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Automatic Color Calibration for Large Camera Arrays 

Neel Joshi* Bennett Wilburn  Vaibhav Vaish  Marc Levoy  Mark Horowitz

*University of California, San Diego       Stanford University 

Abstract 

We present a color calibration pipeline for large camera arrays.  
We assume static lighting conditions for each camera, such as 
studio lighting or a stationary array outdoors.  We also assume we 
can place a planar calibration target so it is visible from every 
camera.  Our goal is uniform camera color responses, not absolute 
color accuracy, so we match the cameras to each other instead of 
to a color standard.  We first iteratively adjust the color channel 
gains and offsets for each camera to make their responses as 
similar as possible.  This step white balances the cameras, and for 
studio applications, ensures that the range of intensities in the 
scene are mapped to the usable output range of the cameras.  
Residual errors are then calibrated in post-processing.  We present 
results calibrating an array of 100 CMOS image sensors in 
different physical configurations, including closely or widely 
spaced cameras with overlapping fields of views, and tightly 
packed cameras with non-overlapping fields of view.  The process 
is entirely automatic, and the camera configuration runs in less 
than five minutes on the 100 camera array. 

CR Categories: I.4.1 [Image Processing and Computer Vision]: 
Digitization and Image Capture.Camera Calibration; 

Keywords: color calibration, camera arrays

1 Introduction 

As digital cameras become cheaper and more easily managed, 
more and more researchers are investigating the potential of large 
camera arrays.  For example, the 3D Room at CMU captures 
video from 49 cameras spread around a room [Rander et al. 1997].  
They use the data for 3D scene reconstruction and view 
interpolation -- creating virtual views corresponding to camera 

positions not in their captured set of images.  Their cameras are 
relatively high-quality, but recently several groups have begun 
working with large arrays of inexpensive cameras.  Yang et. al 
constructed an array of 64 commodity webcams for live rendering 
of video light field [2002].  Zhang and Chen built a system of 48 
Ethernet cameras equipped with horizontal pan and translation 
controls, also for view interpolation [2004].  We have also 
constructed a large array of inexpensive sensors. Our system 
captures video from 100 CMOS sensors and has been used for 
view interpolation, high-performance imaging, and synthetic 
aperture photography [Wilburn et al. 2005]. 

Users of camera arrays generally take great care to 
geometrically calibrate their cameras, but often neglect color 
calibration entirely or rely on manually adjusting their cameras.  
This is not because color calibration is unimportant.  Wilburn et 
al. [2004], for example, presented a high-speed video capture 
method using multiple cameras with staggered trigger times.  
Because sections of images from many cameras are interleaved to 
produce the final images, minimizing color variations between 
cameras is critical to creating the illusion of a single, high-speed 
video camera.  Similarly, view interpolation algorithms suffer in 
the absence of color calibration.  Vedula, for example, observed 
artifacts using images from the 3D Room for view interpolation 
because the cameras were not color calibrated [2001].  The users 
of the self-reconfigurable camera array calibrated their cameras 
geometrically but not radiometrically, causing view-dependent 
color variations in their results [Zhang 2005]. 

Although standard geometric calibration methods exist for 
calibrating arrays of cameras [Zhang 1999; Bouguet; Tsai 1987], 
much less attention has been paid to color calibration for multi-
camera systems.  A common approach for configuring cameras 
lets each one self-calibrate using automatic gain and white 
balance algorithms, but this method produce varying results 
depending on what portion of the scene each camera views.  
Because we assumed fixed illumination but changing scene 
content, we would prefer a method that calibrates based on scene 
illumination.  In general, single-camera color calibration methods 
are useful for characterizing response functions, but they are not 
optimal for matching multiple cameras. 

