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Abstract Previous measurements of urban energy balances generally have been limited
to densely built, central city sites and older suburban locations with mature tree canopies
that are higher than the height of the buildings. In contrast, few data are available for the
extensive, open vegetated types typical of low-density residential areas that have been newly
converted from rural land use. We made direct measurements of surface energy fluxes using
the eddy-covariance technique at Greenwood, a recently developed exurban neighbourhood
near Kansas City, Missouri, USA, during an intensive field campaign in August 2004. Energy
partitioning was dominated by the latent heat flux under both cloudy and near clear-sky con-
ditions. The mean daytime Bowen ratio (β) values were 0.46, 0.48, and 0.47 respectively for
the cloudy, near clear-sky and all-sky conditions. Net radiation (Rn) increased rapidly from
dawn (−34 and −58 W m−2) during the night to reach a maximum (423 and 630 W m−2)
after midday for cloudy and near clear-sky conditions respectively. Mean daytime values
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300 A. A. Balogun et al.

were 253 and 370 W m−2, respectively for the cloudy and near clear-sky conditions, while
mean daily values were 114 for cloudy and 171 W m−2 for near clear-sky conditions, respec-
tively. Midday surface albedo values were 0.25 and 0.24 for the cloudy and near clear-sky
conditions, respectively. The site exhibited an angular dependence on the solar elevation
angle, in contrast to previous observations over urban and suburban areas, but similar to
vegetated surfaces. The latent heat flux (QE ), sensible heat flux (Q H ), and the residual heat
storage �Qs terms accounted for between 46–58%, 21–23%, and 18–31% of Rn , respec-
tively, for all-sky conditions and time averages. The observed albedo, Rn , and QE values
are higher than the values that have been reported for suburban areas with high summer
evapotranspiration rates in North America. These results suggest that the rapidly growing
residential areas at the exurban fringe of large metropolitan areas have a surface energy bal-
ance that is more similar to the rural areas from which they were developed than it is to the
older suburbs and city centres that make up the urban fabric to which they are being joined.

Keywords Bowen ratio · Eddy covariance · Evapotranspiration · Heat fluxes ·
Radiation fluxes · Urban surface energy balance

1 Introduction

Rapid urbanization is a prime example of a human-induced phenomenon that can have sig-
nificant impacts on people, the environment, and regional resources. As cities grow, urban
sprawl creates unique challenges related to land-use planning, ecological structure and pollu-
tion, biodiversity, water, nutrient, and energy flows within cities and their surrounding areas.
Changing land use and land cover in and around major metropolitan areas due to urban devel-
opment is now recognized as a major factor leading to distinct urban climates. These urban
climate effects are due to differences in the exchange of heat, mass, and momentum between
the city and its pre-existing landscape. Thus the understanding, prediction, and mitigation
of urban climate effects are intricately tied to the knowledge of surface-atmosphere interac-
tions in urban environments (Grimmond et al. 2004a). Over the last century in the United
States heat waves and elevated concentrations of ambient pollutants have been recognized as
major public health issues in large metropolitan areas and evidence is mounting that human
influence significantly increases the frequency and intensity of heat waves (Stott et al. 2004;
Meehl and Tebaldi 2004). To effectively assess current and future potential public health
risks due to heat and air quality changes driven by climate and land-use changes, integrated
assessment methods that combine field measurements with sophisticated computational and
modelling systems are required (Dabberdt et al. 2004). These models must accurately repre-
sent surface forcing across the observed range of weather conditions and urbanized surface
types (broadly categorized as downtown, commercial, industrial, suburban, and exurban).
Each category has distinct morphological characteristics that can be defined by the amounts
and types of vegetation, buildings and impervious materials, roughness element height and
density, and other factors (Oke 2004). This diversity results in varying degrees of controls on
flux partitioning between the urban surface and atmosphere across a metropolitan area and
the development of distinct microscale to local-scale climates (Oke 1997). The recognition
of these has motivated research to understand the spatial and temporal variability of surface-
atmosphere exchanges within and between land uses and the causes for these differences
(Grimmond et al. 2004a).

Several studies have been conducted in North American cities (see Grimmond and Oke
2002 for a summary). Recent urban energy balance observations have also been conducted in
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Surface Energy Balance Measurements Above an Exurban Residential Neighbourhood 301

other parts of the world, including Basel in Switzerland (Rotach et al. 2005), Lódź in Poland
(Offerle et al. 2005a), Edinburgh in Scotland (Nemitz et al. 2002), Christchurch in New
Zealand (Spronken-Smith 2002), Tokyo in Japan (Moriwaki and Kanda 2004), Marseille
in France (Mestayer et al. 2004; Grimmond et al. 2004b) and the west African Sahel:
Ouagadougou in Burkina Faso (Offerle et al. 2005b). Together, these studies document the
temporal and spatial variability of energy flux partitioning in more densely built-up, old sub-
urban residential locations with mature, tall tree canopies that are generally higher than the
buildings and in downtown areas or central city sites (densely built-up area, low vegetation
cover, tall buildings with massive walls and deep street canyons). However, data remain
limited for the newer extensive, open residential landscapes that are typical of areas that are
being rapidly converted from rural land use at the exurban fringe of most large metropolitan
areas in North America. Here, we report on energy balance measurements over a new exurban
residential area near Kansas City, Missouri during an intensive observation period in August
2004. This study is part of a larger programme to improve the representation of urban and
rural land-use transitions in regional climate models (Adegoke et al. 2007; Carleton et al.
2008). The primary goal of the intensive field study was to determine whether the surface
energy partition in the rapidly growing exurban residential land-use types could be parame-
terized in regional climate models similarly to the suburban surface types for which values
are known from previous field campaigns in diverse urban regions.

2 Methods

2.1 Metropolitan Area and Study Site

Kansas City (39◦062003 N, 94◦3526.723 W, elevation 231 m) is situated at the confluence
of the Kansas and Missouri Rivers, straddling the state border between Missouri and Kansas
(Fig. 1). The city covers a total area of 824 km2 and had a population of 441,545 in 2000
(U.S. Census Bureau). Greenwood (38◦51′3′′ N, 94◦20′47′′ W) is located on the exurban
fringe of the Kansas City metropolitan area in Jackson County, Missouri. Greenwood covers
an area of 11 km2 and had a population of 3,952 in 2000 (U.S. Census Bureau). Typical of
many exurban areas of the Kansas City metropolitan area, Greenwood has undergone rapid
growth with several low-density residential housing developments that have been converted
from rural land use within the last decade. The new exurban developments have extensive
grass lawns and young trees that are generally lower than the height of the buildings.

The characteristics of the surface morphology of the Greenwood site were assessed by
aerial photographs and field surveys. The surveys were conducted within a radius of approxi-
mately 500 m in all directions from our measurement tower, which was located in a 2×2 km2

residential area (Fig. 1). The fractional land cover of the site is approximately 58% pervious
(vegetated), 12% impervious ground such as roads, sidewalks (pavements), parking lots and
driveways, and 29% buildings (Table 1). Because it was recently developed, the neighbour-
hood has a much higher percentage of grass cover than is typical of North American suburban
areas, which range from 7 to 35% grass cover (Grimmond and Oke 2002).

2.2 Measurements and Data Analysis

The study was conducted during an intensive observation period from August 1 to 17, 2004;
day of year (DOY) 213 to 230. We obtained permission from property owners to erect a
33 m telescoping tower in the backyard of a house in the middle of the neighbourhood for a
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302 A. A. Balogun et al.

