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Abstract

The development of modeling technology to adequately simulate water and pesticide movement 

within the rice paddy environment faces several challenges. These include: (1) adequately 

representing ponded conditions; (2) the collection/implementation of temporal/spatial pesticide 

application data at field scales; (3) the integration of various mixed-landuses simulation schemes. 

Currently available models do not fully consider these challenges and results may not be 

sufficiently accurate to represent fate and transport of rice pesticides at watershed scales. 

Therefore, in this study, an integrated simulation system, “RiceWQ-AnnAGNPS”, was developed 

to fully address these challenges and is illustrated in a California watershed with rice farming 

practices. The integrated system successfully extends field level simulations to watershed scales 

while considering the impact of mixed landuses on downstream loadings. Moreover, the system 

maintains the application information at fine spatial scales and handles varying treated paddy areas 

via the “split and adjust” approach. The new system was evaluated by investigating the fate and 

transport of thiobencarb residues in the Colusa Basin, California as a case study. Thiobencarb 

concentrations in both water and sediment phases were accurately captured by the calibrated 

RiceWQ model at the edge of field. After spatial upscaling, the integrated system successfully 

reflected both the seasonal pattern of surface runoff and the timing of monthly thiobencarb 
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loadings. Incorporating future enhancements can further improve model performance by including 

more detailed water drainage schedules and management practices, improving the accuracy of 

summer runoff estimations, and incorporating a more sophisticated in-stream process module. 

This integrated system provides a framework for evaluating rice pesticide impacts as part of a 

basin level management approach to improve water quality, which can be extended to other rice 

agrochemicals, or other areas with fine-scale spatial information of pesticide applications.

Graphical Abstract
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1. Introduction

As a commonly grown agricultural crop, rice (Oryza sativa) is inevitably treated with various 

pesticides at different growth stages to avoid pest damage and maintain crop productivity. 

Rice pesticide transport into surface waterbodies negatively influences aquatic species 

(Rossi et al., 2020; Stadlinger et al., 2018). For example, thiobencarb, a commonly used 

rice herbicide controlling graminaceous weeds, had been reported to cause both acute and 

chronic toxicity to different non-target organisms, and is relatively persistent in both water 

and soil (Ceesay, 2000; Kuivila and Jennings, 2007; Quayle et al., 2006). Both laboratory 

and field studies exhibited negative effects of thiobencarb on aquatic invertebrates and 

vertebrates, including the reduced emergence success, shortened development time (Burdett 

et al., 2001), and significant inhibitory effects on Acetylcholinesterase activity(Fernández-

Vega et al., 2002) and fecundity (Elias et al., 2020).

Monitoring systems are often applied to measure and assess the extent of water quality 

degradation caused by various agrochemicals. Local stakeholders have investigated rice 

pesticide residues in surface water via sampling and chemical analysis (Bhattacharjee et al., 

2012; Carazo-Rojas et al., 2018). Monitoring results are then linked to usage and application 

patterns for mitigation purposes (Fabro and Varca, 2012; Wagner et al., 2019). Due to 

the expense and labor costs, most pesticide monitoring and usage reporting is confined to 
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field scales and for limited periods of time (DeMars et al., 2021). Long term, large scale 

monitoring and reporting usually exceeds typical research grant periods and require both 

funding and legislative support from the government. Currently, a highly detailed usage 

reporting system is only available in California, USA. State law requires farmers to report 

pesticide application times and amounts by crop type to the California Department of 

Pesticide Regulation (CDPR). Agricultural applications are recorded with sub-daily scale 

and are spatially organized using the Public Land Survey System (PLSS) section spatial 

resolution (COunty/Meridian/Town/Range/Section, or COMTRS, ~1 square mile), which 

formed the Pesticide Use Reporting (PUR) database (CDPR, 2015). The abundance of 

pesticide usage information provided a rare opportunity to study and develop modeling 

technology for rice pesticide fate and transport, given the expensive nature and limited 

resources for extensive water quality monitoring in California, which is the second largest 

US rice growing state.

Considering the complexities of rice management systems, extra cares should be taken 

in fate and transport simulation of rice pesticides via modeling approaches (Wang et al., 

2019c). Compared to other crops, rice fields are applied with a more detailed management 

practices, making it a more complicated ecohydrological system. Rice fields are usually 

flooded during the growing season, requiring irrigation to maintain the ponded condition. 

Pesticides applied in paddy fields are released to agricultural ditches via controlled drainage 

or overflow when water depths exceed the height of the drainage gate. The alternating wet 

and dry environment also induces oxygen content variation of soil and water, ranging from 

aerobic to anaerobic conditions.

Generally, to adequately simulate water and pesticide movement within the rice paddy 

environment faces four challenges. The first challenge is in the representation of the 

appropriate processes within a rice paddy model, which should include: paddy water-

soil pesticide exchange, paddy water management practices, and aquatic dissipation or 

metabolism degradation of pesticide residues (Luo et al., 2012; Wang et al., 2018). The 

second challenge is in the collection of pesticide application information. The lack of 

accurate spatial application information can substantially affect the accuracy of simulation 

results (Fohrer et al., 2014; Janney and Jenkins, 2019), but are common in most areas. 

