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Abstract

We present combined experimental and theoretical study of photo-induced current in

molecular junctions consisting of monolayers of nitroazobenzene oligomers chemisorbed

on carbon surfaces and illuminated by UV-Vis light through a transparent electrode.

Experimentally observed dependence of the photocurrent on light frequency, tempera-

ture and monolayer thickness is analyzed within first principles simulations employing

the Hubbard NEGF diagrammatic technique. We reproduce qualitatively correct be-

havior and discuss mechanisms leading to characteristic behavior of dark and photo-

induced currents in response to changes in bias, frequency of radiation, temperature

and thickness of molecular layer.

The interaction of light with molecules is an important field of research due to its abil-

ity to provide information on molecular structure and dynamics, and to serve as a control

tool for intra-molecular processes. Development of nano-fabrication and optical techniques
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at nanoscale led to tremendous progress in ability to detect and manipulate molecules on

surfaces and in junctions. The main signal reported in the literature for devices consisting of

molecules attached to macroscopic leads for a long time was current-voltage (conductance-

voltage) characteristics.1–6 Later, standard junction spectroscopies (such as resonant7,8 and

off-resonant9–13 inelastic electron tunneling spectroscopy) were complemented by probing

molecular conduction junctions by optical means.14–23 For single-molecule junctions the lat-

ter is possible only by local electromagnetic field enhancement associated with plasmon

excitations.24,25 Recent developments include observation and optical control of current26–28

noise,29,30 and energy transfer.31,32 Time-dependent and transient effects in junctions ob-

served with optical means,33–36 tip-enhanced Raman spectroscopy,37–40 pump-probe spec-

troscopy in nanojunctions,41,42 and reporting quantum interference effects43,44 are also among

recent developments. Optical spectroscopy yields a way to estimate heating in current carry-

ing junction18,19,45,46 Recently, multidimensional spectroscopy measurements in the presence

of current (although not yet in junctions) were reported in the literature.47–49 Optical effects

have been also reported in large-area molecular junctions, including internal photoemis-

sion,50 optical modulation of conductance,51 light emission,52–55 and photocurrents induced

by light absorption.56,57 Experimental capabilities to study radiation field interaction with

molecular conducting junctions gave rise to new branch of nanoscale research - molecular

optoelectronics58,59

Theoretically, challenges in describing optical response in molecular junctions include ne-

cessity to account for open character of the system which requires simultaneous treatment of

optical transitions in the molecule and electron transfer between molecule and contacts. Sin-

gle particle language utilized in majority of ab initio studies in molecular electronics usually

in the framework of the nonequilibrium Green functions (NEGF) makes it inconvenient to ac-

count for differences between transport and optical gaps in junctions. A possible alternative

is utilization of molecular many-body states as a basis of consideration. In junctions, such

consideration requires utilization of one of many-body flavors of the NEGF. In particular,
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recently introduced by us diagrammatic technique for the Hubbard NEGF60 yields a sta-

ble and accurate many-body method61 conveniently suited for description of optoelectronic

devices.59

Here, we apply the methodology to perform first principles simulation of optical response

of recently reported large area nitroazobenzene molecular junctions. Illumination by UV-Vis

light induces major changes in current-voltage response, with orders of magnitude changes

in conductance and distinct bias dependence compared to the dark behavior.56 Below after

introducing theoretical model and calculational procedure, we present results of first princi-

ples simulations and compare them with corresponding experimental data. We then discuss

possible mechanisms for changes in dark and photo-induced currents in response to bias,

temperature, light frequency, and thickness of the molecular layer.

We consider a nitroazobenzene molecule (see Fig. 1a), M , bridging two metal electrodes,

L and R, and subjected to an external laser radiation, rad. The Hamiltonian of the junction

is

Ĥ = ĤM +
∑

B=L,R,rad

(
ĤB + V̂B

)
(1)

Here HM and HB are respectively Hamiltonians of molecule and baths, and VB introduces

coupling between them. We represent molecular Hamiltonian ĤM as a tight-binding chain

of N molecular units (see Fig. 1d)

ĤM =
N∑
n=1

Ĥ
(n)
M +

N−1∑
n=1

(
V̂

(n,n+1)
M +H.c.

