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Abstract
Results on Martin’s Conjecture
by
Patrick Lutz
Doctor of Philosophy in Mathematics
University of California, Berkeley

Professor Theodore Slaman, Chair

Martin’s conjecture is an attempt to classify the behavior of all definable functions on the
Turing degrees under strong set theoretic hypotheses. Very roughly it says that every such
function is either eventually constant, eventually equal to the identity function or eventually
equal to a transfinite iterate of the Turing jump. It is typically divided into two parts:
the first part states that every function is either eventually constant or eventually above the
identity function and the second part states that every function which is above the identity is
eventually equal to a transfinite iterate of the jump. If true, it would provide an explanation
for the unique role of the Turing jump in computability theory and rule out many types of
constructions on the Turing degrees.

In this thesis we will introduce a few tools which we use to prove several cases of Martin’s
conjecture. It turns out that both these tools and these results on Martin’s conjecture have
some interesting consequences both for Martin’s conjecture and for a few related topics.

The main tool that we introduce is a basis theorem for perfect sets, improving a theorem due
to Groszek and Slaman [GS98]. We also introduce a general framework for proving certain
special cases of Martin’s conjecture which unifies a few pre-existing proofs. We will use
these tools to prove three main results about Martin’s conjecture: that it holds for regressive
functions on the hyperarithmetic degrees (answering a question of Slaman and Steel), that
part 1 holds for order preserving functions on the Turing degrees, and that part 1 holds for
a class of functions that we introduce, called measure preserving functions.

This last result has several interesting consequences for the study of Martin’s conjecture. In
particular, it shows that part 1 of Martin’s conjecture is equivalent to a statement about
the Rudin-Keisler order on ultrafilters on the Turing degrees. This suggests several possible
strategies for working on part 1 of Martin’s conjecture, which we will discuss.

The basis theorem that we use to prove these results also has some applications outside of
Martin’s conjecture. We will use it to prove a few theorems related to Sacks’ question about



whether it is provable in ZFC that every locally countable partial order of size continuum
embeds into the Turing degrees. We will show that in a certain extension of ZF (which is
incompatible with ZFC), this holds for all partial orders of height two, but not for all partial
orders of height three. We will also present an obstacle to embedding height three partial

orders into the Turing degrees in ZFC which shows that one of the most natural ways of
trying to do so cannot work.

We will end the thesis with a list of open questions related to Martin’s conjecture, which we
hope will stimulate further research.
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Chapter 1

Introduction

Martin’s conjecture is a proposed classification of the behavior of functions on the Turing
degrees. Very roughly, it states that every definable function on the Turing degrees is ei-
ther eventually constant, eventually equal to the identity function, or eventually equal to a
transfinite iterate of the Turing jump.

The conjecture was proposed by Martin in the 1970s. In the 70s and 80s, Martin, Lachlan,
Steel and Slaman proved several special cases [Mar68; Lac75; Ste82; SS88]. Since that
time, there has been considerable conceptual progress, connecting Martin’s conjecture to the
theory of countable Borel equivalence relations and descriptive set theory more generally and
also refining our understanding of the past results ([Bec88; DK00; MSS16; KM18; Bar20].
However, there has been no direct progress on the conjecture itself. We will present proofs
of the first cases of Martin’s conjecture that have been proved since the results of Slaman
and Steel in the 1980s.

We have three main goals in this thesis. First, to present our proofs of a few special cases
of Martin’s conjecture, and explore some of the consequences of these results. Second, to
collect and compare results about Martin’s conjecture in different degree structures. Third,
to compile a list of open questions about Martin’s conjecture, which we hope will stimulate
further research. In particular, we will only occasionally comment on applications of Martin’s
conjecture to set theory or its connections with other parts of set theory and computability
theory—our focus is on proving instances of Martin’s conjecture.

Special Cases of Martin’s Conjecture

We will prove two special cases of Martin’s conjecture: in Chapter 6 we will prove part 1 of
Martin’s conjecture for order preserving functions and in Chapter 5 we will prove part 1 of
Martin’s conjecture for a class of functions which we call measure preserving functions. The
result on measure preserving functions yields, as a corollary, a connection between Martin’s
conjecture and the Rudin-Keisler order on ultrafilters.

To prove these theorems, we introduce a couple of technical tools. The first tool is a basis
theorem for perfect sets, presented in section 2.3. We have also found applications of this tool
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to Sacks’ question about which partial orders embed into the Turing degrees and to related
questions about the role of the Turing degrees in the theory of locally countable Borel quasi
orders (which parallels the theory of countable Borel equivalence relations). The second
tool is a somewhat general method for converting instances of Martin’s conjecture which
involve potentially very complicated functions into instances which only involve continuous
functions. This method is surprisingly simple, but has proved useful in several of the results
of this thesis. We present the basic ideas behind this in the first section of Chapter 2.

Comparing Martin’s Conjecture on Different Degree Structures

Martin’s conjecture is a statement about functions on the Turing degrees, but it is pos-
sible to formulate versions of Martin’s conjecture for most computability-theoretic degree
structures—and in particular for functions on the arithmetic degrees and the hyperarith-
metic degrees. We will provide an overview of what is known about Martin’s conjecture for
functions on the Turing degrees, arithmetic degrees, and hyperarithmetic degrees. We will
also prove one new case of Martin’s conjecture for functions on the hyperarithmetic degrees
(section 4.1).

Open Questions

We will end the thesis with a list of open questions related to Martin’s conjecture. I cannot
claim that this list is a complete inventory of every question about Martin’s conjecture
that has been asked, but I can promise that I find each one compelling and would find
an answer to any one of them quite interesting. It is my hope that these questions will
help spur further research on Martin’s conjecture by providing some tractable but appealing
intermediate goals.

Note: Joint Work

Some of the results in this thesis are the result of collaboration. In particular, the results of
Chapter 3 are joint work with Vittorio Bard, Chapters 5 and 6 are joint work with Benjamin
Siskind, and Chapter 7 is joint work with Kojiro Higuchi. Also, the main idea of the third
proof in section 6.2 is due to Takayuki Kihara.

