
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
OpenWare Library

Permalink
https://escholarship.org/uc/item/3dx5775c

Author
Mantri, Garvit Rajendra

Publication Date
2018

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3dx5775c
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
SANTA CRUZ

OPENWARE LIBRARY
A thesis submitted in partial satisfaction of the

requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

by

Garvit Rajendra Mantri

June 2018

The Thesis of Garvit Rajendra Mantri
is approved:

Professor Jose Renau, Chair

Professor Anujan Varma

Professor Heiner Litz

Tyrus Miller
Vice Provost and Dean of Graduate Studies

Copyright © by

Garvit Rajendra Mantri

2018

Table of Contents

List of Figures iv

List of Tables v

Abstract vi

Acknowledgments vii

1 Introduction 1

2 Binary Adders 3

3 Ripple Carry Adder 7

4 Carry Save Adder 11

5 Parallel Prefix Adders 14

6 Bit Shifts 21

7 Booth Multiplier 31

8 Results 34

9 Conclusion 36

Bibliography 37

iii

List of Figures

2.1 Combinational Block Diagram . 3
2.2 Implementation of Half Adder . 4
2.3 Implementation of Full Adder . 5

3.1 4-bit Ripple Carry Adder . 7

4.1 4-bit Carry Save Adder . 12

5.1 Parallel Prefix Block Diagram . 15
5.2 16-bit Kogge Stone Prefix Graph 16
5.3 16-bit Han Carlson Prefix Graph 17

6.1 Example: Shift Logical/Arithmetic Left 22
6.2 Example: Shift Logical Right . 25
6.3 Example: Shift Rotate Left . 27
6.4 Example: Shift Rotate Right . 29

7.1 Example: Multiplication . 32

iv

List of Tables

2.1 Truth Table: Half Adder . 4
2.2 Truth Table: Full Adder . 5
2.3 ABC Results: Full Adder . 6

3.1 Statistics: Ripple Carry Adder . 10

4.1 Statistics: Carry Save Adder . 13

5.1 ABC Results: Carry Save Adder 18
5.2 Statistics: Kogge Stone Adder . 19
5.3 Statistics: Han Carlson Adder . 20

6.1 Statistics: Bit Shift Left . 24
6.2 Statistics: Bit Shift Arithmetic Right 26
6.3 Statistics: Bit Shift Rotate Left 28
6.4 Statistics: Bit Shift Rotate Right 30

7.1 Radix-4 Booth Encoding Values 32
7.2 Statistics: RADIX-4 Booth Multiplier 33

8.1 Results:Adders . 34
8.2 Results . 35

v

Abstract

OpenWare Library

by

Garvit Rajendra Mantri

Encapsulating various implementation of basic modules has always been a key to

generic programming. It has helped developing complex designs faster, efficiently

and more robust.

There can be instances where the module required for your design might al-

ready have been a necessity to another person earlier. In such a case, there are

high chances of an already existing bug free implementation. Hence, you need

not reinvent the wheel. Most of the synthesis tools in industry have some sort

of library that helps an engineer to develop the bigger or complex designs by

instantiating basic modules.

OpenWare addresses this by incorporating various modules so that an engi-

neer’s time is saved by not creating the redundant modules repeatedly. The library

also has other advantages such as having a common legacy so that the whole or-

ganization goes with basic standard and have a bug free implementation. It is

always reliable to use something which is tested extensively, and its working is

established by a group of people.

vi

Acknowledgments

I, Garvit Mantri take this opportunity to acknowledge the people without

whom these journey would not have been possible.

I am extremely thankful to have Prof. Jose Renau as my advisor who helped

me a lot from coursework to granting me permission to work in his lab. I am

thankful to him to let me work on this project and ESESC. He has helped me

recover from my mistakes and learn from them. I have come out to be more

hardworking while watching him work on his research.

I would like to express my gratitude to the readers of the thesis, Professor

Heiner Litz and Professor Anujan Varma for their extremely valuable suggestions.

I would like to appreciate Rafael Trapani for helping me setting up the system.

I would like to specially say thanks to my friend, Isaak Cherdak for helping

me throughout the thesis by providing valuable suggestions towards testbench.

I feel grateful and lucky to have full support from my family and housemates

who have helped me in taking rational decisions throughout the Masters’ journey.

vii

Chapter 1

Introduction

OpenWare Library is an attempt to create a library where we have designed

basic modules which can come quite handy to instantiate while designing complex

modules and bigger designs.

All the modules designed are configurable in terms of the number of bits. We

have designed the modules using verilog. A significant amount of time is spent to

make sure that the modules are purely combinational and can be synthesized.

OpenWare helps in removing the redundancy to create the basic modules re-

peatedly. Modules such as Adders, Parallel Prefix Adder, Shifters, and Multipliers

are designed which can be configured theoretically to any number of bits. Com-

plete synthesis results of each module that includes the area, critical path, critical

path delay, input capacitance and output capacitance are published.Each module

is tested via a C++ test-bench.

Yosys is the framework used for verilog RTL synthesis. Yosys is free software

licensed under the ISC license (a GPL compatible license that is similar in terms

to the MIT license, or the 2-clause BSD license). We have a version 0.7+ for

synthesis results. A 15 nm OCL standard library is used for the cells.