The third challenge is the integrating technology at basin scale capturing the spatial aspects 

of the system. Usually, multiple other landuses co-exist with the rice system in the same 

watershed. Therefore, it requires at least two different simulation schemes to address both 

rice and dryland crops. The fourth challenge is specific to California: the detailed pesticide 

usage summery (PUR database) is not ideal for direct utilization in modeling, because of 

the spatial organization of the dataset. In California, usage is reported at field scale, but is 

spatially lumped at the COMTRS level. This means the spatial shape and location of each 

treated paddy field is not identifiable inside a COMTRS. Besides, the acreage of treated 

fields and applied amount varies from year to year. Since most models have their own 

basic simulation unit to represent field level processes (usually with a defined boundary), 

the spatial inconsistency between basic simulation units and COMTRS brings difficulties 

in incorporating detailed usage information for field level simulation. Further, detailed 

spatial information of rice treated area (COMTRS level) requires more spatially refined 

“subwatershed- hydrological simulation unit” schemes. Otherwise, the variation of pesticide 
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application/management information will be spatially unified due to the coarse simulation 

schemes.

Many previous research efforts have attempted to overcome one or more of the challenges 

mentioned above, but not all four. For example, scientists developed many pesticide 

models specifically for paddy fields. Commonly used rice models include Pesticide Paddy 

Field Model (PADDY) (Inao and Kitamura, 1999), Rice Water Quality Model (RICEWQ) 

(Williams et al., 2014), Simulation Model for Pesticide Concentrations in Paddy Field 

(PCPF) (Watanabe et al., 2006), and Pesticide in Flooded Application Model (PFAM) 

(Young, 2012). However, these models are limited to the field scale and are incapable of 

simulating pesticide transport to downstream waterbodies, which is of great importance in 

pesticide ecological risk assessments (Wang et al., 2019b).

To expand simulations from field to watershed scales, researchers attempted to integrate 

models, or adapt rice paddy simulation modules into well-developed ecohydrological 

models. For example, Miao et al. (2003) coupled RICEWQ model and a stream transport 

model (RIVWQ) to evaluate the environmental concentration of Tryciclazole in paddy fields 

and adjacent water bodies. Simulation results exhibited a successful predicting of pesticide 

exposures in water bodies near paddies for higher tier risk assessments. However, RICEWQ-

RIVWQ is more suitable for a rice dominated watershed, but not adequate for watersheds 

with mixed landuses. As a commonly used basin level model, Soil and Water Assessment 

Tool (SWAT) is also applied to evaluate the fate and transport of pesticides(Wang et al., 

2019a). However, the default SWAT pothole algorithm lacks the capacity to simulate paddy 

fields (Wang et al., 2018). Therefore, efforts have been made to modify the default SWAT 

module (Sakaguchi et al., 2014; Wu et al., 2019; Xie and Cui, 2011), making it more 

suitable for rice simulation via algorithm improvement (e.g., pothole shape, evaporation 

process, overflow generation) in the SWAT hydrological component. The most recently 

released version is called SWAT-Paddy (Tsuchiya et al., 2018), which has been evaluated 

in northeastern China for hydrology and nitrate simulation (Ouyang et al., 2020), but not 

pesticide simulation.

To our knowledge, PCPF-1@SWAT (Boulange et al., 2014; Tu et al., 2018) is the only 

successful application for rice pesticide simulation at the watershed level, with both 

paddy and dryland simulation systems to address the mixed landuses within a watershed. 

PCPF-1@SWAT not only improved the hydrological component (pothole and overflow 

algorithm improvement) of the SWAT model, but also utilized PCPF-1 for pesticide 

simulation in paddy water and shallow soil layer, and coupled with SWAT to track pesticide 

movement in deeper soil layers, as well as chemical transport in river channels. The main 

challenge of using PCPF-1@SWAT in California is how to incorporate COMTRS pesticide 

application information in the modeling system. The basic simulation unit, or the so-called 

hydrological response unit (HRU) in SWAT is decided by landuse, soil, and slope. Inside a 

subbasin, multiple paddy fields at different COMTRS could be treated as one HRU as long 

as the same slope and soil type are maintained. Therefore, rice HRU could be geographically 

separated with multiple fields. Each paddy field could be treated differently depending on 

the application date/rate summarized from its located COMTRS. However, SWAT always 

treats HRU as one, and applies the same management practices (Liu et al., 2019; Wang et 
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al., 2017) and climate information (Wang et al., 2016; Yen et al., 2018) to different fields in 

such HRU. The spatial simplification could be tolerated if no detailed management practices 

were available, but not in California, where pesticide application information is summarized 

in fine spatial scaled COMTRS. Besides, the HRU simplification also makes it difficult to 

handle the annual variation of rice planting acreages, which is also reported at COMTRS 

level (~1 mi2, Fig. 1).

