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Abstract

The use of publicly available sequencing datasets as controls (hereafter, “public controls”)

in studies of rare variant disease associations has great promise but can increase the risk of

false-positive discovery. The specific factors that could contribute to inflated distribution of

test statistics have not been systematically examined. Here, we leveraged both public con-

trols, gnomAD v2.1 and several datasets sequenced in our laboratory to systematically

investigate factors that could contribute to the false-positive discovery, as measured by

λΔ95, a measure to quantify the degree of inflation in statistical significance. Analyses of

datasets in this investigation found that 1) the significantly inflated distribution of test statis-

tics decreased substantially when the same variant caller and filtering pipelines were

employed, 2) differences in library prep kits and sequencers did not affect the false-positive

discovery rate and, 3) joint vs. separate variant-calling of cases and controls did not contrib-

ute to the inflation of test statistics. Currently available methods do not adequately adjust for

the high false-positive discovery. These results, especially if replicated, emphasize the risks

of using public controls for rare-variant association tests in which individual-level data and

the computational pipeline are not readily accessible, which prevents the use of the same

variant-calling and filtering pipelines on both cases and controls. A plausible solution exists

with the emergence of cloud-based computing, which can make it possible to bring contain-

erized analytical pipelines to the data (rather than the data to the pipeline) and could avert or

minimize these issues. It is suggested that future reports account for this issue and provide

this as a limitation in reporting new findings based on studies that cannot practically analyze

all data on a single pipeline.
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Introduction

Large-scale, publicly available germline exome and genome sequencing datasets have emerged

as invaluable tools for investigating associations between genetic variants and disease. These

datasets are frequently used as controls to substantially increase the statistical power for inves-

tigation of rare genetic variants that could contribute to specific diseases. Although the method

of variant-calling in each resource is generally described (e.g., Exome Variant Server [1], 1000

Genomes [2], The Exome Aggregation Consortium/The Genome Aggregation Database [gno-

mAD] [3]), the raw data files and/or pipeline methods typically are not readily accessible. Pre-

vious studies have reported that using public controls in rare-variant association analyses can

lead to a marked increase in false-positive findings [4, 5]. Although methods have been devel-

oped to adjust for this inflation (e.g., TRAPD [6], ProxECAT [7], iECAT [8]), the performance

of these methods in larger datasets and the specific factors that contribute to the inflated distri-

bution of test statistics have not been systematically examined.

Results

Overview of λΔ95, analytic approach and sample sets

Table 1 and Figs 1–4 summarize the analyses performed to systematically investigate factors

that could contribute to false-positive findings by determining λΔ95, which quantifies the

Table 1. Summary of data analyses.

Analysis Sample Set #1

(n = participants)

Caller for

Sample Set #1

Sample Set #2

(n = participants)

Caller for

Sample Set #2

Number of Genes

Tested

λΔ95

Fig

1

Demonstration of

increased false-

positive findings with

expected-null

findings using public

controls

Dataset #1: NFE non-

TCGA gnomAD

(n = 51,377)

HaplotypeCaller Dataset #2: CPSII/PLCO

(n = 597) 97.4% samples

have > 95%CEU

HaplotypeCaller 17,482 1.09

Fig

2

Evaluation of

laboratory factors

contributing to

elevated false-positive

findings 1

Dataset #2: CPSII/

PLCO (n = 597)2

97.4% samples

have > 95%CEU

Ensemble Datasets #3 and 4 combined:

CCSS (n = 4,000)3 94.9%

samples have > 95%CEU

Ensemble 10,461 1.00

Fig

3

Evaluation of the

effects of joint vs

separate variant

calling on elevated

false-positive findings

Dataset #2: CPSII/

PLCO (n = 597)

97.4% samples

have > 95%CEU

Ensemble Dataset #3: CCSS (n = 2,000)

