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Abstract

A knowledge-based model that emulates human behavior in
a Dynamic Decision Making task is proposed. The model,
MAIDEN-DSF, uses a connectionist representation of knowl-
edge and a value function to compute the best alternative. In
order to validate MAIDEN-DSF, two data sets have been used:
a training set and a test set that contain the behavior of partic-
ipants that performed the task with different conditions. The
results suggest that MAIDEN-DSF is a considerable frame-
work in order to model human behavior. The aim of this paper
is to use MAIDEN-DSF to prove that participants do not per-
ceive delay conditions when dealing with Dynamic Decision
Making tasks.
Keywords: Decision Making; Computational Models; Con-
nectionism.

Introduction
Dynamic Decision Making lies in tasks that require a se-
ries of decisions where the state of the world changes, both
autonomously and as a consequence of the decisions made
(Brehmer, 1992). The Dynamic Stocks and Flows (DSF) task
(Gonzalez & Dutt, 2011), emulates such situations with three
elements: a single stock represented by a water tank; inflows,
which increase the level of the stock; and outflows, which de-
crease the level of the stock. The goal of this task is to keep
the stock at a certain level over 100 time periods. In every
time period, a participant can control the stock adding or re-
moving water via two inputs that represent the decision: the
user inflow (UI) and the user outflow (UO) values. Besides,
there are two external inputs that represent the environment
inflow (EI) and outflow (EO) values, both of them are not
directly controlled by the participant. The dynamics of the
environment is unknown to the participant, so the EI and EO
values have to be predicted using the experience acquired in
previous time periods. When the participant makes a deci-
sion, the DSF determines the level of water in the tank by
adding the UI and EI to the level in the tank and subtract-
ing the UO and the EO. Then the DSF presents the resulting
level, the goal level and the last EI, EO, UI and UO values
within the following time period.

This seemingly simple stock problem is actually unintu-
itive and difficult. In fact, there is evidence that suggests that
people do not perceive stocks and flows dynamics correctly.
For example, in an experiment where graduate students were
asked to sketch the evolution of the water level in a bathtub
over time (given simple patterns for the environmental inflow
and outflow), only 36% of the students answered correctly
(Sterman, 2002).

The DSF has been studied under different conditions
(Cronin & Gonzalez, 2007) and there is evidence that the
hardest condition for controlling the water tank is when the
user inputs are delayed for three time periods (Lebiere, Gon-
zalez, & Warwick, 2010). Participants have some understand-
ing about the dynamics of the tank, for example, if 1 gallon
of water is added, then the level is increased 1 gallon. How-
ever, with this delay, participants seem to have incorrect be-
liefs about the relationship between stocks and delayed flows
or participants do not perceive the delay and, therefore, they
behave as if there was no delay.

The aim of this paper is to use a knowledge-based model
that emulates human behavior in the DSF in order to find cues
that prove that participants do not actually perceive the delay.
The proposed model is based on MAIDEN, a Model of As-
sessment and Inference of DEcisions based on a Net of con-
cepts (Iglesias, Del Castillo, Serrano, & Oliva, 2010).

A knowledge-based model

MAIDEN-DSF, the implementation of MAIDEN for dealing
with DSF, is divided in two main phases. The first phase lies
in the estimation of EI and EO values using a connectionist
representation of knowledge called decision net. In the sec-
ond phase, MAIDEN-DSF uses a value function to choose the
best alternative, which will be the one that sets the amount in
the tank at the goal level corresponding with the estimated EI
and EO values of the first phase.
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Decision net
MAIDEN-DSF is a knowledge-based model that uses a
weighted net of concepts called decision net to predict the
values of EI and EO. The concepts of the decision net are ar-
ranged in five layers: perception, short-term memory, work-
ing memory, deliberative and output layer. If the concepts of
the decision net change, then the behavior of MAIDEN-DSF
also changes. Therefore, the selection of suitable concepts is
a key point in the implementation of the decision net. The
decision net must be as generic as possible and the concepts
of the decision net must represent general knowledge about
the decision making task and the past experience.

1. The perception layer contains concepts that are directly
shown by the DSF in every time period: the current level
in the tank (Levelt ), the goal level (Goal), the environment
outflow and inflow in the previous time period (EOt−1 and
EIt−1), and the last decision of the participant (UOt−1 and
UIt−1).

2. The short-term memory layer takes into account the recent
past experience and contains the last three values of the
tank level (Levelt−1, Levelt−2 and Levelt−3), the environ-
ment inflow (EIt−2, EIt−3 and EIt−4) and the environment
outflow (EOt−2, EOt−3 and EOt−4).