1.1 Motivation: Natural Functions on the Turing
Degrees

Since the dawn of time (or at least since the 1940s), computability theorists have noted the
unique role that the Turing jump seems to play in computability theory. It has a simple
and philosophically appealing definition and is even definable from the partial order on the
Turing degrees [SS99]. It has many different equivalent definitions, some of which have fairly
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different motivations. The halting problem was the first uncomputable problem discovered
and every time an uncomputable problem shows up in mathematics outside of computability
theory, it seems to be equivalent to the jump or, occasionally, some higher version of the
jump like the w-jump or the hyperjump. It seems to be the one really fundamental operation
on the Turing degrees and all other operations are either built out of it (or higher versions
of it, like the hyperjump) or are produced by ad-hoc constructions®.

This observation cries out for an explanation. Are there other fundamental operations
on the Turing degrees that we’'ve just been missing this whole time? And if not, can we
prove it? Can we even state the question in a mathematically precise way?

Attempts to address this question have driven much of the development of computability
theory. For example, they led Post to define the many-one degrees and the Turing degrees
and to pose Post’s problem, which famously asked whether there might be no r.e. degree
strictly between the Turing degree of the computable sets and the Turing degree of the halting
problem [Pos44]. And though this hope proved false, the techniques discovered to disprove
it led to the development of the priority argument as a sophisticated tool in computability
theory and the discovery of a rich structure in the Turing degrees (see, for example, section
5 of Odifreddi’s book [Odi89]). However, despite all the ensuing progress in computability
theory, there is still no completely satisfactory explanation for the unique role of the Turing
jump.

Martin’s conjecture is one more attempt to explain this phenomenon. The key idea is to
switch focus from individual Turing degrees to operations defined on all Turing degrees. It
is not clear whether Martin’s conjecture is true (and there is evidence pointing in both direc-
tions) but it seems likely that whichever way it is resolved will contribute to computability
theory: either we will gain new insight into the special role of the jump or we will discover
powerful new constructions for building functions on the Turing degrees.

Before getting into the technical details of how Martin’s conjecture is stated, which we
will do in the next few sections, let’s set the stage by exploring how one might try to come
up with a mathematically precise formulation of the idea that every natural operation on
the Turing degrees is built out of the jump. A natural starting point is to focus on functions
F on the Turing degrees such that F(x) is always in-between x and x’. An excessively naive
question to ask here is whether every such function is either equal to the identity function
or the jump. However, this is obviously false. Here are two counterexamples.

Example 1.1. By the relativized version of the Kleene-Post theorem, for every Turing
degree x there is some degree y strictly between x and x’. Pick one such y for every
x to get a function that is always strictly in-between the identity and the jump.

!There is arguably a natural computability theoretic operation on 2 that is not equivalent to the jump—
namely the relativization of Chaitin’s © to an arbitrary real (see [Dow+05])—but notably this operation
does not induce a well-defined operation on the Turing degrees.
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Example 1.2. Fix some Turing degree z and define a function by

flx) = {x’, fx>rz

x, ifx%rz

This function is sometimes equal to the identity and sometimes equal to the jump, but
it is clearly not equal to either one on all degrees.

But though these examples do answer our naive question, they do not seem to really be
counterexamples to our initial intuition about the uniqueness of the Turing jump. The first
example requires using the Axiom of Choice to define the function and the second example
is just built out of the identity and the jump in a simple way and is just equal to the jump
on all large enough degrees. The idea of Martin’s conjecture is that these are essentially the
only possible types of counterexamples. We can eliminate the first type of counterexample
by either working in a setting without the Axiom of Choice or by restricting our attention
to some class of definable functions (Borel functions, for example). The usual formulation
of Martin’s conjecture replaces the Axiom of Choice with the Axiom of Determinacy (an
axiom of set theory which contradicts Choice), though there are also versions of Martin’s
conjecture which instead restrict the class of functions considered. And we can eliminate the
second type of counterexample by only considering the behavior of functions “in the limit,”
i.e. their behavior on all sufficiently large degrees.

A few things about this description of Martin’s conjecture require more explanation.
First, what do we mean by “only consider the behavior of functions in the limit”? And
second, what is the Axiom of Determinacy, and why should we want to prove a theorem that
assumes it rather than just prove a consistency result over ZF? In the next two sections, we
will address these questions, at which point we will be able to state Martin’s conjecture and
explain the sense in which it explains the phenomenon that we started with.

1.2 The Martin Order and the Martin Measure

In this section we will explain what it means to talk about the behavior of functions on the
Turing degrees “in the limit.” The basic idea is that we will consider two functions equivalent
as long as they are equal on every large enough Turing degree. More generally, we will think
of a property of Turing degrees as being “eventually true” if it holds for every large enough
Turing degree. The key notion to making this precise is that of a cone of Turing degrees—
this is a set which contains all degrees above some fixed degree (in other words, all “large
enough” degrees).

Definition 1.3. A cone of Turing degrees is a set of Turing degrees of the form {x | x >r z}
for some fixed degree z. This is sometimes also referred to as the cone above z and z is
called the base of the cone.
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Notation 1.4. We will sometimes use the notation Cone(z) to refer to the cone above a
degree z.

One of the core ideas of Martin’s conjecture is that if we switch from asking for some
property to hold for every Turing degree to asking for it to hold on a cone of Turing degrees
then we get much more robust statements. This “on-a-cone” way of thinking has also found
applications well outside of Martin’s conjecture. For example, it has been used by Montalban
in [Monl17] to get cleaner versions of theorems in computable structure theory, such as the
following: a countable structure is computably categorical on a cone if and only if it is 3-
atomic over a finite set of parameters (which is easier to state than the version that just
talks about computable categoricity instead of computable categoricity on a cone).

