Lawrence Berkeley National Laboratory

Recent Work

Title

QUANTITATIVE SYNTHESIS OF (C6H5)2AsF2+AsF6-AND (C6H5)2AsF3 VIA INTERACTION OF BENZENE WITH ARSENIC PENTAFLUORIDE

Permalink https://escholarship.org/uc/item/3dt534vg

Authors

Tanzella, F.L. Bartlett, N.

Publication Date

1981-05-01

LBL-12784 Preprint ? J

-BL-12-

Lawrence Berkeley Laboratory

UNIVERSITY OF CALIFORNIA

Materials & Molecular Research Division

PECTIVED Book And

JUN 1 1

Liber

Submitted to Zeitschrift fuer Naturforschun^g,^{CUE} (7) Teil B.

QUANTITATIVE SYNTHESIS OF $(C_6H_5)_2AsF_2^+AsF_6^-$ AND $(C_6H_5)_2AsF_3$ VIA INTERACTION OF BENZENE WITH ARSENIC PENTAFLUORIDE

Francis L. Tanzella and Neil Bartlett

May 1981

1

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 6782

Prepared for the U.S. Department of Energy under Contract W-7405-ENG-48

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California. Quantitative Synthesis of $(C_6H_5)_2AsF_2^+AsF_6^-$ and $(C_6H_5)_2AsF_3$ via Interaction of Benzene with Arsenic Pentafluoride.

Quantitative Synthese von $(C_6H_5)_2AsF_2^+AsF_6^-$ und $(C_6H_5)_2AsF_3$ durch Reaktion von Benzol mit Arsenpentafluorid

By Francis L. Tanzella and Neil Bartlett*

Department of Chemistry, University of California and the Materials and Molecular Research Division, Lawrence Berkeley Laboratory, Berkeley, California 94720 (U.S.A.)

A contribution to honor Professor Dr. Oskar Glemser on the occasion of his 70th birthday.

* Reprint requests to Prof. Dr. N. Bartlett

This work was supported in part by the Committee on Research of the University of California, Berkeley and by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy under Contract Number W-7405-ENG-48.

This manuscript was printed from originals provided by the author.

Key Words:

arylfluoroarsonium

arsenic

benzene

substitution

ABSTRACT

Benzene reacts quantitatively with AsF_5 to give $(C_6H_5)_2AsF_2^+AsF_6^-$, the first reported aryl or alkyl fluoroarsonium(V) salt. This reacts quantitatively with CsF to give $(C_6H_5)_2AsF_3$ and $CsAsF_6$. Interaction of $(C_6H_5)_2AsF_3$ with AsF_5 reconstitutes the fluoroarsonium salt. Variable temperature ¹⁹F NMR studies show \emptyset_2AsF_3 to be a rigid trigonal bipyramid, with the phenyl groups in equatorial positions, to 71°C.

Introduction

The reaction of benzene with $O_2^+AsF_6^-$ or $C_6F_6^+AsF_6^$ gives a mixture of products¹. In order to clarify that chemistry, the reaction of C_6H_6 with AsF_5 was undertaken on the assumption that the reactions with O_2AsF_6 and $C_6F_6AsF_6$ generated some AsF_5 which could also interact with benzene.

No products have heretofore been reported for the reaction of $C_{6}H_{6}$ with either PF_{5} , AsF_{5} or SbF_{5} , although $C_{6}H_{5}AsF_{4}$ and $C_{6}H_{5}PF_{4}$ have each been synthesized^{2,3} by other routes:

(O) $(OH)_2$ + $3SF_4 \rightarrow ØAsF_4$ + $3SOF_2$ + 2HF(O) $(OH)_2$ + $3SF_4 \rightarrow ØPF_4$ + $3SOF_2$ + 2HF

When AsF_5 is passed into a solution of C_6H_6 in either HF or SO_2ClF a white crystalline product forms quickly and quantitatively. This is identical to one of the products from O_2^+ or $C_6F_6^+$ salt interactions with benzene. The physical and chemical evidence shows that it is the salt $(C_6H_5)_2AsF_2^+AsF_6^-$.