We have currently included Adders, Shifter and Multiplier to our library which

1

provides a standard framework for future designs. The library specifically focuses

on modules which are synthesizable (realizable) using common logic gates. We

have also included synthesis results so that a designer can select the module based

on the requirement. The added advantage of this library is that the modules

created have a re-configurable instantiation in terms of the number of bits.

The following chapters will go over the individual modules such as binary

adders, ripple carry adder, carry save adder, parallel prefix adder which includes

two types i.e kogge-stone and han-carlson adder. Further the shifters and multi-

plier are explained briefly. Each chapter explains the basics regarding the circuit

and how it operates. Basic building blocks used to designed those modules are

also included along with the synthesis results.

OpenWare tries to create a legacy for the complete organization where one can

go with a default standard for modules used repeatedly with no or known bugs.

2

Chapter 2

Binary Adders

A combinational circuit consists of various inputs, logic gates and outputs

variables. Combinational logic gates respond to the values at their inputs and

produce the value of the output signal, transforming binary information from the

given input data to a required output data.[5] For n input variables, there are 2n

possible binary input combinations. For each possible input combination, there

is one possible output value. Thus a combinational circuit can be specified with

a truth table that lists the output values for each combination of input variables.

Figure 2.1: Combinational Block Diagram

There are several combinational circuits that are used as a basic building blocks

to bigger designs. In this chapter, we will brief over two of them i.e Half Adder and

Full Adder. These are the building blocks to modules explained in later chapters.

Also, All the modules designed in this library are purely combinational. A block

diagram of a combinational circuit is shown in Fig. 2.1.

3

A half adder have two binary inputs and two binary outputs. It can be imple-

mented with an exclusive-OR and an AND gate. The Boolean logic for sum(S)

will be A’B+AB’ and for Carry(C) will be AB. Implementation of half adder is

shown in Fig. 2.2. Truth table for a half adder is shown in Table 2.1. The

simplified expression are:

S = A ⊕ B

C = AB

Figure 2.2: Implementation of Half Adder

Truth Table: Half Adder

input A input B SUM CARRY

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Table 2.1: Truth Table: Half Adder

A full adder is a combinational circuit that adds three bits. In other words,

it incorporates the carry bit. It consists of three inputs and two outputs. It can

be implemented using two half adders and an OR gate. The simplified expression

are:

4

SUM = A ⊕ (B ⊕ C)

SUM = A’B’C + A’BC’ + AB’C’ + ABC

CARRY = AB + AC + BC

A full adder is a basic building block for cascade and parallel prefix adders

which adds 8,16,32, etc bit binary numbers.Implementation of full adder is shown

in Fig. 2.3. Truth table for a full adder is shown in Table. 2.2.

Figure 2.3: Implementation of Full Adder

Truth Table: Full Adder

input A input B input C SUM CARRY

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Table 2.2: Truth Table: Full Adder

5

ABC Results: Full Adder

Delay (ps) 11.11

NAND2_X1 cells: 3

XOR2_X1 cells: 2

internal signals: 3

input signals: 3

output signals: 2

Table 2.3: ABC Results: Full Adder

ABC Results I.e logic synthesis and timing analysis results are shown below.

The results clearly shows the Gates which is the number of gates in the circuit.

For example, the full adder contains 5 gates. Delay of the critical path is 11.1

picoseconds. A refers to the area factor. Df refers to the delay factor. Cin and

Cout are input capacitance and output capacitance respectively. The results show

multiple paths of the circuit as path 0, path 1 and so on.

ABC Results: Full Adder

Gates = 5 Cap = 1.3 ff Area = 1.47 Delay = 11.11 ps

Path 0 -- 2 pi A = 0.00 Df = 0.0 ps Cin = 0.0 ff Cout = 2.4 ff

Path 1 -- 2 XOR2_X1 A = 0.44 Df = 5.7 ps Cin = 1.4 ff Cout = 2.0 ff

Path 2 -- 1 XOR2_X1 A = 0.44 Df = 11.1 ps Cin = 1.4 ff Cout = 0.0 ff

6

Chapter 3

Ripple Carry Adder

A ripple carry adder is an adder that produces the arithmetic sum of two

binary adders. Multiple(n) full adders are cascaded to built a n-bit ripple carry

adder. For example, a 4-bit ripple carry adder is shown in Fig. 3.1

Figure 3.1: 4-bit Ripple Carry Adder

Similarly for n full adders will be cascaded for an n-bit ripple carry adder. The

name is ripple carry adder is so called because carry is rippled into subsequent

stages. kth stage result will be valid only if the carry has propagated through the

previous (k-1) stages. Therefore, S3 in the Fig. 3.1 is valid only when C3 has

been generated by C2. The delay in the logical circuit from input to output i.e

propagation delay is because of the carry being propagated.