The Martin Order

We can now define what it means for two functions on the Turing degrees to be “eventually
equal” or for one function to be “eventually above” another.

Notation 1.5. We will use Dy to refer to the Turing degrees.

Definition 1.6. If F,G: Dy — Dr are both functions on the Turing degrees then F' is
Martin equivalent to G, written F =y, G, if they are equal on a cone. In other words, if
there is some z such that for all x >r z, F(x) = G(x).

Definition 1.7. If F,G: Dy — Dr are two functions on the Turing degrees then F is
Martin below G, written F' <p; G, if F' is Turing below G on a cone. In other words, if
there is some z such that for all x >r z, F(x) <r G(x).

The relation <j;; is called the Martin order. Note that the Martin order is a quasi-
order on functions on the Turing degrees and if we quotient out by Martin equivalence then
it forms a partial order.

The Martin Measure

There is a natural way to think about Martin equivalence and the Martin order using concepts
from measure theory. We wish to emphasize this now because this perspective will be useful
for understanding our results later in this thesis.

Here’s the idea. Call a set of Turing degrees “measure 17 if it contains a cone and
“measure 07 if it is disjoint from a cone. This forms a {0, 1}-valued measure on the Turing
degrees (i.e. a countably complete filter), called the Martin measure. Martin equivalence is
just equivalence almost everywhere with respect to the Martin measure, and likewise for the
Martin order. For the sake of completeness, we will now state all of this formally.
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Definition 1.8. The Martin measure, denoted Uy, is the {0, 1}-valued measure on the
Turing degrees defined by

1, if A contains a cone
Ui (4) = { !

0, if A is disjoint from a cone.

Note that it is easy to show that the Axiom of Choice implies that not every set of
Turing degrees is measurable. The next proposition reassures us about our use of the word
“measure” in the term “Martin measure” and is straightforward to prove using standard facts
from computability theory.

Proposition 1.9. The Martin measure is, in fact, a measure—i.e. a countably complete
filter.

We can now restate Martin equivalence and Martin order in terms of the Martin measure.
The proof of the following proposition is simply a matter of comparing definitions and seeing
that they are identical.

Proposition 1.10. Let F' and G be functions on the Turing degrees.
o "=y G if and only if F' and G agree Uyr-almost everywhere

o <y G if and only if F(x) <r G(x) for Upr-almost every x.

Turing Invariant Functions on the Reals

It is most common to state Martin’s conjecture not for all functions on the Turing degrees,
but instead only for those functions on the Turing degrees which are induced by Turing
invariant functions on the reals. The main reason for this is that it allows for access to more
technical tools and because if we assume a limited form of the Axiom of Choice (which is
consistent with the Axiom of Determinacy), then this includes all functions on the Turing
degrees (we will comment on this again later).

Another benefit of framing things in terms of Turing invariant functions on the reals
rather than functions on the Turing degrees is that it gives a better perspective on why the
Axiom of Choice was required in Example 1.1. The proof that Kleene and Post gave to
construct a real whose Turing degree is in-between that of a real, x, and its jump, 2’, builds
a real by finite extensions, meeting an infinite list of requirements along the way to make
sure that the real is not computed by x and does not compute x’. The Turing degree of the
real produced by this construction depends in a very sensitive way on x—if x is changed
even in one position, it may change the way in which the construction tries to satisfy the
requirements and this can easily change the Turing degree of the real produced?. Thus the

2And priority arguments are even worse: the order in which requirements are satisfied can be changed
by flipping a single bit of x.
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Kleene-Post construction should really be viewed as a function not from Turing degrees to
Turing degrees, but from reals to reals. The way that Martin’s conjecture excludes things
like the Kleene-Post construction, then, is by restricting our attention from all functions on
the reals to just the Turing invariant functions. This also agrees with our intuition—the
Turing jump is special in part because even though it is naturally defined in terms of reals,
it does induce a well-defined function on the Turing degrees.

We will now give a formal definition of a Turing invariant function on the reals and of
a Turing invariant set of reals and briefly state how to rephrase the definitions from earlier
in this section to talk about Turing invariant functions on the reals rather than functions on
the Turing degrees.

Definition 1.11. A function f: 2 — 2¥ is Turing invariant if for all x and y in 2%,

rT=ry — f(IE)ETf(y)

The point is that a Turing invariant function on the reals induces a function on the
Turing degrees in a well-defined way. Likewise, we can define Turing invariant subsets of 2¢.

Definition 1.12. A set A C 2% is Turing invariant if for all x and y in 2%,
r=ry = (r€A <= yecA.

Again, the point is that a Turing invariant subset of 2¢ gives a subset of the Turing
degrees in a well-defined way.

Just as we defined cones, Martin equivalence and the Martin order for sets of Turing
degrees and functions on the Turing degrees, we can make analogous definitions for Turing
invariant sets and functions. Note that doing so means we are overloading the terms involved.
For instance, we will sometimes use “cone of Turing degrees” to mean a set of Turing degrees
and sometimes to mean the corresponding Turing invariant set of reals. We will also engage
in some abuse of terminology by saying things like “f is constant on a cone” to mean
that a Turing invariant function f is Martin equivalent to a constant function (even though
it is only the function on the Turing degrees induced by f which is actually constant on a
cone and f itself may not be). Likewise, we will occasionally say things like “f is equal to
the identity on a cone” to mean f is Martin equivalent to the identity function.

Definition 1.13. A cone of Turing degrees is a set of reals of the form {x | © >r z}
for some real z. As before, we will sometimes refer to this as the cone above z, use the
notation Cone(z) to refer to it, and refer to z as the base of the cone.

Definition 1.14. If f,g: 2¥ — 2% are Turing invariant functions then f is Martin equiv-
alent to g, written f =y g, if they are Turing equivalent on a cone. In other words, if there
is some z such that for all x >7 z, f(x) =1 g(x).