Experimental

General experimental procedures are similar to those described in a related paper.¹ The acquisition and preparation of reagents and solvents are also as described in that paper with the following additions: $(C_6H_5ASOOH,$ supplied by Research Organic/Inorganic (Sun Valley, California) was recrystallized from CCl₄. CsF was used as received from Alfa Ventron (Beverly, Massachusetts). $(CH_3)_2SO$, supplied by Matheson, Coleman and Bell (Norwood, Ohio), was dried and stored over molecular sieves.

Interaction of benzene with arsenic pentafluoride to give $(C_6H_5)_2AsF_2^+AsF_6^-$ (I)

Arsenic pentafluoride (6.22 mmole, measured tensimetrically) was condensed into a Kel-F tube provided

with a magnetic spinbar and subsequently SO_2ClF (5 ml) was condensed (from its purification vessel held at -45°). a molar excess of benzene was condensed on to the frozen solvent. With the bottom half of the tube held at -78° the benzene in the upper half was allowed to melt at room temperature forming a green color upon solution. This was, (within a few seconds), followed by the formation of a copious colorless precipitate. To ensure completion of the reaction, the tube was held at 0° (with stirring) for one hour. Removal of solvent and drying under vacuum gave a white free-flowing crystalline solid, (1.41 g, 6.2 mmole"C₆H₅AsF₄")

Analysis Calcd for $C_{6}H_{5}AsF_{4}$: C, 31.60; H, 2.21; As, 32.9; F, 33.3%. Found: C, 31.77; H, 2.33; As, 33.1; F, 32.9%. The ¹⁹F NMR spectrum (DMSO) is shown in Figure 1. IR: (Nujol Mull, cm⁻¹) 1575(w), 1342(w), 1272(w), 1185(w), 1078(w), 1065(m), 995(m), 742(s), 709(s), 675(s), 462(m), 398(m), 380(m). The mass spectrum of the volatiles from the solid at 125° showed the $C_{12}H_{10}AsF_{2}^{+}$ species to be the highest molecular weight fragment and of high abundance. X-ray powder and precession data are given in Table 1. The NMR and infrared data support the formulation $(C_{6}H_{5})_{2}AsF_{2}^{+}AsF_{6}^{-}$ for the solid. This was confirmed by the following chemistry.

Interaction of $(C_6H_5)_2AsF_2^+AsF_6^-$ with CsF to give $(C_6H_5)_2AsF_3(II)$

 $(C_{6}H_{5})_{2}AsF_{2}^{+}AsF_{6}^{-}$ (0.46 g, 1 mmole) from above was mixed with cesium fluoride (0.15 g, 1 mmole) in a Teflon tube. Anhydrous hydrogen fluoride (5 ml) was distilled on to the solids, and the mixture allowed to stand at room temperature for one hour, after which the solvent was removed under vacuum. The resultant while solid was transferred to a Teflon filtration apparatus and extracted with several batches of dry toluene. Removal of the toluene from the filtrate, under vacuum, gave a colorless solid (0.29 g, 1.0 mmole). The ¹⁹F NMR spectrum (toluene) is given in Table 1.

Mass spectrum: m/e 286(4.2) $\emptyset_2 AsF_3^+$, 264(24.3) $\emptyset_2 AsF_2^+$, 248(5.0) $\emptyset_2 AsF^+$, 227(1.6) $(C_6H_4)_2 As^+$, 209(11.0) $\emptyset AsF_3^+$, 190(36.5) $\emptyset AsF_2^+$, 171(14.8) $\emptyset AsF^+$. The tolueneinsoluble by-product of the reaction was shown to be $CsAsF_6$ by its characteristic X-ray powder pattern.

Interaction of (C6H5)2AsF3 with AsF5

 $(C_{6}H_{5})_{2}AsF_{3}$ (0.210 g, 0.73 mmole), obtained as described above, was placed in a Teflon tube and anhydrous hydrogen fluoride (5 ml) condensed on top of it. A molar excess of AsF₅ was condensed into the tube and the vessel

· 5

was warmed to room temperature. The solid dissolved and the supply of AsF_5 was maintained until uptake ceased. The excess of AsF_5 was removed under vacuum at -78° and the solvent at room temperature to give a colorless solid (0.331 g, 0.73 mmole). An X-ray powder pattern of this product was identical to that obtained from the benzene/ AsF_5 reaction.