Fig. 1 Aerial imagery of the Greenwood, Kansas City suburban site including the area of interest (red square)
and location of the measurement tower (red dot). Inset is the location of Kansas City in the USA. Source:
Google Earth©

Table 1 Surface characteristics
at the study site

a Estimated following Grimmond
and Oke (1999a)

Surface property Value

Land use Residential suburban

Buildings (%) 29.5

Grass lawns (%) 50

Trees and shrubs (%) 8

Impervious (%) 12

Water 0.5

Total built (%) 42

Total vegetated (%) 58

Roughness length, zo (m) 0.7a

Zero-plane displacement length, zd (m) 4.8a

Mean building height, zH (m) 6.9

one-month period in the summer. We chose the intensive observational period approach
because it allowed us to access a difficult location that provided a large, relatively homo-
geneous fetch within a new residential development. A similar, field campaign approach
was employed in many of the previous studies (Roth and Oke 1993; Grimmond and Oke
1995, 1999c; Oke et al. 1999) on which key parameters of suburban land-surface types have
been determined. Observations were taken from a 33-m high instrumented tower located in
the backyard of one of the houses in a new residential area of predominantly single-family,
detached dwellings of 1–2 storeys, with extensive luxuriant grass lawns and one to two young
trees in front of and behind the houses. The trees are typically lower in height compared to the
houses, with a few shooting just above or at about the same level as the roof of the houses. The
neighbourhood consists of rows of houses running along straight east–west and north–south
oriented streets, spaced about 35–50 m apart, each covering an area of 12–15 m in length
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Fig. 2 View of the study site to the south-west from the measurement tower

and 15–18 m in breadth. The houses were typically made of concrete bases, wooden frames
and walls, black and grey tiled roofs, and painted with various shades of bright colours.
The Greenwood site is representative of Urban Climate Zone type 5 in the recent simplified
classification of urban forms (Oke 2004). The tower was surrounded by grass lawns to the
north and south, and rows of building to the east and west within a distance of about 60 m
(Fig. 2). The mean height of the buildings (zHb) was 6.9 m and the mean height of the trees
was 5.8 m, giving an approximate roughness length and zero-plane displacement of 0.69 and
4.83 m respectively, based on rule-of-thumb estimates (Grimmond and Oke 1999a).

The instrument tower was a guyed, triple-axle nested mobile telescoping mast (U.S. Tower
Corporation model MTU-07MDPLHD), with a 2.0-m extension (making our measurement
height, zm , 35 m at full extension). Flux observations are expected to be representative of
the integrated surface rather than its individual elements (buildings, trees, roads, etc.) over
horizontal length scales of about 102–104 m, referred to as the local scale. For this to be
ensured, measurements need to be made above the blending height (zr ) in the surface layer,
which is the limit of the influence of the roughness sub-layer. However, the depth of the
roughness sub-layer is a subject of much debate. Roth (2000) stated that, though simplistic,
it is instructive to calculate zr as a function of the most available parameter zHb. With a few
exceptions the values of zr/zHb reported in his review of turbulence over cities correspond
well with those from Raupach et al. (1991), also from a review of atmospheric and laboratory
boundary layers over rough surfaces, and found values in the range of 2–5 for momentum.
It is possible that these limiting values are larger for heat (Roth 2000). Grimmond and Oke
(1999a) also suggested that zr values between 15 and 40 m are typical of residential areas.
Thus, our zm value at the Greenwood site, which gives an estimated zr/zH ratio of ≈5.0, is
expected to be in the inertial sublayer and well above the blending height. The validity of
this assumption was also investigated from the velocity, temperature and humidity spectra
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Table 2 Input parameters and dimensions of the 50% turbulent flux source area computed using FSAM
(Schmid 1994) and evaluated at z′ = 30 m

z′/zo z′/L σv/u∗ a (m) e (m) d (m) xd (m) Ar ( km2)

43.5 0.05 2.26 52.9 3,550 588 1,900 3.160

43.5 −0.15 1.80 45.8 1,200 208 647 0.375

43.5 −0.20 2.09 43.9 1,060 220 571 0.350

43.5 −0.49 2.57 35.4 687 193 371 0.198

43.5 −0.82 3.34 29.1 515 203 278 0.156

43.5 −1.23 5.00 23.3 388 251 210 0.145
zo is the roughness length (0.69 m), a is the near end, e is the far end, d is the maximum lateral half-width, xd
is the upwind distance of d, and Ar is the surface area of the ellipse

(not presented here); the power spectra show an approximate f −5/3 slope from frequencies
of 0.1 s−1 upwards, suggesting that this encompasses the inertial sub-range.

However, the depth of the physical blending height also varies with mixing activity and
stability (Schmid 1997), and thus it is important to calculate source areas for the turbulent
fluxes. The source areas for the Greenwood fluxes were estimated using a version of the flux
source area model FSAM (Schmid 1994; 1997). The 50% source areas (i.e., the area enclos-
ing 50% of the surface influence) for an instrument at z′ = 30 m were calculated, where
z′ = zm − zd . The dimensions describing the shape of the ellipsoid are given in Table 2
together with the input variables for representative night and daytime conditions. The results
show that the size of the 50% source weight area increases with increasing stability, whereas
its length and width decreases as atmospheric stability changes from stable to neutral to
unstable conditions (Table 2). The source-area estimates were also used to screen out flux
observations made under stable conditions when the flux footprint was outside our area of
interest. There was uniform fetch for a distance of >600 m in all directions from the tower
except the north-east and east sectors, and so we used only data from 135◦ to 360◦ in our
analyses. The predominant wind direction during the study period corresponded with this
sector (see Sect. 2.3).

A sonic anemometer design with improved performance capabilities in rainy conditions
(Campbell Scientific model CSAT3) and krypton hygrometer (Campbell Scientific model
KH20) were mounted on booms extending approximately 1.2 m from the top of the tower,
oriented south-westward (225◦ in the direction of the most densely built area and longest
fetch). The krypton hygrometer was mounted at the same height as, and separated laterally
from, the centre of the sonic anemometer’s measuring volume by 0.20 m. Meteorological
conditions were measured using a net radiometer (REBS model Q7-1); a temperature and
relative humidity sensor (Vaisala model HMP45C); a wind speed and direction sensor (RM
Young, 03101-L); an albedometer (consisting of and upward and a downward facing pyra-
nometer, Kipp and Zonen model SP-Lite-L); and an infrared thermometer to measure surface
temperature. Dry-bulb and wet-bulb temperatures, atmospheric pressure, and precipitation
were measured at the base of the tower. All instruments were new and were calibrated and
delivered by the manufacturers within a month of the start of the field measurements. Instru-
ments were mounted to ensure that they had minimal interference from the tower and that
they were properly leveled. All data were logged on a Campbell Scientific CR5000 data
logger in an enclosure attached to the tower and downloaded with a laptop computer. The
system was powered by two solar panels and a deep-cycle marine battery. See Table 3 for
a listing of the instruments and the heights at which they were deployed. The investigators
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Table 3 Instrumentation used at the study site

Variables Instrument Model Height (m)

Wind speed (u)
and direction (θ )

Anemometer and
wind vane

RM Young Wind
Sentry 03101-L

35

Wind speed and
temperature
fluctuations
(u′, v′, w′, T ′

v)

Sonic anemometer CSI CSAT3 35

Humidity fluctuations (q ′) Krypton hygrometer CSI KH20 35

Air temperature & relative
humidity (T, RH)

Thermometer and
humidity probe

Vaisala HMP45C-L 35

Wet- and dry-bulb
temperatures
(T, Tw)

Dry- and wet-bulb
psychrometers

Enercorp Inst.
HT-WD-A
ventilated
psychrometers

32,26

Shortwave radiation
(S ↓, S ↑) and
albedo (α)

Pyranometers Kipp & Zonen SP-Lite-L 32

Net radiation (Rn ) Net radiometer REBS Q7-1 32

Surface temperature (Tsurf ) Infrared thermometer Apogee IRTS-P 32

Air pressure (P) Barometer Vaisala CS105 25

Precipitation Tipping bucket rain gauge CSI TE525MM-L

Data logging Data logger CSI CR5000

Tower Mobile telescoping mast US Tower MTU3107MDPLHD

were on-site throughout the intensive observation period, and the system was checked daily,
including verifying the level of the sonic anemometer and the radiometers, and cleaning
moisture and dust from the krypton hygrometer and the radiometers. A mobile industrial
crane was available at the site throughout the measurement period that facilitated access to
the system on the mast for maintenance.