)
(2)

For simplicity, we consider all the units to be identical. We represent molecular unit Hamil-

tonian Ĥ(n)
M in terms of many-body states |Sn〉 of the unit. In particular, we consider ground,

|Ng〉, and excited, |Nx〉, states of neutral molecular unit as well as ground states of anion

|Ag〉 and cation |Cg〉. First-principle calculations (see Supporting Information for details)
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Figure 1: Nitroazobenzene molecular junction. Shown are (a) molecule and sketches of (b)
electron transfer process between molecule and contact and (c) optical excitation by external
radiation field. Panel (d) sketches molecular chains in the junction.
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yield energies of the states ESn , and explicit form of molecular Hamiltonian is

Ĥ
(n)
M =

∑
Sn∈Mn

ESnX̂SnSn (3)

where Mn is molecule n in the chain and X̂SnSn ≡ |Sn〉〈Sn| is the Hubbard (or projection)

operator.

Contacts are modeled as reservoirs of free electrons each at its own equilibrium

ĤK =
∑
k∈K

εkĉ
†
kĉk (K = L,R) (4)

and radiation field is described as continuum of modes with one mode corresponding to laser

frequency populated while all other modes empty

Ĥrad =
∑
α

ωαâ
†
αâα (5)

Here ĉ†k (ĉk) and â†α (âα) creates (annihilates) electron is state k of the contacts and mode α

of the field, respectively.

Within each molecular unit we consider four electron transitions (see Fig. 1b) ET =

Ag → Ng, Ag → Nx, Ng → Cg, and Nx → Cg (∆ET = EAg − ENg , EAg − ENx , ENg − ECg ,

ENx − ECg) and one optical transition (see Fig. 1c) OT = Nx → Ng (∆OT = ENx − ENg).

So that, electron transfer between the units is

V̂
(n,n+1)
M =

∑
ETn∈Mn

∑
ETn+1∈Mn+1

(
tETn,ETn+1X̂

†
ETn

X̂ETn+1 +H.c.

)
(6)

where ET n are electron transfer transitions in Mn. First molecule of the chain, n = 1, is
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coupled to contact L, while last, n = N , couples the chain to contact R

V̂K =
∑
`∈L

∑
ET1∈M1

(
V`,ET1 ĉ

†
` X̂ET1 +H.c.

)
(7)

+
∑
r∈R

∑
ETN∈MN

(
Vr,ETN ĉ

†
r X̂ETN +H.c.

)
(8)

V̂rad =
N∑
n=1

∑
α

∑
OTn∈Mn

(
Uα,OTn â

†
α X̂OTn +H.c.

)
(9)

Our central object of interest is current through the junction caused by either applied

bias (Vsd = µL − µR), or laser field, or both - correspondingly, dark, optical, and total

fluxes. Current is introduced as rate of change of the population on the contacts, IK =

dt
∑

k∈K〈ĉ
†
k(t)ĉk(t)〉, and at steady-state considered here currents across L and R junction

interfaces are equal (with opposite sign), IL = −IR. Explicit current expression is given by

the celebrated Meir-Wingreen formula62

IK =
e

h̄
Tr
∫
dE

2π

(
σ<K(E)G>(E)− σ>K(E)G<(E)

)
(10)

where trace is over electronic transitions ET and σ
< (>)
K (E) and G< (>)(E) are the Fourier

transforms of the lesser (greater) projections of electronic self-energy due to coupling to con-

tact K and Hubbard Green’s function, respectively. On the Keldysh contour the correlation

functions are defined as

[σK(τ1, τ2)]ET i,ET j
=
∑
k∈K

VET i,k gk(τ1, τ2)Vk,ET j
(11)

GET i,ET j
(τ1, τ2) = −i〈Tc X̂ET i

(τ1) X̂ET j
(τ2)〉 (12)

Here τ1,2 are the contour variables, Tc is the contour ordering operator, and gk(τ1, τ2) ≡

−i〈Tc ĉk(τ1) ĉ†k(τ2)〉 is the Green’s function for free electron in state k.

While explicit expressions for projections of the self-energy are known, Green’s function

6



has to be evaluated by solving a modified Dyson equation on the Keldysh contour. Because

the Hubbard GF both depends and defines its self-energies, one has to solve the Dyson

equation self-consistently until convergence (see Supporting Information and Refs.60,61 for

details).