7

As a general rule of thumb for the complete openware library, we have de-

signed and synthesized a purely combinational circuit. Synthesis is done using

Yosys Open Synthesis Suite [9]. Test-bench is developed in C++ and the logic is

explained using pseudo code in Algorithm 1.
Algorithm 1: Ripple Carry Adder Testbench

1 Input A[63:0], Input B[63:0];

2 lower_sum = A[63] + B[63];

3 upper_A = Shift A right by 1 bit;

4 upper_B = Shift B right by 1 bit;

5 shifted_sum = upper_A + upper_B;

6 if lower_sum is 2 then

7 shifted_sum ++;

8 end

9 if top_carry == (shifted_sum » 63) && (A + B = Sum) then

10 Pass;

11 else

12 Fail;

13 end

Ripple carry adder signed testbench has to take the extra measures as illus-

trated in the code:

uint8_t sign_a = !!(top_a >> 63);

uint8_t sign_b = !!(top_b >> 63);

// evaluate correctness

printf("Test %d: ", i);

uint64_t lower_a = (top_a & ~(1 << 63));

uint64_t lower_b = (top_b & ~(1 << 63));

uint64_t unsigned_sum = lower_a + lower_b;

8

printf("A_sign is %d, B_sign is %d, Sum_sign is %d\n", sign_a, sign_b,

(unsigned_sum >> 63));

int8_t our_carry = !!(sign_a == sign_b && sign_a != (unsigned_sum >> 63));

if (top_carry == our_carry &&

top_a + top_b == top_sum) {

printf("PASSED\n");

} else {

printf("FAILED\n");

}

printf("With values:\n");

printf("A = %lld, B = %lld, Expected Carry = %s, Actual Carry = %s"

", Expected Sum = %lld, Actual Sum = %lld\n",

top_a, top_b, our_carry ? "TRUE" : "FALSE",

top_carry ? "TRUE" : "FALSE", (top_a + top_b), top_sum);

9

Statistics: Ripple Carry Adder
8-bit 16-bit 32-bit 64-bit

Delay (ps) 48.59 86.82 120.21 240.48
Number of wires 15 15 15 15
Number of wire bits 75 107 171 299
Number of public
wires

07 07 07 07

Number of public wire
bits

36 68 132 260

Number of memories 0 0 0 0
Number of memory
bits

0 0 0 0

Number of processes 0 0 0 0
Number of cells 11 19 35 67
NOR2_X1 1 1 1 1
XNOR2_X1 1 1 1 1
XOR2_X1 1 1 1 1
Full_Adder_X1 8 16 32 64

Table 3.1: Statistics: Ripple Carry Adder

10

Chapter 4

Carry Save Adder

A carry save adder is so called because the carry is saved at the individual

stages and latter computed in the end. In fact the result from each addition is

split into two parts i.e half-sum bit and a carry bit. The half sum bits and carry

bit are not combined until very end. In the end a ripple carry adder is used to

take care of all the carry bits.

Carry save adders are commonly used for high speed and less delay , where

they generally are able to operate faster than "ripple carry" adders because a carry

save adder does not completely perform the relatively time-exhaustive process of

combining carries with sum bits between successive additions in the multiplication

process but instead defer it until the final cycle of the operation.

The whole motivation lies in the fact that the carry is delayed until the very

end and the signals don’t have to move farther. This helps in a smaller delay in

comparison to ripple carry adder.

n-bit carry save adder can be implemented by using n full adders by using the

following techniques:

1. Use a ripple carry adder.

2. Add 0 at the beginning (MSB) of the sum array after first stage.

11

3. Shift the carry array left by one bit.

We have utilized the ripple carry adder designed in the previous chapter to

design carry save adder. Note, that there are three inputs to the carry save adder.

This is the reason for area and delay to be in comparison with ripple carry adder.

Refer to block diagram in Fig.4.1. The idea can be scaled to n-bit.

Figure 4.1: 4-bit Carry Save Adder

The test-bench used are same for all the adders in the library. Care must

be taken to incorporate right data types when using more than 128 bit adders.

Statistics for 8, 16, 32 and 64 bits are shown in the table below.

12

Statistics: Carry Save Adder
8-bits 16-bits 32-bits 64-bits

Delay (ps) 61.22 86.66 127.05 248.21
AND2_X1 8 12 29 61
AND3_X2 0 1 0 0
AOI21_X1 5 21 49 98
AOI21_X2 0 0 15
INV_X1 4 37 78 155
INV_X2 0 0 2 5
NAND2_X1 24 18 50 82
NOR2_X1 18 57 119 247
NOR3_X1 0 1 6 6
OAI21_X1 0 8 39 71
XNOR2_X1 0 1 0 0
OR2_X1 0 0 3 3
XOR2_X1 22 34 58 122
Number of cells 81 190 448 880

Table 4.1: Statistics: Carry Save Adder

13

Chapter 5

Parallel Prefix Adders

Parallel prefix adders are most important because of the speed at which they

operate. The sum of n-bit number can be computed in time O(log n)[1]. This

reduction in time is achieved due to its use of a tree network known as prefix

operation graph. The reduction in time helps in addition of wider word lengths.

A block diagram for parallel prefix adder is shown in 5.1

Every parallel prefix adder can be designed using three stages as described

in the figure 5.1. The first stage is simple half adder. The core of the parallel

prefix adder is the prefix graph that propagates the carry to the final stages. An

example of the graph is show in Fig. 5.2. In the prefix operation graph, each node

is a basic logical circuit described as prefix operation.