Compared to other ecohydrological models for agrochemical simulation, the Annualized 

Agricultural Non-Point Source pollution model (AnnAGNPS) provides spatial explicit 

hydrological boundaries as its basic simulation unit (AnnAGNPS cells) (Chahor et al., 

2014). Therefore, accurately incorporating the detailed, COMTRS level rice pesticide 

application/loading information into the basin level modeling system is possible. The 

combination of characterization of spatial explicit information and simulation capabilities 

at field to basin scales using AnnAGNPS provides an effective way to link with other field 

level models or newly designed components (Shen et al., 2016; Yasarer et al., 2018; Yuan 

et al., 2007). The capability of AnnAGNPS in reflecting soil erosion and sediment transport 

(Chahor et al., 2014; Zema et al., 2016) is another advantage for pesticide modeling, because 

many pesticides are hydrophobic, which are more easily absorbed by sediments during the 

channel transport process.

Considering all these modeling challenges, and the advantages of AnnAGNPS, we therefore 

proposed a new integrated simulation system “RiceWQ-AnnAGNPS” to evaluate pesticide 

fate and transport appropriate for California rice paddy environment, which not only extends 

field level simulations into watershed scales considering mixed landuses, but also maintains 

the fine spatial information of pesticide application and varying acreages of rice treated 

areas.

The detailed objectives of this study are two folds. The first objective was to build an 

integration framework to investigate rice pesticide runoff with the field scale RICEWQ 

model and the watershed scale AnnAGNPS model, investigating pesticide runoff from 

paddy fields. The second objective is to demonstrate the application of this new integrated 

modeling system in the Colusa basin with intense rice farming, but also containing many 

other landuses.

2. Methodology

2.1. Study area

For this modeling research we selected a headwater subbasin in northern California, the 

Colusa Basin, as our study area. The Colusa basin envelopes the northern portion of 

Yolo County, most of Colusa County, and the lower part of Glenn County, with a total 

drainage area of 4137 km2. Colusa basin is a typical watershed in this region, with intensive 

rice farming (19.93%) and other cultivated landuses (almond, spring wheat, tomato, etc) 

accounting for 18.08% of the drainage area. The main channel in the watershed is the 

Colusa basin drain, conveying tailwaters from paddy fields with pesticide residues, and 

eventually draining to the Sacramento river, transporting to downstream areas. Inside Colusa 

Basin, daily precipitation and temperature data is recorded by NOAA Global Historical 
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Climatology Network Daily (GHCND) Station USC00041948 (COLUSA 2 SSW, CA US). 

Daily flow discharges are collected by California Department of Water Resources at station 

A02976 (Fig. 1). Water sampling for dissolved thiobencarb is measured near A20976 by 

California Rice Commission and State Water Resources Control Board. Usually, water 

quality sampling is conducted weekly during the rice growing season (late April to July). 

Rice paddy fields are treated with thiobencarb each year since the early 1990s, with treated 

acreage and location varies every year (Fig. 1).

2.2. Model introduction

2.2.1. RiceWQ—The RICEWQ model is the field level pesticide exposure model 

specifically designed for paddy environment (Williams et al., 2014). RICEWQ considers 

ponded water conditions in paddy fields, simulating water movement and pesticide fate 

associated with rice water management practices (e.g., irrigation, controlled drainage, 

overflow).

The principle of mass balance is utilized to track the change of water volume, as well as the 

pesticide residues in three phases, which are plant foliage, water layer and paddy sediment. 

After pesticide application, some chemicals may be intercepted by crop leaves, while most 

of them are maintained in paddy water or absorbed to paddy sediments. Model simulates the 

chemical partitioning between water and sediment through the process of direct portioning, 

diffusion, the settling and resuspension of suspended sediment.

Pesticide residues in both water and sediment are further simulated via the decay to solar 

radiation (photolysis), the reaction with other chemicals in water layer (hydrolysis), and 

the degradation by micro-organisms (biolysis). RICEWQ provides pesticide and water 

loadings at the edge of the field. Users can adjust the water depth to implement irrigation 

or discharge. When paddy water is released, flow discharge with pesticide residue in the 

water phase is removed from the simulation system. When paddy water is recharged, then 

pesticide residues will be re-distributed between the sediment compartment and recharged 

water layer.

In this study, RiceWQ was used to simulate the thiobencarb loadings in both paddy 

water and sediment at the field level. Pesticide loadings and water discharged from paddy 

fields were then lumped at the COMTRS level. Due to the limitations of overserved 

data, we conducted the calibration at one rice field in Glenn County which had 

adequate measurement collected by Ross and Sava (1986). The purpose of this field level 

calibration was to evaluate RiceWQ performance in representing physiochemical processes 

of thiobencarb in both paddy water and soil compartments, while considering more 

spatially explicit information, such as soil properties, climate inputs, and water/pesticide 

management practices. The field-level modeling performance can be found in the “Results 

and Discussions” section.