3. The working memory layer provides elaborated informa-
tion via concepts that represent the increase in the last en-
vironment inflow and outflow, the decrease in the last en-
vironment inflow and outflow and the positive or negative
difference between the current level and the goal level.

4. The deliberative layer aggregate other concepts contained
in the previous three layers. This layer is composed of two
deliberative concepts.

5. The output layer contains the concepts used by MAIDEN-
DSF in the value function: the estimated environment in-
flow and outflow (EI and EO).

Every node of the decision net has got an associated posi-
tive activation value. The decision net propagates activation
to one node by performing the weighted sum of the incoming
activations from the nodes connected to it. The following ex-
pression shows how a node computes the total weighted input
net:

neti = ∑
j

wi j ·a j (1)

In expression 1, neti represents the total weighted input of
the ith node, a j is the activation of the jth node and wi j is the
weight of the connection between the ith and the jth node. If
neti ≥ 0, then the activation of a node is equal to its net value.
Otherwise activation is zero.

The connections among the different nodes of the decision
net have three constraints. First, nodes of the same layer are
not interconnected. Second, nodes of the deliberative layer

can only propagate activation to the output layer. Third, a
concept belonging to the perception, the short-term memory
or the working memory layer can propagate activation to the
deliberative layer or the output layer, but it cannot propagate
activation to both layers according to neurophysiological ev-
idence (Damasio, 1994; Romanski & LeDoux, 1992).

The concepts of the perception layer are easily identifiable
in the DSF. The concepts of the short-term memory and the
working memory layer have been extracted from interviews
of participants who performed the DSF. Notice that the acti-
vation of these concepts must be updated every time period
depending on the decisions and consequent outcomes up to
the current time period. Figure 1 shows a graphical represen-
tation of the decision net.

Figure 1: Representation of the decision net.

This design is coherent with Norman’s definition of af-
fordances (Norman, 1988): all action possibilities latent
in the environment that are perceivable by a participant.
These perceived affordances result from the mental interpre-
tation of things based on past knowledge and experience.
In MAIDEN-DSF, alternatives or actions are also evaluated
based on past knowledge and experience.

Value function
The goal of the task is to keep the water in the tank at a given
level. The expression 2 represents the water level at time pe-
riod t + 1 (Levelt+1), which depends on UIt , UOt , EIt , EOt
and Levelt .

Levelt+1 = Levelt +UIt −UOt +EIt −EOt (2)

The difference between the water level and the goal level at
time period t+1 is calculated using the following expression:

Di f f = Levelt+1 −Goal (3)

Since the best decision is the one that sets the stock at the
goal level (Goal), the value of Di f f must be 0 and the best
UIt −UOt value is given by the combination of equations 2
and 3:
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UIt −UOt = Goal −Levelt −EIt +EOt (4)

The expression 4 computes the best decision (UIt −UOt )
and requires the values of Goal and Levelt , which are known
to the participant, and the values of EIt and EOt , which are
unknown. Therefore, the value function used by MAIDEN-
DSF replaces the unknown variables EIt and EOt with the
activation of the concepts EI and EO of the decision net es-
timated with the information available in the current time pe-
riod t, as shown in figure 2.

Figure 2: Scheme of MAIDEN’s value function.

Evaluation
The connection weights of the decision net of MAIDEN-
DSF have been adjusted to model, as well as possible, the
behavior of a set of participants who performed the DSF.
The evaluation consists in the prediction of the behavior
of another set of participants in different conditions of
the DSF. The training and test data has been collected
from the DSF challenge (Lebiere et al., 2010) whose
homepage presents a wealth of information about the task
(http://www.hss.cmu.edu/departments/sds/ddmlab/modeldsf).
The measure used to evaluate the model fit was Pearson’s
linear correlation coefficient R, comparing the decisions of
the model and the participants over all 100 time periods. In
order to compute the decisions of MAIDEN-DSF, in each
time period the activation of the concepts of the perception,
short-term memory and working memory layers has been
generated with the participant’s actual sequence of decisions
and consequent water levels up to the current time period.
This method ensures that MAIDEN-DSF makes a decision
with the same available knowledge as the participant whose
behavior is wanted to be modeled.

The values of the connection weights that optimize the cor-
relation of the model and the participants’ decisions have
been calculated by the Covariance Matrix Adaptation Evo-
lution Strategy (CMA-ES) (Hansen, 2006), which is a kind
of Evolutionary Algorithm (Goldberg, 1989; De Jong, 2006)
with considerable potential for searching in complex spaces.
CMA-ES has been run ten times to find the best connec-
tion weights that optimize the correlation of the decisions of
MAIDEN-DSF and the decisions of the participants who par-
ticipated in the training conditions. Then, the correlation of
the best connection weights is presented.