The goal of addition is to compute the sum, S, of two operands A and B,

both of which are binary words of length n. For n-bit addition, the first stage of

the adder computes the generate (G) and propagate (P) terms for each bit of the

operands according to the following equations:

Gi = Ai AND Bi

Pi = Ai XOR Bi

Stage 2 consists of the basic prefix operation, pref, is defined as follows:

14

Figure 5.1: Parallel Prefix Block Diagram

(Gi,Pi) pref (Gj,Pj) = (Gi + Pi . Gj , Pi.Pj)

In the above equation, + refers to logical OR and . refers to logical AND.

In the end, the carry is equal to Gi’s and sum is calculated by XOR with initial

propagate which is the final stage.

We have designed two parallel prefix adders:

1. Kogge-Stone Adder

2. Han-Carlson Adder

P.M. Kogge and H.S. Stone were he first to use the property of commutativity

and design parallel prefix adders where the computation of the prefixes is consid-

ered to be a recurrence that can be performed in parallel[4]. The Kogge-Stone

computation uses log2n stages, where n is the number of bits in the operands.

Han-Carlson adder is a hybrid of Kogge-Stone and another parallel prefix adder

I.e Brent-Kung. Kogge-Stone takes log2n stages and the Brent-Kung construction

15

takes 2log2n-1 stages[3]. Han-Carlson adder takes less area for the combinational

circuits as compared to Kogge-Stone design.

Each prefix tree consist of the some basic building blocks such as prefix_op

(Bigger Circle), Square Box, Buffer and Diamond (Last stage XOR). Prefix tree

graph for 16-bit Kogge stone is shown in Fig. 5.2

Figure 5.2: 16-bit Kogge Stone Prefix Graph

ABC Results: First Stage Square Operation

Gates = 3 Cap = 0.9 ff Area = 0.69 Delay = 4.70 ps

Path 0 -- 2 pi A = 0.00 Df = 0.0 ps Cin = 0.0 ff Cout = 1.6 ff

Path 1 -- 2 AND2_X1 A = 0.29 Df = 3.8 ps Cin = 0.8 ff Cout = 0.7 ff

Path 2 -- 1 NOR2_X1 A = 0.20 Df = 4.7 ps Cin = 0.8 ff Cout = 0.0 ff

16

Figure 5.3: 16-bit Han Carlson Prefix Graph

ABC Results: Last Stage XOR Operation

Gates = 1 Cap = 1.0 ff Area = 0.44 Delay = 4.28 ps

Path 0 -- 1 pi A = 0.00 Df = 0.0 ps Cin = 0.0 ff Cout = 1.6 ff

Path 1 -- 1 XOR2_X1 A = 0.44 Df = 4.3 ps Cin = 1.4 ff Cout = 0.0 ff

ABC Results: Prefix Operation

Gates = 4 Cap = 0.7 ff Area = 0.84 Delay = 3.08 ps

Path 0 -- 1 pi A = 0.00 Df = 0.0 ps Cin = 0.0 ff Cout = 0.8 ff

Path 1 -- 1 NAND2_X1 A = 0.20 Df = 2.0 ps Cin = 0.8 ff Cout = 0.7 ff

Path 2 -- 1 NAND2_X1 A = 0.20 Df = 3.1 ps Cin = 0.8 ff Cout = 0.0 ff

17

ABC Results: Building Blocks for Prefix Adder
Diamond Prefix Operation Square Opera-

tion
Delay (ps) 4.28 3.08 4.70
NAND2_X1 cells: 0 2 0
AND2_X1 cells: 0 1 1
BUF_X2 cells: 0 1 1
INV_X1 cells: 0 1 0
XOR2_X1 cells: 1 0 0
NOR2_X1 cells: 0 0 2
internal signals: 0 1 0
input signals: 2 4 2
output signals: 1 2 2

Table 5.1: ABC Results: Carry Save Adder

18

Statistics: Kogge Stone Adder
8-bit 16-bit 32-bit 64-bit

Delay (ps) 31.97 39.49 48.07 57.01
Number of wires 14 16 18 20
Number of wire bits 98 226 514 1154
Number of public
wires

14 16 18 20

Number of public wire
bits

98 226 514 1154

Number of memories 0 0 0 0
Number of memory
bits

0 0 0 0

Number of processes 0 0 0 0
Number of cells 37 92 219 506
Buffer 7 15 31 63
Diamond 8 16 32 64
Pref_Operation 14 45 124 315
Square_Operation 8 16 32 64

Table 5.2: Statistics: Kogge Stone Adder

19

Statistics: Han Carlson Adder
16-bit 32-bit

Delay (ps) 77.28 62.67
Number of wires 18 20
Number of wire bits 258 578
Number of public
wires

18 20

Number of public wire
bits

258 578

Number of memories 0 0
Number of memory
bits

0 0

Number of processes 0 0
Number of cells 107 250
Buffer 47 111
Diamond 16 32
Pref_Operation 28 75
Square_Operation 16 32

Table 5.3: Statistics: Han Carlson Adder

20

Chapter 6

Bit Shifts

Bitwise Operation operates on a binary number in a manner that each indi-

vidual bits can be manipulated. We have designed some of the basic shifts that

come in very handy. The shifts simple move the number of bits in the left or right

direction and fill the empty spots as per required. In other words, the shifters will

shift the data word by specified number of bits purely by a combinational logic.