2.2.2. AnnAGNPS—Designed and developed by USDA-ARS, AnnAGNPS is a process-

based, daily time scale model for hydrological and water quality simulation at the watershed 

scale (Yuan et al., 2003; Yuan et al., 2007). AnnAGNPS employs GIS technology to divide 

the watershed into various sub-areas with explicit hydrological boundaries (i.e AnnAGNPS 
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cells) and generate a reach network to route overland flows from AnnAGNPS cells. Each 

AnnAGNPS cell is the basic spatial simulation unit associated with a single climate, 

landuse, soil type and management throughout the cell.

Daily soil moisture balance is maintained via the simulation of applied water (precipitation 

and irrigation), runoff, evapotranspiration and percolation. The rainfall-runoff processes at 

cell level are simulated using the NRCS Curve Number (CN) approach as part of the method 

to determine runoff, and the TR-55 approach to determine peak flow rate (Bosch et al., 

1998). Surface runoff can also be a result of irrigation management and snowmelt processes. 

Potential Evapotranspiration (PET) is simulated using the Penman-Monteith equation. 

Actual evapotranspiration is adjusted based on PET, crop coefficients at different growth 

stages (Allen et al., 1998), and the available soil moisture in each AnnAGNPS cell. Sheet 

and rill soil erosion is determined by the Revised Universal Soil Loss Equation (RUSLE) 

(Renard, 1997). Pesticide simulation at the cell level is adapted from the GLEAMS model 

(Knisel and Douglas-Mankin, 2012). Both soluble and sediment attached pesticides can be 

simulated within AnnAGNPS.

Daily load of water, sediment, nutrient and pesticide is transported from AnnAGNPS cells 

to reaches, moving from upstream to downstream, and eventually to watershed’s main 

outlet (Taguas et al., 2012). Reach routing is conducted when runoff is generated in an 

AnnAGNPS cell. Sediment in the channel is composed of sheet/rill, gully and bed/bank 

sediments, and is routed based on the Bagnold equation (Bagnold, 1966; Yen et al., 2017). 

Pesticide residues are transported by both sediment and water in the reach network. The 

pesticide in transport is degraded based on their half-life, water temperature, and reach travel 

time. The soluble portion can be further reduced by water infiltration at channel bottoms. 

The sediment-attached portion are adjusted by changes in clay sediment from the upstream 

to downstream. Pesticide equilibration is conducted at the beginning (upstream) and the end 

of the routing (downstream).

In this study, AnnAGNPS was used to simulate all non-rice landuses in Colusa Basin. 

Surface runoff from all landuse types, and rice pesticide loadings provided by RiceWQ 

were routed to downstream areas through the channel network delineated by AnnAGNPS. 

Detailed model integration approach could be found in the next section.

2.3. Model integration

The spatial inconsistency in RiceWQ and AnnAGNPS simulation units/scales requires an 

integrated modeling system for watershed level simulation. AnnAGNPS conducts simulation 

in AnnAGNPS cells with hydrological boundaries. Only one dominate management is 

assigned to each AnnAGNPS cell. RiceWQ, on the other hand, summarize rice field results 

(pesticide loadings and paddy water discharge) at the COMTRS level. To include rice 

pesticide runoff into the AnnAGNPS simulation scheme (Fig. S1), a step-wise approach 

(Split & Adjust approach) was proposed for integration:

1. Simulate paddy water discharge/thiobencarb loadings at the edge of the field by 

RiceWQ.
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RiceWQ was used to simulate all paddy fields located in COMTRS. Daily loadings from 

each section could be directly taken from RiceWQ results as W-RICEWQsection,n,t and 
P-RICEWQsection,n,t, which explained by Eqs. (2), (3) respectively in detail in the later 

section.

2. Divide water and pesticide loadings at COMTRS section level into different 

AnnAGNPS cells.

Rice pesticide loadings lumped at the COMTRS section scale finally entered the channel 

streams which is associated with AnnAGNPS cells. If the grid section is overlaid with 

several cells, then both water discharge and pesticide loadings (daily time series data) 

from one COMTRS section (06M16N03W16 in Fig. 2a) need to be separated into several 

intersected AnnAGNPS cells (ID: 6582,5671, 6573, 6572 in Fig. 2a).

Pesticide loadings distributed to each AnnAGNPS cell was controlled by “split ratio”, which 

is computed based on the overlaid area inside each COMMTR (represented in multiple 

colors at 06M16N03W16 in Fig. 2a). Eq. (1) was used to distribute pesticide loadings from 

one section into several AnnAGNPS cells over the entire simulation.

Ratiosplit = AreaIntercellID

1
mAreaIntercellID

(1)

Where AreaIntercellID is the intersected area for a specific AnnAGNPS cell, m is the total 

cells intersected with the grid section under scrutiny, in Fig. 2a, m = 4. Ratiosplit is the split 

ratio. The denominator part of Eq. (1) equals to the area of COMTRS 06M16N03W16.