Performance in the training conditions
The DSF with the training conditions used an environment
inflow that was either an increasing function or a decreasing
function over 100 time periods. The function could be linear
or non linear and, therefore, there were four training condi-
tions. The environment outflow function was constant and set
to zero throughout the task. The following expression shows
the linear increasing function:

EIt = 2.0+0.08 · t (5)

The goal was to maintain the level of water in 4 gallons
during all 100 time periods. The initial water level in the
tank was fixed to 2 gallons. The training data corresponds
with the behavior of 61 participants (linear increasing = 15
participants, linear decreasing = 11 participants, non linear
increasing = 17 participants and non linear decreasing = 18).

Figure 3: Correlation between MAIDEN-DSF and human de-
cisions with the training conditions.

Figure 3 shows the correlation between the decisions of
MAIDEN-DSF, whose connection weights have been opti-
mized in order to fit the training data, and the decisions of
the participants with the training conditions. All the R values
are statistically significant using a Student’s t distribution for
a transformation of the correlation (p < 0.001). These values
correspond with the best set of connection weights found by
CMA-ES after ten executions.

In the training set, the worst correlation is obtained in the
non linear decreasing condition which appears to be the hard-
est task for the participants. The whole training set of partic-
ipants has been modeled with the same connection weights.
This low correlation value may be due to connection weights
that model well the behavior of participants in different con-
ditions but not in the non linear decreasing condition. Note
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that CMA-ES finds the connection weights that maximize the
overall correlation taking into account the four conditions.

Performance in the test conditions
The values of the connection weights of MAIDEN-DSF were
estimated to optimize the correlation of the model and the
participants’ decisions with the training conditions. This sub-
section shows the predictions made by this MAIDEN-DSF in
the test conditions in order to validate the model.

The DSF with the test conditions used an environment in-
flow that was either a sequence-based function or a delayed
function. There were three different sequence-based func-
tions that generated a repeated sequence of length 2, a re-
peated sequence of length 4 and the same sequence of length
4 with noise. There were also two delayed functions where
participant’s decisions were delayed for either two or three
time periods. Therefore, there were five test conditions. The
environment outflow function was also constant and set to
zero throughout the task. The goal was to maintain the level
of water in 6 gallons during all 100 time periods and the ini-
tial water level in the tank was fixed to 4 gallons. The test
data corresponds with 100 participants (delay 2 = 20 partici-
pants, delay 3 = 20 participants, sequence 2 = 20 participants,
sequence 4 + noise = 20 participants and sequence 4 = 20
participants).

Figure 4: Correlation between MAIDEN-DSF and human de-
cisions with the test conditions.

Figure 4 shows the correlation between the decisions of
MAIDEN-DSF and the decisions of the participants with the
test conditions. The R values obtained with the test conditions
are all statistically significant (p < 0.001).

It is noteworthy that the decision net of MAIDEN-DSF

does not contain any concept representing the delay; however,
it models the human behavior with the delay conditions with a
correlation higher than 0.4, even when the training conditions
do not contain any delay. This result suggests that participants
may not take into account the delay or may not understand it
while performing the DSF.

In the delay 3 condition the correlation is reduced. This
can be due to the high variability observed in the human deci-
sions, for example, a participant decided to increase the level
of water in 1E +09 gallons.

With respect to the sequence-based conditions, the short-
term memory layer of the decision net contains concepts from
the previous four time periods up to the current one. A good
performance in the sequence-based conditions implies the
knowledge of the last two environmental inputs, if it is a se-
quence of length 2, or the last four environmental inputs, if it
is a sequence of length 4. MAIDEN-DSF contains concepts
representing the last four environmental inputs, so it may suit-
ably model behaviors with these conditions.

Delay conditions
The aim of this work is to find cues that prove whether par-
ticipants do not perceive the delay during the DSF within the
delay conditions. Although the results obtained in the previ-
ous experiment may already suggest that participants ignore
delays, this section presents another cue to support the exper-
iment.

A new version of MAIDEN-DSF with concepts that repre-
sent the delay has been also built. This new version will be
denoted as MAIDEN-DSFd. The new decision net is com-
posed of the concepts already explained in this paper with the
addition of four new concepts:

• The short-term memory layer takes also into account the
following user decisions: UIt−2, UIt−3, UOt−2 and UOt−3.

Note that with the delay conditions the user inputs are de-
layed for two or three time periods, so the decisions relevant
for the current tank level Levelt are taken in t −2 and t −3.

The connection weights of MAIDEN-DSF and MAIDEN-
DSFd have been adjusted to model the behavior of the 40 par-
ticipants that participated in the delay conditions. CMA-ES
has been applied ten times for each model version to estimate
the connection weights that maximize the correlation between
the model decisions and the decisions of the participants.

