definition; MKTCAP is negatively

correlated with INSTOWN HHI, as large capital stocks are harder to be controlled by a
few institutions and thus embrace more fragmentation in their stock ownership. Higher
VOLUME RATIO indicates higher liquidity during the crash, and that is correlated with
lower VOLATILITY. Also we expect that large capital stocks have smaller price impact
reflected by LAMBDA.

We also list a few notable association rules of interest:

• Association rule 1: Support 10.9%, confidence 86.7%, lift 2.12.
{VOLATILITY below median, LAMBDA below median, INSTOWN PERC below me-
dian, EPS RATIO above median}⇒{MKTCAP above median, PRIMEXCH=N}

• Association rule 2: Support 10.9%, confidence 77.9%, lift 2.40.
{PRC CHG below median, LAMBDA below median, VOLATILITY below median}⇒
{MKTCAP above median, INSTOWN HHI below median}

• Association rule 3: Support 10.1%, confidence 80%, lift 1.97.
{SHOCK above median, ESPRD above median, EPS RATIO above median}⇒
{PRC CHG below median, PRIMEXCH=N}
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The first association rule is intuitive. It says that a large market capital stock is asso-
ciated with low volatility, low price impact, low institutional holding percentage, and high
EPS RATIO. 2

The second association rule is a little bit surprising. It basically says, for an SP500 stock
with large price decline, small price impact, low historical volatility, most of the time it has
large market capital and therefore more fragmented stock ownership structure. Why does a
stock with small price impact have larger price decline? Our model in Section 3.1 explains
this unusual effect. Namely, it was the interaction term of price impact and market capital
that affects the price decline during crashes through the information asymmetry effect.

The third association rule somewhat echoes our point. It is the only association rule we
find that has an association result including PRC CHG. It shows the above median SHOCK
is associated with larger price decline.

We apply association analysis to the 1987 crash as well. As we do not have MEANREC,
SELLPCT, and EPS RATIO for the 1987 crash, and we exclude the PRIMEXCH parameter
(because more than 90% of our sample stocks are listed in NYSE), the sample data set is a
matrix of 436 stocks on 12 categorical parameters.

There are 43 frequent itemsets of more than two items with at least 30% support. As
those found in the 2010 crash, they are all intuitively interpretable.

We find the following representative association rules that involve PRC CHG parameter
in the 1987 crash:

• Association rule 1: Support 10.6%, confidence 80.7%, lift 2.91.
{VOLATILITY above median, ESPRD above median, INSTOWN HHI above median,
SHOCK above median}⇒{PRC CHG below median, LAMBDA above median}

• Association rule 2: Support 11.9%, confidence 82.5%, lift 2.24.
{PRC CHG below median, ESPRD below median, INSTOWN HHI below median}⇒
{MKTCAP above median, LAMBDA below median}

Association rule 1 is a representative of rules that contain PRC CHG as consequence.
We find for support of at least 10% and confidence of at least 75%, all the association rules
with PRC CHG in the consequent has SHOCK and VOLATILITY in the antecedent.

Association rule 2 for the 1987 crash resembles the puzzle of association rule 2 for the
2010 crash. It reveals some stocks with larger price decline, smaller effective spread, and
more fragmentation in the stock ownership structure, have larger market capital and smaller
price impact.

Both of the above observations are in support of our previous model that SHOCK is a
important factor that affected PRC CHG during the 1987 crash. In addition, association
rule 1 suggests VOLATILITY may be another important factor that affects PRC CHG. This

2We can ignore the PRIMEXCH factor as it is a natural result of the high proportion (80%) of SP500
stocks listed in NYSE.
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on the other hand echoes that limited risk bearing capacity is another source of temporary
price impact. 3

4.2 Statistical Model Selection

In this section, we study the predictors of cross-sectional price drawdown of SP500 stocks
during the 2010 Flash Crash by best subset selection and the Lasso model selection methods.
We identify a set of three predictors out of eight predictors (by combining the information-
asymmetry induced price impact factor, the risk-aversion induced price impact factor and
six other predictors used in Madhavan (2012)) that have strong effects in predicting cross-
sectional price drawdown. We evaluate the robustness of this result by applying model
selection methods on an augmented candidate predictors set of betas with respect to well
known risk factors. Finally, additional predictors used in corporate default prediction anal-
ysis are also evaluated in the model selection.

4.2.1 Model Selection

In the regression setting, the standard linear model:

Y = β0 +

p∑
i=1

βiXi + ε (4.1)

is commonly used to describe the relationship between a response Y and a set of variables
X1, X2, · · · , Xp. However, it is often the case that some or many of the variables used in
a multiple regression model are in fact not associated with the response. That makes our
model unnecessarily complex. Below, we will apply several variable selection approaches
that enable us to exclude irrelevant variables in a multivariate regression model. As a result,
we can obtain a model that can be better interpreted.

3Although we only include idiosyncratic volatility in this section’s analysis, we discuss further the role
of risk in general in Section 3.1.5.
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Best subset selection

To perform best subset selection, we fit a separate least squares regression for each
possible combination of the p predictors. We then look at all of the resulting models, with
the goal of identifying the one that is best.

This is described in the following algorithm James et al. (2013):

Best Subset Selection
1. Let M0 denote the null model, which contains no predictors. This model simply
predicts the sample mean of each observation.
2. For k = 1, 2, · · · , p:
(a) Fit all

(
p
k

)
models that contain exactly k predictors.

(b) Pick the best among
(
p
k

)
models, and call it Mk. Here the best is defined as having

the smallest RSS, or equivalently largest R2.
3. Select a single best model from among M0, · · · , Mp using cross-validated prediction
error, Cp(AIC), (BIC), or adjusted R2.

Forward stepwise selection

A close relative of best subset selection is forward stepwise selection. As a greedy algo-
rithm, forward stepwise selection is computationally more efficient, and is useful when the
number of candidate predictors becomes very large. Forward stepwise selection begins with
a model containing no predictors, and then adds predictors to the model, one at a time, until
all of the predictors are in the model. In particular, at each step the variable that gives the
greatest additional improvement to the fit is added to the model.