For example, the intersected area for AnnAGNPS cell “6852”, “6571”, “6573” and 

“6572”, are 61.3, 15.8, 168.9, 5.0 hectares respectively (represented as purple, green, 

brown and olive polygons in Fig. 2a), then the split ratio for cell 6573 is 168.9/

(61.3+15.8+168.9+5.0) = 67.3%, which means 67.3% of the loadings from paddy fields 

in COMMTR 06M16N03W16 will contribute to AnnAGNPS cell 6573.

Similarly, split ratios from other sections (06M16N03W15, 06M16N03W17, 

06M16N03W21, 06M16N03W22) are computed, which are also intercepted with the cell 

6573, and will contribute water and loadings to this AnnAGNPS cell.

3. Aggregate water and pesticide loadings from different sections into one 

AnnAGNPS cell.

Based on daily water and loading from step1 and split ratio from step 2, for any given 

AnnAGNPS cell, aggregated water loadings from paddy fields was computed by Eq. (2)

W _RICEW Qcell, t = 1
n Ratiosplit * W RICEW Qsection, n, t (2)

where W _RICEW Qcell, t s the total water loadings aggregated to a specific AnnAGNPS cell 

in day t (m3). W _RICEW Qsection, n, t is the water total loadings (m3) lumped at the grid 
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section n for day t (provided by RiceWQ daily results). n is the total number of sections 

contributing pesticide runoff to a specific AnnAGNPS cell. In the case of Fig. 2b, n=5.

Similarly, the pesticide loadings in water phase for a specific AnnAGNPS cell was computed 

based on Eq. (3)

P _RICEW Qcell, t = ∑ Ratiosplit * PRICEW Qsection, n, t (3)

where, P _RICEW Qcell, t is the pesticide loadings in paddy water aggregated to a specific 

AnnAGNPS cell in day t (mg). PRICEW Qsection, n, t is the pesticide loadings (mg) lumped at 

the grid section n for day t (provided by RiceWQ daily results).

The dissolved pesticide loadings transported by runoff was computed by Eq. (4)

Pd − RICEW Qcell, t = ∑ Ratiosplit * PdRICEW Qcell, t * FDW cell * 10−6
(4)

where, FDW cell is the dissolved fraction of RICEWQ pesticide in water. The coefficient 10-6 

is the conversion of loadings from mg kg.

FDW cell = 1/(1 + Koc * Foc * Css * 109 (5)

Koc is the organic carbon partition coefficient (m3/mg) of thiobencarb, which may vary from 

384 ml/g to 1435 ml/g (Fisheries, 2012). Foc is the fraction of organic carbon. Css represents 

the sediment concentration of the RICEWQ water load (Mg/m3), which is assumed to be all 

clay. A default value of 30 ppm (0.00003 Mg/m3) is derived from personal contact with the 

RICEWQ developers.

The pesticide loadings attached with suspended sediment was then computed by Eq. (6)

Pa − RICEW Qcell, t = P − RICEW Qcell, t − Pd − RICEW Qcell, t (6)

4. Adjust AnnAGNPS cell area.

Rice paddy fields not only provide pesticide runoff to a specific cell, but also take a 

considerable acreage. Actually, we can image treated paddy fields as point sources in the 

integrated modeling system, which also occupy certain acreage in the watershed. The area 

of AnnAGNPS cell need to be adjusted to avoid double counting when non-rice fields are 

simulated.

The treated rice area in a specific AnnAGNPS cell was computed by Eq. (7)

AITAcellID = 1
n (Ratiosplit * AreaTreatedsection, n (7)
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Where AreaTreatedsection, n is treated rice area (m2) lumped at the grid section n, AITAcellID 

is the total treated rice area (m2) for a specific AnnAGNPS cell.

Therefore, the non-treated area for a specific AnnAGNPS cell was computed by Eq. (8)

NTAcellID = AreacellID − AITAcellID (8)

where AreacellID is the total area of one AnnAGNPS cell, NTAcellID is the non-treated area 

in such cell, which is simulated by AnnAGNPS in the next step.

5. Model non-rice landuse by AnnAGNPS. Integrate water/pesticide from all 

landuses, and route them from fields to channels.

If an AnnAGNPS cell is not intersected with any rice sections, then this entire cell was 

simulated by AnnAGNPS. Otherwise, NTAcellID was computed based on Eq. (8) to decide 

the proportion of the cell for AnnAGNPS simulation. Flow/pesticide from paddy fields and 

flow/sediment from other landuse in AnnAGNPS cells eventually transported to channels. 

Pesticide was redistributed between water and sediment during the channel transport process 

using AnnAGNPS in-stream process algorithm.