Definition 1.15. If f,g: 2¥ — 2% are two Turing invariant functions then f is Martin
below g, written f <u; g, if f is Turing below g on a cone. In other words, if there is some
z such that for all x >7 z, f(x) <r g(x).
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Notation 1.16. At a few times during this thesis, we will need to shift back and forth
between Turing invariant functions on the reals and functions on the Turing degrees, as well
as between reals and the Turing degrees of those reals. To help keep things straight, we will
use the following notation.

e Lowercase letters like f and g will be used for functions on the reals.
e Uppercase letters like F' and G will be used for functions on the Turing degrees.

e If f is a Turing invariant function on the reals, we will use F' to denote the function
on the Turing degrees induced by F'.

e Lowercase, italic letters like x and y will be used for reals.
e Lowercase, boldface letters like x and y will be used for Turing degrees.

e If x is a real then we will use deg,(z) to denote its Turing degree.

1.3 The Axiom of Determinacy

In this section, we will introduce the Axiom of Determinacy and answer three questions
about it: what is it, why do we want to use it, and how will we use it. We will also mention
some weak forms of choice that are consistent with the Axiom of Determinacy and which it
is often convenient to assume.

What is the Axiom of Determinacy?

The Axiom of Determinacy, usually shortened to AD, is a strong axiom of set theory which is
inconsistent with the Axiom of Choice, but which is provably consistent with ZF, assuming
the existence of sufficiently large cardinals® (in fact, assuming the existence of sufficiently
large cardinals, L(R) is a model of ZF + AD). Historically, people began to study the Axiom
of Determinacy because it implies that sets of reals are very well-behaved, satisfying many
“regularity” properties. For descriptive set theorists, AD is a kind of paradise: every set of
reals is Lebesgue measurable, satisfies the property of Baire and the perfect set property
and there is a very nice and orderly pattern of which of the projective pointclasses satisfy
the separation and uniformization properties, just to name a few of the consequences (see
chapter 6 of [Mos09] and chapter 33 of [Jec03] for proofs of some of these results). Eventually,
connections between AD and other parts of set theory were discovered, especially connections
to large cardinals.

We will now explain briefly what the Axiom of Determinacy actually says. We will never
need to use this definition, so the benefit of explaining it is purely psychological. The Axiom

3For example, the consistency of ZF +AD follows from the consistency of the existence of a supercompact
cardinal [Woo88].
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of Determinacy states that for every two player game of a certain sort, it is always the case
that one of the players has a winning strategy. The games we consider are the following
kind. Two players alternate playing natural numbers for infinitely many rounds. The game
is perfect information so on each turn the current player can see all moves made so far. After
infinitely many rounds have passed, the players have together formed a sequence x € w®.
There is some fixed set A C w®, called the payoff set for the game, and player 1 wins if z is
in A. Otherwise, player 2 wins. The Axiom of Determinacy says that for every payoff set A,
either player 1 or player 2 has a winning strategy in the corresponding game.

Why Should We Assume the Axiom of Determinacy?

It may seem a bit odd that Martin’s conjecture is stated assuming AD. Sure, we said we
wanted to avoid the Axiom of Choice to get rid of artificial counterexamples, but why replace
it with this weird new axiom? There are a few reasons.

Reason 1: Using AD is a way of establishing a consistency result. One way of
thinking about our use of AD is that it is simply a way of establishing a consistency result
over ZF. Just as it is common to prove that some statement is consistent with ZFC by
showing that it is implied by the continuum hypothesis or Martin’s Axiom, if we prove
Martin’s conjecture in ZF + AD then it establishes that Martin’s conjecture is consistent
with ZF, which is already enough to tell us that it is impossible to construct weird Turing
invariant functions (such as functions which are always strictly in-between the identity and
the jump) without using the Axiom of Choice.

There is one potential worry about this, however. We mentioned above that the proof
that ZF + AD is consistent uses fairly strong large cardinal hypotheses. If we are simply
using AD as a tool to establish a consistency result over ZF, wouldn’t it be more reasonable
to use a tamer hypothesis with lower consistency strength? One answer to this is that it is
easy to prove that Martin’s conjecture implies a weak form of the Axiom of Determinacy,
known as Turing Determinacy (or TD for short). So it seems that it is unavoidable to use
some determinacy when trying to prove Martin’s conjecture. It is unknown whether Martin’s
conjecture (or even TD) implies AD. It is also unknown whether TD is sufficient to prove
all currently-known cases of Martin’s conjecture, though some researchers have investigated
this question and proved some partial results [CWY10; Bar20].

Reason 2: Uses of determinacy often smoothly restrict to smaller classes of
sets. When we introduced the idea behind Martin’s conjecture earlier in this chapter, we
mentioned that there is a version of it where instead of replacing the Axiom of Choice with
the Axiom of Determinacy, you simply restrict the class of functions being considered to some
nice “definable” class of functions, such as Borel functions. It turns out that it is possible
to restrict the Axiom of Determinacy to only talk about games whose payoff sets are Borel
and this version—often called “Borel determinacy”—is outright provable in ZF (due to a
remarkable proof by Martin [Mar85]). It is often assumed that if Martin’s conjecture is
proved in ZF + AD then the same proof will also show that Martin’s conjecture restricted to
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Borel functions is provable in ZF by using Borel determinacy. In other words, it is assumed
that the uses of determinacy in the proof will all be for games whose payoff sets are of the
same complexity as the function being considered.

This assumption—that the amount of determinacy used in the proof is directly tied to
the complexity of the function being considered—is often referred to by saying that the proof
uses determinacy in a “local” way. If this assumption pans out, then it will be possible to
simultaneously prove many different versions of Martin’s conjecture where the level of deter-
minacy is adjusted depending on the large cardinal assumptions that you are comfortable
with and the class of functions that you would like Martin’s conjecture to hold for. Borel
functions aren’t enough for you, but you’re willing to accept the existence of a measurable
cardinal? Then you can get Martin’s conjecture for functions with analytic graphs using an-
alytic determinacy (which is provable from the existence of a measurable cardinal). Analytic
functions aren’t enough and you're fine with any large cardinals but don’t want to give up
the Axiom of Choice just yet? Then you can get Martin’s conjecture for all functions in L(R)
using the fact that L(R) is a model of AD (provable from the existence of infinitely many
Woodin cardinals). And in the other direction, if you think ZF is too strong then you can
prove forms of Martin’s conjecture for smaller classes of functions than Borel using weaker
forms of determinacy provable in fragments of ZF.

