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Abstract

Background: Picture archiving and communication systems (PACS) are ubiquitously used to store, share, and view radiological
information for preoperative planning across surgical specialties. Although traditional PACS software has proven reliable in
terms of display accuracy and ease of use, it remains limited by its inherent representation of medical imaging in 2 dimensions.
Augmented reality (AR) systems present an exciting opportunity to complement traditional PACS capabilities.

Objective: This study aims to evaluate the technical feasibility of using a novel AR platform, with holograms derived from
computed tomography (CT) imaging, as a supplement to traditional PACS for presurgical planning in complex surgical procedures.

Methods: Independent readers measured objects of predetermined, anthropomorphically correlated sizes using the circumference
and angle tools of standard-of-care PACS software and a newly developed augmented reality presurgical planning system
(ARPPS).

Results: Measurements taken with the standard PACS and the ARPPS showed no statistically significant differences.
Bland-Altman analysis showed a mean difference of 0.08% (95% CI –4.20% to 4.36%) for measurements taken with PACS
versus ARPPS’ circumference tools and –1.84% (95% CI –6.17% to 2.14%) for measurements with the systems’ angle tools.
Lin’s concordance correlation coefficients were 1.00 and 0.98 for the circumference and angle measurements, respectively,
indicating almost perfect strength of agreement between ARPPS and PACS. Intraclass correlation showed no statistically significant
difference between the readers for either measurement tool on each system.

Conclusions: ARPPS can be an effective, accurate, and precise means of 3D visualization and measurement of CT-derived
holograms in the presurgical care timeline.

(JMIR Perioper Med 2020;3(2):e18367) doi: 10.2196/18367
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Introduction

Picture archiving and communication systems (PACS) allow
for easy storage and viewing of medical imaging information.
Traditional PACS viewers present images in x-ray, computed
tomography (CT), and magnetic resonance imaging (MRI) data
on a 2-dimensional (2D) workstation screen to be examined by
a surgical team in preparation for a complex procedure [1,2].
While these systems have been shown to be accurate and easy
to use for the analysis of medical images [3], they are also
limited by their requirement of a desktop computer, laptop, or
smartphone screen [4]. Dias et al [5] report that 2 of the most
common problems of traditional PACS are the mismatch
between the 2D viewing screen and the real world and the
accompanying lack of flexibility and efficiency of use.

Augmented reality (AR) and virtual reality (VR) technologies
have the potential to address these shortcomings. AR and VR
alike allow for the realistic and interactive digital representation
of objects in a 3D space. As such, both technologies are already
successfully deployed across a diverse set of applications,
including terrestrial navigation [6], architectural modeling [7],
automotive engineering [8], and education [9]. The same
properties could be applied to present a realistic overlay of
medical devices and tools on patients’ anatomy in 3D space on
a portable, shared visualization method.

Whereas VR presents an entirely digital representation of objects
and their environment, AR allows for the overlay of digital
holograms on a live real-world scene. In addition, many VR
systems require a dedicated physical play space to allow for the
experience of the completely immersive digital experience [10].
These characteristics make AR a more likely candidate for the
development of interactive tools assisting the dynamic clinical
workflow.

The potential of AR systems to assist in clinical tasks has been
extensively reviewed by Uppot et al [11]. Possible use cases
include supplementing radiology training; communicating with
colleagues, referring clinicians, and patients; and aiding in
interventional radiology procedures. Additional uses for AR in
medicine include providing simulations for advanced life support
training [12], visualizing patient anatomy including tumors [13],
and guiding assistants during robotic surgery [14]. The increased
spatial understanding of anatomy with AR has been shown to
positively impact surgical care during laparoscopic surgery for

visualizing hidden patient anatomy [15], resection of
neurological tumors without causing new neurological deficit
[16], and breast tumor resection by maximizing breast
conservation [17]. Multiple other non–patient outcome benefits
have been proposed, including overall operating room efficiency
[18,19], and more specifically—reduced operating room time,
increased surgical precision, and reduced radiation exposure
[20].