3. Results and discussions

3.1. RiceWQ simulation results at the field scale

Field level evaluation was conducted for unit area loadings in the paddy water and soil 

phases (Fig. 3a and b). The thiobencarb concentration in released drainage was also 

evaluated (Fig. 3c). Evaluation of field level modeling is based on measurement in a paddy 

field (40 ha) at Glenn County, California (Ross and Sava, 1986). Thiobencarb was applied 

on May 30th (9 days after rice seedling) with the rate of 4.48 kg/ha. After application, water 

was held for six days at average depth of 25 cm. Then, water with thiobencarb residues 

was rapidly drained from the field after holding. Detailed information on parameter set 

comparisons between the equilibrium test and the field level calibration is recorded in Wang 

et al. (2019b). RICEWQ was able to mimic the pesticide loadings in both paddy water 

and soil phases after calibration, as well as the thiobencarb concentration in discharged 

water. After thiobencarb application in late May, pesticide was distributed between both 

water phase and soil phase. Loadings in both paddy water and paddy soil reached to their 

peak values around a week after application. Then loadings in water drops substantially in 

middle June due to releasing paddy water from the field (Fig. 3a). Since thiobencarb was 

strongly attached to soil particles, loadings in the soil phase were not significantly affected 

by the water release in Middle June. The dissipation process is slow in paddy soil, reflected 

by a considerable measured value in early July (Fig. 3b). Satisfactory model performance 

provided confidence in the accuracy of pesticide mass and concentration values at the edge 

of the field, which is a prerequisite for subsequent watershed level integration. We then 

extended the calibrated parameter settings from the test plot to all paddy fields in the Colusa 

basin. Daily water and thiobencarb loadings are both coupled with AnnAGNPS based on our 

proposed “split & adjust” integration method.
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3.2. Observed surface runoff and monthly thiobencarb loadings

Currently, no groundwater module has been developed within AnnAGNPS to represent 

the contribution of return flow to total streamflow discharge. Therefore, AnnAGNPS 

only represents surface runoff, not including baseflow conditions (Zema et al., 2016). 

Separating surface runoff from daily observations at CDWR station A02976 is useful for 

model performance evaluation. The baseflow-surface runoff separation was conducted by 

the automated digital filter, which has been widely employed to split high-frequency and 

low-frequency signals (Arnold and Allen, 1999; Lee et al., 2018). The baseflow ratio is 

around 54% for the entire period (Fig. 4).

Thiobencarb measurements were conducted via water sampling near CDWR station 

A02976, reported as instantaneous concentrations. However, infrequent instantaneous 

concentration values cannot be used directly for model performance evaluation. It is 

better using the mass (loadings) of chemical constituent as observed measurement, which 

considers both instantaneous concentration and continuous flow discharge. Therefore, the 

USGS Load Estimator (LOADEST) was utilized to calculate the constituent loadings in 

streams via multiple regression equations (Runkel et al., 2004), when a time series of 

observed streamflows and instantaneous thiobencarb concentrations was provided. Fig. 

5a shows the flow discharges and instantaneous concentrations of thiobencarb at station 

A02976. The peaks of flow discharge and thiobencarb concentration are detected at different 

time periods, with peak discharge occurring in winter, but higher concentrations occurring in 

summer, when paddy fields released ponded water into the ditches. Compared to other years, 

the late 1990s and early 2000s experienced higher concentrations, which were consistent 

with the overall pesticide application pattern in this area (CDPR, 2015). Peak loadings of 

thiobencarb in each year occurred in the summer months (Fig. 5b). In addition, similar 

to the peak concentration pattern, the higher loadings were also found in the period of 

1995–2002. The highest loadings happened in 2006 due to the higher flow discharge in the 

summer months of that year, since measured concentrations were at lower levels in 2006. 

The monthly loadings generated by USGS LOADEST (Fig. 5b) were used to evaluate model 

performance of thiobencarb simulation in the following section.

3.3. Coupling results at reach segment

The integrated modeling system did a good job in capturing monthly surface runoff for 

the entire 23-year period (Fig. 6a), especially for runoff caused by winter storms, though 

the system showed modest overestimation of winter peak flows. The average monthly 

discharges for observed and simulated surface runoff are 10.21 m3/s and 11.08 m3/s, 

respectively. Monthly statistics of Mass Balance Error, R-squared and the Nash-Sutcliffe 

Coefficient (Nash and Sutcliffe, 1970) are 7.1%, 0.859 and 0.704, respectively, which 

are adequate based on the standard model performance evaluation criteria recommended 

by Moriasi et al. (2015). For summer months, the integrated model systematically 

underestimated the surface runoff (Fig. 6b), noting the change in the Y axis from a linear 

scale (Fig. 6a) into a log scale. For the summer months, Mass Balance Error and R-squared 

values are −8.7% and 0.432, respectively, while the Nash-Sutcliffe Coefficient is negative 

(−1.283). We attribute the poor performance of surface runoff in the summer months to three 

factors: 1) the uncertainty of irrigation information in summer months for dryland crops; 2) 
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the uncertainty of water releases from rice fields; and 3) the uncertainty in baseflow-surface 

runoff separation.