This is described in the following algorithm James et al. (2013):

Forward Stepwise Selection
1. Let M0 denote the null model, which contains no predictors.
2. For k = 0, 1, · · · , p− 1:
(a) Fit all p− k models that augment the predictors in Mk with one additional predictor.
(b) Pick the best among p−k models, and call it Mk+1. Here the best is defined as having
the smallest RSS, or equivalently largest R2.
3. Select a single best model from among M0, · · · , Mp using cross-validated prediction
error, Cp(AIC), (BIC), or adjusted R2.

Model selection criterions

The training set mean squared error (MSE) is generally an underestimate of the test
MSE (MSE=RSS/n). This is because training error decreases as more variables are included
in a regression model, but the test error may not. We need to adjust the training error to
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prevent overfitting. Cp(AIC), (BIC), and adjusted R2 are useful measures for adjusting the
training error against the model size. They can be used to select among a set of models with
different number of variables.

For a fitted least squares model containing d predictors, the Cp estimate of test MSE is:

Cp =
1

n
(RSS + 2dσ̂2) (4.2)

Cp is also proportional to another famous criterion AIC.4

BIC is derived from a Bayesian point of view, but ends up looking similar to Cp(AIC).

BIC =
1

n
(RSS + log(n)dσ̂2) (4.3)

Adjusted R2 is calculated as

Adjusted R2 = 1− RSS/(n− d− 1)

TSS/(n− 1)
(4.4)

where TSS =
∑

(yi − ȳ)2 and RSS =
∑

(yi − ŷ)2.
Both Cp and BIC tend to take on a small value for a model with a low test error. But a

large value of adjusted R2 indicates a model with a small test error.

Cross-validation provides a direct estimate of the test error, and makes fewer assump-
tions about the true underlying model. As we will see in the Lasso, it can also be used in
a wider range of model selection tasks, even in cases where it is hard to pinpoint the model
degree of freedom or hard to estimate the error variance σ2. In a k−fold cross-validation,
first we divide the data randomly into k folds equally. Then we train the model on any k−1
folds of the data, and calculate the mean test error on the remaining one fold of the data.
Finally, the test MSE is estimated by the average of each fold’s test MSE.

The Lasso

The Lasso shrinkage method is proposed by Tibshirani (1996). The Lasso minimizes the
loss function subject to the sum of the absolute value of the coefficients being less than a
constant. As ridge regression, the Lasso solution can yield a reduction in variance at the
expenses of a small increase in bias, and consequently can generate more accurate predictions.

β̂Lλ = argmin
n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij

)2

+ λ

p∑
j=1

|βj| (4.5)

= RSS + λ

p∑
j=1

|βj| (4.6)

4AIC = 1
nσ̂2 (RSS + 2dσ̂2)
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This is equivalent to minimizing the sum of squares with a constraint of the form∑p
j=1 |βj| ≤ s. For ridge regression, this constraint becomes

∑p
j=1 β

2
j ≤ s. The Lasso

and ridge regression do not focus on subsets but define a continuous shrinking operation.
But because of the nature of the Lasso’s L1 norm constraint, it tends to produce some zero
coefficients and hence can perform variable selection.

Therefore the Lasso enjoys some of the favorable properties of both subset selection and
shrinkage method in the sense that it produces interpretable models like subset selection
and yet exhibits the stability of shrinkage methods like ridge regression. In general, consider
a penalty of the form (

∑p
j=1 β

q
j )

1/q, then the Lasso uses q = 1 and ridge regression has
q = 2. Subset selection emerges as q → 0, and the Lasso uses the smallest value of q
(closest to subset selection) that yields a convex problem, which facilitates computation. The
optimization problem can be solved via standard convex optimizer, Least angle regression
(LAR) algorithm and coordinate descent algorithms (Tibshirani 2011).

Implementing the Lasso requires a method for selecting a value for the tuning parameter
λ. Cross-validation provides a simple way to tackle this problem.

4.2.2 Data

The data can be divided into two parts in general: predictors and response, both are at firm
level.

There are three set of predictors.

Set 1: Model based predictors:

• SHOCK: λiγi, information asymmetry induced price impact, scaled by 10−9.

• RISK: (Σγ)i, limited risk-bearing capacity induced price impact, scaled by 10−2.

We already have this set of predictors from previous session.

Set 2: Predictors from Madhavan (2012)5

• Q HHI: Hq
i , average of daily quote Herfindahl index.

• V HHI: Hv
i , average of daily volume Herfindahl index.

• LADV: log of average daily volume in millions of dollars.

• VOLATILITY: average of the daily standard deviation of five-minute return intervals
scaled by 10−6 in the period 1:30 pm-4:00 pm ET.

5Except for INVP, all the predictors are calculated from control period 4/7/2010-5/5/2010. Specifically,
Q HHI, V HHI and VOLATILITY are calculated in intraday window 1:30 pm-4:00 pm ET. We exclude
another predictor ETP used in Madhavan (2012) because it does not apply to our setting.
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• INVP: price inverse using the open price on 5/6/2010.

• ISO: intermarket Sweep Order Activity measured by the dollar weighted proportion of
volume accounted by Condition Code F orders.

We derive this set of predictors following Madhavan (2012) closely with the TAQ database.

Set 3: Beta Predictors
In the capital asset pricing model (CAPM), it is well known that a risky asset’s expected

return is driven by risk. In addition to the market risk factor, Fama and French (1993);
Carhart (1997) further identify three risk factors (size, value, and momentum) that affect
the expected return of a risky asset. In a recent paper, Pelger (2015) identifies four continuous
factors that are highly persistent during 2007-2012 based on high-frequency data. The top
three of these factors can be replicated by an equally weighted market, an oil and a finance
portfolio.6

We use CRSP daily excess return data and the Fama-French-Carhart factors daily data
from 01/02/2009 to 04/30/2010 from WRDS to get the following betas for each SP500 stocks:
βmkt, βsmb, βhml, βumd, βewmkt, βoil, βfinance.