The only multiple camera color calibration work we are aware 

Figure 1: Image composites using blocks from different cameras.   Blocks along a diagonal are from one camera.  Three such blocks 
are highlighted in the first image. (a) Data from cameras at default gain and offset. (b) Cameras calibrated using software auto-gain and 
white-balance.  Color inconsistency is significant. (c) Calibration of all cameras to a single standard - sRGB.  Color artifacts are less 
perceptible although still noticeable in the white, yellow, and light green patches.  (d) Our method, which calibrates cameras to each 
other, rather than to a standard.  There are minimal artifacts.  Note: Artifacts on the edges of color patches are due to demosaicing and 
geometric misalignment. 

(a) (b) (c) (d) 



of is the automatic gain and white-balance method presented by 
Nanda and Cutler for their five-camera omni-directional RingCam 
[2001]. Their system addresses three needs that we do not: omni-
directional viewing, a mobile array (and thus highly variable 
illumination conditions), and real-time operation. They color 
calibrate using image statistics in overlapping regions of their 
cameras' fields of view.  This works well for their conditions, but 
as we will see, it is not optimal for the situations we address in 
this paper: stationary camera arrays under relatively static lighting 
conditions.

Our system is tailored for large arrays of inexpensive cameras.  
Thus, it is fully automatic and assumes controls over gains, 
offsets, and electronic shutter durations that are common in low-
end CMOS sensors.  In the rest of this paper, we describe the 
goals and operation of our multi-camera color calibration 
algorithm.  Section 3 shows results calibrating our 100 camera 
array for different applications.

2 Automated Color Matching 

We have implemented a calibration method for the camera 
array described by Wilburn et al. [2005].  The array consists of 
custom video cameras constructed from low-cost CMOS image 
sensors and inexpensive optics.  We record raw, linear sensor data 
for our applications as it can be easily calibrated using the method 
we will now present.   

2.1 Calibrating Overlapping Fields of View 

Our method consists of two distinct stages:  configuration and 
characterization.  The configuration automatically adjusting 
camera gains and offsets prior to acquisition. Characterization 
consists of three parts: correcting for sensor non-linearity, 
correcting for radiometric falloff, and globally minimizing color 
error. After performing these steps we can acquire color calibrated 
data by filming with the calibrated gains and offsets, then 
applying our non-linearity correction and global error 
minimization to the acquired data.  We will now walk through the 
calibration steps enumerated above. 

Automatic Location of Color Checker Patches.  Because the 
fields of view of our cameras overlap, we can calibrate using a 
Macbeth color chart viewable from all cameras. To avoid the 
necessity of searching for the color patches in each camera's view, 
we piggyback color calibration onto geometric calibration, by 
affixing the Macbeth chart atop a planar geometric calibration 
target.  Once we have found the location of this second target, we 
also know the location of the color patches in the Macbeth chart.  
We store these locations for later use. 

Gain and Offset Configuration.  This step calculates the 
current gains and offsets of the sensor response and adjusts them 

to match a target response function.  We take images of the 
Macbeth chart at several different exposures in the linear middle-
range of our sensors.  Using the stored patch locations from the 
previous step, we record the RGB values for the white patch from 
these exposures.  We then fit a line to this data to recover each 
channel’s current gain and offset.  We compute adjustments to 
these values such that at zero exposure the camera returns 12 in 
each channel and when viewing the white patch at our chosen 
exposure it returns 220 in each channel.  We perform four 
iterations of this configuration step on each camera.   

Response Linearization.  After the previous step, the sensor 
response is linear, except at the low and high end of the range; 
thus we model and correct for this non-linearity.  We take images 
of the Macbeth chart at every exposure setting, and we record the 
RGB values for the white patch in these images.  As long as the 
scene is bright enough that the white patch will saturate at some 
exposure setting, this process allows us to map the entire sensor 
response function.  We then compute a reverse mapping from 
RGB to exposure using linear interpolation on this data, we scale 
the output range of this mapping to match the 0 to 255 image 
range.  This result is a look-up table that maps the original camera 
data to a linear 0 to 255 image range.  We save these look-up 
tables for later use. 