Agricultural lands in California must be irrigated in summer, since most precipitation events 

occur in the winter and spring. Irrigation-runoff is the dominant source of summer surface 

runoff in California. The irrigation schedule applied in this study was estimated based 

on crop evapotranspiration, which is a water-use efficient method for deriving irrigation 

amounts and times. This approach may underestimate the irrigation amount (Fig. 6c), 

resulting in the generation of less tailwater from dryland crop fields. Therefore, summer 

surface runoff is underestimated as shown. In addition, the amount of water released from 

rice fields was also uncertain. In current model settings, the schedule of water release was 

mainly dependent on the rice pesticide management requirement (Wang et al., 2019b). For 

thiobencarb, paddy water was released only once after application in RiceWQ. However, 

paddy water could actually be released multiple times during the rice growing season 

(Kim et al., 2006), which is not completely captured by RiceWQ. Another factor causing 

the underestimation of summer surface runoff is the limitation of the observed data. The 

surface runoff was actually the processed data after applying the automated digital filter, 

which separated the high frequency signal (surface runoff) from the low frequency signal 

(baseflow). In other words, the baseflow separation was based on signal analysis instead of 

physically-based laws, which may introduce uncertainties into the surface runoff estimations 

(Zhang et al., 2013).

Two scenarios are compared to examine the sensitivity of Koc in controlling the dissolved 

loadings of thiobencarb at station A02976 (Fig. 7). Based on Eqs. (4), (5), Koc is the 

adjustable parameter for altering the relative portions of soluble and absorbed components 

of the pesticide. We selected two Koc values (384 vs. 900 ml/g) to test the responses of 

dissolved loadings to the parameter selection. The seasonal trend of dissolved thiobencarb 

is successfully captured by the “RiceWQ-AnnAGNPS”, with the timing of peaks being 

accurately reflected. However, although the simulated thiobencarb mass is at the same 

order of magnitude as the observation, the model substantially overestimated the monthly 

loadings. Adjusting the Koc value from 384 to 900 ml/g was a promising way to reduce the 

peak loadings. For some specific years (1993, 2004–2013), the adjusted loadings matched 

very well with the monthly overserved loadings, but for other years (e.g., 1994–2003, 

2014–2015), the model still substantially overestimated the monthly loadings. For the 

entire simulation period, the monthly statistics of Mass Balance Error, R-squared and the 

Nash-Sutcliffe Coefficient are 24.3%, 0.189, and −1.289 respectively (Table S1). Although 

the Mass Balance Error is not huge for the entire period, poor Nash-Sutcliffe Coefficient 

indicates the significant mismatch of several years’ loadings. The statistic value of R-square 

is much better than Nash-Sutcliffe Coefficient, implying that simulated data have the same 

trend with observed data (LOADEST estimation) in time, but not at a proportionate rate 

(Wang and Kalin, 2011).

Thiobencarb is moderately to slightly mobile in sediment, with a Koc range from 384 to 

1435 ml/g (Fisheries, 2012). Therefore, we can further adjust Koc, tweaking it beyond 

900 ml/g to further reduce the loadings in the 1990s. However, this strategy may lead to 

underestimation after year 2004. We attribute the poor performance of dissolved thiobencarb 
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loading to several uncertainties and errors: 1) the uncertainty caused by paddy water releases 

as AnnAGNPS inputs; 2) the uncertainty in generating monthly observed loadings; 3) the 

structural uncertainty of model in-stream processes; and 4) accumulated errors from the 

summer flow simulation.

Thiobencarb is an herbicide used only in rice paddy fields, so thiobencarb residues detected 

in Colusa channels should all come from released paddy water. Since the paddy water 

drainage schedule was estimated based on the purpose of rice pesticide management, water 

release from rice fields may not completely captured and provided to AnnAGNPS as 

accurate input. Another factor affecting the accuracy of water releasing is related to tailwater 

management practices. The model treated the released paddy water as point sources, with 

direct discharge from the edge of fields to channels. However, rice growers in California 

may apply a “recirculating tailwater recovery system” to facilitate the reuse of drainage 

water and avoid direct pesticide runoff to public waterways (UCCE, 2015). Currently, 

there are no available records summarizing farms which applied the “recirculating tailwater 

recovery system” in their paddy fields. Therefore, the model does not consider any loading 

reduction due to tailwater management practice, which could substantially reduce observed 

thiobencarb residues in channel segments.

The mismatch between observed and simulated loadings may also be impacted by the 

uncertainty in estimating monthly thiobencarb loadings via LOADEST. Note that the ground 

truth measurements of thiobencarb are instantaneous concentrations, but not mass loadings. 

The load estimation process is complicated, and may experience various sources of error, 

such as retransformation bias, data censoring and non-normality (Jiang et al., 2014; K. 

Jha et al., 2007). The regression equations applied by LOADEST first build a relationship 

between instantaneous concentration and flow discharge, and then loadings are estimated. 