94.5% samples have > 95%

CEU

Ensemble Joint: 10,244

Separate: 10,224

Joint4: 0.91

Separate5: 0.94

Fig

4A

Use of different

variant-calling

pipelines

Dataset #3: CCSS

(n = 2,000) 94.5%

samples have > 95%

CEU

Ensemble Dataset #4: CCSS (n = 2,000)

95.3% samples have > 95%

CEU

HaplotypeCaller 16,281 1.16

Fig

4B

Use of same variant-

calling and post-

variant filtering

Dataset #3: CCSS

(n = 2,000) 94.5%

samples have > 95%

CEU

HaplotypeCaller Dataset #4: CCSS (n = 2,000)

95.3% samples have > 95%

CEU

HaplotypeCaller 16,327 0.99

S1

Fig

Evaluation of

published methods to

correct an elevated

false positive rate

Dataset #1: NFE non-

TCGA gnomAD

(n = 51,377)

HaplotypeCaller Datasets vary: CCSS

(n = 4,300, n = 1,000,

n = 400) 94.9% samples

have > 95% CEU in 4,300

and 1,000 cases and 95.3%

samples have > 95.3% CEU

in 400 cases

Ensemble For each method

(n = 4,300, n = 1,000,

n = 400): TRAPD

(14,972, 14,714,

14,710); ProxECAT

(3,987, 441, 65);

iECAT (12,906,

7,234, 4,898)

For each method,

(n = 4,300,

n = 1,000, n = 400):

TRAPD (1.59, 1.00,

1.35);ProxECAT

(2.79, 2.13, 1.90);

iECAT (1.20, 0.45,

0.43)

https://doi.org/10.1371/journal.pone.0280951.t001
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degree of inflation in statistical significance. λ is a metric developed for measuring p-value

inflation in genome-wide association studies. Guo et al. [6] adapted λ for use in rare-variant

association studies to calculate λΔ95 which adjusts for many results with p = 1.00. However,

λΔ95 does not fully capture the inflated distribution of test statistics if the observed p-values

deviate from expected p-values greater than the median. Thus, visual inspection of the line

deviation from the 95% confidence interval (CI, gray area in figures) was also evaluated.

“Ensemble” caller refers to the use of HaplotypeCaller and UnifiedGenotyper and/or Free-

Bayes. CPSII: Cancer Prevention Study II (dataset); CCSS: Childhood Cancer Survivor Study

Fig 1. Demonstration of increased false-positive findings with expected-null findings using public controls. Quantile-

quantile plot (synonymous variants only) of non-Finnish European non-TCGA (The Cancer Genome Atlas) gnomAD

(serving as a public control) versus an experimental dataset. We observed highly inflated p-values deviating from the 95%

confidence interval.

https://doi.org/10.1371/journal.pone.0280951.g001
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(dataset); gnomAD: The Genome Aggregation Database; NFE: Non-Finnish European; PLCO:

Prostate, Lung, Colorectal, Ovarian Cancer (dataset); TCGA: The Cancer Genome Atlas. The

“Number of Genes Tested” varies since at least five variants per gene is required to be

considered.

For each analysis, we evaluated the distribution of rare, synonymous variants from two dif-

ferent sample sets (listed as “Sample Set #1” and “Sample Set #2” which vary depending on the

study) collapsed by gene from individuals of non-Finnish European (NFE) ancestry. The caller

Fig 2. Evaluation of laboratory factors contributing to elevated false-positive findings. Quantile-Quantile plot of two

experimental datasets (sub-sampled CCSS data) that used the same capture kit (EZ Exome+UTR PE) and differ in the use

of library prep kit (BiooNextFlex vs. KapaHyper Plus) and sequencer (HiSeq 2000/2500 vs. HiSeq 4000). Variants in both

cohorts were called using HaplotypeCaller and UnifiedGenotyper and/or Freebayes.

https://doi.org/10.1371/journal.pone.0280951.g002
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for the two sample sets also varied, depending on the investigation but was either Haplotype-

Caller or “Ensemble,” a combination of three different callers (see S1 File). The number of

genes tested varies due to differences in datasets and filtering. We did not perform burden

tests on genes with fewer than 3 observed variant carriers. This means that some genes that

were testable on larger datasets or with more permissive filtering may no longer be testable

with smaller samples or stricter filtering.