This seems like an appealing vision and is a large part of the reason to use determinacy
in formulating Martin’s conjecture. Unfortunately some of the results of this thesis provide
at least a little bit of evidence that determinacy may not be used in a strictly “local” way in
a proof of Martin’s conjecture. For example, our proof of Martin’s conjecture for regressive
functions on the hyperarithmetic degrees does work both in ZF 4+ AD and for Borel functions
in ZF but modifying the AD proof to work for Borel functions and use only Borel determi-
nacy requires some nontrivial changes to the proof. And we currently do not know how to
prove part 1 of Martin’s conjecture for measure preserving Borel functions using only Borel
determinacy—instead we need to assume analytic determinacy. We will discuss this issue
more when we come to these two cases of Martin’s conjecture later in this thesis.

Reason 3: Assuming AD allows us to actually prove stuff. The biggest reason to
assume AD in the statement of Martin’s conjecture is purely pragmatic. The Axiom of
Determinacy provides powerful tools to a computability theorist and some special cases of
Martin’s conjecture have already been proven by using these tools. Mathematicians, above
all, want to prove things and if accepting AD lets us do that then it seems like a worthwhile
trade-off.

In fact, part of Martin’s motivation for stating his conjecture was simply his recognition
that the tools provided by determinacy might allow such a theorem to be proved (he was
partly inspired by the at-the-time-recent success in thoroughly understanding the structure
of Wadge reducibility under AD). We will next get some sense of what tools determinacy
provides for us.
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How is Determinacy Used in Computability Theory?

The single most important consequence of AD for computability theory is the following fact,
known as “Martin’s cone theorem.”

Theorem 1.17 (ZF + AD; Martin [Mar68]). Every set of Turing degrees either contains a
cone or is disjoint from a cone.

This has a few important corollaries. First, it tells us that the Martin measure is actually
an ultrafilter on the Turing degrees, which will be fairly conceptually important later in this
thesis. Second, it tells us that to show that a set of Turing degrees contains a cone, it is
enough to show that it is not disjoint from a cone, which is often a significantly easier task.
So much easier, in fact, that Martin’s cone theorem often feels a bit miraculous. We will
now state a definition that allows us to repackage this second consequence in a convenient
way.

Definition 1.18. A set of Turing degrees A is cofinal if for every Turing degree x, there
is a degree 'y >7 X which is in A.

It is easy to see that A set of Turing degrees is cofinal if and only if it is not disjoint
from any cone. Thus we can think of Martin’s cone theorem as saying that if a set of Turing
degrees is cofinal then it contains a cone. This gives rise to what can be thought of as “the
first principle of using determinacy in computability theory.”

The First Principle of Using Determinacy in Computability Theory.
To show that something happens on a cone, just describe what you want, show
it happens cofinally, and let determinacy do the rest.

Let’s see a simple example of this principle in action. We will use it to prove a version
of the jump inversion theorem.

Example 1.19 (Jump inversion via nuclear flyswatter). We will show that there is a
cone of Turing degrees x such that x is the jump of some other degree—i.e. such that
there is some y such that y’ = x. To do so, we will follow the first principle of using
determinacy in computability theory.

The first step is to describe the set which we want to contain a cone. For us,
this set is simply the set of degrees which are the jump of some other degree, i.e.
A= {x|3Jy(y =x)}. The next step is to show that this set is cofinal. In other words,
we have to start with some arbitrary degree z and find a degree above it which is in
A. That’s easy: just use z’, which is obviously both above z and is the jump of some
other degree. And now we apply determinacy and we are done!

Note, by the way, that we did not need the full strength of AD here. The set A
that we are applying the Martin cone theorem to is easily seen to be Borel and so it is
sufficient to use Borel determinacy, which is provable in ZF.
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This example may seem a little silly since we were only able to prove that there is some
cone on which every degree is the jump of something and the Friedberg jump inversion
theorem already tells us that this actually happens on the cone above 0'. But it illustrates
the way that we will often use determinacy:.

By the way, we will often need to use a fancier version of Martin’s cone theorem adapted
to work for sets of reals which are not Turing invariant (and thus do not correspond to sets
of Turing degrees). But stating this version requires defining the notion of a “pointed perfect
tree” and so we will delay it until section 2.1.

We will now describe a second important way that Martin’s cone theorem can be used,
which can be thought of as “the second principle of using determinacy in computability
theory.” This principle is really just a restatement of the fact that Martin measure is a
countably complete ultrafilter on the Turing degrees.

The Second Principle of Using Determinacy in Computability Theory.
If a countable union of sets of Turing degrees contains a cone then one of those
sets contains a cone.

Let’s now see an example of this second principle in action, being used to prove what we
will later recognize as a very simple special case of Martin’s conjecture.

Example 1.20 (Martin’s conjecture for bounded functions). Suppose F': Dy — Dr
is a bounded function on the Turing degrees—i.e. there is some degree a such that for
all degrees x, F'(x) <p a. Then F is actually constant on a cone.

To prove this, we want to apply the second principle of using determinacy in com-
putability theory. The main idea of the proof is that since a can only compute countably
many things, the range of F' must be countable. Let by, by, bs, ... enumerate the range
and for each n, let A, be the preimage of b, under F. Since the union of the A,’s is
all of Dy, which is itself a cone (the cone above 0), the second principle tells us that
there is some n such that A, contains a cone. And therefore F' is constant on a cone,
with constant value b,,.

The Axiom of Determinacy and Weak Forms of Choice

Even though AD contradicts the full Axiom of Choice, it is common to use it in conjunction
with weak forms of choice which it is consistent with. We will now briefly discuss some forms
of choice which are compatible with determinacy.

There is one weak form of choice which is actually just provable using AD. This is the
axiom of choice for countable collections of sets of real numbers, often denoted CCg. We will
not give a proof here (though it is not hard to prove), but the basic idea is that a way to
choose one element from each set can be thought of as a winning strategy in a certain game.
This form of choice is used frequently throughout this thesis (for example, it is needed to
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prove that Martin measure is countably complete) and since it is provable from AD, we will
not comment on when it is being used?.

Another form of choice which is often useful but which is not provable from AD (though
it is compatible with AD) is the Axiom of Dependent Choice, usually abbreviated to DC.
This axiom says that we can make countably many choices in a row, where our options for
each choice may depend on the choices we have already made. In the context of Martin’s
conjecture, we never really need the full Axiom of Dependent Choice, but only a weak form
of it which just talks about sets of real numbers (which is usually written DCg).

Definition 1.21 (The Axiom of Dependent Choice). The Aziom of Dependent Choice, DC
for short, states that for every set A and every binary relation R on A, there is a sequence
(Tn)nen of elements of A such that for each n, R(x,,x,+1) holds. The weaker form of this
axiom where we require that the set A is just the set of real numbers is known as DCg.

This axiom is not provable from AD, but it is consistent with it and, in fact, ZF+AD-+DC
is equiconsistent with ZF + AD. Thus it is common when using AD to assume DC as well.
In this thesis, we will usually work in ZF 4+ AD, but we will occasionally assume DCpg.

Finally, we will sometimes need a form of choice which, when added to AD, actually has
greater consistency strength than AD alone. This form of choice is just choice for sets of real
numbers indexed by real numbers, also known as uniformization for all binary relations on
the real numbers. We will refer to this form of choice as Uniformizationg.

Definition 1.22. The Aziom of Uniformization for reals, denoted Uniformizationg, is a form
of choice which states that if R is a binary relation on 2¥ then there is a function f: 2* — 2¢
such that for all x € 2,

Jy R(z,y) <= Rz, f(x)).

It is provable from sufficiently large cardinals that ZF+AD+ Uniformizationg is consistent,
but, as we mentioned above, it has greater consistency strength than ZF 4+ AD. In fact,
Woodin and Martin have shown that ZF+AD+DCgr+Uniformizationg is equivalent to a certain
strengthening of AD, known as ADg (as in logically equivalent, not just equiconsistent)®.

For a few of the results in this thesis, and in particular for our proof of part 1 of Martin’s
conjecture for measure preserving functions, we will need to use Uniformizationg. Since this
is implied by ADg, we will usually just state these results as consequences of ADg. We will
also see that we can get away without assuming Uniformizationg by using the axiom ADT,
which is a different strengthening of AD. One reason to prefer AD" to ADg, by the way, is

4There is a potential reason to keep track of its use: if you want to know whether various cases of
Martin’s conjecture require the full Axiom of Determinacy or if they are provable from weaker forms like
TD. However, Peng and Yu recently showed (by a really clever proof) that TD implies CCg [PY20] so this
reason may not be so good after all.

°For the curious reader, ADg, which was first introduced by Solovay in [Sol78], is like AD but the class
of games considered is expanded to include games where the players play real numbers on each turn instead
of just natural numbers.
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that while ADg cannot hold in L(R), sufficiently large cardinals imply that AD* does hold
in L(R).

One use of Uniformizationg, which we have already touched on, is to prove that every
function on the Turing degrees comes from a Turing invariant function on the reals.

Example 1.23. It is provable from Uniformizationg (and thus from ADg) that every
function F': Dy — Dy is induced by a Turing invariant function on 2*. This is because
we can obtain such a function as any uniformization of the binary relation R on 2¢
defined by

R(z,y) <= y € F(degy(x)).

1.4 Statement of Martin’s Conjecture

We are now ready to state Martin’s conjecture. It essentially says that every Turing invariant
function is eventually constant, eventually equal to the identity, or eventually equal to a
transfinite iterate of the Turing jump. It is traditionally divided into two parts. The first
part deals with functions which are not above the identity (and says that they are all constant)
and the second part deals with functions that are above the identity (and says more or less
that they are all transfinite iterates of the jump).

Conjecture 1.24 (Martin’s conjecture). Assume ZF + AD. Then

(1) Every Turing invariant function f: 2% — 2 is either Martin equivalent to a constant
function or Martin above the identity.

(2) The Martin order prewellorders the Turing invariant functions which are Martin above
the identity. Moreover, the successor of f in this well order is the jump of f—i.e. the
function x — f(x)".

Let us comment on exactly how—and to what extent—Martin’s conjecture really captures
the idea that every Turing invariant function is eventually constant, equal to the identity, or
equal to a transfinite iterate of the jump.

In order to only discuss “eventual behavior” of functions, we will mod out by Martin
equivalence. If we do this then we can see that the first part of the conjecture says that
every Turing invariant function is either constant or above the identity. So if we ignore the
constant functions then there is a least element in the Martin order, namely the identity.

e

The second part of the conjecture then implies that there is a least function which is Martin
above the identity and we can get this function by taking the jump of the identity. This
gives us

T
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which is just the Turing jump itself. And the conjecture implies that there is also a least
function Martin above this one. Namely

x—

which is also known as the double jump. And obviously we can keep going. If we do, we will
see that the first w Turing invariant functions above the identity are just the finite iterates
of the Turing jump.

The second part of the conjecture also implies that the finite iterates of the Turing jump
have a least upper bound in the Martin order. So what is this least upper bound? Intuitively,
it should just be the w-jump, z — ) (where () denotes the infinite join of all the finite
jumps of z). But curiously, Martin’s conjecture does not seem to obviously imply that the
w-jump actually is the least upper bound of the finite jumps. In particular, it seems difficult
to rule out the possibility that there could be “pseudo w-jumps”—functions which are above
each finite jump, but strictly below the w-jump.

It would be interesting to know whether it is possible to use Martin’s conjecture to rule
out the existence of such functions. Bizarrely, it is not too hard to prove that there can be
at most two of them. This can be proved using the following theorem due to Enderton and
Putnam [EP70].

Theorem 1.25 (Enderton-Putnam). If x is any Turing degree and 'y is an upper bound for
all the finite jumps of x (i.e. y >7 x™ for each n € N) then y" >p x“).

Proposition 1.26 (ZF + AD). Assume that Martin’s conjecture holds. Then there can be at
most two “pseudo w-jumps” (up to Martin equivalence).

Proof. Let f: 2% — 2% be a Turing invariant function which is a member of the Martin
equivalence class which is the least upper bound of all the finite iterates of the jump. Since
f is Martin above all the finite iterates of the jump, there is a cone on which f(x) is always
an upper bound for all the finite jumps of x. So by the Enderton-Putnam theorem, f” is
above the w-jump on this cone. By Martin’s conjecture, f” is the successor of the successor
of f. So either f, f’, or f” is Martin equivalent to the w-jump. [

By the way, Enderton and Putnam’s theorem works for any countable ordinal, not just w.
So for each countable a;, Martin’s conjecture implies there are at most two “pseudo a-jumps”
(the situation at limit ordinals of uncountable cofinality seems to be more complicated).

But in spite of this potential oddity at limit ordinals, it does seem reasonable to say
that if a function is part of a well-ordered hierarchy of functions where the successor in that
hierarchy is the jump then that function is a transfinite iterate of the Turing jump. Thus
Martin’s conjecture does seem to do a reasonable job at capturing our intuitions about the
special role of the jump.
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1.5 Special Cases of Martin’s Conjecture

At the beginning of this chapter, we said that while Martin’s conjecture is still open, it has
been proved for several special classes of functions. In this section we will introduce some of
these classes and review what is known about them.

Uniformly Invariant Functions

The best understood special case of Martin’s conjecture is that of uniformly Turing in-
variant functions. These are Turing invariant functions f: 2¥ — 2“ such that if z =r y
then to find programs witnessing the Turing equivalence of f(x) and f(y), it is enough to
know which programs witness the Turing equivalence of x and y (i.e. you do not need to
know what x and y are themselves). This condition is satisfied by the jump because if you
know how to compute x from y then there is a uniform procedure to turn a program with an
oracle for x into a program with an oracle for y and thus a uniform procedure to compute
a2’ from v/,
Here’s the precise definition of a uniformly Turing invariant function.

Definition 1.27. Suppose x and y are reals and i,j € N. We say x =7 y via (i,7) if
Q;(z) =y and ®,;(y) = x (in other words if i and j are indices for programs witnessing the
Turing equivalence of x and y).

Definition 1.28. A function f: 2¥ — 2% is called uniformly Turing invariant if there
is a function u: N> — N? such that for all x,y € 2% and i,j € N, if v =¢ y via (i,7) then
f(x) =7 f(y) via u(i,j). The function u is called a uniformity function for f.

A series of papers by Lachlan, Steel, and Slaman and Steel proved that Martin’s conjec-
ture holds when restricted to uniformly Turing invariant functions. The first step was taken
in 1975 by Lachlan [Lac75], who showed that part 2 of Martin’s conjecture holds for all
uniformly Turing invariant r.e. operators—in other words that there is no uniformly Turing
invariant solution to Post’s problem which works relative to any oracle.

Theorem 1.29 (Lachlan [Lac75]). Suppose W is an r.e. operator such that W* > x for
all x and x — W? is a uniformly Turing invariant function. Then either W* =p x on a
cone or W* =r a2’ on a cone.

Next, Steel extended Lachlan’s result by showing that part 2 of Martin’s conjecture holds
for all uniformly invariant functions, not just the ones given by r.e. operators [Ste82].

Theorem 1.30 (ZF +AD; Steel [Ste82]). Part 2 of Martin’s conjecture holds when restricted
to the uniformly Turing invariant functions—i.e. uniformly Turing invariant functions which
are above the identity on a cone are prewellordered by the Martin order and the successor in
this prewellorder is the jump.
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Finally, Slaman and Steel proved part 1 of Martin’s conjecture for uniformly invariant
functions [SS88], thus finishing the proof of the full conjecture for the case of uniformly
invariant functions.

Theorem 1.31 (ZF + AD; Slaman-Steel [SS88]). Part 1 of Martin’s conjecture holds when
restricted to the uniformly Turing invariant functions—i.e. if f: 2% — 2% is a uniformly
Turing invariant function then either f is constant on a cone or f is above the identity on a
cone.

A subsequent paper by Becker gave a thorough analysis of all uniformly Turing invariant
functions, showing that they all arise as the universal set of some fairly well-behaved lightface
pointclass [Bec88]. Kihara and Montalban have also done follow-up work analyzing the case
of uniformly invariant functions from the Turing degrees to the many-one degrees [KM18].

Steel has conjectured that every Turing invariant function is Martin equivalent to a
uniformly invariant function. In light of the results stated above, this would imply Martin’s
conjecture.

Regressive Functions

Another case of Martin’s conjecture which has been completely proved is that of regressive
functions, where “regressive” here just means “Martin below the identity function.”

Definition 1.32. A Turing invariant function f: 2¥ — 2¥ is called regressive if for all
r e f(x) <r .

Of course, only part 1 of Martin’s conjecture is relevant to regressive functions and it
implies that every regressive function is constant on a cone or equal to the identity on a cone.
This was proved by Slaman and Steel in [SS88].

Theorem 1.33 (ZF+AD; Slaman-Steel [SS88]). If f: 2¥ — 2% is a Turing invariant function
which is regressive on a cone then it is either constant on a cone or equal to the identity on
a cone.