Four basic modules designed are:

1. Barrel Shift left:

A barrel shift left moves the bits to its left by the specified number of bits

and append zeroes at the right. This is exactly same as shift arithmetic left. A

pseudo-code for implementing shift logical/arithmetic left is shown below. Refer

to Fig.6.1.

21

Figure 6.1: Example: Shift Logical/Arithmetic Left

Algorithm 2: Shift Logical/Arithmetic Left

1 Input a[Bits-1:0];

2 Input shift_bits;

3 Input b[Bits-1:0];

4 //Adding 0’s to the top:

5 temp = 0;

6 reg [(2*Bits-1):0] a_double;

7 a_double = {a,temp};

8 for(i=0; i<Bits; i++)

9 array[i] = a_double[2*Bits-1-1:Bits-i];

10 b = array[shift_bits];

ABC Results Bit Shift Left (64-bits):

Gates = 4739 Cap = 1.5 ff Area = 940.77 Delay = 67.98 ps

Path 0 -- 3 pi A = 0.00 Df = 1.2 ps Cin = 0.0 ff Cout = 2.5 ff

Path 1 -- 2 INV_X1 A = 0.15 Df = 3.3 ps Cin = 0.8 ff Cout = 1.6 ff

Path 2 -- 1 NOR2_X1 A = 0.20 Df = 5.9 ps Cin = 0.8 ff Cout = 0.8 ff

Path 3 -- 7 INV_X1 A = 0.15 Df = 11.0 ps Cin = 0.8 ff Cout = 5.8 ff

Path 4 -- 10 BUF_X2 A = 0.25 Df = 18.5 ps Cin = 0.8 ff Cout = 8.3 ff

Path 5 -- 10 NOR2_X1 A = 0.20 Df = 29.4 ps Cin = 0.8 ff Cout = 7.3 ff

22

Path 6 -- 10 INV_X1 A = 0.15 Df = 39.0 ps Cin = 0.8 ff Cout = 7.3 ff

Path 7 -- 10 CLKBUF_X2 A = 0.25 Df = 47.3 ps Cin = 0.8 ff Cout = 7.3 ff

Path 8 -- 1 NOR2_X1 A = 0.20 Df = 50.5 ps Cin = 0.8 ff Cout = 0.8 ff

Path 9 -- 1 NOR2_X1 A = 0.20 Df = 52.7 ps Cin = 0.8 ff Cout = 0.7 ff

Path 10 -- 1 NAND2_X1 A = 0.20 Df = 54.4 ps Cin = 0.8 ff Cout = 0.7 ff

Path 11 -- 1 NOR2_X1 A = 0.20 Df = 56.0 ps Cin = 0.8 ff Cout = 0.7 ff

Path 12 -- 1 NAND2_X1 A = 0.20 Df = 57.6 ps Cin = 0.8 ff Cout = 0.7 ff

Path 13 -- 1 NOR2_X1 A = 0.20 Df = 59.3 ps Cin = 0.8 ff Cout = 0.8 ff

Path 14 -- 1 NAND2_X1 A = 0.20 Df = 68.0 ps Cin = 0.8 ff Cout = 10.0 ff

23

Statistics: Bit Shift Left
8-bits 16-bits 32-bits 64-bits

Delay (ps) 32.46 45.39 58.38 67.98
Number of wires 161 459 1587 5425
Number of wire bits 321 1142 4423 17122
Number of public
wires

12 20 36 68

Number of public wire
bits

99 324 1157 4358

Number of memories 0 0 0 0
Number of memory
bits

0 0 0 0

Number of processes 0 0 0 0
Number of cells 89 310 1259 4739
AND2_X1 2 1 5 2
BUF_X1 0 0 1 1
BUF_X2 0 0 26 70
CLKBUF_X1 0 0 0 1
CLKBUF_X2 0 0 45 263
INV_X1 13 38 80 155
NAND2_X1 47 110 612 1780
NOR2_X1 27 161 490 2467

Table 6.1: Statistics: Bit Shift Left

2. Barrel shift right:

A barrel shift right moves the bits to its right by the specified number of bits.

In the case of arithmetic shift right, MSB is appended to the left. In the case of

logical shift right, zeroes are appended to the MSB. Refer to Fig.6.2.

24

Figure 6.2: Example: Shift Logical Right

ABC Results Bit Shift Right (64 bits):