The first four betas are based on Fama-French-Carhart factor data, and the next three
betas are based on equal weighted market, oil, and finance portfolios constructed by SP500
stocks according to Pelger (2015).7

Set 4: Predictors from US corporate default analysis
We also include a set of 24 predictors that are used in literature to predict US corporate

default event, as both default and market crash are related to the stability of the market.
In order to construct default predictors, we combine yearly accounting data from the

COMPUSTAT database with monthly equity market data from the CRSP database. Ab-
breviation and data source descriptions are in Table A.3. As in Wu (2011), the 24 candidate
predictors are grouped into eight categories that capture default causal factors at the individ-
ual firm level: Size, Capital structure, Growth, Profitability, Debt Coverage, Liquidity, Busi-
ness Operations, Market Performance. We construct measures of firm’s size as: log(Sale),
log(TA) and ME; firm’s capital structure is characterized by: ME/BD, ME/TA, TL/TA and
SD/BD; Sale Gth, NI Gth and OM CH represent firm’s growth traits; RE/TA, EBIT/TA and
NI/TA describe firm’s profitability; ICR and NI/TL gauge firm’s debt coverage; WC/TA,
CR, CH/TA, QR are liquidity measures; INVT/SALE, AR/SALE and SALE/TA depict
business operations; market performance is characterized by SRT and SIGMA.

Table 4.1 shows the summary statistics for the four sets of predictors.

6We do not include the fourth continuous factor (electricity factor) and the jump market factor in this
analysis because their effects are weaker and less robust according to Pelger (2015).

7See definition of oil and finance stocks with respect to their SIC code in Pelger (2015).



CHAPTER 4. STATISTICAL DATA ANALYSIS 52

SP500 Firms
Category Predictor Mean Median Std.Dev 5% 95%
Set 1: Model based SHOCK(e-12) 1.475 1.206 1.192 0.145 3.677

RISK(e-05) 9.144 8.689 3.569 4.216 15.787
Set 2: Madhavan (2012) Q HHI 0.177 0.167 0.047 0.116 0.269

V HHI 0.245 0.237 0.029 0.210 0.304
LADV 4.929 4.836 0.952 3.497 6.558

VOLATILITY 86.139 75.756 48.469 39.152 161.481
INVP 0.037 0.026 0.040 0.011 0.091
ISO 0.281 0.328 0.144 0 0.428

Set 3: Betas βmkt 1.210 1.072 0.637 0.410 2.526
Fama-French-Carhart βhml 1.545 1.217 1.127 0.321 3.877

βumd -0.775 -0.643 0.558 -1.971 -0.118
βsmb 0.646 0.619 0.485 -0.004 1.545

Pelger (2015) βewmkt 1.000 0.884 0.542 0.319 2.105
βfinance 0.466 0.385 0.311 0.123 1.139
βoil 0.666 0.588 0.364 0.188 1.366

Set 4: Wu (2011) log(Sale) 8.917 8.867 1.206 7.057 11.132
Size log(TA) 9.515 9.352 1.351 7.602 12.019

ME(e09) 22.146 10.164 37.101 2.819 85.609
Capital Structure ME/BD 30.783 4.005 166.516 0.605 54.786

ME/TA 1.275 0.980 1.095 0.116 3.288
TL/TA 0.605 0.607 0.209 0.257 0.921
SD/BD 0.134 0.070 0.194 0 0.577

Growth SALE Gth -0.042 -0.060 0.538 -0.365 0.181
NI Gth -0.272 -0.168 3.340 -2.248 1.045
OM CH 0.206 0.194 0.155 0.021 0.474

Profitability RE/TA 0.159 0.234 1.926 -0.174 0.838
EBIT/TA 0.092 0.080 0.083 -0.015 0.228

NI/TA 0.047 0.043 0.071 -0.044 0.158
Debt Coverage ICR 23.290 6.275 72.566 -0.748 83.124

NI/TL 0.112 0.073 0.208 -0.075 0.427
Liquidity WC/TA 0.154 0.115 0.159 -0.044 0.472

CR 1.931 1.583 1.261 0.737 4.153
CH/TA 0.102 0.079 0.097 0.004 0.287

QR 1.540 1.211 1.138 0.490 3.564
Business Operations INVT/SALE 0.151 0.075 0.650 0 0.301

AR/SALE 0.708 0.145 2.299 0.016 4.464
SALE/TA 0.790 0.605 0.685 0.068 2.188

Market Performance SRT 0.526 0.443 0.481 -0.022 1.321
SIGMA 0.087 0.074 0.054 0.039 0.170

Table 4.1: Summary Statistics

The response variable of our data set is the maximum price drawdown, which is the
same as defined in Section 3.13. Also, we will focus on the same filtered set of stocks (457
out of 500) as in our previous linear regression. We use this definition of response and the
same set of stocks as before, because: 1. This facilitates us to compare the newly added
predictors with the previous two predictors; 2. Madhavan (2012)’s definition of maximum
price drawdown does not enable us to get any statistical significance for predictors proposed
in his paper, if we run regression only on the SP500 stocks; 3. As Madhavan (2012) is about
the 2010 Flash Crash, and the related predictors are derived from TAQ data, which are not
available for the 1987 crash, we focus on the 2010 Flash Crash but not the 1987 crash.
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4.2.3 Model Selection Results

We start with eight Set 1 and Set 2 candidate predictors.
For best subset selection method, the Adjusted R2, Cp, and 10-fold cross-validation all

select five predictors as the best model (See Figure 4.10): SHOCK, RISK, Q HHI, V HHI
and INVP. The BIC tends to impose heavier penalty on model complexity and it selects the
three-predictor model: SHOCK, RISK, Q HHI.

Figure 4.10: Best subset selection for 8 predictors.

For the Lasso method, we use 10-fold cross-validation to choose the best tuning parameter
and estimate the test error. It appears that RISK, SHOCK and Q HHI remain top three
predictors and the best model selected via cross-validation in the Lasso has five predictors:
SHOCK, RISK, Q HHI, INVP and ISO.

Figure 4.11 shows the result of the Lasso method.
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Figure 4.11: The Lasso for 8 predictors. Top left: Standardized coefficients of 8 predictors
against log(λ); Top right: Standardized coefficients of 8 predictors against R2 explained;
Bottom left: best tuning parameter selection with minimum square root cross-validation
MSE; Bottom right: best tuning parameter selection with one-standard-error rule (MSE
with one standard error band at each point).

We can see from Figure 4.11 that the top three predictors: RISK, SHOCK, Q HHI explain
the most of the R2. Also if we apply the one-standard-error rule that picks the smallest model
within one standard error of the MSE of the best model to prevent overfitting for the training
data8, we get a model with three predictors: RISK, SHOCK and Q HHI.