We used the exome sequencing component of gnomAD, excluding cases from The Cancer

Genome Atlas, (TCGA) (n = 51,377) [3] as a public control dataset. The three exome

Fig 3. Evaluation of the effects of joint vs separate variant calling on elevated false-positive findings. Quantile-Quantile plot

of sub-sampled CCSS data that were called jointly or separately. Red shows the two cohorts variant-called jointly; blue shows the

two cohorts variant-called separately.

https://doi.org/10.1371/journal.pone.0280951.g003

PLOS ONE Inflation using public controls

PLOS ONE | https://doi.org/10.1371/journal.pone.0280951 January 25, 2023 5 / 13

https://doi.org/10.1371/journal.pone.0280951.g003
https://doi.org/10.1371/journal.pone.0280951


sequencing datasets from our laboratory were the Prostate, Lung, Colon, Ovary Screening

Trial (PLCO) (n = 374) [9], Cancer Prevention Study II (CPSII) (n = 223) [10], and the Child-

hood Cancer Survivor Study (CCSS) (n = 5,105), [11] all of which are available through

dbGaP.

For each figure, the datasets, callers and number of genes in the analysis are listed at the

top, which matches the information for each analysis in Table 1. Each figure is a QQ plot,

which compares the expected with the observed p-value (on a log scale) for rare, synonymous

variants from two different sample sets. Since the evaluated variants are synonymous, we do

not expect any deviation from a uniform distribution of p-values under the null hypothesis of

no association between phenotypes and rare variants. Thus we expect the slope of the plot to

approximate 1. Deviations from the slope = 1 (as measured by visual inspection or λΔ95) sug-

gest systematic noise or error (e.g., laboratory processes or factors in variant-calling or annota-

tion) with “inflated” p-values. Factors (e.g., use of identical processes for datasets) that reduce

inflation restore the compared distributions to a slope that approximates 1.

Demonstration of increased false-positive findings with expected-null

findings using public controls (Table 1, row 2, and Fig 1)

To illustrate the increase in false positive findings using public controls, we compared two

ancestry-matched non-disease cohorts using a rare-variant association (“burden”) test of syn-

onymous variants (only) that would be expected to be null. We analyzed variants from 17,482

genes from the 51,377 individuals in the NFE non-TCGA gnomAD dataset and compared

Fig 4. Use of different (A) and same (B) variant-calling pipelines. Quantile-quantile plot of distribution of p-values from synonymous variants in sub-

sampled CCSS data (n = 4000) randomly divided (n = 2000 each) and called with (A) different callers (Ensemble vs. HaplotypeCaller) or (B) same caller

(HaplotypeCaller) and post-variant filtering. In panel A, we observed inflated p-values deviating from the 95% confidence interval (shading), while in panel

B, we observed no deviation from the 95% confidence interval (shading), consistent with minimal or no inflation of p-values.

https://doi.org/10.1371/journal.pone.0280951.g004
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them with variants from 597 cancer-free individuals in the CPSII/PLCO cohort. Haplotype-

Caller was used for both sample sets, but different post-variant filtering methods were applied.

We observed significantly inflated p-values (λΔ95 = 1.09) with a distribution that was highly

deviated from the 95% CI in the quantile-quantile (QQ) plot (Fig 1).

Evaluation of laboratory factors contributing to elevated false-positive

findings (Table 1, row 3, and Fig 2)

We next investigated the possible origins of the inflated p-values by focusing on factors that

could differ between public controls and an experimental dataset such as laboratory processes

(e.g., capture kit, library prep kit, sequencing platform). To do this, we compared the distribu-

tion of rare synonymous variants from 10,461 genes in a dataset from CPSII/PLCO (n = 597)

with a dataset from CCSS (n = 4,000) that shared the same capture kit, calling and post-variant

filtering but differed in library prep kit and sequencing platform. Although there was some

deviation from the 95% CI (41 genes), Fig 2 shows minimal deviation (λΔ95 = 1.00) from the

expected null distribution in this comparison.