Falloff Correction.  Before globally minimizing error, we 
must address the effect of radiometric falloff on images of the 
Macbeth color chart.  As falloff is different for each camera, it 
introduces inconsistency between each camera’s view. Often, we 
can limit falloff over a color checker image by placing the color 
checker at the center of each camera’s view.  If we place the chart 
so that it covers less than 25% of the field of view at the center of 
the falloff, there is only a 2% falloff across the chart.  If we 
cannot place the chart as described, or if the center of falloff is 
unknown, we correct for it by imaging a photographic gray card at 
the location of the Macbeth color checker.  Pixel data from the 
gray card is used to compute scale values to correct for falloff.   

Global Error Correction.  This final step minimizes color 
error globally.  We image the Macbeth color checker with each 
camera at the initial chosen exposure, and we store RGB data for 
each patch.  If we are performing a falloff correction, we scale the 
RGB data with the values from the previous step.  We then 
average these values across all cameras.  For each camera, we 
then compute a 3x4 transform to match its recorded color patch 
values to the averaged values.  We use averaged values to avoid 
accidentally picking an outlier camera as a reference.  We save 
these 3x4 transforms to apply on filmed data. 

2.2 Partially-Overlapping Fields of View 

When calibrating a multi-camera setup with partially-
overlapping views, we cannot place a color chart such that it can 
be seen by all cameras at one time. In this regime, we choose to 

Table 1: Analyzing calibration methods with a 95-camera array.  These error metrics show the root-mean-squared error and maximum 
error computed across all cameras and all Macbeth color patches broken down by color channel.  There are large errors at initial
settings.  For auto-gain and white-balance, the error is worse.  Matching to a standard color model – sRGB is better, but the maximum 
error is still high.  Using our configuration method the error drops significantly.  Matching to sRGB after configuration improves the 
error in red and green.  With our full method, configuration and characterization, the error is minimal. 

Configuration Method Characterization Method RMS Error Max Error 

Auto-gain and white-balance None 7.98, 7.98, 8.30 89.59, 82.99, 84.63

Cameras set to identical gains and offsets None 9.97, 8.15, 9.06 78.88, 47.66, 58.61

Cameras set to identical gains and offsets Matching to a standard color model - sRGB 3.40, 2.44, 4.23 36.84, 27.65, 47.59

Our configuration method None 2.45, 1.43, 1.90 33.94, 12.67, 18.25

Our configuration method Matching to a standard color model - sRGB 2.17, 1.00, 3.55 18.52, 9.72, 25,41

Our configuration method Our characterization method 1.23, 0.72, 1.08 8.75, 5.16, 9.43



perform only the configuration stage with no sensor 
characterization.  Instead of using the white patch on the Macbeth 
chart for gain and offset configuration, we recorded data from the 
center of each camera’s image when viewing a large white target 
placed close enough to the cameras to fill their fields of view. 

3 Results 

We calibrated 95 cameras with overlapping fields of view 
using three different methods: 

1. Using software auto-gain and auto-white balance to set 
camera gains and offsets [Nanda and Cutler 2001] 

2. Setting identical (default) color gains and offsets for all 
cameras, followed by 3x4 transform from camera RGB to the 
XYZ color space. This is computed in a least squares sense 
based on the known XYZ values for the Macbeth color 
checkers. 

3. Our method.

Table 1 shows the results for these methods. We show the 
RMS error across all color checkers and all cameras, as well as 
the maximum pixel value difference between any two cameras for 
any patch on the color checker. To relate matching errors in the 
XYZ color space to RGB, we convert to sRGB, a standardized 
color space. This introduces errors due to gamut clipping. 

We see that using automatic gain and white balance controls 
performs the worst. These controls are based on each camera's 
image statistics, so differences in each camera's view of the scene 
causes variations in their color settings. Configuring all of the 
cameras with the same default gain and offset settings, even 
without matching to the XYZ reference values from the color 
checker, is much better. Naturally, matching with the reference 
values reduces the RMS error to roughly three gray levels for this 
dataset. Our iterative gain and offset adjustment, even without 
post-processing, significantly outperforms both of these methods. 
Our post-processing pipeline reduces the residual error by another 
30 %.