Table 4.2 lists the predictor selection procedure of best subset selection and the Lasso
method for 8 candidate predictors. RISK and SHOCK are chosen first by both best subset
selection method and the Lasso.

8 The best λ according to the one-standard-error rule is shown by the right vertical dash line in the
bottom right window in Figure 4.11.
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Selection Sequence Best subset selection The Lasso
1 RISK RISK
2 SHOCK SHOCK
3 Q HHI Q HHI
4 INVP INVP
5 V HHI ISO

Table 4.2: Selection Sequence for 8 candidate predictors.

4.2.4 Comparison with Betas of Risk Factors

Putting the Set 3 betas into the previous pool of predictors, we get a total of 15 predictors.
We then run best subset selection and the Lasso method with the 15 predictors.

With 10-fold cross-validation, the best model selected by best subset selection method
has 8 predictors (See Figure 4.12): SHOCK, RISK, Q HHI, INVP, βhml, βumd, βsmb and βoil.

Figure 4.12: Best subset selection for 15 predictors.

For the Lasso method, we use 10-fold cross-validation to choose the best tuning parameter
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and estimate the test error. The best model selected via cross-validation has all but two
predictors: βmkt and βewmkt. The best model selected via one-standard-error rule for the
Lasso has four predictors: SHOCK, RISK, Q HHI, βsmb.

Figure 4.13 shows the result of the Lasso method. We can see that the cross-validation
MSEs of the best model selected and the best model selected via one-standard-error rule
are very close. This suggests that it is sufficient to have the model with a smaller set of
predictors.

Figure 4.13: The Lasso for 15 predictors. Top left: Standardized coefficients of 15 predictors
against log(λ); Top right: Standardized coefficients of 15 predictors against R2 explained;
Bottom left: best tuning parameter selection with minimum square root cross-validation
MSE; Bottom right: best tuning parameter selection with one-standard-error rule (MSE
with one standard error band at each point).

Table 4.3 lists the predictor selection procedure of best subset selection and the Lasso
method for 15 candidate predictors. We can see RISK and SHOCK consistently remain on
the top, indicating they are more important predictors compared to betas. Q HHI remains
on the top 4 predictors as well.
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Selection Sequence Best subset selection The Lasso
1 RISK RISK
2 SHOCK SHOCK
3 βoil Q HHI
4 Q HHI βsmb
5 βsmb -
6 βhml, βumd, (βsmb) -
7 INVP -
8 βsmb -

Table 4.3: Selection Sequence for 15 candidate predictors. The sequence is not necessarily
nested for best subset selection, here βsmd was in the best five-predictor set, but was dropped
in the best six-predictor set.

4.2.5 Comparison with Corporate Default Predictors

In this section, in addition to Set 2 and Set 3 predictors, we put in Set 4 predictors from the
US corporate default analysis to compare their effect on the cross-sectional price drawdown
during the stock market crashes, as both events test the vulnerability of a company under
unfavorable market environment.

However as corporate default predictors are usually only available for poor grade stocks,
we cannot get some corporate default predictors for all the SP500 stocks. After filtering out
stocks with missing values for 24 added predictors, we have 345 stocks remaining.9 As the
total number of predictors increases to 39, here we use forward stepwise selection (which is
more computationally efficient) and the Lasso method to perform model selection.

Forward stepwise selection method selects a 18-predictor model by 10-fold cross-validation:
SHOCK, RISK, Q HHI, V HHI, LADV, INVP, log(TA), ME/BD, RE/TA, WC/TA, AR/SALE,
SRT, SIGMA, ME, βmkt, βumd, βfinance, βoil. The best model selected under 10-fold cross-
validation by the Lasso method has 16 predictors. The model with one-standard-error rule
selected by the Lasso method has 7 predictors: SHOCK, RISK, Q HHI, log(TA), WC/TA,
SRT, ME.

Table 4.4 compares top 10 predictors selection procedure of forward stepwise selection
and the Lasso method out of 39 candidate predictors. Compared to Table 4.3 of 15 predictors
selection, we can see SHOCH and RISK are still selected first. Also we notice both forward
stepwise selection and the Lasso method select three corporate default predictors: WC/TA
(liquidity), log(TA) (size) and SRT (market performance), which are also among the eight
predictors picked by corporate default analysis (Wu 2011). They can be viewed as important

9The reduction of number of stocks is mainly due to the missing value of ACT (76 symbols missing),
LCT (75 symbols missing) and XINT (38 symbols missing) that construct the default predictors.
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indicators of the stability of a firm in hostile market environments, be it economic recession,
or market crash.

Selection Sequence Forward stepwise selection The Lasso
1 SHOCK SHOCK
2 RISK RISK
3 WC/TA(Liquidity) SRT(Market Performance)
4 log(TA)(Size) log(TA)(Size)
5 SRT(Market Performance) WC/TA(Liquidity)
6 Q HHI Q HHI
7 SIGMA(Market Performance) ME(Size)
8 βoil -
9 βumd -
10 βfinance -

Table 4.4: Selection Sequence for 39 candidate predictors.

The result of forward stepwise selection is shown in Figure 4.14.

Figure 4.14: Forward stepwise selection for 39 predictors.
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The result of the Lasso method is shown in Figure 4.15.

Figure 4.15: The Lasso for 39 predictors. Top left: Standardized coefficients of 39 predictors
against log(λ); Top right: Standardized coefficients of 39 predictors against R2 explained;
Bottom left: best tuning parameter selection with minimum square root cross-validation
MSE; Bottom right: best tuning parameter selection with one-standard-error rule (MSE
with one standard error band at each point).

4.2.6 Discussion

From the above statistical analysis, we can see for the 2010 Flash Crash, the cross-sectional
price drawdown of SP500 stocks is not related to their exposure (betas) to certain well-known
risk factors, such as size, value or momentum effect. Pelger (2015) uses 15-min intraday
interval return to identify major persistent economic factors during 2003-2012, which covers
the 2010 Flash Crash. However, the 15-min sampling frequency is too low to find the
hidden market microstructure effect, which can be otherwise important in explaining stock
performance during crashes or some temporary events. The model selection results of Set
1-3 and Set 1-4 predictors demonstrate this point, where we can see the SHOCK predictor
(derived by sampling at 15-second time intervals) is more important compared to betas.
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According to the statistical model selection result, we can see RISK and SHOCK remain
top predictors of SP500 stock cross-sectional price drawdown when we compare them with
three other set of predictors. We find in addition to the two model based predictors, Q HHI
is another important predictor associated with the price drawdown of SP500 stocks. For
those stocks that we can construct corporate default predictors, WE/TA, log(TA), SRT are
useful in prediction.