Evaluation of the effects of joint vs separate variant calling on elevated

false-positive findings (Table 1, row 4, and Fig 3)

We next investigated the possible origins of the inflated p-values by focusing on factors that

could differ between public controls and an experimental dataset such as variant-calling differ-

ences (e.g., single vs. multiple callers, joint vs. separate calling, same vs. different callers). To do

this, we evaluated the effects of joint vs. separate variant-calling on the inflated distribution of

test statistics by comparing the distribution of rare synonymous variants from 10,244 genes in

a dataset from CPSII/PLCO (n = 597) with a dataset from CCSS (n = 2,000) using the same

Ensemble (HaplotypeCaller plus at least one other caller) variant-calling pipeline. Fig 3 shows

minimal deviation from the null distribution with variant-calling performed either jointly

(λΔ95 = 0.91; both sample sets variant-called together) or separately (λΔ95 = 0.94; each sample

set variant-called separately). Taken together, these results suggest that joint vs. separate vari-

ant-calling does not contribute to the observed inflation.

Use of different variant-calling pipelines (Table 1, row 5, and Fig 4A)

We next considered the use of different variant-calling pipelines. We randomly separated an

experimental dataset derived from CCSS (n = 4,000, samples sequenced at the same time in

our laboratory) into two groups (each n = 2,000). Dataset #3, specified in Table 1, row 5, was

called using the Ensemble caller, whereas Dataset #4 was called using just HaplotypeCaller.

There was a deviation from the null distribution in the QQ plot (λΔ95 = 1.16; Fig 4A) when

these two different variant-calling pipelines were used in these datasets.

Use of same variant-calling and post-variant filtering (Table 1, row 6, and

Fig 4B)

To evaluate same variant-calling pipelines, we used Dataset #3 and Dataset #4 (Fig 4A, Table 1,

row 6) called using HaplotypeCaller. There was minimal deviation from the null distribution

in the QQ plot (λΔ95 = 0.99; Fig 4B) when same variant caller with the same post-variant filters

were used on both datasets, illustrating the importance of applying the same variant-calling

pipeline and post-variant filtering to compared cohorts.

PLOS ONE Inflation using public controls
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Evaluation of published methods to correct an elevated false positive rate

(Table 1, row 7, and S1 Fig)

To determine the ability of three published methods (TRAPD [6], ProxECAT [7], and iECAT

[8]) to adjust inflated p-values in larger datasets, we analyzed the distribution of rare variants

in NFE non-TCGA gnomAD (n = 51,377) with sub-sampled CCSS data of varying sizes

(n = 4,300, n = 1,000, n = 400) thus mimicking the methods that were presented in each tool.

For the largest dataset (n = 4,300, red lines), we observed highly inflated p-values (λΔ95 = 1.59

[TRAPD]; λΔ95 = 2.79 [ProxECAT]; λΔ95 = 1.20 [iECAT]: Table 1 and S1 Fig). Since the size of

the sub-sampled CCSS data examined was larger than in the previously published studies

(range n = 393 to 927), [6–8] we decreased the sub-sampled CCSS data from 4,300 to 1,000

and 400. A reduction of the inflated p-values was observed with decreasing sub-sampled data-

set size, despite retaining the same set of gnomAD controls (S1 Fig, blue and black lines). This

observation suggests that smaller sub-sampled datasets are not powered to detect inflated p-

values and that, unfortunately, the currently available methods do not always sufficiently adjust

for the increased false-positive findings.

Discussion

Our analyses of a limited number of datasets show that false-positive results occur if rare-vari-

ant association tests are conducted using cases and controls that have different variant-calling

and post-variant-calling filtering pipelines. Differences in laboratory components (e.g., capture

kit, library prep kit and/or sequencing platform) and joint vs. separate variant-calling did not

substantially inflated distribution of test statistics, a finding reported by other groups [12].