To visually evaluate the consistency of color calibration 
results, we created single composite images of the Macbeth color 
checker from multiple cameras. These composites are 
representative of image reconstructions in image-based rendering; 
however, they are a harsher test as there is no interpolation or 
blending between camera contributions. Figure 1 shows 
composites from uncalibrated data and data calibrated with three 
methods with software auto-gain and white-balancing, 
individually matching each camera to the MacBeth XYZ values, 
and our method. There are significant artifacts in the composites 
from uncalibrated data and from auto-gain and white-balanced 
data. Matching individually to XYZ reduces the errors, and with 
our method they are nearly imperceptible. These visual results 
mirror the errors statistics in Table 1.   

Figure 2a shows the same test applied to six cameras in a 
natural scene. There are slight color differences on the face, 
outstretched arm, and centered green part of the soccer jersey. The 
greater mismatches in the lower left are due to the highly specular 
jersey. In figure 2b, we show a different combination of the input 
images.  The image is assembled by interleaving 10-pixel wide 
rows from the source images with 50% overlap and blending the 
results. This is the same resampling Wilburn et al [2004] used for 
overcoming artifacts in their high-speed video work. Blending the 
images renders the color variations invisible. 

Figure 3 shows results using our calibration for cameras with 
non-overlapping fields of view. Here, we have created a mosaic 

using images a densely packed 12x8 camera array. The cameras 
have 50% overlapping fields of view and telephoto lenses, so any 
point in the scene is viewed by at most four cameras. The 
panorama constructed from uncalibrated data without image 
blending has low contrast, poor color balance, and obvious color 
differences between cameras. Blending makes the transitions from 
camera views less noticeable, but the color differences are still 
visible. With color calibration and blending, the results are more 
pleasing. The color calibrated images have much more uniform 
color responses, and the variations are less noticeable in the 
blended image. 

4 Conclusions 

We have presented a simple, automated color calibration 
pipeline for large camera arrays.  We describe how to handle both 
overlapping and non-overlapping fields of view.  We take care to 
avoid introducing errors due to radiometric falloff, non-uniform 
illumination, and sensor non-linearity.  Calibrating the sensors to 
match each other, rather than a standard, yields better color 
matching between cameras, and using calibration targets prevents 
scene reflectance from biasing our camera calibration.  Our results 
indicate that our method is accurate enough for image-based 
rendering applications.  The process is completely automatic and 
runs on an array of 100 cameras in just a few minutes. 

One remaining question is how much of our color calibration 
errors are fundamental.  One source of error in our computed 3x4 
color correction matrices is the non-zero specularities of some of 
the Macbeth color patches.  We have observed that many of our 
worst-case errors occur for the more specular patches on the color 
checker.  For example, the white and bright orange patches, which 
show some of the most noticeable artifacts in figure 1, are two of 
the most specular patches according to our measurements.  One 
way to reduce these errors is to average images of the color 
checker taken with varying illumination.  Although our color 
response characterization is relatively robust to radiometric falloff 
because we calibrate the center of our images, we will not be able 
to match colors in the periphery of our images without 
characterizing falloff.   

Our color calibration works well for applications that blend 
images together and for more sensitive methods, such as those 
that use optical flow.  Some applications, however, transform 
small color variations between cameras into coherent patterns that 
are more obvious.  Color variations in figure 2b are barely 
discernable, even though the rows are resampled from different 
pairs of images.  If we were to make a video in which the 
mapping of rows to cameras move in a coherent fashion (sliding 
down the image as in the resampling shown by Wilburn et al. 
[2004]), the variations would become immediately obvious as a 
moving pattern superimposed on the static image.  Some of these 
errors are due to residual calibration errors, but others are 
unavoidable.  Specular surfaces will look different from different 
positions.  This suggests that in addition to improving our color 
calibration, we must also develop algorithms that prevent color 
variations from being presented coherently to the user. 