We run a linear regression on the six common predictors that are selected by both forward
stepwise selection and the Lasso method. The standard errors of regression coefficients are
estimated by bootstrapping 1000 samples and are shown in the parentheses. The results are
shown in Table 4.5.

Dependent variable:

Price drawdown

SHOCK(e09) −2.923∗∗∗ (1.020)
RISK(e01) −7.998∗∗∗ (2.859)
Q HHI 0.048∗∗ (0.019)
SRT −0.007∗∗∗ (0.003)
WC/TA −0.029∗∗∗ (0.006)
log(TA) −0.003∗∗∗ (0.001)
Constant −0.012 (0.013)

Observations 345
R2 0.200
Adjusted R2 0.185
Residual Std. Error 0.017 (df = 338)
F Statistic 14.050∗∗∗ (df = 6; 338)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 4.5: Model selection results for 345 stocks in regression. The standard errors of
regression coefficients are estimated by bootstrapping 1000 samples and are shown in the
parentheses.

We can see that the coefficients of RISK and SHOCK are similar to previous regression in
Table 3.3. The coefficient of Q HHI is positive, meaning the larger the quote fragmentation
(the smaller the Q HHI), the larger the maximum price drawdown. This is consistent with
the finding in Madhavan (2012). The signs of the coefficients of the three corporate default
predictors, however, are quite counter-intuitive compared to Wu (2011). This may imply
that those predictors are not the major ones that drive the cross-sectional price drawdown
of SP500 stocks.

Table 4.6 compares the model selection results for different sets of predictors. The Lasso
method produces uniformly smaller cross-validation root MSE compared to subset selection
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methods. This is because the Lasso not only performs variable selection, it also tends to
shrink the coefficients towards zero relative to the least square estimates. This will effectively
reduce the variance of the predictions at the expense of a slight increase in bias. As the test
MSE is a function of the variance plus the squared bias, a shrinkage method like the Lasso
can achieve significantly lower cross-validation MSE.

Secondly, we also notice that the prediction error by including extra corporate default
predictors (Set 1-4) increases prediction error. The above observations make us believe that
RISK, SHOCK and Q HHI are most important predictors for SP500 stocks in general. And
we could avoid potential overfitting by only include these three predictors.

Model Selection Best subset Forward stepwise The Lasso

Model selected
via CV

Set 1-2 5 predictors - 3 predictors(5)
Set 1-3 8 predictors - 4 predictors(13)
Set 1-4 - 18 predictors 7 predictors(16)

Top 5 predictors
Set 1-2 RISK,SHOCK,Q HHI,

INVP,V HHI
- RISK,SHOCK,Q HHI

(INVP, ISO)
Set 1-3 RISK,SHOCK,βoil,

Q HHI,βsmb

- RISK,SHOCK,Q HHI,
βsmb (LADV)

Set 1-4 - SHOCK,RISK,WC/TA,
log(TA),SRT

SHOCK,RISK,SRT,
log(TA),WC/TA

Sqrt of CV-MSE
Set 1-2 0.1152 - 0.0177(0.0172)
Set 1-3 0.1148 - 0.0174(0.0169)
Set 1-4 - 0.1026 0.0180(0.0172)

Table 4.6: A comparison of model selection result with different data sets. Both Set 1-2
and Set 1-3 have 457 SP500 stocks, Set 1-4 has 345 stocks. We show the result of the Lasso
method that applies one-standard-error rule. The results of the best model of selected by
the Lasso method are shown in quote.

Therefore we also run a linear regression on the three predictors only. The standard
errors of regression coefficients are estimated by bootstrapping 1000 samples and are shown
in the parentheses. The results are shown in Table 4.7. Again, all the estimated coefficients
are consistent with findings in Table 3.3 and Madhavan (2012).
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Dependent variable:

Price drawdown

SHOCK(e09) −2.312∗∗∗ (0.711)
RISK(e01) −11.975∗∗∗ (25.132)
Q HHI 0.057∗∗∗ (0.016)
Constant −0.050∗∗∗ (0.004)

Observations 457
R2 0.112
Adjusted R2 0.106
Residual Std. Error 0.017 (df = 453)
F Statistic 19.102∗∗∗ (df = 3; 453)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 4.7: Model selection results for 457 stocks in regression. The standard errors of
regression coefficients are estimated by bootstrapping 1000 samples and are shown in the
parentheses.

4.3 Other statistical methods for 39 predictors

Although not for variable selection, we use ridge, principal component regression (PCR) and
partial least squares (PLS) method to visualize how the relative importance of predictors
change through the evolution of their standardized coefficients. Economically, this enables
us to see how large one unit change of standardized predictors can affect the best prediction
(chosen by smallest cross-validation MSE).

We also try to apply support vector regression (SVR) with feature selection algorithm
on this data set. We present the result in this section.

Ridge regression

As mentioned in the previous section, ridge regression adds a L2 penalty to the RSS:

β̂Lλ = argmin
n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij

)2

+ λ

p∑
j=1

β2
j (4.7)

= RSS + λ

p∑
j=1

β2
j (4.8)

This has the following analytical solution:

β̂ridge = (XTX + λI)−1XTy (4.9)
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Figure 4.16: Ridge regression for 39 predictors. Left: cross-validation MSE and best tuning
parameter; Right: Standardized coefficients of 39 predictors against log(λ), blue dotted lines
are best tuning parameter selection with minimum CV-MSE and one-standard-error rule
respectively.

Figure 4.16 shows the result of ridge regression. On the right panel, we can see the
standardized coefficients continuously shrink with respect to the tuning parameter λ. Unlike
the Lasso, ridge regression does not yield zero standardized coefficients. The absolute stan-
dardized coefficients of SHOCK, RISK, Q HHI, WC/TA, log(TA), SRT are relatively larger
than other predictors at the best tuning parameter level via 10-fold cross-validation. And
at the biggest λ of the one-standard-error rule, absolute value of standardized coefficients of
SHOCK, RISK, Q HHI are larger than other predictors.