The turbulent fluxes (Q H and QE ) were determined using the eddy-covariance technique.
The high-frequency 10 Hz turbulence measurements of vertical wind speed, temperature, and
humidity were used to compute the correlation between vertical velocity and the atmospheric
scalar variables of interest. The flux data presented here have been computed directly from
this correlation using 30- min averaging periods. All times referred to are local time, with
the time indicating the hour ending. Preliminary online flux calculations were computed on
the data logger and stored on a compact flash disk, to permit assessment of the data quality
during the intensive observation period. Then, the raw turbulence data were re-processed
using the University of Bayreuth turbulence flux data processing software, Turbulenzknecht
2 (TK2; Foken et al. 2004; Mauder and Foken 2004). The flux calculation correction pro-
cedures implemented in TK2 included (i) spike detection and rejection algorithms (Vickers
and Mahrt 1997), (ii) coordinate rotation using the planar fit method (Wilczak et al. 2001),
(iii) double rotation for aligning the wind component u with the mean wind direction and
setting the mean values of v and w to zero, (iv) Conversion of sonic virtual temperature
to air temperature after Schotanus et al. (1983), (v) correction of oxygen cross sensitivity
for the Krypton hygrometer (Tanner et al. 1993; Van Dijk et al. 2003 ), (vi) correction for
spectral loss after Moore (1986), (vii) density fluctuation corrections for water vapour (Webb
et al. 1980; Liebethal and Foken 2003), and (viii) tests of stationarity and integral turbu-
lence characteristics (Foken et al. 2004). Following Foken and Wichura (1996), we subjected
all flux data and calculated statistics to strict data limits to reject spurious values, and to
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quality-control flags based on integral turbulence characteristics; only data with quality flags
1–5 for fluxes and 1–3 for integral turbulence characteristics were used in the following anal-
yses. After performing the flux corrections of the eddy-covariance measurements mentioned
above, the uncertainty in turbulent transport has also been discussed as the primary source of
flux uncertainty by several authors (e.g., Lenschow et al. 1994; Mann and Lenschow 1994;
Finkelstein and Sims 2001) and needs to be quantified. The fluxes above the Greenwood site
are determined with relative random uncertainties of 10–15% for sensible heat and 20–30%
for latent heat by day and higher at night. The estimated relative random error of the net
radiation measurement is 3–5%.

Data capture and quality were good as the CSAT3 sonic anemometer design used had
modifications that improved its performance under rainy conditions. These modifications
consisted of a new internal processing module in the CSAT3 that is more immune to rain-
degraded signals, and water wicks on the transducers that prevent large drops of water that
completely obscure the sonic signals from collecting on the transducer face. There were a few
missing half-hourly data in the diurnal series as a result of data quality control and rejection
algorithms executed in TK2. The percentage of the missing data was approximately 15%, for
which gaps of one to a few half-hourly values were linearly interpolated and gaps exceeding
this length were filled using the mean diurnal variation method (Moffat et al. 2007).

It is not practical to measure the heat storage flux (�Qs) directly at suburban sites due to
the complexity of the urban surface and the diversity of material types of which the urban
fabric is composed (Grimmond and Oke 1999b). A recent evaluation of available models to
estimate �Qs (Robert et al. 2006) reveal that most methods tend to slightly overestimate
storage uptake by day while others slightly underestimate it, and all methods underestimate
heat storage release at night when compared with �Qs values determined as a residual of the
other measured fluxes. Also the extensive input requirements for some of the models render
them almost impractical. While the convergence of results is reassuring, Robert et al. (2006)
concluded that the lack of a standard for quantifying heat storage still remains a source of
imprecision in urban energy balance measurement and modelling. In this study �Qs was
determined as a residual in the energy balance [�Qs = Rn − (Q H + QE )]; the limita-
tion with this is that measurement errors of the other energy balance fluxes accumulate in
this term. These errors include those that may be due to spatial inconsistency of the energy
balance terms, because the source area of the turbulent fluxes varies as a function of wind
speed and direction, atmospheric stability and surface roughness, whereas for the radiant
fluxes it is fixed in time. Additional error is introduced in the residual �Qs because neither
anthropogenic heat QF from combustion and sources or sinks due to advection �Q A from
cooler or warmer surfaces upwind is included. It is not known whether there are significant
regional scale circulations that are generated due to differential heating patterns between land
and Lake Winnebago at our Greenwood flux-tower site that is less than 5 km from the lake
(Fig. 1). However for the Sunset neighborhood in Vancouver, where the surrounding coastal
ocean generates a sea-breeze circulation, Steyn (1985) concluded that advection could be
neglected at the local scale when working under similar land-use conditions. In a continen-
tal area of the U.S.A. similar to our study site, Rabin et al. (1990) found that inland lakes
affected boundary-layer development and suppressed cloud formation. Lake Winnebago is
a narrow body of water that is approximately 400 m wide at its widest point and just less
than 1,500 m long at maximum. These dimensions are on the low end of the lake sizes that
Rabin et al. (1990) showed could produce boundary-layer effects, and that these effects are
more evident under calm conditions and would tend to disappear during windier mid-day
conditions. Given the study area characteristics, the location of the main potential sources
relative to the measurement site, and the size of QF found at suburban and urban locations
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in North America (Grimmond 1992; Sailor and Lu 2004), we estimate that advective effects
are small. However, all such errors accumulate in �Qs , and this must be taken into account
in interpreting our estimate of heat storage by the exurban surface.

2.3 Meteorological Conditions

Weather conditions during the measurement period were relatively mild with generally sunny
days characterized by a pronounced diurnal cycle (Fig. 3). Winds were from all directions
during the measurement period, with a mean speed of 3.5 m s−1 and a maximum sometimes
exceeding 7 m s−1, but the prevailing winds were mainly from the south (Fig. 3). Two distinct
sky conditions were also observed during the measurement period; cloudy throughout the
day (6 days) and near clear-sky conditions (11 days). The cloudy days had >75% cloud cover
consisting of mainly cumulus and cumulonimbus clouds. The near clear-sky days had <10%
cloud cover consisting of fair weather cumulus clouds that formed just after noon and cleared
two to three hours later. Air temperature and vapour pressure deficit followed the diurnal cir-
cle and were lower and higher for cloudy and near clear-sky conditions, respectively (Fig. 3).
The maximum air temperature recorded during our intensive observation period was 30.8◦C,

while the average air temperature was 22.4 and 18.5◦C for cloudy and near clear-sky days,
respectively. This maximum is 0.9◦C lower than the 1971–2000 normal (NCDC-NOAA sum-
mary 2004). The vapour pressure deficits were low, ranging from 0.66 to 1.2 kPa and from 0.32
to 1.9 kPa for cloudy and near clear-sky conditions, respectively (Fig. 3). There was 18 mm of
rainfall on August 4 and there were small (<0.35 mm) precipitation events on three other days
during the measurement period. A total of 155 mm of rain fell during August 2004 compared
to the climatic norm of 122 mm, which followed a similar pattern to July and produced a wet
summer relative to average (NOAA-NCDC 2004). However, the daily precipitation record
showed that most of the August precipitation occurred after our intensive observation period
had ended (129 mm out of 155 mm for the month). There was no rain during the 7 days
preceding the intensive observational period and a total of 26 mm of rainfall occurred dur-
ing our measurements. Overall, meteorological conditions during our measurement period
did not differ significantly from typical summer conditions in the region, but soil moisture
conditions were clearly elevated throughout the mid to late summer period. Typical of new
developments, the neighbourhood we studied was built with automated irrigation systems,
which similarly would tend to maintain high soil moisture levels, regardless of precipitation.