Interaction of (C6H5)2ASOOH with SF4

 SF_4 (9.2 g, 85 mmoles) was condensed on to $(C_6H_5)_2^-$ AsOOH (4.4 g, 17 mmoles) in a Monel bomb. After being heated at 200° for 12 hours, the solid grey-colored product was placed in a 50 ml flask with 4 g of NaF. The product was dissolved in 20 ml petroleum ether, filtered and recrystallized to give colorless crystalline $(C_6H_5)_2$ AsF₃ (2 g, 7 mmoles). The solid which melts with decomposition ~ 135°, gives the same mass spectrum and ¹⁹F NMR as described for II above. The NMR was unchanged in the temperature range -50° to +71° (see Table 1).

Results and Discussion

Benzene reacts with Arsenic pentafluoride to give the colorless, crystalline solid $(C_6H_5)_2AsF_2^+AsF_6^-$ (I) in quantitative yield:

$${}^{2}C_{6}^{H}_{6} + {}^{2}AsF_{5} \rightarrow (C_{6}^{H}_{5})_{2}^{AsF_{2}^{+}}AsF_{6}^{-} + 2HF (1)$$

Ι

I is a non-volatile solid that melts with decomposition at ~ 150° and the analytical data indicate an empirical formula $C_6H_5AsF_4$. However, ØAsF₄ is reported² to be a yellow liquid at ordinary temperatures. The ¹⁹F NMR spectrum (in DMSO with CFCl₃ as reference) is given in Figure 1. The quartet at -61.7 ppm is characteristic⁴ of AsF₆⁻ and the singlet of one-third the intensity at -62.8 ppm suggests the cation $Ø_2AsF_2^+$. The shifts are independent of concentration. The mass spectrum obtained from the decomposition of I in the sample chamber of the mass spectrometer shows peaks at m/e corresponding to $Ø_2AsF_2^+$, $Ø_2AsF^+$, $(C_6H_4)As^+$, $ØAsF_2^+$ and AsF_2^+ . This evidence all indicates the formulation $(C_6H_5)_2AsF_2^+$ AsF₆⁻.

In order to characterize I chemically, the arsonium salt was reacted with CsF:

$$(C_{6}H_{5})_{2}ASF_{2}^{+}ASF_{6}^{-} + CSF \rightarrow (C_{6}H_{5})_{2}ASF_{3}^{+} + CSASF_{6}^{-}$$
 (2)
II

Reaction (2) gives II in quantitative yield. This has the same ¹⁹F NMR spectrum (see Table 1) as that reported by Muetterties⁵ for $\emptyset_2 AsF_3$. The mass spectrum has (m/e)

peaks corresponding to $\emptyset_2 AsF_3$, $\emptyset_2 AsF_2^+$, $\emptyset_2 AsF^+$, $(C_6H_4)As^+$, $\emptyset AsF_3$, $\emptyset AsF_2^+$ and $\emptyset AsF^+$ as well as some smaller fragments. II is soluble in aromatic solvents and deliquesces quickly in moist air. Although these results are consistent with the formulation $(C_6H_5)_2AsF_3$, a small controversy in the literature prevented definite verification.

Littlefield and Doak⁶ questioned the published ¹⁹F NMR spectrum. Muetterties had reported⁵ that the spectrum for $\emptyset_2 AsF_3$ consisted of a doublet and triplet of relative intensity 2:1 with a common coupling constant of 67 Hz, suggesting a rigid trigonal bipyramid at room temperature. Littlefield and Doak fluorinated $\emptyset_2 AsH$ or $\emptyset_2 AsCl$ with SF₄ to obtain a crystalline solid the ¹⁹F NMR of which consisted of a singlet (at 69.1 ppm upfield of CFCl₃) relatively unchanged from -90° to room temperature. On the basis of elemental analyses this material was described as $\emptyset_2 AsF_3$ and the ¹⁹F NMR findings were attributed to pseudo-rotation. In order to settle this controversy Muetterties' original preparation was repeated.