5 Acknowledgements 

The authors would like to thank the students of the Stanford 
Multi-Camera Array Project for a number of useful suggestions.   
Construction of the camera array used in this work was funded by 
Intel, Sony, and Interval Research.  This work was supported by 
the NSF under contracts IIS-0219856-001 and DGE-0333451 and 
DARPA under contracts NBCH-1030009 and F29601-01-2-0085. 



References 

BOUGUET, J.-Y. Camera Calibration Toolbox for Matlab. 

http://www.vision.caltech.edu/bouguetj/calib doc. 

MATUSIK, W., PFISTER, H. 2004. 3D TV a Scalable System for Real-Time 

Acquistion, Transmission and Autostereoscopic Display of Dynamic 

Scenes. Proceedings ACM SIGGRAPH 2004.

LEVOY, M. AND HANRAHAN, P. 1996. Light Field Rendering. Proceedings

of ACM SIGGRAPH 1996.

NANDA, H. AND CUTLER, R. 2001. Practical Calibrations for a Realtime 

Digital Omnidirectional Camera. Proceedings of CVPR 2001.

Technical Sketch. 

RANDER, P., NARAYANAN, P., AND KANADE, T. 1997. Virtualized reality: 

Constructing time-varying virtual worlds from real events. Proceedings 

of IEEE Visualization, 277-283. 

TSAI, R. 1987. A Versatile Camera Calibration Technique for High 

Accuracy 3D Vision Metrology Using off-the-shelf TV Cameras and 

Lenses. IEEE Journal of Robotics and Automation. 3, 4, 323-344. 

VAISH, V. WILBURN, B. JOSHI, N. AND LEVOY, M.  2004. Using Plane +  

Parallax For Calibrating Dense Camera Arrays. Proceedings of CVPR 

2004. 

VEDULA, S. 2001. Image Based Spatio-Temporal Modeling and View 

Interpolation of Dynamic Events. CMU, Tech Report, CMU-RI-TR-01-

37, Robotics Institute. 

WILBURN, B., JOSHI, N., VAISH, V., LEVOY, M., AND HOROWITZ, M. 2004. 

High Speed Video Using a Dense Array of Cameras. Proceedings of 

CVPR 2004.

WILBURN, B., JOSHI, N., VAISH, V., TAVALA, E-V., ANTUNEZ, E., BARTH,

A., ADAMS, A., HOROWITZ, M., AND LEVOY, M. 2005. High 

Performance Imaging Using Large Camera Arrays. Submitted to ACM 

SIGGRAPH 2005.

YANG, J.C., EVERETT, M., BUEHLER, C., AND MCMILLAN, L. 2002.  A 

Real-Time Distributed Light Field Camera. Eurographics Symposium 

on Rendering.

ZHANG, C. 2005. Personal Correspondence.

ZHANG, C. AND CHEN, T. 2004. A Self-Reconfigurable Camera Array. 

Eurographics Symposium on Rendering. 

ZHANG, Z. 1999. A Flexible New Technique for Camera Calibration. 

Proc. International Conference on Computer Vision 1999.

Figure 3:   High-resolution image mosaics.  Top Left: No color calibration and no blending.  Top Right: With blending between 
images from each camera, the image seams disappear.  Bottom Left: Using our method for gain and offset configuration, some image
seams are visible, although they not very harsh.  Bottom Right: Blending between camera images removes the remaining seams.

Figure 2:   Image reconstruction.  (a) Image composite using 5x5 pixel blocks from 9 cameras.  Just as in Figure 1, blocks along a 
diagonal are from one camera.  There are minimal errors on the face, outstretched arm, and center green part of the jersey.  Errors are 
visible in the lower-left due to specularity and falloff.  (b) An image from high-speed video using the same dataset.  This image is 
constructed from a slice through a video cube.  With our calibration and interpolation in the slicing, color variations are almost 
imperceptible within the image.
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