Occult population stratification is not a likely explanation for our findings given the very high

percentages of European (CEU) ancestry in both case and control cohorts (Table 1). These

results, especially if replicated, emphasize the risks of using public controls for association tests

in which individual-level data and the computational pipeline are not readily accessible, which

prevents the use of the same variant-calling and filtering pipelines.

Possible options to effectively utilize publicly available genomic datasets without intro-

ducing substantial biases include: 1) obtaining individual level data from a publicly available

dataset and process using the experimental dataset’s variant-calling pipeline through a portal

that protects identifying information as per the ethical oversight of the study; 2) access to suf-

ficiently detailed variant-calling and filtering pipeline documentation on publicly available

datasets and applying this to the experimental dataset; or, 3) sequencing controls in-house

and match the variant-calling pipeline elements with the experimental dataset. However,

each of these proposed solutions have limitations, including: 1) lack of adequate consent

and/or data-sharing agreements to provide individual-level data from public resources; 2)

inadequate computational resources (e.g., storage and/or processors) needed to process

experimental datasets and publicly available resources using the same bioinformatic pipe-

lines; and 3) absence of available in-house controls and/or insufficient resources to sequence

and process the resultant data.

Another option is the development and use of a standard variant-calling pipeline by all

investigators. However, this poses significant, practical obstacles including the need for contin-

ual adjustments to improve accuracy and performance. Moreover, the rapid dissemination of

next-generation sequencing technologies has led to many local solutions, making it difficult to

develop an academic standard. Until there is a stable solution to compare a dataset to public

controls, investigators should carefully evaluate the use of publicly available data for biases and

implement strategies and methods to minimize such biases particularly when using a statistical
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test (e.g., Fisher’s exact test). At a minimum, public controls should not be the sole dataset in

rare-variant association tests.

In summary, public controls are important tools for rare-variant analyses (e.g., popula-

tion filtering and variant frequency) but their use for direct statistical tests (e.g., rare-variant

association tests) without the same variant-calling and post-calling variant filtering pipeline

is problematic. Importantly, the currently published methods do not adequately adjust for

the likely high false-positive findings. A plausible solution exists with the emergence of

cloud-based computing, which can make it possible to bring containerized analytical pipe-

lines to the data (rather than the data to the pipeline) and could avert the issues mentioned

above. It is suggested that future reports account for this issue and provide this as a limita-

tion in reporting new findings based on studies that cannot practically analyze all data on a

single pipeline.

Materials and methods

(See also S1 File for additional details on selection of datasets, calling and filtering overview,

and rare-variant association (burden) testing and assessment.)

Datasets

Analyses were performed on datasets from previously published large, exome-sequenced can-

cer cohorts. A dataset of 4,300 long-term cancer survivors was utilized from the Childhood

Cancer Survivor Study (CCSS) [11]. Additionally, an in-house control dataset was composed

of the combined control sets from the Cancer Prevention Study II (CPSII) [10], and the Pros-

tate, Lung, Colorectal, Ovarian Cancer (PLCO) [9] datasets. To ensure homogenous ancestry,

the CPSII [10], CCSS [11] and PLCO [9] datasets were restricted to samples that were esti-

mated to be at least 80% European (CEU) ancestry as determined by industry-standard meth-

ods detailed elsewhere [13]. For CCSS, we also restricted samples to those that were not whole-

genome-amplified.

Our public control set was composed of publicly available data from the Genome Aggrega-

tion Database (gnomAD) [3] v2.1 and including only non-Finnish European (NFE) after

excluding data from individuals from The Cancer Genome Atlas (TCGA) (n = 51,377). QQ

plots were used to visually demonstrate p-value inflation and the λΔ95 statistic was used for

quantitative assessment of this inflation. Details of λΔ95 statistic calculation is in S1 File.