3 Results and Discussion

3.1 Surface Energy Partitioning

A summary of the mean summertime measurements of exurban surface energy balance fluxes
at Greenwood is given in Table 4 for the measurement period. The data presented are the mean
for daytime (hours when Rn > 0), and daily (24-h) periods for the cloudy and near clear-sky
conditions observed. In addition, five ratios are also given in the Table: the three fluxes nor-
malized by the net radiation (γ = Q H /Rn, χ = QE/Rn and � = �Qs/Rn), Bowen ratio
(β = Q H /QE ), and the ratio of the sensible heat flux to the atmosphere and the residual heat
storage (κ = Q H /�Qs). These ratios give information on the energy partitioning and rela-
tive trends of the fluxes through the day. Weather conditions were similar for the days under
cloudy skies, while days under near clear-sky conditions also had similar characteristics.
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Fig. 3 Meteorological conditions observed on the tower during the measurement period for ensemble hourly
averages of vapour pressure deficit, air temperature, wind speed and wind direction under cloudy sky (a, c, e)
and near clear-sky (b, d, f) conditions respectively. Error bars are ± 1σ

Thus, an ensemble mean day (consisting of a mean of all data for each half-hour under each
cloud condition) gives a representative partitioning between terms in the energy balance.
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Table 4 Daytime (Rn > 0) and daily (24-h) mean energy fluxes and ratios for cloudy and near clear sky
conditions

Energy fluxes (W m−2) Ratios

n Rn Q H QE �Qs β γ χ � κ

Daytime cloudy sky conditions (Rn > 0)

13 254 56 120 79 0.46 0.22 0.47 0.31 0.70

Daily cloudy sky conditions (24h)

144 114 23 66 23 0.39 0.23 0.58 0.20 1.14

Daytime near clear-sky conditions (Rn > 0)

13 370 81 169 100 0.48 0.21 0.46 0.27 0.81

Daily near clear-sky conditions (24h)

216 171 40 91 31 0.44 0.23 0.53 0.18 1.26

Daytime all-sky conditions (Rn > 0)

184 312 68 145 89 0.47 0.22 0.46 0.29 0.76

Daily all-sky conditions (24h)

360 143 33 78 27 0.41 0.23 0.55 0.18 1.21

The ratios are defined as γ = Q H /Rn , χ = QE /Rn,� = �Qs/Rn , Bowen ratio (β = Q H /QE ) and
κ = Q H /�Qs . Daytime n is the average number of hours used within each day where Rn > 0; daily n is the
total number of hours analyzed

3.2 Net Radiation and Surface Albedo

The diurnal course of the net all-wave radiation under both cloudy and near clear-sky
conditions exhibited similar patterns for the days falling under the two conditions, with lower
values and higher variability under the cloudy condition as would be expected (Fig. 4a, b).
Net radiation increased rapidly from dawn (−34 and −58 W m−2) during the night to reach
a maximum (423 and 630 W m−2) after midday for cloudy and near clear-sky conditions
respectively. Mean daytime values are 253 and 368 W m−2, respectively for the cloudy and
near clear-sky conditions, while mean daily values are 114 for cloudy and 144 W m−2 for
near clear-sky conditions, respectively (Table 4). These values are similar in magnitude but
slightly higher than those reported in the literature for suburban locations in some North
American cities (Grimmond and Oke 1995, 1999b; Offerle et al. 2003). This is consistent
with the higher albedo and lower surface temperature observed at our Greenwood site.

The surface albedo was determined from the measurements of the albedometer when
both the incoming (S ↓) and reflected solar radiation (S ↑) were greater than 10 W m−2,
as α = S ↑/S ↓. Its diurnal variation under both cloudy and near clear-sky conditions is
shown in Fig. 4c. The surface albedo also exhibited a dependence on solar elevation, with
a tendency to be greater at dawn and dusk (when solar elevation angle is low) and to have
its minimum at solar noon (maximum solar elevation angle). This pattern of variation has
been widely observed over a wide range of land-use types (Oke 1987; Allen et al. 1994;
Christen and Vogt 2004; Grimmond et al. 2004a,b), and results from deeper penetration of
the canopy by the solar beam at high solar elevation, causing more radiation to be absorbed.
Figure 4d illustrates this angular dependence for the Greenwood site. However the pattern of
the angular dependence differed from recent observations over urban and suburban surfaces,
where it was observed that the angular dependence becomes important when solar eleva-
tion is <20◦, due to the highly directional reflectance of horizontal surfaces and is fairly
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Fig. 4 Ensemble
hourly-averaged net radiation for
a cloudy sky, b near clear sky
conditions, c ensemble hourly
averaged albedo, and d angular
dependence of albedo on solar
elevation
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constant between 20◦ and 65◦ solar elevation under both clear-sky and overcast conditions
(Christen and Vogt 2004). The pattern at the Greenwood site is similar to observations over
vegetated surfaces (Allen et al. 1994; Christen and Vogt 2004), where albedo is increased
in general under clear-sky conditions at low solar elevation and decreased under cloudy
conditions at high solar elevation (Fig. 4d). The measured mean minimum surface albedo
was 0.25 and 0.24 at solar noon for the cloudy and near clear-sky conditions respectively.
The increase in the variation of diffuse radiation during cloudy conditions is responsible
for the slight increase of albedo around solar noon compared to near clear-sky conditions;
this is in agreement with Allen et al. (1994). These values are higher than albedo values
observed for suburban areas, which averaged 0.15 in a survey of suburban field studies (Oke
1987). The closest to the values reported here are Chicago, Illinois with values that ranges
from 0.23 to 0.16 for non-snow conditions (Offerle et al. 2003) and Miami, Florida with
values that ranges from 0.20 to 0.14 for all sky conditions (Newton et al. 2007). These high
observed surface albedo values are not unexpected given the extensive luxuriant grass lawns
and highly reflective light coloured coatings of the more widely spaced single storey build-
ings, see Fig. 2. This is also consistent with the results of Offerle et al. (2003) and Christen
and Vogt (2004), who conclude that albedo decreases with increasing height and density of
buildings.

The higher vegetation cover at this site (58%) mentioned earlier, compared to ear-
lier studies with more developed urban surfaces, appears to be an important factor in
the surface radiation budget, given its low surface temperature (mean maximum surface
temperature was 24.5 and 28.9◦C for the cloudy and near clear-sky conditions, respec-
tively), leading to a relatively low upward longwave radiation flux and high QE flux (see
Sect. 3.3 where persistent wet surface conditions may have contributed to the observed
higher net radiation values). It is also possible that the air pollution level at this site
is lower compared to the larger and older suburban locations with more anthropogenic
activities.