Gates = 4935 Cap = 1.5 ff Area = 987.41 Delay = 72.56 ps

Path 0 -- 3 pi A = 0.00 Df = 1.2 ps Cin = 0.0 ff Cout = 2.5 ff

Path 1 -- 2 INV_X1 A = 0.15 Df = 3.3 ps Cin = 0.8 ff Cout = 1.6 ff

Path 2 -- 1 NOR2_X1 A = 0.20 Df = 5.9 ps Cin = 0.8 ff Cout = 0.8 ff

Path 3 -- 7 INV_X1 A = 0.15 Df = 11.0 ps Cin = 0.8 ff Cout = 5.8 ff

Path 4 -- 10 BUF_X2 A = 0.25 Df = 18.5 ps Cin = 0.8 ff Cout = 8.3 ff

Path 5 -- 10 NOR2_X1 A = 0.20 Df = 29.9 ps Cin = 0.8 ff Cout = 7.7 ff

Path 6 -- 2 NOR2_X1 A = 0.20 Df = 34.7 ps Cin = 0.8 ff Cout = 1.5 ff

Path 7 -- 1 NAND2_X1 A = 0.20 Df = 37.8 ps Cin = 0.8 ff Cout = 0.8 ff

Path 8 -- 1 NOR2_X1 A = 0.20 Df = 40.0 ps Cin = 0.8 ff Cout = 0.8 ff

Path 9 -- 2 NAND2_X1 A = 0.20 Df = 42.5 ps Cin = 0.8 ff Cout = 1.4 ff

Path 10 -- 1 NOR2_X1 A = 0.20 Df = 44.4 ps Cin = 0.8 ff Cout = 0.8 ff

Path 11 -- 1 NAND2_X1 A = 0.20 Df = 46.6 ps Cin = 0.8 ff Cout = 0.9 ff

Path 12 -- 9 BUF_X2 A = 0.25 Df = 52.8 ps Cin = 0.8 ff Cout = 7.6 ff

Path 13 -- 10 BUF_X2 A = 0.25 Df = 60.0 ps Cin = 0.8 ff Cout = 8.3 ff

Path 14 -- 1 NAND2_X1 A = 0.20 Df = 72.6 ps Cin = 0.8 ff Cout =10.0 ff

25

Statistics: Bit Shift Arithmetic Right
8-bits 16-bits 32-bits 64-bits

Delay (ps) 33.75 50.90 59.06 72.56
Number of wires 166 519 1663 5679
Number of wire bits 338 1239 4601 17639
Number of public
wires

13 21 37 69

Number of public wire
bits

107 340 1189 4422

Number of memories 0 0 0 0
Number of memory
bits

0 0 0 0

Number of processes 0 0 0 0
Number of cells 89 358 1308 4935
AND2_X1 3 3 2 14
BUF_X1 0 0 0 3
BUF_X2 1 4 13 218
CLKBUF_X1 0 0 1 6
CLKBUF_X2 0 11 67 182
INV_X1 9 31 47 92
NAND2_X1 49 83 315 3392
NOR2_X1 26 226 863 1026

Table 6.2: Statistics: Bit Shift Arithmetic Right

3. Shift Rotate Left:

A shift rotate left move bits circularly by the specified number of times. In

this case, the Least Significant Bit(LSB) becomes the Most Significant Bit(MSB).

Refer to the Fig.6.3.

26

Figure 6.3: Example: Shift Rotate Left

ABC Results Bit Rotate Left (64 bits):

Gates = 9214 Cap = 1.5 ff Area = 1860.45 Delay = 64.64 ps

Path 0 -- 3 pi A = 0.00 Df = 1.1 ps Cin = 0.0 ff Cout = 2.4 ff

Path 1 -- 2 INV_X1 A = 0.15 Df = 3.2 ps Cin = 0.8 ff Cout = 1.5 ff

Path 2 -- 1 NOR2_X1 A = 0.20 Df = 5.7 ps Cin = 0.8 ff Cout = 0.8 ff

Path 3 -- 7 INV_X1 A = 0.15 Df = 10.8 ps Cin = 0.8 ff Cout = 5.8 ff

Path 4 --10 BUF_X2 A = 0.25 Df = 18.4 ps Cin = 0.8 ff Cout = 8.3 ff

Path 5 -- 2 NOR2_X1 A = 0.20 Df = 22.5 ps Cin = 0.8 ff Cout = 1.6 ff

Path 6 --10 BUF_X2 A = 0.25 Df = 29.3 ps Cin = 0.8 ff Cout = 7.7 ff

Path 7 --10 CLKBUF_X2 A = 0.25 Df = 36.3 ps Cin = 0.8 ff Cout = 7.3 ff

Path 8 -- 1 NAND2_X1 A = 0.20 Df = 39.2 ps Cin = 0.8 ff Cout = 0.8 ff

Path 9 -- 1 NAND2_X1 A = 0.20 Df = 41.6 ps Cin = 0.8 ff Cout = 0.8 ff

Path 10 -- 1 NOR2_X1 A = 0.20 Df = 43.5 ps Cin = 0.8 ff Cout = 0.7 ff

Path 11 -- 1 NAND2_X1 A = 0.20 Df = 45.3 ps Cin = 0.8 ff Cout = 0.8 ff

Path 12 -- 1 NOR2_X1 A = 0.20 Df = 47.3 ps Cin = 0.8 ff Cout = 0.8 ff

Path 13 -- 1 NAND2_X1 A = 0.20 Df = 49.7 ps Cin = 0.8 ff Cout = 0.8 ff

Path 14 -- 1 NOR2_X1 A = 0.20 Df = 52.8 ps Cin = 0.8 ff Cout = 0.8 ff

Path 15 -- 1 NAND2_X1 A = 0.20 Df = 64.6 ps Cin = 0.8 ff Cout =10.0 ff

27

Statistics: Bit Shift Rotate Left
8-bits 16-bits 32-bits 64-bits

Delay (ps) 32.15 42.94 57.19 64.64
Number of wires 212 733 2709 9958
Number of wire bits 379 1444 5630 21855
Number of public
wires

12 20 36 68

Number of public wire
bits

99 324 1157 4358

Number of memories 0 0 0 0
Number of memory
bits

0 0 0 0

Number of processes 0 0 0 0
Number of cells 135 572 2354 9214
AND2_X1 0 0 3 66
BUF_X2 0 16 2 513
CLKBUF_X2 0 16 192 384
INV_X1 3 20 63 36
NAND2_X1 108 96 447 6740
NOR2_X1 24 424 1646 1474

Table 6.3: Statistics: Bit Shift Rotate Left

4. Shift Rotate Right:

A shift rotate left move bits circularly by the specified number of times. In

this case, the Least Significant Bit(LSB) becomes the Most Significant Bit(MSB).