Variant calling

For datasets called by HaplotypeCaller, the following additional filters were applied (these are

the standard hard filters recommended by GATK): QD�2, FS�60, MQ�40, MQRankSum�-

12.5, ReadPosRankSum�-8, SOR�3.

For datasets called by Ensemble, the following additional filters were applied: at the geno-

type level: 1) variants required a GQ > 20 and the alternate allele depth (AD) to be greater

than 1, and 2) variant must be called by HaplotypeCaller and either FreeBayes or UnifiedGen-

otyper. Among heterozygous genotype calls, the total ratio between alternate AD and total

depth (DP) must be greater than 0.3. If there were 3 or fewer heterozygous genotype calls, the

depth must be greater than 0.2, the observed carrier frequency must be less than 10%, and

there must not be any multiallelic heterozygous genotype calls (no individuals with a genotype

containing two different alternate alleles).
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Variant filtering and annotation

Variants used in the analyses were 1) classified as synonymous (coding) for at least one gene,

2) not be SNPEFF HIGH or MODERATE for any gene, 3) have an allele frequency less than

0.01 in the population databases (all populations in 1000 Genomes, ESP, and all populations

other than NFE in ExAC and gnomAD-exome), 4) within 5bp of the target region, called by

HaplotypeCaller and either FreeBayes or UnifiedGenotyper, and 5) must not be a duplicate

variant (due to indel alignment issues). At the genotype level, variants were required to have a

GQ score greater than 20 and the alternate allele depth to be greater than 1. Among heterozy-

gous genotype calls, the total ratio between an alternate AD and DP must be greater than 0.3,

or if there are 3 or fewer heterozygous genotype calls the depth must be greater than 0.2. The

observed carrier frequency must be less than 10%. There must not be any multiallelic heterozy-

gous genotype calls. i.e.: no individuals with a genotype containing two different alternate

alleles.

Analyses performed

Five sets of analyses were performed, corresponding to Figs 1–4 plus S1 Fig, as listed in Table 1

and corresponding to section headers in the Results section:

Demonstration of increased false-positive findings with expected-null

findings using public controls

To demonstrate the inflated p-values present in a presumed-null analysis, we compared the

Non-Finnish European (NFE) and non-TCGA subset of gnomAD (n = 51,377) with an in-

house control dataset (CPSII/PLCO, n = 597; 97.4% of samples have >95% CEU [Euro-

pean] ancestry) using Fisher’s exact test. The following filters were applied: the variant

must be 1) called by HaplotypeCaller, 2) within 5 base pairs of the CCSS target region, 3)

synonymous and within a coding exon, 4) have an allele frequency less than 0.001 in the

population databases (all populations in 1000 Genomes and ESP, and all populations other

than NFE in ExAC and gnomAD-exome; as 1000 Genomes and ESP were included as a fil-

tering given a small proportion of the full gnomAD-exome dataset), 5) exist in both the

CCSS dataset and the gnomAD dataset, 6) pass the HaplotypeCaller hard filters recom-

mended by the Broad Institute, 7) must not be a duplicate variant (due to indel alignment

issues), and 8) must not be on a RepeatMasker SimpleRepeat or a 5-base-pair (or longer)

homopolymer run. In addition, 90% of all samples in both CCSS and gnomAD must have

coverage depth greater than 10.

Evaluation of laboratory factors contributing to elevated false-positive

findings

To determine whether laboratory factors contributed to p-value inflation, we tested Dataset #2

(CPSII/PLCO control dataset (n = 597)) against Datasets #3 and #4 of the CCSS dataset

(n = 4000), again restricting to synonymous coding variants (which presumably would not

vary significantly between the two groups). The CPSII/PLCO dataset used the BiooNextFlex

library prep kit and was sequenced on a combination of the Illumina HiSeq 2000 and HiSeq

2500 sequencer. The CCSS dataset used the KapaHyper Plus library prep kit and the HiSeq