3.3 Latent Heat Flux, Sensible Heat Flux and Bowen Ratio

3.3.1 Latent Heat Flux

The prevailing weather for the two distinct sky conditions observed during the measure-
ment period were similar and a simple ensemble mean day (consisting of a mean of all data
for each hour) gives a representative illustration of energy partitioning between the energy
balance terms (Fig. 5), for the cloudy and near clear-sky conditions. During the day energy
partitioning is dominated by the convective transport of latent heat (QE ), followed by the
conductive sensible heat storage (�QS) and the smallest fraction is used up in convective
sensible heating of the air (Q H ). The phase of the fluxes is different, with �QS peaking 1–2 h
after noon, and QE and Q H in the late afternoon. The net radiation loss at night is almost
totally matched by the release of heat from storage in the suburban fabric, while QE is small
but positive all through the night. This diurnal balance pattern is similar to those observed in
several suburban sites in North America (Grimmond et al. 1994; Grimmond and Oke 1995,
1999b; Newton et al. 2007).

The diurnal variation and absolute magnitudes of the ensemble-mean QE flux in Green-
wood, Kansas City (Fig. 5) are similar to those observed in North American suburbs. However,
the Greenwood values are higher compared to the suburban sites (Grimmond et al. 1994;
Grimmond and Oke 1995, 1999b; Newton et al. 2007). This is not unexpected since the
increased availability of heat and moisture at the surface over a largely vegetated humid
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Fig. 5 Ensemble hourly-averaged energy flux densities and Bowen ratio for a cloudy sky and b near clear
sky conditions

continental city with frequent precipitation probably increases evapotranspiration. The
observed pattern is a bimodal curve with its maximum peak at 1600 local time for cloudy
conditions and a unimodal curve with its peak at 1500 local time for near clear-sky conditions
respectively (Fig. 5a, b). However, it is presently not known whether the bimodal distribution
observed in Fig. 5a is an artifact of limited data, so that when averaged over a longer period
of record, the secondary peak may disappear. As observed at most suburban sites, evapo-
transpiration remains positive, although small, throughout the night. Mean daytime values
are 120 and 167 W m−2, respectively for the cloudy and near clear-sky conditions, while
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also the mean daily values are 66 and 91 W m−2, respectively. The mean daytime and daily
values for all-sky conditions are 145 and 78 W m−2 (Table 4). QE dominated the energy
partitioning throughout the measurement period, and the fractions of net radiation devoted

to QE

(
χ = QE

Rn

)
under cloudy conditions were 47 and 58% for the daytime and daily

ensemble averages respectively. The corresponding percentages for near clear-sky condi-
tions were 46 and 53% and for all-sky conditions were 46 and 55% respectively (Table 4).
The daytime χ values were similar for all sky conditions 46–47%, but the 24-h mean was
higher 53–58%. Figure 6 also shows the diurnal variation of the normalized fluxes with higher
χ ratios under cloudy conditions compared to near clear-sky conditions. The decrease under
near clear-sky conditions is not due to a reduction in evapotranspiration rate as can be noted
in Fig. 5b, since water is not limiting, but the enhancement of Q H as the surface gradually
dried on subsequent near cloud-free days without rain (Figs. 5b, 6). It was also observed
that weak (small positive values of the order of 10–20 W m−2) evapotranspiration occurs
throughout the night on a daily basis, but sometimes this exceeds 30 W m−2 (Fig. 5). The
diurnal pattern of χ is similar to those of other cities in North America; Chicago, Los Ange-
les, Sacramento, Tucson and Miami (Grimmond and Oke 1995; Grimmond et al. 1994). In
all these cities QE is almost always positive at night. Apart from the sunrise/sunset peri-
ods and under cloudy conditions, the χ values also exhibit very little variation throughout
the daytime and follow an opposite/mirror image pattern to that of the ratio of the storage

heat flux to the net radiation flux
(
� = �Qs

Rn

)
(Fig. 6). The daytime evapotranspiration rates

and χ value of 0.46 for all sky conditions observed in this study are higher than subur-
ban areas with high summer evapotranspiration rates in North America, e.g. Chicago, Los
Angeles and Miami (Grimmond et al. 1994; Grimmond and Oke 1995, 1999b; Oke et al.
1999; Newton et al. 2007). Table 5 show comparable values for residential suburbs in North
American cities to range from 0.22 to 0.38 and the closest to the results of this study is
Chicago.

3.3.2 Sensible Heat Flux

The maximum daily sensible heat flux (Q H ) occurs at the same time as QE and exhibits
the same pattern of variation as the latent heat flux for both cloudy and near clear-sky con-
ditions (Fig. 5). The ensemble mean daytime (Rn > 0) values reached a maximum of 101
and 164 W m−2 at 1600 and 1500 h for the cloudy and near clear-sky conditions respectively
(Fig. 5). The sensible heat flux values at the Greenwood, Kansas City site become negative at
2100 h, the same time as Rn , and then remain negative throughout the night until after sunrise
(Fig. 5), a notable difference from observations from fully urbanized sites e.g. Mexico City,
Mexico and Marseilles, France (Oke et al. 1999; Grimmond et al. 2004b). This site is domi-
nated by well-watered luxuriant grass lawns, so this result is not surprising and is consistent
with observations at suburban areas with large amounts of vegetation e.g. Chicago, Tucson
and Oklahoma City (Grimmond et al. 1994, 2004a; Grimmond and Oke 1995).

Mean daytime values are 56 and 81 W m−2 respectively for the cloudy and near clear-sky
conditions, while the mean daily values are 26 and 40 W m−2, respectively. The mean day-
time and daily values are 68 and 33 W m−2 respectively for all-sky conditions (Table 4). The

fraction of Rn partitioned into Q H

(
γ = Q H

Rn

)
shows remarkably little day-to-day variability

especially in the daytime (Fig. 6), irrespective of weather conditions, with a mean value of
0.22 for all-sky conditions (Table 4). This is consistent with the dominant QE being offset
by �QS leaving a relatively constant fraction of the net radiation for Q H . This value is also
the lowest in the range of values observed in urban areas (Table 4).

123



314 A. A. Balogun et al.

Table 5 Summary of mean daytime (Rn > 0) flux ratios for all-sky conditions at our exurban Kansas City
site and at suburban sites in North America

Ratios

City Site
code

Land use Obs
period

Original
reference

β γ χ � κ

Kansas
City, MO

(Kc04) Exurban
residential

Aug 2004 This study 0.47 0.22 0.46 0.29 0.76

Vancouver,
BC

(Vs92) Suburban
residential

Jul/Sep
1992

Grimmond
and Oke
(1999b)

2.87 0.62 0.22 0.17 3.70

Vancouver,
BC

(Vs89) Suburban
residential

Jul 1989
Roth and Oke

(1994)

1.97 0.54 0.27 0.19 1.70

Los Angeles,
CA

(Sg94) Suburban
residential

Jul 1994 Grimmond
et al.
(1996)

2.17 0.49 0.22 0.29 1.68

Los Angeles,
CA

(A94) Suburban
residential

Jul 1994 Grimmond
et al.
(1996)

1.61 0.43 0.26 0.31 1.37

Los Angeles,
CA

(A93) Suburban
residential

Jul/Aug
1993

Grimmond
and Oke
(1995)

1.24 0.39 0.31 0.30 1.27

Tucson, AZ (T90) Suburban
residential

Jun 1990 Grimmond
and Oke
(1995)

2.08 0.52 0.25 0.23 2.24

Miami, FL (Mi95) Suburban
residential

May/Jun
1995

Newton
(1999);
Newton
et al.
(2007)