Unless stated otherwise, simulations are performed at temperature T = 300 K. Ab initio

(TD)DFT calculations of an isolated molecular unit yield electronic transitions ∆NgCg =

−3.5 eV, ∆NxCg = −0.08 eV, ∆AgNg = −0.11 eV, ∆AgNx = 3.31 eV, while optical gap

is ∆OT = 3.41 eV. Strength of molecule-contacts coupling is characterized by escape rate

matrix

ΓKET i,ET j
(E) ≡ 2π

∑
k∈K

VET i,kVk,ET j
δ(E − εk) (13)

which within assumed here wide band approximation does not depend on energy. Simulations

are performed for ΓLET i,ET j
= 0.9 eV and ΓRET i,ET j

= 0.3 eV for ET i,j ∈ {Ag → Nx, Ng → Cg}

and ΓLET i,ET j
= 0.6 eV and ΓRET i,ET j

= 0.6 eV for ET i,j ∈ {Ag → Ng, Nx → Cg}, which are

taken to reproduce experimental data (see also Supporting Information). Radiation field

is assumed to be coupled to individual molecular units only. Strength of the coupling to

radiation field is characterized by dissipation rate

γOTn(ω) ≡ 2π
∑
α

UOTn,αUα,OTn δ(ω − ωα) (14)

Its frequency dependence is taken from experimental data (see Fig. 2a) with value at molec-

ular resonance, ω = ∆OTn , chosen 1.4× 10−4 eV. Fermi energy is taken as an origin, EF = 0,

and bias is applied symmetrically: µL = EF + |e|Vsd/2 and µR = EF − |e|Vsd/2. Simula-

tions were performed on energy grid spanning range from −16.384 to 16.384 eV with step

2 meV. Convergence was assumed to be reached when populations of the many-body states

at subsequent steps of the self-consistent procedure differ by less than 5× 10−4.

We first consider photo-induced flux in the absence of bias. Here, we employ single molec-

ular unit model, N = 1, in the analysis. Optical excitation promotes electronic population
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from first-principles simulations within the Hubbard NEGF. Panel (c) shows sketch of the
mechanism. See text for parameters.
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from ground to excited state, then electron either relaxes back or escapes into contacts.

Asymmetric coupling of excited state leads to appearance of directed flux even in absence of

bias. Figure 2 compares experimental data (panel a) with first principles calculation (panel

b). Experimental data for light intensity (blue line) was used as an input in the calcu-

lations. As expected, photocurrent shows maximum at frequency corresponding to optical

transition ∆OT (panel c). Such light-induced transport was discussed in theoretical literature

within simple model considerations.63 Shoulder observed at longer wavelengths is associated

with peak in light intensity at this frequency. One sees qualitative correspondence between

experimental data and theoretical simulations.

-14

-13

-12

-11

-10

  0 100 200 300 400 500

ln
 I

C
u

rr
e

n
t 
(A

/c
m

2
)

Temperature (K)

Total
Dark

Photo

-16

-15

-14

-13

-12

  0 100 200 300 400 500

ln
 I

C
u

rr
e

n
t 
(A

)

Temperature (K)

Total
Dark

Photo
(a) (b)

(c)

More excitation at 

low temperature

hole in HOMO

electron in LUMOlight 
irradiation

Less excitation at 

high temperature

Energy

LUMO

HOMO

Figure 3: Dark (blue line), photo-induced (green line), and total (red line) currents vs.
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We now turn to consideration of temperature dependence of current. Also here single

molecular unit model, N = 1, is enough to describe the observed physics Here junction

is subjected to bias of Vsd = 0.02 eV and measurements are performed in the absence of

external radiation (dark current) and under radiation of λ = 380 nm. With temperature

increase the experimental data (see Fig. 3a) show an increase in dark current. At the same

time, photo-current (defined as difference between total and dark fluxes) decreases. We note

that in the experiment dark current is caused by off-resonant tunneling, while radiation

transfers electronic population from ground to excited state in near resonance conditions.

Thus plausible mechanism can be suggested based on the smearing of Fermi distributions

in the contacts with temperature increase. In absence of external radiation extended tail

of Fermi distribution at higher temperatures yields more electronic population closer to

molecular resonance, which naturally leads to increase of electron flux. On the contrary,

optical flux already being at resonance mostly depends on available electronic population at

ground state. Smearing of Fermi distribution slightly diminishes the latter thus resulting in

decrease of photo-induced current (see Fig. 3c). First principles simulations based on the

proposed mechanism (see Fig. 3b) demonstrate qualitative correspondence with experimental

data. We note that possible additional factor (not included into the model) decreasing

photocurrent with temperature is scattering within the monolayer.56

Finally, we consider dependence of photocurrent on thickness of molecular layer. The

consideration requires performing calculations for molecular chains of different lengths. In

the analysis below we consider chains from N = 1 to N = 5 units. While dark current

demonstrates exponential dependence on the layer size characteristic of tunneling, photocur-

rent practically does not depend on the thickness (see Fig. 4a). Such insensitivity is expected

for hopping transport, and interplay between the two modes of behavior was discussed in

the literature as result of competition between tunneling and thermally activated electron

transfer via molecular bridges.64–66 We suggest that the same mechanism is behind observed

length dependence also in transport with a difference that optical excitation in present case
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plays the role of thermal activation in previous study (see Fig. 4c).

Hopping character of electron transport is caused by local dephasing (e.g., due to in-

teraction with low frequency vibrations of nearby molecules in the layer), which is usually

modeled by introducing Buttiker probes. Following Ref.67 we represent Buttiker probes by

attaching set of oscillators to each many-body state of molecules

ĤP =
N∑
n=1

∑
βn

∑
Sn∈Mn

(
ωSn b̂

†
βn
b̂βn +Bβn

(
b̂βn + b̂†βn

)
X̂SnSn

)
(15)

and considering a limit of ωSn → 0 to restrict the effect of oscillators to pure dephasing.

We treat both inter-molecule coupling and interactions with Buttiker probes within sec-

ond order of diagrammatic perturbation theory for the Hubbard NEGF.60 This leads to

appearance of two additional self-energies in the self-consistent scheme (see Supporting Infor-

mation for details). The two interactions are characterized by inter-atomic electron tunneling

parameters tM1M2 and dephasing rate

γSn
P (ω) = 2π

∑
βn

∣∣Bβn

∣∣2δ(ω − ωβn) (16)

which we consider within wide band approximation. In the simulations all inter-molecule

hopping parameters are taken 0.01 eV, dephasing rates are assumed to be 0.02 eV.

Figure 4 compares experimental data (panel a) with results of simulation (panel b).

Simulations are performed under bias Vsd = 0.02 eV and external field illumination at wave-

length λ = 380 nm. In both graphs dark current demonstrates exponential dependence on

thickness of molecular layer characteristic for off-resonant tunneling through wide barrier.

Photocurrent shows insensitivity to barrier width, which is characteristic of hopping trans-

port regime. We note that the inverse Arrhenius behavior for the photocurrent evident in

Figure 3a indicates that the hopping is activationless.56

In summary, we presented combined experimental and theoretical study of response of ni-

troazobenzene molecular junctions to external illumination and applied bias. Experimentally
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observed characteristic behavior of dark and photo-induced currents was modeled within new

diagrammatic technique for the Hubbard NEGF. Being a nonequilibrum atomic limit tool

(i.e. formulation employing many-body states of isolated molecule as a basis) the Hubbard

NEGF readily allows incorporation of the results of quantum chemistry simulations into

transport behavior. We used first principles simulations to model photocurrent behavior

and propose mechanisms behind the observed junction responses. In particular, tempera-

ture dependence of the currents is explained by smearing Fermi-Dirac distribution in the

contacts with temperature increase, which results in increase of dark current due to shifting

electron tunneling energies closer to molecular resonances and decrease of photo-induced

current due to diminished population in the ground state. We note that scattering within

molecular layer is an additional factor reducing photocurrent, which was not included in the

theoretical model. Also, exponential decrease of dark current with molecular layer thickness

was explained as a manifestation of (off-resonant) tunneling through a barrier, while insen-

sitivity of photo-induced current on barrier thickness was identified with hopping regime of

transport.

Further development of the Hubbard NEGF theory, formulation of universal Hubbard

NEGF code for multi-state considerations, and application it to simulation of signals beyond

fluxes are goals of future research.
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