Order Preserving Functions

Another special case of Martin’s conjecture that was examined by Slaman and Steel is that of
order preserving functions on the Turing degrees. These are Turing invariant functions
which preserve Turing reducibility in addition to Turing equivalence.

Definition 1.34. A Turing invariant function f: 2% — 2“ is called order preserving if
for all x and y in 2,

r<ry = [f(z)<r [(y).
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Slaman and Steel have proved a portion of part 2 of Martin’s conjecture for order preserv-
ing functions [SS88]. In particular, they have shown that part 2 of Martin’s conjecture holds
for order preserving functions which are not above the hyperjump, and thus for all order
preserving Borel functions®. In fact, their proof of this fact yields something a bit stronger
than just part 2 of Martin’s conjecture for such functions. It actually shows that every order
preserving function which is above the identity but not above the hyperjump must be Martin
equivalent to the a-jump for some countable ordinal «. Thus for order preserving functions
at least, it is not possible to have the kind of “pseudo a-jumps” that we discussed earlier.

Theorem 1.35 (ZF+AD; Slaman-Steel [SS88]). If f: 2¥ — 2 is a Turing invariant function
which is order preserving, above the identity on a cone and not above the hyperjump on any
cone, then there is some countable ordinal a such that, on a cone, f(x) = 2\® (note that
this only makes sense if x is large enough so that o < wy).

In chapter 6, we will prove a complementary result to Slaman and Steel’s theorem: part
1 of Martin’s conjecture holds for all order preserving functions.

Theorem 1.36 (ZF + AD). If f: 2¥ — 2% is a Turing invariant function which is order
preserving then either f is constant on a cone or f is above the identity on a cone.

Measure Preserving Functions

In this thesis, we will introduce a class of Turing invariant functions which we call measure
preserving functions, and then prove part 1 of Martin’s conjecture for this class. We
do this not out of a love for generating new special cases of Martin’s conjecture to try to
prove, but rather because identifying this class of functions gave greater insight into our
proof of part 1 of Martin’s conjecture for order preserving functions and allowed us to find
a connection between Martin’s conjecture and the Rudin-Keisler order on ultrafilters on the
Turing degrees.

A measure preserving function can be thought of as a function on the Turing degrees
which “goes to infinity in the limit.” What we mean by this is that it eventually gets above
every fixed degree. This is made precise in the following definition.

Definition 1.37. A Turing invariant function f:2* — 2¥ is called measure preserving
if for every z € 2%, there is some y € 2* such that

vzry = f(z) 2r 2.
In other words, for every z, f is above z on a cone.

In section 5.1 we will prove several alternative characterizations of measure preserving
functions and explain why the name “measure preserving” was chosen. As we mentioned
above, we will also prove that part 1 of Martin’s conjecture holds for measure preserving

6Thus this is a case of Martin’s conjecture where the Borel version is known but the AD version is not.
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functions. It turns out that this theorem has a historical precedent: in what was possibly the
first known case of Martin’s conjecture, Martin himself showed that it holds for all regressive
measure preserving functions (though he didn’t use the term “measure preserving”).

Theorem 1.38 (ZF + AD; Martin). If f: 2¥ — 2 is a Turing invariant function which is
regressive and measure preserving then f is equal to the identity on a cone.

Our proof of part 1 of Martin’s conjecture for all measure preserving functions (not just
the regressive ones) can actually be seen as an evolution of Martin’s proof. We will discuss
this more in chapter 5.

Theorem 1.39 (ZF + AD + DCg). If f: 2¥ — 2¥ is a Turing invariant function which is
measure preserving then f is above the identity on a cone.

We will also show that every order preserving function is either constant on a cone or
measure preserving (in fact, this is a key part of our proof of part 1 of Martin’s conjecture
for order preserving functions). So the theorem above can be seen as a generalization of the
theorem on order preserving functions.

Note, by the way, that if a function is Martin above the identity then it is automatically
measure preserving, so part 2 of Martin’s conjecture for measure preserving functions is
identical to the full part 2 of Martin’s conjecture.

1.6 Martin’s Conjecture on Other Degree Structures

The Turing degrees are not the only computability-theoretic degree structure which have
a concept of a jump operator. For example, the arithmetic degrees have the w-jump and
the hyperarithmetic degrees have the hyperjump. This suggests that there should be an
analogue of Martin’s conjecture for these degree structures.

It turns out that it is possible to do this—to state versions of Martin’s conjecture for
a number of degree structures other than the Turing degrees and, in particular, for the
arithmetic degrees and the hyperarithmetic degrees. The main point is that the definition
of cone makes sense for these degree structures and that Martin’s cone theorem still holds’.

Surprisingly, these different versions of Martin’s conjecture have turned out to work
somewhat differently from each other. Some of the special cases of Martin’s conjecture
which are known to hold in the Turing degrees actually fail to hold in the arithmetic degrees.
And there are other instances of Martin’s conjecture which are known to hold for the Turing
degrees, but whose status is open for the arithmetic degrees and the hyperarithmetic degrees.

Aside from the intrinsic interest in classifying the behavior of functions on the various
degree structures that are studied in computability theory, there are a couple of other reasons
to study these versions of Martin’s conjecture.

It turns out there actually are degree structures where the cone theorem doesn’t hold, typically degree
structures where the type of reducibility considered involves subexponential time computation. For example,
Marks has shown that the cone theorem does not hold for the polynomial time degrees, see [Mar18].
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One reason is that the differences between how Martin’s conjecture works in different
degree structures yield interesting insights about the differences between different types of
computability-theoretic reducibilities. For example, the reason that some cases of Martin’s
conjecture fail in the arithmetic degrees but hold in the Turing degrees seems to be that it
is possible to “amalgamate” uniformly computable sequences of Turing reductions but not
uniformly computable (much less arithmetic) sequences of arithmetic reductions (we will
say a bit more about this after introducing the arithmetic degrees). In the hyperarithmetic
degrees, it is again possible to amalgamate uniform sequences of reductions, but pr