1.55 0.42 0.27 0.30 1.40

Sacramento,
CA

(S91) Suburban
residential

Aug 1991 Grimmond
et al.
(1993)

1.26 0.41 0.33 0.26 1.61

Chicago, IL (C95) Suburban
residential

Jun/Aug
1995

King and
Grim-
mond
(1997)

1.24 0.46 0.37 0.17 2.69

Chicago, IL (C92) Suburban
residential

Jul 1992 Grimmond
et al.
(1994)

0.87 0.32 0.38 0.30 −

The comparison is limited to summer measurements using the eddy-covariance technique in residential sites.
Ratios are the same as those defined in Table 4

3.3.3 Bowen Ratio

It is important to consider the relative partitioning of the turbulent convective fluxes, the

Bowen ratio
(
β = Q H

QE

)
. Figure 5 shows the variability of β through the day for the cloudy

and near clear-sky conditions. It should be noted that β is often poorly determined when fluxes
are small, as is common at night and during sunrise and sunset transition periods; hence noc-
turnal β is not plotted. β appears to follow the trend of �QS (Fig. 5). The mean daytime β

values are 0.46, 0.48 and 0.47 respectively for the cloudy, near clear-sky and all-sky condi-
tions; also the mean daily values are 0.39, 0.44 and 0.41 respectively (Table 4). The influence
of water availability from the frequent grass irrigation and rainfall during the measurement
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Fig. 6 Ensemble hourly-averaged normalized energy fluxes, sensible heat (γ ), latent heat (χ ), and storage
heat (�) for cloudy (a) and near clear (b) sky conditions

period is obvious here. The daytime Bowen ratio values are larger than their daily values for
all-sky conditions, but the β values are about 12–15% smaller under cloudy sky conditions
than near clear-sky conditions, indicating the increase of Q H under near clear-sky condi-
tions discussed in Sects. 3.3.1 and 3.3.2. These β values are much lower than those reported
for typical North American suburban areas during summer (Table 5). Grimmond and Oke
(1995) in their Table 4 reported β values of 0.88, 0.94, 1.29 and 1.54 for Chicago, Sacramento,
Los Angeles and Tucson, respectively under daytime cloudy sky conditions. The correspond-
ing values for clear-sky conditions are 0.78, 1.37, 1.40 and 1.83 for Chicago, Sacramento,
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Los Angeles and Tucson, respectively. The closest to values obtained in this study is Chicago
with an all-sky daytime value of 0.87 and daily value of 0.71 (Grimmond and Oke 1995;
Table 5). The Greenwood β values are also the lowest compared to summer values reported
for other urban and suburban locations around the world, such as Edinburgh, Scotland; Basel,
Switzerland; Marseille, France; Christchurch, New Zealand; Tokyo, Japan and Ouagadou-
gou, Burkina Faso (Nemitz et al. 2002; Christen and Vogt 2004; Grimmond et al. 2004b;
Spronken-Smith 2002; Moriwaki and Kanda 2004; Offerle et al. 2005a,b).

4 Storage Heat Flux

The absolute values, diurnal behaviour, and the fraction of the net radiation partitioned into

the storage heat flux, �QS

(
� = �Qs

Rn

)
in our exurban Greenwood site (Table 4) were sim-

ilar to those observed in other cities, and nearly identical to those observed in suburbs of
Chicago and Miami (Table 5). In both of those cities, �QS peaks at about 200 W m−2 shortly
before solar noon, decreases to its daily minimum near sunset, recovers somewhat by mid-
night, thereafter remaining fairly constant until sunrise (Grimmond and Oke 1995; Newton
et al. 2007). The main difference between the �QS of these two suburban sites and our
exurban location was the timing of maxima and minima. Unlike Chicago and Miami, �QS

at Greenwood peaked 1 and 2 h after noon for near clear and cloudy conditions respectively,
fell to its daily minimum, and then rose slightly again near sunset, remaining fairly constant
thereafter until sunrise. A lag of 1 h is noted for peaks and the minimum under near clear
and cloudy conditions and the negative nocturnal �QS values are similar at the three sites
(approximately −50 W m−2), see Fig. 5. The mean daytime � is also remarkably similar in
Chicago, Miami, and Greenwood (0.30, 0.30 and 0.29) respectively, and are near the upper
end of the observed range of suburban values (Table 5). It is not particularly surprising that
heat storage plays a large role in the energy budget of exurban Greenwood given the ample
amount of moisture present in the soil, vegetation, and air to promote efficient absorption of
heat and provide a large heat capacity.

The diurnal variation of � in Greenwood, Kansas City is also essentially similar to that
observed in suburban residential areas of Chicago, Los Angeles, Sacramento and Miami
(Grimmond and Oke 1995; Newton et al. 2007) and the steady daytime decrease from approx-
imately 0.5 near sunrise to zero at sunset is present in all cases (Fig. 6b). However, this daytime
decrease is not steady under cloudy conditions in Greenwood, Kansas City (Fig. 6a); the trend
is due to the pattern of hysteresis between �QS and Rn (Fig. 7). Under cloudy conditions
available energy is reduced and so is the ability of the urban fabric to absorb energy into �QS

due to shading by the clouds. Hence, unlike for clear-sky conditions where �QS absorbs
more energy in the early part of the day, more energy may actually be absorbed in the latter
part of the day when skies become clear (Fig. 7). The pattern is also the mirror image of
the dominant convective latent heat flux QE (Fig. 6) reflecting the daily variation in heat
exchange between conduction and convection, while the fraction used by sensible heating
remains fairly constant (Fig. 6). This trend has also been observed in other cities when Q H

is the dominant convective flux (Grimmond and Oke 1995; Newton et al. 2007). At night,
as in most other cities, � has the fairly constant value of unity; i.e. the net radiation loss is
matched almost entirely by the removal of heat from storage (Fig. 5). The ‘excess’ removal
of stored sensible heat from storage is partitioned into nocturnal evapotranspiration (QE ).
The ratio of the sensible heat flux to the atmosphere and that stored in the suburban fabric(
κ = Q H

�Qs

)
is a measure of the partitioning of the sensible heat fluxes between the air and
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Fig. 7 Mean diurnal hysteresis pattern between heat storage flux (�Qs ) and net radiation (Rn ) for cloudy
(a) and near clear (b) sky conditions. Values next to points show the hour of day

the surface. When κ is greater than unity, the atmosphere dissipates a greater portion of the
radiant energy than is stored; when it is less than unity the surface is a more effective sink
(Grimmond and Oke 1999b; Newton et al. 2007). The daytime ratios of κ are more than 40%
lower than their daily fractions for all-sky conditions (Table 4). This indicates that, during
the daytime, �Qs is an effective sink of the net radiant energy, whereas on a daily basis, the
atmosphere dissipates a greater portion of the available energy than is stored. Table 5 also
shows that the Kansas City values are the lowest compared to other suburban sites, where κ
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is greater than unity. Because errors, including measurement uncertainties in the fluxes and
unmeasured effects such as advection, accumulate in �Qs , comparisons of the storage term
across sites should be interpreted with caution. However, the relative similarity between the
magnitudes and diurnal patterns of �Qs between our exurban site and suburban sites leads
us to conclude that �Qs is relatively similar, whereas the difference in κ mainly reflects the
more rural, low Bowen ratio characteristic of our exurban site.