Refer to the Fig.6.4

28

Figure 6.4: Example: Shift Rotate Right

ABC Results Bit Rotate Right (64 bits):

Gates = 9214 Cap = 1.5 ff Area = 1860.45 Delay = 64.64 ps

Path 0 -- 3 pi A = 0.00 Df = 1.1 ps Cin = 0.0 ff Cout = 2.4 ff

Path 1 -- 2 INV_X1 A = 0.15 Df = 3.2 ps Cin = 0.8 ff Cout = 1.5 ff

Path 2 -- 1 NOR2_X1 A = 0.20 Df = 5.7 ps Cin = 0.8 ff Cout = 0.8 ff

Path 3 -- 7 INV_X1 A = 0.15 Df = 10.8 ps Cin = 0.8 ff Cout = 5.8 ff

Path 4 --10 BUF_X2 A = 0.25 Df = 18.4 ps Cin = 0.8 ff Cout = 8.3 ff

Path 5 -- 2 NOR2_X1 A = 0.20 Df = 22.5 ps Cin = 0.8 ff Cout = 1.6 ff

Path 6 --10 BUF_X2 A = 0.25 Df = 29.3 ps Cin = 0.8 ff Cout = 7.7 ff

Path 7 --10 CLKBUF_X2 A = 0.25 Df = 36.3 ps Cin = 0.8 ff Cout = 7.3 ff

Path 8 -- 1 NAND2_X1 A = 0.20 Df = 39.2 ps Cin = 0.8 ff Cout = 0.8 ff

Path 9 -- 1 NAND2_X1 A = 0.20 Df = 41.6 ps Cin = 0.8 ff Cout = 0.8 ff

Path 10 -- 1 NOR2_X1 A = 0.20 Df = 43.5 ps Cin = 0.8 ff Cout = 0.7 ff

Path 11 -- 1 NAND2_X1 A = 0.20 Df = 45.3 ps Cin = 0.8 ff Cout = 0.8 ff

Path 12 -- 1 NOR2_X1 A = 0.20 Df = 47.3 ps Cin = 0.8 ff Cout = 0.8 ff

Path 13 -- 1 NAND2_X1 A = 0.20 Df = 49.7 ps Cin = 0.8 ff Cout = 0.8 ff

Path 14 -- 1 NOR2_X1 A = 0.20 Df = 52.8 ps Cin = 0.8 ff Cout = 0.8 ff

Path 15 -- 1 NAND2_X1 A = 0.20 Df = 64.6 ps Cin = 0.8 ff Cout =10.0 ff

29

Statistics: Bit Shift Rotate Right
8-bits 16-bits 32-bits 64-bits

Delay (ps) 32.15 42.94 57.19 64.64
Number of wires 212 733 2709 9958
Number of wire bits 379 1444 5630 21855
Number of public
wires

12 20 36 68

Number of public wire
bits

99 324 1157 4358

Number of memories 0 0 0 0
Number of memory
bits

0 0 0 0

Number of processes 0 0 0 0
Number of cells 135 572 2354 9214
AND2_X1 0 0 3 66
BUF_X2 0 16 2 513
CLKBUF_X2 0 16 192 384
INV_X1 3 20 63 36
NAND2_X1 108 96 447 6740
NOR2_X1 24 424 1646 1474

Table 6.4: Statistics: Bit Shift Rotate Right

30

Chapter 7

Booth Multiplier

Multiplication can be computed by simplifying the numbers to base 2. The

product of A x B with X and Y bits respectively can be performed in two simple

steps. First, by generating Y number of partial products of X bits each. Second, by

simply adding the generated partial products from step one. The partial products

are generated using the Radix encoding and shifting the bits appropriately for

the negative sign. Each column of partial products must then be added and, if

necessary, any carry values passed to the next column. An Example is show in

Fig.7.1.[7]

Booth Multiplier is an algorithm that multiplies two signed binary in two’s

complement form. The bottleneck of a multiplier is the addition of partial prod-

ucts. The more the partial products are the more time it takes to compute the

results. The whole point of using a booth multiplier is to reduce the number of

partial products generated. We have designed the multiplier using Radix-4 Booth

encoding which further reduces the number of partial products to n/2 if we are

multiplying two n bit numbers. Radix-4 Booth encoding values are show in table.

7.1

31

Figure 7.1: Example: Multiplication

Radix-4 Booth Encoding Values

X(2i+1) X(2i) X(2i-1) Partial
Product

0 0 0 0

0 0 1 Y

0 1 0 Y

0 1 1 2Y

1 0 0 -2Y

1 0 1 -Y

1 1 0 -Y

1 1 1 0

Table 7.1: Radix-4 Booth Encoding Values

The multiplier designed is completely configurable where we can give the pa-

rameters required for 8,16,32,64 and so on bits to be multiplied. The synthesis

results are shown in Figure below.