Thiobencarb sampling is always conducted in summer months under low-flow conditions, 

making its loading estimations inaccurate under high-flow conditions. This factor could 

explain the abrupt appearance of high loadings in 2006 (Fig. 7), when instantaneous 

concentration water samplings were not high (Fig. 5a). The extreme high loading can be 

caused by the imprecision and bias of USGS LOADEST in the extrapolation to high flow 

conditions. Besides, the instantaneous concentrations of water quality data are not error free 

either, but associated with measurement uncertainty (Moriasi et al., 2007; Yen et al., 2016), 

which are usually caused in sample collection, sample storage/preservation, and chemical 

analysis (Harmel et al., 2006). Therefore, the uncertainty in monthly thiobencarb loadings is 

further exaggerated by measurement errors.

Model structure uncertainty is another factor potentially resulting in loading overestimation. 

The in-stream process module of AnnAGNPS for pesticide transport is relatively simple, 

mainly based on a first order equation to demonstrate the equilibration of dissolved 

and absorbed pesticide at a reach segment. However, the real natural process is more 

complicated. Seepage, diffusion, sediment settling, and resuspension processes all affect the 

relative portions of dissolved and absorbed pesticide. Therefore, module enhancements of 

the in-stream process will help improving model performance as well.
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Accumulated error is the last possible reason for inaccurate prediction of pesticide loadings. 

Model performance of dissolved pesticide is directly related to flow, while model’s accuracy 

in representing particulate pesticide is also related to the sediment fate and transport. 

The interdependencies among the constituents are due to their shared transport processes. 

Although the integrated modeling system successfully captured the surface runoff for the 

entire period, model performance for thiobencarb loadings was more dependent on summer 

surface runoff. Therefore, the inaccuracy in summer surface runoff estimation (Fig. 6b) may 

introduce additional errors in pesticide loading predictions.

4. Summary and conclusions

In this study, an integrated modeling system, “RiceWQ-AnnAGNPS”, was designed for rice 

pesticide simulation at the watershed level. We applied it to the Colusa basin, California, 

evaluating its ability to capture surface runoff and thiobencarb loadings. The integrated 

system overcomes three common modeling difficulties in rice pesticide simulation at the 

watershed level, including the representation of appropriate processes for paddy fields 

with ponded water, the collection and implementation of pesticide application information, 

and the handling of mixed/multiple landuse simulation. It also resolves one challenge 

specific for areas like California: the spatial inconsistency between the organization of 

pesticide application information and basic hydrological simulation units for watershed 

level modeling. The “split & adjust” approach has been successfully implemented by the 

integrated system to maintain the most spatially explicit pesticide application information, 

and to handle the dynamic treated rice acreage which varies from year to year. Since the 

integrated modeling system extends field level simulation into basin scale with mixed land 

uses. Therefore, the effect of several non-structural conservation practices (e.g., reduced rate, 

water holding) in controlling pesticide loadings can also be evaluated at downstream water 

bodies via the help of this new designed system.

Based on our modeling results, the thiobencarb concentrations in both water and sediment 

phases were well captured by the calibrated RiceWQ at the edge of field. After including 

the rice pesticide runoff loadings from COMTRS to AnnAGNPS simulation schema, the 

integrated modeling system successfully reflected the seasonal pattern of surface runoff, 

especially the runoff caused by winter storms. However, summer surface runoff is not well 

reflected due to the uncertainty in irrigation of dryland crops, inaccurate estimation of 

paddy released water, and potential limitations in baseflow-surface runoff separation by the 

recursive digital filter. The integrated modeling system was able to reflect the timing of 

monthly thiobencarb loadings, but not the amount estimated by LOADEST. Adjusting the 

Koc value was a promising strategy to avoid loading overestimation for serval years, but not 

for all years. Further enhancements can be incorporated into the integrated system for future 

studies, such as including more detailed water drainage schedules and management practices 

of paddy fields, conducting more accurate summer runoff estimations, and developing a 

more sophisticated module representing thiobencarb in-stream processes.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
The variation of thiobencarb treated acreages (COMTRS level) in Colusa Basin.
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Fig. 2. 
RiceWQ-AnnAGNPS coupling schema. Fig. 2a exhibited the pesticide runoff from 

COMTRS “06M16N03W16” is distributed to four AnnAGNPS cells. The “split ratio” is 

decided by intercepted area. Fig. 2b indicated each AnnAGNPS cell (e.g. “6573”) can 

receive pesticide runoff from multiple intercepted COMTRS.
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Fig. 3. 
RiceWQ simulation results in paddy water & sediment at field level
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Fig. 4. 
Baseflow separation from observed streamflow discharge data via digital filter
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Fig. 5. 
Monthly thiobencarb loadings generated by USGS LOADEST
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Fig. 6. 
Hydrologic performance of “RiceWQ-AnnAGNPS”. Fig. 6a exhibited simulated and 

observed surface runoff in linear scale (peak flow comparison); Fig. 6b exhibited surface 

runoff in log scale (baseflow comparison); Fig. 6c showed AnnAGNPS predicted irrigation
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Fig. 7. 
Sensitivity of Koc on monthly dissolved thiobencarb loads from the integrated modeling 

system
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