The reaction⁷:

 \emptyset_2 ASOOH + 2 SF₄ $\rightarrow \emptyset_2$ ASF₃ + 2 SOF₂ + HF (3) was run using a large excess of SF₄ in a Monel bomb. The crystalline product (approximately 40% yield) gave a mass

·8

spectrum identical to the one reported for II above. The 19 F NMR spectrum in toluene (see Table 1) consisted of a doublet and a triplet of relative intensity 2:1 with a coupling constant of 70 Hz. The spectrum showed no sign of coalescence in the temperature range -50° to 71°. This spectrum is identical with that of II. This leaves no doubt of the correctness of the original 19 F NMR studies of Muetterties and their interpretation. Evidently,Littlefield and Doak did not have $\emptyset_2 AsF_3$ as they thought. Perhaps, because they derived their so-called $(C_6H_5)_2AsF_3$ from arsenic(III) species $(\emptyset_2AsH$ or \emptyset_2AsC1), they may not have produced an arsenic(V) material.

To further the chemical characterization of $\emptyset_2^{AsF_3}$, it was treated with AsF_5 and this resulted in an alternative synthesis of I:

$$\emptyset_2^{ASF_3} + ASF_5 \rightarrow \emptyset_2^{ASF_2} + ASF_6$$
 (4)

Brownstein and Schmutzler⁸ have reported a similar reaction:

$$(CH_3)_2^{PF_3} + AsF_5 \rightarrow (CH_3)_2^{PF_2} + AsF_6$$
(5)
III

where III was identified by its ¹⁹F NMR spectrum but not isolated. These spectroscopic and chemical studies serve to fully characterize the reaction of benzene with AsF₅.

Having identified I as the crystalline component in the mixture resulting from the reaction of benzene with either O_2^+ or $C_6F_6^+$, the solubility of this salt in a variety of solvents was examined. It was found to be very soluble in anhydrous HF at room temperature. Large needle-shaped crystallites were formed on cooling solutions to -78°.

Since $C_6^{H_5}AsF_4$ is not observed in the product of the interaction of benzene with AsF_5 and since $Smith^2$ did not report I in the synthesis of $\emptyset AsF_4$, it seems unlikely that reaction (1) proceeds via a $\emptyset AsF_4$ intermediate:

$$2 C_{6}H_{5}ASF_{4} \rightarrow (C_{6}H_{5})_{2}ASF_{2}^{+}ASF_{6}^{-}$$
 (6)

Although some by-product or impurity in the C_6H_6/AsF_5 reaction might catalyze the above disproportionation, Smith has shown $ØAsF_4$ to be stable in the presence of both C_6H_6 and HF.

Another possible route for the C_6H_6/AsF_5 reaction is via reaction (4) with \emptyset_2AsF_3 as intermediate. However, since no \emptyset_2AsF_3 was seen in reaction (1) even when a tenfold excess of benzene over AsF_5 was used this reaction route seems unlikely.

A plausible mechanism for the production of I is via the formation of C_6H_6 ·AsF₅ adduct followed by dismutation

and HF elimination, the last two processes perhaps occuring concertedly.

 $2 C_6^{H_6} + 2 AsF_5 \rightarrow 2 C_6^{H_6} AsF_5$

 $2 C_6^{H_6} \cdot AsF_5 \rightarrow (C_6^{H_6})_2^{AsF_4} + AsF_6^{-1}$

 $(C_6H_6)_2AsF_4^+AsF_6^- + (C_6H_5)_2AsF_2^+AsF_6^- + 2HF$ It has been suggested from conductivity measurements⁹ that the $CH_3CN \cdot AsF_5$ adduct dismutates to give $(CH_3CN)_2^-AsF_4^+AsF_6^-$. HF elimination products from this cation have not been seen but the elimination of HF from such a cation may be less likely as the protons of the CH_3 group are further from the F atoms of the AsF_5 entity than in the benzene/AsF_5 case.

Reactions (1) and (2) can be used as a quantitative route for the synthesis of $\emptyset_2 AsF_3$ (100% yield based on benzene, 50% yield based on AsF_5). When compared to the 40% yield from the high pressure and temperature method of reaction (3) this new route seems to be a better general method for the clean synthesis of $\emptyset_2 AsF_3$. In fact, other organic molecules may react with AsF_5 in a similar manner to give the synthesis of various types of R_2AsF_3 molecules. Furthermore it is possible that PF_5 and SbF_5 may also react in a similar manner to provide a method for the efficient syntheses of R_2PF_3 and R_2SbF_3 species. Therefore this route based on reactions (1) and (2) could possibly be a general method for the synthesis of pentasubstituted group V compounds of the type R_2MF_3 .

Acknowledgements

This work was supported in part by the Committee on Research of the University of California, Berkeley and by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U. S. Department of Energy under Contract Number W-7405-ENG-48.

Table 1. $19_{\text{F} \text{ NMR}} \text{ of } (C_6H_5)_2\text{AsF}_3$

a) $\phi_2 \text{AsF}_2^+ \text{AsF}_6$	$_{5}^{-}$ + CsF $\longrightarrow \phi_{2}^{AsF_{3}}$	+ CsF	
Shift ^a	Multiplicity (J _{F-F})	Integration	Assignment
-69.8 -92.4	doublet (71 Hz) triplet (71 Hz)	2 1	F _{axial} F _{equatorial}
b) $Ø_2$ AsOOH +	$2 \text{ SF}_4 \longrightarrow \emptyset_2 \text{AsF}_3 +$	2 SOF ₂ + HF	
Shift ^a	Multiplicity (J _{F-F})	Integration	Assignment
-70.0 -92.5	doublet (72 Hz) triplet (72 Hz)	2 1	F _{axial} F _{equatorial}

c) Variable Temperature NMR data for b)

Temperature		Shift ^a	' (F _{axial})	Shift ^a (F _{equatorial})		$J_{F_a-F_e}$ (Hz)	
-50	•	-7	2.0		-91.8	72	
0		-7	0.7	•	-92.4	72	
31		-7	0.1		-92.6	72	
40 .		-7	0.0		-92.6	70	
5.0		-6	9.9		-92.6	69	
61		· · -6	9.6		-92.8	59	
. 71		-6	59.5		-92.8	48	

a) Negative sign refers to ppm upfield of CFCl₃.

Shift	Multiplicity	Integration	Assignment
-61.7 -62.8	equal intensity quartet(930 singlet	Hz) 3 1	ASF6 +

Figure 1. ¹⁹F NMR Spectrum of $(C_6H_5)_2AsF_2^+AsF_6^-$

REFERENCES

1.	F. L. Tanzella, and N. Bartlett, to be published.
2.	W. C. Smith, <u>J. Amer. Chem. Soc</u> ., 82, 6176 (1960).
3.	E. L. Muetterties, W. Mahler and R. Schmutzler, Inorg.
	<u>Chem</u> ., 2, 613 (1963).
• 4.	E. L. Muetterties and W. D. Phillips, <u>J. Amer. Chem</u> .
	<u>Soc</u> ., 81, 1084 (1959).
5.	E. L. Muetterties, W. Mahler, K. S. Packer and R.
	Schmutzler, <u>Inorg. Chem</u> ., 3, 1298 (1964).
6.	L. B. Littlefield and G. O. Doak, J. Amer. Chem. Soc.,
	98, 7881 (1976).
7.	E. L. Muetterties, private communication.
8.	M. Brownstein and R. Schmutzler, J.C.S. Chem. Comm.,
	278 (1975).
9.	F. N. Tebbe and E. L. Muetterties, Inorg. Chem., 6, 129
	(1967).

 \bigcirc

This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

ي.

ž

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.

TECHNICAL INFORMATION DEPARTMENT LAWRENCE BERKELEY LABORATORY UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA 94720

. .