In order to create an AR model suitable for presurgical planning,
the medical image from a CT or MRI scan must first be
segmented using a DICOM viewer to visualize only the object
or organ of interest. The resulting image is passed onto an image
processing software that renders the object’s volumes and
surfaces into a 3D scalar field model. This model can later be
loaded in a dedicated AR software designed for projecting the
image onto an AR or mixed reality headset display. Similar
technologies have evaluated the use of AR systems for the
visualization of MRI data [21]. However, the focus of this study
is the validation of CT-derived holograms. Although the
visualization of CT-derived holograms has been assessed,
measurement systems for these CT-derived holograms are rarely
evaluated or utilized.

As AR becomes more widely used in presurgical planning, it
is crucial to know that these systems meet the gold standard for
medical image measurement. This study aims to validate the
feasibility, safety, and efficacy of a novel ARPPS, compared
to a standard-of-care PACS viewer, in order to support its use
in the presurgical visualization and measurement of CT-derived
imaging of patient anatomy and surgical tools.

Methods

Materials
A CT image data set was generated using Discovery CT750
HD (GE Healthcare). The object imaged was a CT dose meter
phantom (model 137856101, GE Healthcare) compliant with
the American College of Radiology standards. The PACS used
for standard-of-care comparison was Osirix MD version 10.0
(Pixmeo SARL; FDA 510(k) K101342) [22]. The experimental
PACS was the RadHA ARPPS version 3.3 (University of
California, San Francisco) (Figure 1), as viewed on HoloLens
generation 1 headset (Microsoft Corp). A MT-912 Digital Light
Meter (Urceri) was used to measure the background light
intensity.
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Figure 1. The RadHA ARPPS version 3.3 displaying a spine model with a vascular model overlay and an angle measurement of thoracic kyphosis.

Procedure
The CT dose meter phantom DICOM (digital imaging and
communications in medicine) file was converted to an OBJ file
(object file, Wavefront Technologies) and uploaded to the

ARPPS for viewing on the HoloLens. The circumference and
angle measurement tools of both the standard PACS and the
ARPPS were used to measure diameters (Figure 2) and angles,
respectively, with reference to the manufacturer-specified
parameters of the CT dose meter phantom (Figure 3).

Figure 2. The RadHA ARPPS version 3.3 displaying a computed tomography (CT)-derived 3D hologram of a CT dose meter phantom with diameter
and circumference measurements and selectable icons.
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Figure 3. Computed tomography (CT) dose meter phantom diameters and angles as per the manufacturer's specifications.

A range of low, medium, and high clinical measurements were
selected for anthropomorphic correlation of the phantom’s
diameter and angle parameters (Table 1). Two readers measured
each of the phantom parameters 10 times independently of each

other starting with the ARPPS. The readers were blinded to the
manufacturer-provided measurements. Testing was completed
in an office with a background light intensity of 152.1 lux.

Table 1. Clinical significance of the CT dose meter phantom measurements.

Clinical guidelineManufacturer-specified
size

Object

Mitral valve repair valve sizing [23] (mitral annulus diameter 3.15 cm)3.215 cmDiameter A

Elective abdominal aortic aneurysm repair in women [24] (5.0-5.4 cm)5.0 cmDiameter B

Pediatric abdominal diameter21.31 cmDiameter C

Scoliosis evaluation [25] (bracing Cobb angle 29-40°)26.57°Angle A

Proximal tibial alignment [26] (normal lateral distal tibial angle 90°)90.0°Angle B

Pediatric hip evaluation [27] (normal pediatric femoral shaft angle 160°)153.43°Angle C

Statistical Analysis
All statistical analyses were performed using Microsoft Excel
version 1903. The interrater reliability of the readers was
verified using Lin’s concordance correlation coefficient for both
the circumference and angle tools [28]. Shapiro-Wilk test was
performed to verify the normality of the differences of each set
of measurements in order to satisfy the requirements of
performing a nonparametric method of analysis such as a
Bland-Altman analysis [29]. Bland-Altman analysis was used
to evaluate the agreement between measurements taken with
the standard PACS and the ARPPS.

Results

Lin’s concordance correlation coefficient showed almost perfect
concordance of the standard PACS viewer and the ARPPS
(Figure 4, Table 2). Additionally, no significant difference in
interrater reliability was observed for the circumference and
angle tool measurements for both the PACS and ARPPS
separately (Figure 4, Table 2).