32

Statistics: Booth Multiplier
8-bits 16-bits 32-bits 64-bits

Delay (ps) 118.16 258.49 561.12 1171.70
Number of wires 944 3640 15070 60986
Number of wire bits 1484 5684 23194 93688
Number of public
wires

18 30 54 102

Number of public wire
bits

177 545 1857 6785

Number of memories 0 0 0 0
Number of memory
bits

0 0 0 0

Number of processes 0 0 0 0
Number of cells 665 2624 11093 45050
AND2_X1 07 48 187 599
AND2_X2 0 0 45 97
BUF_X2 0 6 105 623
CLKBUF_X1 0 0 0 4
CLKBUF_X2 0 51 259 896
CLKBUF_X4 0 0 1 5
INV_X1 89 346 1323 5850
INV_X2 06 07 96 267
INV_X4 0 9 09 29
NAND2_X1 209 792 2840 11399
NAND2_X2 31 71 620 1212
NOR2_X1 262 1130 4766 21182
NOR2_X2 34 36 389 917
OR2_X1 07 33 109 327
OR2_X2 0 01 09 25
XNOR2_X1 01 10 34 187
XOR2_X1 19 92 298 1431

Table 7.2: Statistics: RADIX-4 Booth Multiplier

33

Chapter 8

Results

Results of all the modules are tabulated below along with the bits, delay and

number of cells for each.

Results:Adders
Delay(ps) Number of Cells

Ripple Carry Adder 8-bit 48.59 40
16-bit 86.82 76
32-bit 120.21 150
64-bit 240.48 294

Carry Save Adder 8-bit 61.22 81
3 - Inputs

16-bit 86.66 190
32-bit 127.05 448
64-bit 248.21 880

Kogge-Stone Adder 8-bit 31.97 59
16-bit 39.49 168
32-bit 48.07 454
64-bit 57.01 1100

Han-Carlson Adder 16-bit 77.28 96
32-bit 62.67 286

Table 8.1: Results:Adders

34

Results
Delay(ps) Number of Cells

Bit-Shift Left 8-bit 32.46 89
16-bit 45.39 310
32-bit 58.38 1259
64-bit 67.98 4739

Bit-Shift Right 8-bit 33.75 89
16-bit 50.90 358
32-bit 59.06 1308
64-bit 72.56 4935

Bit-Shift Rotate Left 8-bit 32.15 135
16-bit 42.94 572
32-bit 57.19 2354
64-bit 64.64 9214

Bit-Shift Rotate Right 8-bit 32.15 135
16-bit 42.94 572
32-bit 57.19 2354
64-bit 64.64 9214

Radix-4 Booth Multi-
plier

8-bit 118.16 665

16-bit 258.49 2624
32-bit 561.12 11093
64-bit 1171.70 45050

Table 8.2: Results

35

Chapter 9

Conclusion

A base has been created by creating this library where the modules can be used

as per the required number of bits. An engineer would not need to create this

modules redundantly and can be directly instantiated while designing complex

modules.

Current modules include Binary Adders, Parallel Prefix Adder, Shifters and

Radix-4 Booth Multiplier. All the modules are designed successfully and are

synthesizable. Extensive synthesis results are attached and also available at the

repository.

In future, we can continue to grow our library as per required by adding more

modules to it.

36

Bibliography

[1] R. P. Brent and H. T. Kung. A regular layout for parallel adders. IEEE Trans.
Comput., 31(3):260–264, March 1982.

[2] Leininger Joel Calvin and Taylor George Phillips. Carry save adder.

[3] T. Han and D. A. Carlson. Fast area-efficient vlsi adders. In 1987 IEEE 8th
Symposium on Computer Arithmetic (ARITH), pages 49–56, May 1987.

[4] P. M. Kogge and H. S. Stone. A parallel algorithm for the efficient solution
of a general class of recurrence equations. IEEE Transactions on Computers,
C-22(8):786–793, Aug 1973.

[5] M. Morris Mano. Digital Design. Prentice Hall PTR, Upper Saddle River, NJ,
USA, 3rd edition, 2001.

[6] S. Muthyala Sudhakar, K. P. Chidambaram, and E. E. Swartzlander. Hybrid
han-carlson adder. In 2012 IEEE 55th International Midwest Symposium on
Circuits and Systems (MWSCAS), pages 818–821, Aug 2012.

[7] Neil Weste and David Harris. CMOS VLSI Design: A Circuits and Systems
Perspective. Addison-Wesley Publishing Company, USA, 4th edition, 2010.

[8] Wikipedia. Adder. https://en.wikipedia.org/wiki/Adder_
(electronics), 2018. [Online; accessed 05-May-2018].

[9] Clifford Wolf. Yosys open synthesis suite. http://www.clifford.at/yosys/.

37

https://en.wikipedia.org/wiki/Adder_(electronics)
https://en.wikipedia.org/wiki/Adder_(electronics)
http://www.clifford.at/yosys/

	List of Figures
	List of Tables
	Abstract
	Acknowledgments
	Introduction
	Binary Adders
	Ripple Carry Adder
	Carry Save Adder
	Parallel Prefix Adders
	Bit Shifts
	Booth Multiplier
	Results
	Conclusion
	Bibliography