Principal component regression

The principal components regression (PCR) approach involves constructing the first M
principal components, Z1, ..., ZM , and then using these components as the predictors in
a linear regression model that is fit using least squares. If a small number of principal
components can explain most of the variability in the data, as well as the relationship with
the response, in other words, if the directions in which X1, ..., Xp show the most variation are
the directions that are associated with Y , then PCR will perform well. As a result, we can
choose a smaller set of principal features to predict response Y , which is useful in dimension
reduction (James et al. 2013).

As in principal component analysis (PCA), we can derive the principal components of
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the data matrix (n× p) X via singular vector decomposition (SVD).

X = UDV T (4.10)

Here U and V are n× p and p× p orthogonal matrices. D is a p× p diagonal matrix, with
diagonal entries d1 ≥ d2 ≥ ... ≥ dp ≥ 0 called the singular values of X.

As the sample covariance matrix is given by S = XTX/n, and we have:

XTX = V D2V T (4.11)

which is the eigen decomposition of XTX and of S, up to a factor n. The columns of V : Vj
are eigenvectors of XTX and are called the principal components directions of X.

Then we can derive principal components Zj as

Zj = XVj = Ujdj (4.12)

where the Uj are the columns of U .
By definition, the first principal component Z1 has the largest sample variance:

var(Z1) =
d2

1

n

In PCR, we regress y on Z1, Z2, ..., ZM for some M ≤ p, and use cross-validation to
choose the optimal M . If M = p, we would just get back the usual least squares estimates,
since the columns of Z = UD span the column space of X. For M < p, we get a reduced
regression.

Analytically, since the Zm are orthogonal, we have:

β̂pcr(M) =
M∑
m=1

θ̂mVm (4.13)

where
θ̂m = 〈Zm, Y 〉/〈Zm, Zm〉 (4.14)

Basically θ̂m are the regression coefficients of response Y on the M principal components,
and β̂pcr(M) are the regression coefficients of response Y on the Xj.



CHAPTER 4. STATISTICAL DATA ANALYSIS 65

Figure 4.17: Principal component regression for 39 predictors. Left: square root cross-
validation MSE and best number of components is 14; Right: Standardized coefficients of
39 predictors against number of components.

Figure 4.17 shows that the best PCR (according to 10-fold cross-validation MSE) for our
data set is of 14 principal components. And after we recover the standardized coefficients
of original features (the right panel), we can see only SHOCK and SRT have significantly
larger absolute standardized coefficients.

Partial least squares

Partial least squares (PLS) is a supervised alternative to PCR. Unlike PCR, PLS identifies
a new set of features Z1, ..., ZM in a supervised way, that is, it makes use of the response Y
to identify new features that not only approximate the old features well, but also are related
to the response.

PLS computes φ̂j1 = 〈Xj, Y 〉 for each j. The first direction Z1 =
∑p

j=1 φ̂j1Xj. For the
second direction, PLS orthogonalize X1, ..., Xp with respect to Z1 and computes Z2 using
the orthogonalized Xj. By doing this iteratively, M new features can be constructed.

The following PLS algorithm is described in Hastie, Tibshirani, and Friedman (2008):
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Partial Least Squares

1. Standardize Xj to have mean zero and variance one. Set Ŷ (0) = Ȳ 1, and X
(0)
j = Xj,

j = 1, ..., p.
2. For m = 1, 2, ..., p

(a) Zm =
∑p

j=1 φ̂jmX
(m−1)
j , where φ̂jm = 〈X(m−1)

j , Y 〉.
(b) θ̂m = 〈Zm, Y 〉/〈Zm, Zm〉.
(c) Ŷ (m) = Ŷ (m−1) + θ̂mZm.

(d) Orthogonalize each X
(m−1)
j with respect to Zm : X

(m)
j = X

(m−1)
j − 〈Zm,X(m−1)

j 〉Zm
〈Zm,Zm〉 ,

j = 1, 2, ..., p.

3. Output the sequence of fitted vectors {Ŷ (m)}p1. Since the {Zj}m1 are linear in the

original Xj by construction, so is Ŷ (m) = Xβ̂pls(m). These linear coefficients can be
recovered from the sequence of PLS transformations.

Figure 4.18: Partial least squares for 39 predictors. Left: square root cross-validation MSE
and best number of components is 2; Right: Standardized coefficients of 39 predictors against
number of components.

As shown in Figure 4.18, PLS gives similar result as ridge regression. The best number
of components selected via 10-fold cross-validation is three. We can see the absolute stan-
dardized coefficients of SHOCK, RISK, Q HHI, WC/TA, log(TA), SRT are relatively larger
than other predictors at the best tuning parameter level.
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Support vector regression

Support vector regression (SVR) is an application of support vector machine (SVM)
for regression. Compared to ordinary least squares and its variants like the Lasso and ridge
regression, that try to obtain the best fit through minimization of squared error loss function
(i.e. L(y, f(x)) = (y − f(x))2) with some regularization terms, SVR uses another form of
loss function called ε-insensitive loss proposed by Vapnik (1995):

Lε(y, f(x)) = max{0, |y − f(x)| − ε} (4.15)

SVR estimates β by

β̂ε,C = argmin
n∑
i=1

Lε(yi − f(xi)) +
1

2C
||β||2 (4.16)

This is equivalent to the following minimization problem:

min
β,β0,ξi,ξ∗i

1

2
||β||2 + C

n∑
i=1

(ξi + ξ∗i ) (4.17)

subject to


yi − f(xi) ≤ ε+ ξ∗i ,

f(xi)− yi ≤ ε+ ξi,

ξi, ξ
∗
i ≥ 0.

For f(x) = xTβ + β0, the corresponding Lagrangian is:

L =
1

2
βTβ + C

n∑
i=1

(ξi + ξ∗i )−
n∑
i=1

α∗i [yi − βTxi − β0 + ε+ ξ∗i ]

−
n∑
i=1

αi[β
Txi + β0 − yi + ε+ ξi]−

n∑
i=1

(γ∗i ξ
∗
i + γiξi)

(4.18)

where γi, γ
∗
i , αi, α

∗
i are Lagrange multipliers.