The Shapiro-Wilk tests failed to reject the null hypothesis of
normality (Table 3). Bland-Altman plots evaluating the
circumference tool showed an average bias of 0.08% with a
95% CI –4.20% to 4.36%. Bland-Altman plots evaluating the
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angle tool showed an average bias of –1.84% with a 95% CI
–6.17% to 2.14%. The bias and confidence intervals of each of
the 3 measures for the circumference and angle tools are
reported in Table 3. The Bland-Altman plots of each of the
measurements, as well as the combined measurements are shown

for the circumference tool (Figure 5 a-d) and angle tool (Figure
5 e-h).

The variability of the percent error of each of the measurements
using the ARPPS as compared to using the standard PACS are
visualized in individual box plots in Figure 6.

Figure 4. Lin’s concordance plots of a) circumference tool, b) angle tool; interrater reliability plots of c) circumference tool for the picture archiving
and communication system (PACS), d) circumference tool for augmented reality presurgical planning system (ARPPS), e) angle tool for PACS, f) angle
tool for ARPPS.

Table 2. Lin's concordance correlation coefficients and interrater reliability.

Interrater reliability ARPPScInterrater reliability PACSa standard DI-

COMb viewer

Concordance correlation coefficientTools

0.991.011.00Circumference tool

1.021.010.98Angle tool

aPACS: picture archiving and communication system.
bDICOM: digital imaging and communications in medicine.
cARPPS: augmented reality presurgical planning system.
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Table 3. Shapiro-Wilk test for normality of differences and Bland-Altman analysis.

Upper limits of agreement, %Lower limits of agreement, %% BiasShapiro-Wilk test

P value

Tools and measurements

Circumference tool

4.39–5.56–0.59.5607Diameter A

5.69–3.361.16.4528Diameter B

1.78–2.44–0.33.3325Diameter C

4.36–4.200.08N/ACombined

Angle tool

1.19–7.78–3.30.8304Angle A

1.93–1.660.14.9685Angle B

0.71–5.42–2.36.7211Angle C

2.49–6.17–1.84N/ACombined
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Figure 5. Bland-Altman plots for the circumference tool measurements for a) diameter A, b) diameter B, c) diameter C, d) all diameters combined,
and of the angle tool measurements for e) angle A, f) angle B, g) angle C, h) all angles combined.
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Figure 6. Whisker plot comparisons of percent error of the augmented reality presurgical planning system (ARPPS) versus the standard picture archiving
and communication system (PACS) for a) circumference tool, b) angle tool.

Discussion

Principal Results and Comparison to Prior Work
Both the circumference and angle measuring tools of the ARPPS
had an accuracy that was not significantly different as compared
to the PACS measurements used in traditional preoperative
settings. The circumference tool had an overall bias of 0.08%,
which is more accurate than the 0.3% previously reported for
a comparable AR system [30]. Similarly, the angle tool had an
overall bias of –1.84%, which is more accurate than that
previously reported for another 3D reconstruction software
already on the market [31].

Interestingly, a decrease in percent error in either circumference
or angle tool measurements was associated with an increase in
the size of the object and ray length, respectively (Figure 6).
This was consistent with a corresponding increase in the ease
of manipulation of the hologram for larger objects as reported
by both readers. AR and mixed reality–viewing hardware with
higher resolution and responsiveness is likely to significantly
improve the usability of such systems.

Limitations
Manipulating objects on the HoloLens can be technically
challenging and contain a systematic error. Both readers reported
difficulties in determining a clear vertex for angles A and C.
However, angle B, which had no reported difficulties in
measurement, showed a bias of only 0.14%. In addition, readers
reported significant improvements in hologram manipulation
dexterity with experience.

Conclusions
ARPPS can be an effective, precise, and accurate tool for the
realistic visualization, manipulation, and measurement of
clinically significant angles and circumferences in 3D space.
ARPPS measurements are of substantially equivalent accuracy
and precision as compared to standard-of-care PACS, similar
systems that have previously been awarded the Food and Drug
Administration (FDA) clearance as class II medical devices for
presurgical planning, and other systems with published data
[30,31]. Nonetheless, technological difficulties remain a major
barrier to the adoption of such technologies in medical and
surgical care settings. To realize the full potential of AR and
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similar technologies, it is important that the medical community
works in concert with device manufacturers to ensure the

devices’ real-world feasibility, usability, safety, and efficacy.
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