4000 sequencer.
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Evaluation of the effects of joint vs separate variant calling on elevated

false-positive findings

In joint calling, all samples in a dataset are called simultaneously, using information from

across all samples to assist in assessing and calling variant loci. Obviously, our datasets and the

gnomAD external control dataset were called separately, so we developed a test to determine

whether this could be a source of the inflation. A subset of the CCSS dataset (Dataset #3,

n = 2,000) and CPSII/PLCO (dataset#2, (n = 597)) were called jointly and separately followed

by rare-variant association (burden) tests. The same filter set was used as used in Analysis set 3

(above). Variants used in this analysis must be classified as 1) synonymous (coding) for at least

one gene and must not be SnpEff HIGH or MODERATE for any gene, 2) have an allele fre-

quency less than 0.001 in the population databases (all populations in 1000 Genomes, ESP,

ExAC, gnomAD exome and gnomAD genome), 3) within 5bp of the target region, 4) called by

HaplotypeCaller and either FreeBayes or UnifiedGenotyper, and 5) must not be a duplicate

variant (due to indel alignment issues). At the genotype level, variants were required to have a

genotype quality (GQ) score greater than 20 and the alternate allele depth to be greater than 1.

Among heterozygous genotype calls, the total ratio between alternate allele depth and total

depth must be greater than 0.3, or if there are 3 or fewer heterozygous genotype calls the depth

must be greater than 0.2. The observed carrier frequency must be less than 10%. There must

not be any multiallelic heterozygous genotype calls. ie: no individuals with a genotype contain-

ing two different alternate alleles.

Use of different and same variant-calling pipelines

To determine whether differences in variant-calling methodology could introduce p-value

inflation, we split the CCSS dataset into two equally sized subsets (Datasets #3 and #4,

n = 2000 each) and ran rare-variant association (burden) tests in which the calling methods

differed (Fig 4A: Ensemble and HaplotypeCaller) and in which the calling methods were the

same (Fig 4B: HaplotypeCaller only). Variants used in these analyses must be 1) classified as

synonymous for at least one gene, 2) must not be SnpEff HIGH or MODERATE for any gene,

3) have an allele frequency less than 0.001 in the population databases (all populations in

Thousand Genomes, ESP, ExAC, gnomAD exome and gnomAD genome), 4) within 5bp of

the target region and 5), must not be a duplicate variant (due to indel alignment issues).

Evaluation of published methods to correct an elevated false positive rate

TRAPD, [6] ProxECAT [7] and iECAT [8] were used as per each method’s published refer-

ence. For each method, three analyses were performed on case (CCSS) and public control

(gnomAD) data: 1) the full 4,300-sample CCSS set (95.1% of samples have>95% CEU [Euro-

pean] ancestry) vs. gnomAD, 2) a random 1000-sample subset of CCSS vs. gnomAD, and 3) a

random 400-sample subset of CCSS vs. gnomAD. No genotype-level filtering was performed

because there is no way to implement such filters on the gnomAD dataset since we can only

access aggregate frequency-level data. Both cases (CCSS) and public controls (gnomAD) were

restricted to European ancestry. For gnomAD, specifically the “non-Finnish European” (NFE)

without TCGA subset was used. The following filters were applied to both the CCSS and gno-

mAD datasets for all analysis: 1) variant must be within 5 base pairs of the CCSS target region,

2) must not be a duplicate read, 3) must not be on RepeatMasker, SimpleRepeat or a 5-base-

pair (or longer) homopolymer run, and 4) must be called by HaplotypeCaller.

Specific details for each of the three methods are provided in S1 Text in S1 File.
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Supporting information

S1 Fig. Evaluation of published methods to correct an elevated false positive rate. Quantile-

quantile plot of non-Finnish European non-TCGA (The Cancer Genome Atlas) gnomAD sub-

jects (n = 51,377) versus a sub-sampled CCSS dataset showing greatly inflated p-values, which

diminishes with decreasing dataset size. Filtered to include rare variants using methods

described in A) TRAPD, B) ProxECAT, C) iECAT.

(TIF)

S1 File. Supplemental method.

(PDF)
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