5 Conclusions

This study reports the first measurements of the surface energy balance at Greenwood, near
Kansas City, Missouri, a site representative of the newly developed exurban land-use types
that have been rapidly expanding in the mid-continental U.S.A. Energy partitioning was dom-
inated by latent heat under both cloudy and near clear-sky conditions, The mean daytime
Bowen ratio ( β) values are 0.46, 0.48 and 0.47 respectively for the cloudy, near clear-sky
and all-sky conditions; also the mean daily values are 0.39, 0.44 and 0.41 respectively. Net
radiation (Rn) increased rapidly from dawn (−34 and −58 W m−2) during the night to reach
a maximum (423 and 630 W m−2) after midday for cloudy and near clear-sky conditions
respectively. Mean daytime values are 254 and 370 W m−2, respectively for the cloudy and
near clear-sky conditions, while mean daily values are 114 for cloudy and 171 W m−2 for
near clear-sky conditions, respectively. The corresponding values are 312 and 143 W m−2

for all clear-sky conditions. Midday surface albedo values were 0.25 and 0.24 for the cloudy
and near clear-sky conditions, respectively. The albedo exhibited an angular dependence on
the solar elevation of the sun contrary to earlier observations over urban and suburban areas,
but similar to vegetated surfaces. The latent heat flux (QE ), sensible heat flux (Q H ) and
the residual �Qs terms accounted for between 46–58%, 21–23% and 18–31% of Rn for
all-sky conditions and time averages respectively. These observed albedo, Rn and QE values
are higher than the values reported for suburban areas with high summer evapotranspiration
rates in North America. The results suggest that the rapidly growing residential areas at the
exurban fringe of large metropolitan areas have a surface energy balance that is more similar
to the rural areas from which they were developed than it is to the older suburbs and city
centres that make up the urban fabric to which they are being joined. Further studies are
required to determine how the characteristics of these exurban areas will change with further
modifications to the land cover and the growth of the tree canopy over time.

Acknowledgements This project was partly funded by the University of Missouri Research Board Grant
#KA096. We are grateful for the assistance of Mr. Chris Price and Mr. Lee Kump, owners of the properties
on which we sited the telescoping mast and measurement platform. The technical support of Mr. Bert Isaacks
and Lee Ward is also greatly appreciated.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.

References

Adegoke JO, Pielke R, Carlton AM (2007) Observational and modeling studies of the impacts of agriculture-
related land use change on planetary boundary layer processes in the central US. Agric For Meteorol
142:203–215

Allen SJ, Wallace JH, Gash JHC (1994) Measurements of surface albedo over natural vegetation in the sahel.
Int J Climatol 14:625–636

123



Surface Energy Balance Measurements Above an Exurban Residential Neighbourhood 319

Carleton AM, Travis DJ, Adegoke JO, Arnold DL, Curran S (2008) Synoptic circulation and land surface
influences on convection in the Midwest US “Corn belt” during the summers of 1999 and 2000. Part II:
role of vegetation boundaries. J Clim 21:3617–3641

Christen A, Vogt A (2004) Energy and radiation balance of a central European city. Int J Climatol 24:
1395–1421. doi:10.1002/joc.1074

Dabberdt WF, Carroll MA, Baumgardner D, Carmichael G, Cohen R, Dye T, Ellis J, Grell G, Grimmond
S, Hanna S, Irwin J, Lamb B, Madronich S, McQueen J, Meagher J, Odman T, Pleim J, Schmid HP,
Westphal DL (2004) Meteorological research needs for improved air quality forecasting: report of the
11th prospectus development team of the US Weather Research Program. Bull Am Meteorol Soc 85:
563–586

Finkelstein PL, Sims PF (2001) Sampling error in eddy correlation flux measurements. J Geophys Res
106(D4):3503–3509

Foken T, Wichura B (1996) Tools for quality assessment of surface-based flux measurements. Agric For
Meteorol 78:83–105

Foken T, Göckede M, Mauder M, Mahrt L, Amiro BD, Munger JW (2004) Post-field data quality control. In:
Lee X (ed.) Handbook of micrometeorology: a guide for surface flux measurements. Kluwer, Dordrecht,
pp 181–207

Grimmond CSB (1992) The suburban energy-balance: methodological considerations and results for a mid-
latitude west-coast city under winter and spring conditions. Int J Climatol 12:481–497

Grimmond CSB, Oke TR (1995) Comparison of heat fluxes from summertime observations in the suburbs of
four North American cities. J Appl Meteorol 34:873–889

Grimmond CSB, Oke TR (1999a) Aerodynamic properties of urban areas derived, from analysis of surface
form. J Appl Meteorol 34:873–889

Grimmond CSB, Oke TR (1999b) Heat storage in urban areas: local-scale observations and evaluation of a
simple model. J Appl Meteorol 38:922–940

Grimmond CSB, Oke TR (1999c) Evapotranspiration rates in urban areas. Impacts of urban growth on surface
water and groundwater quality. In: Proceedings of IUGG99 symposium HSS, Birmingham, 19–24 July,
1999. IAHS Publication no. 259

Grimmond CSB, Oke TR (2002) Turbulent heat fluxes in urban areas: observations and a local-scale urban
meteorological parameterization scheme (LUMPS). J Appl Meteorol 41:792–810

Grimmond CSB, Oke TR, Cleugh HA (1993) The role of “rural” in comparisons of observed suburban–rural
flux differences. In: Porceedings of the Yokohama Symposium, exchange processes at the land surface
for a range of space and time scales, vol 212, July 1993. IAHS Publication, pp 165–174

Grimmond CSB, Souch C, Grant RH, Heisler G (1994) Local scale energy and water exchanges in a
Chicago neighborhood. Chicago’s urban forest ecosystem: results of the Chicago urban forest cli-
mate project. USDA Forest Service Northeastern Forest Experiment Station, General Technical Report
NE-186, 46–70. http://www.fs.fed.us/ne/newtown_square/publications/technical_reports/pdfs/scanned/
OCR/gtr186index.htm or from Northeastern Forest Experiment Station, 5 Radnor Corporate Center, 100
Matsouford Rd., Suite 200, P.O. Box 6775, Radnor, PA 19087-4585. Accessed 15 Dec 2008

Grimmond CSB, Souch C, Hubble M (1996) The influence of tree cover on summertime energy balance fluxes,
San Gabriel Valley, Los Angeles. Clim Res 6:45–57

Grimmond CSB, Su HB, Offerle B, Crawford B, Scott S, Zhong S, Clements C (2004a) Variability of sen-
sible heat fluxes in a suburban area of Oklahoma City. The joint between 8th symposium on integrated
observing and assimilation systems in the atmosphere, oceans and land surface and the symposium on
planning, nowcasting, and forecasting in the urban zone, Seattle, Washington, American Meteorological
Society. http://ams.confex.com/ams/pdfpapers/67542.pdf. Accessed 15 Dec 2008

Grimmond CSB, Salmond JA, Oke TR, Offerl B, Lemonsu A (2004b) Flux and turbulence measurements at
a densely built-up site in Marseille: heat, mass (water and carbon dioxide), and momentum. J Geophys
Res 109:D24101. doi:10.1029/2004JD004936

King T, Grimmond S (1997) Transfer mechanisms over an urban surface for water vapour, sensible heat, and
momentum. Preprints. In: 12th Symposium on boundary layers and turbulence, Vancouver, BC, Canada.
Am Meteorol Soc 455–456

Lenschow DH, Mann J, Kristensen L (1994) How long is long enough when measuring fluxes and other
turbulent statistics?. J Atmos Ocean Technol 11:661–673

Liebethal C, Foken T (2003) On the significance of the Webb correction to fluxes. Boundary-Layer Meteorol
109:99–106

Mann J, Lenschow DH (1994) Errors in airborne flux measurements. J Geophys Res 99(D7):14519–14526
Mauder M, Foken T (2004) Documentation and instruction manual of the eddy covariance software package