Table 1: Mean correlation (E) and standard deviation (SD)
obtained by MAIDEN-DSF and MAIDEN-DSFd with the de-
lay conditions.

Delay 2 Delay 3
Model E SD E SD
MAIDEN-DSF 0.54710 1.0E-06 0.43931 5.0E-09
MAIDEN-DSFd 0.54711 1.3E-06 0.43931 6.0E-09

Table 1 shows the mean correlation and the standard devi-
ation of the ten solutions found by CMA-ES for each version
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of MAIDEN. The R values obtained with both implementa-
tions are all statistically significant (p < 0.001).

Table 2: Mean (E) and standard deviation (SD) of the
root mean square error obtained by MAIDEN-DSF and
MAIDEN-DSFd with the delay conditions.

Delay 2 Delay 3
Model E SD E SD
MAIDEN-DSF 24275.04 0.033 6227685.70 0.098
MAIDEN-DSFd 24274.98 0.036 6227685.59 0.059

Table 2 shows the mean and the standard deviation of the
root mean square error obtained by the ten solutions found
by CMA-ES for each version of MAIDEN. The error seems
to be high due to the high variability of the human decisions
within the delay conditions. In fact, in the DSF challenge
(Lebiere et al., 2010) the best ranked model obtained a root
mean square error of 25560.84 in the delay 2 condition and
5930065.84 in the delay 3 condition.

MAIDEN-DSF and MAIDEN-DSFd obtained similar cor-
relations in both conditions. Within the delay 2 condition they
only differ in 0.00001 and within the delay 3 condition the
mean correlation is exactly the same. The standard deviation
is also similar. These results point out that the behavior of
the participants might be modeled without using the UIt−2,
UIt−3, UOt−2 and UOt−3 decisions.

Conclusion
A knowledge-based model that emulates human behavior
in the Dynamic Stocks and Flows task has been proposed.
MAIDEN-DSF operation is divided in two main phases.
First, it estimates the environment inflow and outflow val-
ues using a decision net. Second, it uses a value function
to choose the best alternative, which is the one that sets the
water level of the tank at the goal level.

The model has been evaluated with two data sets from the
DSF challenge (training set and test set). The evaluation lies
in the prediction of human behavior in the test set given the
training set. The results achieved support that MAIDEN-DSF
is a considerable framework in order to model human behav-
ior in the DSF. Besides, the proposed model participated in
the DSF challenge and reached rank 2 regarding the ranking
provided by the DSF challenge organizers based on the R2

correlation and the root mean square error.
MAIDEN-DSF has been used to find cues that point out

that the behavior of the participants who performed the DSF
task with the delay conditions can be modeled without taking
into account any concept representing the delay. This evi-
dence suggests that participants do not take into account or
are not aware of the delay while making a decision during the
delay conditions.

The results suggest that it is very difficult to configure a
model in order to emulate the performance of several human
beings with the same parameter values (connection weights in
this case). This might lead to develop comparison procedures

focusing on individual modeling and adaptation. MAIDEN
is mainly based on the knowledge acquired through past ex-
perience, the knowledge extracted from the environment and
the relationships between the concepts that represent these
two kinds of knowledge. A very interesting feature is that the
connection weights of the decision net can show what con-
cepts are the most important for a participant. In this exper-
iment, the whole set of participants has been modeled with
the same connection weights. A future work might consist in
the individual modeling of each participant in order to study
the connection weights that better fit each participant’s be-
havior. An individual modeling may indicate which partici-
pants had realized that there was a delay in their decisions. In
this experiment the connection weights of the concepts repre-
senting UIt−2, UIt−3, UOt−2 and UOt−3 in MAIDEN-DSFd
affect the behavior of the model. An absence of connection
between these concepts implies that the participants do not
use this knowledge. However, CMA-ES seeks the best com-
bination of connection weights that better fit the whole set of
human behaviors, therefore, if there is one person that uses
this knowledge, CMA-ES will find a connection weight for
these concepts. This is the reason for the better suitability of
individual modeling.

A global modeling is suitable for experiments where there
are at least two groups: a control group and an experimental
group. A future work may study the connection weights that
better model the behavior of participants who performed well
in the delay conditions (control group) and the participants
who obtained poor results (experimental group). The con-
nection weights can point out what concepts affect a decision
for a certain participant. For instance, this information may
be used to improve participants’ performance by explicitly
revealing relevant information that participants who obtained
poor results tend to ignore but participants who performed
well in the delay conditions take into account. This may lead
to better understanding of dynamic decision making.
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