By differentiating L with respect to β, β0, and ξ, we have the resulting equivalent maxi-
mization of the following dual objective function:

max
αi,α∗i
−ε

n∑
i=1

(α∗i + αi) +
n∑
i=1

yi(α
∗
i − αi)−

1

2

n∑
i,j=1

(α∗i − αi)(α∗j − αj)〈xi, xj〉 (4.19)

subject to


0 ≤ αi, α

∗
i ≤ C,∑n

i=1(α∗i − αi) = 0,

αiα
∗
i = 0.
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And the solution will have the form:

β̂ =
n∑
i=1

(α̂∗i − α̂i)xi (4.20)

f̂(x) =
n∑
i=1

(α̂∗i − α̂i)〈x, xi〉+ β0 (4.21)

Due to the nature of these constraints, typically only a subset of the solution values (α̂∗i − α̂i)
are non-zero, and the associated data values are called the support vectors. As was the case
in the SVM classification setting, the solution depends on the input values only through
the inner products 〈xi, xj〉. We can generalize the methods to richer spaces by defining an
appropriate kernel of inner product.

In practice, we need to determine hyperparameters ε and C to estimate β̂. For ε, it
depends on the scale of response y; for C, we can use cross-validation to find optimal setting.

For our data set, in order to compare with previous statistical method we use, we apply

linear kernel for SVR. According to Cherkassky and Ma (2004), we preset ε = ε0 = 3σ
√

lnn
n

and C = C0 = max{|ȳ + 3σy|, |ȳ − 3σy|}, where σ is the estimated noise level, ȳ and σy are
the mean and the standard deviation of response. We estimate σ via K-nearest neighbor
regression: σ̂2 = n1/5k

n1/5k−1
· 1
n

∑n
i=1(yi− ŷi)2, where the ŷi are estimated by K-nearest neighbor

regression and we use k = 3.
In order to perform feature selection, we use the recursive feature elimination (RFE)

algorithm which at each step eliminates a feature with the smallest weight out of the SVR
fitting of the training data. And we use cross-validation to determine the optimal number
of features.

The whole process can be described in the following algorithm:

Recursive feature elimination for SVR
1. Standardize Xj to have mean zero and variance one. Let Mp denote the null model,
which contains all p predictors.
2. For k = p, p− 1, · · · , 1:
(a) Fit SVR model with all the predictors in Mk.
(b) Eliminate the predictor with the smallest estimated weight from Mk, and call it Mk−1.
3. Select a single best model from among M0, · · · , Mp using cross-validated prediction
error.

With 10 fold cross-validation, the RFE-SVR algorithm selects a set of 9 predictors: RISK,
LADV, log(TA), WC/TA, βmkt, βumd, βewmkt, βfinance, and βoil.
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Figure 4.19: Recursive feature elimination for SVR: use cross-validation to choose the optimal
number of features. The optimal number of features selected is 9.

Based on the preset ε0 and C0, we also use a grid search algorithm to determine op-
timal hyperparameters via 10-fold cross-validation. The grid we use is: ε ∈ {0, ε0, 10ε0}
C ∈ {C0, 10C0, 100C0, 1000C0}. We first use grid search to determine the optimal hyper-
parameters for a certain number of features, then use RFE-SVR algorithm to find optimal
number of features with cross-validation. This time the algorithm selects 14 features: RISK,
Q HHI, LADV, INVPRC, log(TA), NI/TA, WC/TA, CR, QR, βmkt, βumd, βewmkt, βfinance,
βoil.

Figure 4.20: Recursive feature elimination for SVR: use cross-validation to choose the optimal
number of features. The hyperparameters are chosen by a grid search. The optimal number
of features selected is 14.

Examine the individual weight of coefficients more closely, we see SVR tends to put higher
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weight on betas but not on SHOCK. The cross-validation errors shown in Figure 4.19 and
Figure 4.20 are less stable across different number of features selected.

Table 4.8 compares the prediction errors of different statistical methods. In terms of
cross-validation error, we can see SVR has slightly higher MSE compared to other methods.
This may due to the fact that unlike shrinkage methods (e.g. the Lasso and ridge regression)
and dimension reduction methods (e.g. PCR and PLS) are based on least squares, which
minimize certain square loss functions, for SVR, it minimizes the new ε-insensitive loss
function. As we use the cross-validation MSE to measure the prediction accuracy, this
metric may favor those methods that are based on least squares.

Model Prediction The Lasso Ridge PCR PLS SVR
Sqrt of CV-MSE 0.0180(0.0172) 0.0180(0.0173) 0.0172 0.0173 0.0177

Table 4.8: A comparison of model prediction errors with different statistical methods for
Set 1-4 predictors. We show the results of the Lasso method and ridge regression method
that apply one-standard-error rule. The results of the best model of selected by the Lasso
method and ridge regression method are shown in quote. The SVR result is from the RFE-
SVR algorithm with hyperparameters set by cross-validation and applies a linear kernel.

4.4 Summary

In this chapter, we apply association analysis and statistical model selection methods on
the stock market crashes data. The association analysis reveals that the interaction term
SHOCK, which is the product of price impact factor and the market capital, is associated
with the cross-sectional price drawdown of SP500 stocks. This echoes the prediction of our
single asset model in Section 3.1.

We study the predictors of cross-sectional price drawdown of SP500 stocks during the
2010 Flash Crash by best subset selection, forward stepwise selection and the Lasso model
selection methods. We first identify a set of three predictors out of eight predictors (by
combining the information asymmetry induced price impact factor, the limited risk bearing
capacity induced price impact factor and six other predictors used in Madhavan (2012))
that have strong effects in predicting cross-sectional price drawdown. We then evaluate the
robustness of this result by including more candidate predictors such as betas with respect to
different economic factors and corporate default predictors. It turns out that the information-
asymmetry induced price impact factor and the limited risk bearing capacity induced price
impact factor still remain statistically important compared to other predictors.

We also use ridge regression, principal component regression, and partial least squares
method to show the evolution of the standardized coefficients of predictors. This enables us
to visualize the influence of a unit change of standardized predictor to the best prediction.
Finally, we use recursive feature elimination algorithm on support vector regression method,
trying to identify a set of predictors that fit the model well with respect to the ε-insensitive
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loss function. The results show that support vector regression tends to fit the model with
more beta predictors and is less stable in terms of cross-validation error.
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Chapter 5

Conclusion and Future Work

Stock market crashes are infamous and hard to model. While some crashes are due to
economic fundamentals, some are caused by temporary price impact. Due to the limited
number of macro stock market crashes, there is even less empirical research than theoretical
one on this topic.

In this dissertation, we build a single asset model that explains how a large market-
wide liquidity shock can lead to temporary stock market crashes like the 1987 crash and
the 2010 Flash Crash. Empirically (Table 3.2), our model predictions are quite close to the
real large dollar volume sale and the market price decline. This shows that in a market-wide
adverse selection setting, large uninformed trading can have different temporary price impact
on different stocks. We include the limited risk-bearing capacity induced price impact from
Greenwood (2005)’s model in the cross-sectional regression as to separate causes of temporary
price impact. Our regression shows significant effects of both the information asymmetry
induced price impact and the limited risk-bearing capacity induced price impact.

We also build a multi-asset model to incorporate the informational cross-trading impact
with the Greenwood (2005) model, in order to better decompose the information effect and
the limited risk-bearing capacity effect on temporary price impact in our regression. How-
ever empirical test of this model is not as easy as it seems to be. Admati (1985) builds a
multi-asset noisy rational expectation equilibrium model that accepts a rich set of correlation
matrix structure across assets. Bernhardt and Taub (2008) create a strategic analogue of
Admati’s model, along the lines of Kyle (1985) and Kyle (1989). Based on Admati (1985),
Burlacu et al. (2012) transforms unobservable rational expectation equilibrium model param-
eters (information precision and supply uncertainty) into a single variable that is correlated
with expected returns and that can be estimated with recently observed data. Caballé and
Krishnan (1994) demonstrate a multi-asset cross-trading impact model as an extension of
Kyle (1985)’s single asset model; based on that, Pasquariello and Vega (2013) test informa-
tion asymmetry induced cross-trading impact factors and find statistical evidence. A possible
future research direction would be to decompose the stock returns with a factor fashion along
the line of Bernhardt and Taub (2008), and/or aggregate stocks in groups (e.g. by industry)
along the line of Pasquariello and Vega (2013), so that we can not only get analytical results
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from the model but also conduct feasible empirical tests under a cross-asset trading context.
Based on the assumption that information is either long-lived or short-lived, in the future
research, we can also extend the multi-asset model with a dynamic version, as in Kyle (1985)
and Admati and Pfleiderer (1988).

In Section 3.1, we have assumed that γi equals the ratio of the stock i’s market capital
to the SP500 index capital at the beginning of the crash. This assumes the index futures
arbitragers can perfectly hedge their risk and transmit the sales of E-mini 500 into SP500
underlying stocks. We also calculate the modified γ∗i ’s for the arbitragers under the imperfect
hedging scenario. Empirical test of this modification is left for future research.

Using the machine learning method of association analysis, we reveal a weird association
that the price drawdown of a SP500 stock is not only associated with its price impact factor,
but also its market capital. For example, although a large market cap stock usually has a low
price impact factor, it can have larger price drawdown because of the interaction effect of its
market cap and the price impact factor. Our model in Chapter 3 explains this unusual effect.
We also use best subset selection, forward stepwise selection and the Lasso method to test two
model based predictors SHOCK and RISK, which represent the information asymmetry effect
and the limited risk-bearing capacity effect respectively, against three sets of other candidate
predictors. We show that compared with other predictors, our model based predictors are
relatively more important in predicting the SP500 stocks’ price drawdown during the 2010
Flash Crash. The quote fragmentation factor (Madhavan 2012) is also identified as a third
important factor.

There are a few interesting questions for discussion. First, does our model capture HFT’s
role during crashes? Our model fits the data well without capturing the role of high frequency
trading (especially during the 2010 Flash Crash). As our model gives a mechanism that the
2010 Flash Crash could occur in a similar way as the 1987 crash did (which at that time the
HFT activity was insignificant1), we do not see any unusual effect of HFT that could be the
major cause of the 2010 Flash Crash. This is consistent with the finding in Kirilenko et al.
(2014).

Does our model apply all the time? In principle, our model is not only restricted to two
crashes, rather, it can be generally applied. However it is usually hard to find a relatively
accurate documentation of a large market-wide liquidity shock with a certain time scale. In
this regard, the Oct. 1987 Crash and the May 2010 Flash Crash are two excellent experiments
for our model.

On Apr. 17, 2015, Navinder Singh Sarao, a trader in London was accused by CFTC
for manipulating the E-mini SP500 futures contract by “spoofing” tactics– On the day of
the crash, May 6, 2010, the trader allegedly entered more than 32,000 orders to sell futures
contracts, then canceled the vast majority of them (CFTC 2015). Under the setting of our
single period strategic trading models, every order is a market order and is executed in a
batched auction way. In practice, price impact is from traders’ inference about the size of

1A close relative of HFT–“program trading” activity during the Oct. 1987 crash was greatly disrupted
because of the breakdown of DOT system. U.S. Presidential Task Force on Market Mechanisms (1988)
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order flow imbalance through the status of the limit order book and the arrival intensity of
market orders. Our model serves as an approximation for this, and aims to decompose the
information part and hedging part of the price impact. It would be interesting to build a
model that depicts how traders learn from limit and market orders, and the resulting price
impact, to capture the “spoofing” effect of limit orders and test it empirically.
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Abbreviation Description Database Input
ME Market Value of Equity Compustat: PRCCM*CSHO
BD Book Value of Total Debt Compustat: DLC+DLTT
TA Total Asset Compustat: AT
TL Total Liability Compustat: LT
SD Short Term Debt Compustat: DLC

SALE Sales Compustat: SALE
NI Net Income Compustat: IB
RE Retained Earnings Compustat: RE

EBIT Earnings Before Interest and Taxes Compustat: EBIT
ICR Interest Coverage Ratio Compustat: EBIT/XINT
WC Working Capital Compustat: ACT-LCT
AR Account Receivable Compustat: RECT

INVT Inventories Compustat: INVT
CR Current Ratio Compustat: ACT/LCT
CH Cash Compustat: CH
QR Quick Ratio Compustat: (ACT-INVT)/LCT

OM CH Change in Operating Margin Compustat: OIBDP/SALE
SRT Trailing One Year Stock Return CRSP Monthly Stock

SIGMA One Year Monthly Stock Volatility CRSP Monthly Stock

Table A.3: Statistical model selection: Corporate default parameters abbreviation and data
Source
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