TK2. Universität Bayreuth Arbeitsergebnisse Nr. 26, Bayreuth, December 2004, 45 pp

123

http://dx.doi.org/10.1002/joc.1074
http://www.fs.fed.us/ne/newtown_square/publications/technical_reports/pdfs/scanned/OCR/gtr186index.htm
http://www.fs.fed.us/ne/newtown_square/publications/technical_reports/pdfs/scanned/OCR/gtr186index.htm
http://ams.confex.com/ams/pdfpapers/67542.pdf
http://dx.doi.org/10.1029/2004JD004936


320 A. A. Balogun et al.

Meehl GA, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the 21st century.
Science 305:994–997

Mestayer P et al. (2004) The urban boundary layer field campaign in Marseille (UBL/CLU-ESCOMPTE):
set-up and first results. Boundary-Layer Meteorol 114:315–365

Moffat AM, Papale D, Reichstein M, Hollinger DY, Richardson AD, Barr AG, Beckstein C, Braswell BH,
Churkina G, Desai AR, Falge E, Gove JH, Heimann M, Hui DF, Jarvis AJ, Kattge J, Noormets A, Stauch
VJ (2007) Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes.
Agric For Meteorol 147:209–232

Moore CJ (1986) Frequency response corrections for eddy correlation systems. Boundary-Layer Meteorol
37:17–35

Moriwaki R, Kanda M (2004) Seasonal and diurnal fluxes of radiation, heat, water vapour and CO2 over a
suburban area. J Appl Meteorol 43:1700–1710

National Climatic Data Center (2004) Climatography of the United States: 1971–2000 climatic normals.
National Climatic Data Center, Asheville

Nemitz E, Hargreaves KJ, McDonald AG, Dorsey JR, Fowler D (2002) Meteorological measurements of the
urban heat budget and CO2 emissions on a city scale. Environ Sci Technol 36:3139–3146

Newton T (1999) Energy balance fluxes in a subtropical city: Miami FL, MS thesis, Department of Geography,
University of British Columbia, Vancouver, BC, Canada, 140 pp

Newton T, Oke TR, Grimmond CSB, Roth M (2007) The suburban energy balance in Miami, Florida. Geogr
Ann 89:331–347

Offerle B, Grimmond CSB, Oke TR (2003) Parameterization of net all-wave radiation for urban areas. J Appl
Meteorol 42:1157–1173

Offerle B, Grimmond CSB, Fortuniak K (2005a) Heat storage and anthropogenic heat flux in relation to the
energy balance of a central European city centre. Int J Climatol 25:1405–1419

Offerle B, Jonsson P, Eliasson I, Grimmond CSB (2005b) Urban modification of the surface energy balance
in the west African Sahel: Ouagadougou, Burkina Faso. J Clim 18:3983–3995

Oke TR (1987) Boundary layer climates, 2nd edn. Routledge, London, 435 pp
Oke TR (1997) Urban environments. In: Bailey WG, Oke TR, Rouse WRThe surface climates of Canada.

McGill/Queens University Press, Montreal, pp 303–327
Oke TR (2004) Initial guidance to obtain representative meteorological observations at urban sites. WMO

Instruments and Observing Methods Report No. 81, WMO/TD No. 1250, 51 pp
Oke TR, Spronken-Smith RA, Jauregui E, Grimmond CSB (1999) The energy balance of central Mexico City

during the dry season. Atmos Environ 33:3919–3930
Rabin RM, Stadler S, Wetzel PJ, Stensrud DJ, Gregory M (1990) Observed effects of landscape variability on

convective clouds. Bull Am Meteorol Soc 71:272–280
Raupach MR, Antonia RA, Rajagopalan S (1991) Rough-wall turbulent boundary layers. Appl Mech Rev 44:

1–25
Robert SM, Oke TR, Grimmond CSB, Voogt JA (2006) Comparison of four methods to estimate urban heat

storage. J Appl Meteorol Climatol 45:1766–1781
Rotach MW, Vogt R, Bernhofer C, Batchvarova E, Christen E, Clappier A, Feddersen A, Gryning B, Martucci

SE, Mayer G, Mitev H, Oke TR, Parlow E, Richner H, Roth M, Roulet YA, Ruffieux D, Salmond JA,
Schatzmann M, Voogt JA (2005) BUBBLE—an urban boundary layer meteorology project. Theor Appl
Climatol 81:231–261

Roth M (2000) Review of atmospheric turbulence over cities. Q J Roy Meteorol Soc 126:941–990
Roth M, Oke TR (1993) Turbulent transfer relationships over an urban surface. I: spectral characteristics.

Q J Roy Meteorol Soc 119:1071–1104
Roth M, Oke TR (1994) Comparison of modeled and “measured” heat storage in suburban terrain. Beitr Phys

Atmos 67:149–156
Sailor DJ, Lu L (2004) A top-down methodology for developing diurnal and seasonal anthropogenic heating

profiles for urban areas. Atmos Environ 38:2737–2748
Schmid HP (1994) Source areas for scalars and scalar fluxes. Boundary-Layer Meteorol 67:293–318
Schmid HP (1997) Experimental design for flux measurements: matching scales of observations and fluxes.

Agric For Meteorol 87:179–200
Schotanus P, Nieuwstadt FTM, De Bruin HAR (1983) Temperature measurement with a sonic anemometer

and its application to heat and moisture fluctuations. Boundary-Layer Meteorol 26:81–93
Spronken-Smith RA (2002) Comparison of summer- and winter-time suburban energy fluxes in Christchurch,

New Zealand. Int J Climatol 22: 979–992. doi:10.1002/joc.767
Steyn DG (1985) An objective method to achieve closure of over determined surface energy budgets.

Boundary-Layer Meteorol 33:303–311

123

http://dx.doi.org/10.1002/joc.767


Surface Energy Balance Measurements Above an Exurban Residential Neighbourhood 321

Stott PA, Stone DA, Allen MR (2004) Human contribution to the European heatwave of 2003. Nature 432:
610–613

Tanner BD, Swiatek E, Greene JP (1993) Density fluctuations and use of the krypton hygrometer in sur-
face flux measurements. In: Allen RG (ed.) Management of irrigation and drainage systems: integrated
perspectives. American Society of Civil Engineers, New York, pp 945–952

Van Dijk A, Kohsiek W, De Bruin HAR (2003) Oxygen sensitivity of krypton and Lyman-alpha hygrometers.
J Atmos Ocean Technol 20:143–151

Vickers D, Mahrt L (1997) Quality control and flux sampling problems for tower and aircraft data. J Atmos
Ocean Technol 14:512–526

Webb EK, Pearman GI, Leuning R (1980) Correction of the flux measurements for density effects due to heat
and water vapour transfer. Q J Roy Meteorol Soc 106:85–100

Wilczak JM, Oncley SP, Stage SA (2001) Sonic anemometer tilt correction algorithms. Boundary-Layer Mete-
orol 99:127–150

123


	Surface Energy Balance Measurements Abovean Exurban Residential Neighbourhood of Kansas City, Missouri
	Abstract
	1 Introduction
	2 Methods
	2.1 Metropolitan Area and Study Site
	2.2 Measurements and Data Analysis
	2.3 Meteorological Conditions

	3 Results and Discussion
	3.1 Surface Energy Partitioning
	3.2 Net Radiation and Surface Albedo
	3.3 Latent Heat Flux, Sensible Heat Flux and Bowen Ratio

	4 Storage Heat Flux
	5 Conclusions
	Acknowledgements


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice




