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Abstract

We construct a mean-field variational model to study how the dependence of dielectric coefficient 

(i.e., relative permittivity) on local ionic concentrations affects the electrostatic interaction in an 

ionic solution near a charged surface. The electrostatic free-energy functional of ionic 

concentrations, which is the key object in our model, consists mainly of the electrostatic potential 

energy and the ionic ideal-gas entropy. The electrostatic potential is determined by Poisson’s 

equation in which the dielectric coefficient depends on the sum of concentrations of individual 

ionic species. This dependence is assumed to be qualitatively the same as that on the salt 

concentration for which experimental data are available and analytical forms can be obtained by 

the data fitting. We derive the first and second variations of the free-energy functional, obtain the 

generalized Boltzmann distributions, and show that the free-energy functional is in general 

nonconvex. To validate our mathematical analysis, we numerically minimize our electrostatic 

free-energy functional for a radially symmetric charged system. Our extensive computations 

reveal several features that are significantly different from a system modeled with a dielectric 

coefficient independent of ionic concentration. These include the non-monotonicity of ionic 

concentrations, the ionic depletion near a charged surface that has been previously predicted by a 

one-dimensional model, and the enhancement of such depletion due to the increase of surface 

charges or bulk ionic concentrations.
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1. Introduction

Electrostatic interactions among charged solutes, mobile ions, and polarized solvent play an 

important role in the stability and dynamics of biological molecules in aqueous solution [4, 

13, 16, 28, 29, 42–44, 53, 54]. Poisson’s equation and Poisson–Boltzmann (PB) equations 

are efficient mathematical descriptions of such interactions [3, 11, 13, 14, 19, 21, 24, 25, 36, 

45, 53]. A basic hypothesis in such descriptions is that an underlying charged molecular 

system can be treated as a dielectric medium characterized by its dielectric coefficient that 

can vary spatially. Under normal conditions, the dielectric coefficient for water is close to 

80, while that for proteins can be as low as 1 – 4 [26, 27]. Experiment and molecular 

dynamics (MD) simulations have indicated that the dielectric coefficient can depend on the 

local ionic concentrations [9, 10, 17, 26, 27, 31, 33, 40, 47, 50–52, 57, 58]. In this work, we 

use a mean-field variational approach to study how such dependence affects the equilibrium 

properties of electrostatic interactions in an ionic solution.

Consider an ionic solution near a charged surface. Assume there are M ionic species in the 

solution. (Typically 1 ≤ M ≤ 4.) Denote by ci = ci(x) the local ionic concentration of the ith 

species at a spatial point x. Our key modeling assumption is that the dielectric coefficient ε 

depends on the sum of local ionic concentrations of all individual ionic (either cationic or 

anionic) species: , where . This dependence is qualitatively the 

same as that on the salt concentration. The latter can be constructed by fitting experimental 

or MD simulations data. Figure 1.1 shows the dependence of the dielectric coefficient on the 

concentration of NaCl [27, 40] and the fitted analytic form of such dependence. In general, 

we assume that the function  is monotonically decreasing, convex, and is bounded 

below by a positive constant. Examples of such a function  are

where all α0, α1, and ξ are constant parameters fitting experimental or MD simulations data 

with α0 > α1 > 0. Note that ε(0) = α0 and ε(∞) = α1. We remark that the choice of  instead 

of salt concentration reflects our attempt in understanding the contribution of each 

individual ionic species through its concentration to the dielectric environment, as biological 

properties are often ion specific (e.g., the ion selectivity in ion channels). Using 
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allows us to input the concentration of each individual ionic species, and also to determine 

the variation of the free energy with respect to such individual ionic species.

The dielectric coefficient measures the polarizability of a material exposed to an external 

electric field. Due to their asymmetric structures, water molecules form permanent dipoles. 

They orient randomly in the bulk due to thermal fluctuations. Such orientational polarization 

makes the bulk water a strong dielectric medium. In the proximity of charged particles such 

as ions (cations or anions), however, water molecules are attracted by the charges, forming a 

hydration shell. These dipolar water molecules in the shell are aligned to the local electric 

field. Such saturation of local orientational polarizability leads to a weaker dielectric 

response of water near charges to the external electric field. Consequently, the dielectric 

coefficient in a region of high ionic concentrations is expected to be smaller than that in a 

region of lower ionic concentrations [7,15,22,27,57]. This dielectric decrement is one of the 

main properties of electrostatic interactions that we study here.

We now let the ionic solution occupy a bounded domain Ω in ℝ3 with a smooth boundary 

∂Ω. We assume that the boundary ∂Ω of Ω is divided into two nonempty, disjoint, and 

smooth parts ΓD (D for Dirichlet) and ΓN (N for Neumann); cf. Figure 1.2. (The case that ΓD 

= ∅, i.e., Γ = ΓN, can be treated similarly.) We also assume that we are given a fixed 

charged density ρf : Ω → ℝ, a surface charge density σ : ΓN → ℝ, and a boundary value of 

the electrostatic potential ψ∞ : ΓD → ℝ. We consider minimizing the following mean-field 

electrostatic free-energy functional of the ionic concentrations c = (c1,…,cM) [12, 20, 36, 48, 

49]:

(1.1)

Here, the first two terms together represent the electrostatic potential energy. In these terms, 

ρ(c) is the total charge density, defined by

(1.2)

where qi = Zie with Zi the valence of the ith ionic species and e the elementary charge, and ψ 

= ψ(c) is the electrostatic potential determined as the solution to the boundary-value problem 

of Poisson’s equation [7, 30, 32]

(1.3)

where ε0 is the vacuum permittivity and ∂ψ/∂n denotes the normal derivative at Γ with n the 

exterior unit normal. The third term in (1.1) represents the ionic ideal-gas entropy, where β−1 
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= kBT with kB the Boltzmann constant and T the absolute temperature, log denotes the 

natural logarithm, and Λ is the thermal de Broglie wavelength. The last term in (1.1), in 

which µi is the chemical potential for the ith ionic species, represents the chemical potential 

of the system that results from the constraint of total number of ions in each species.

Our main contributions are as follows:

(1) We derive the first and second variations of the electrostatic free-energy functional 

(1.1). Setting the first variation to zero, we obtain the following generalized Boltzmann 

distributions that relate the equilibrium concentrations c1,…,cM to the corresponding 

electrostatic potential ψ :

(1.4)

where  is the bulk concentration of the ith ionic species that is determined by the 

parameters Λ and µi. Here we assume ψ∞ = 0. A more general formula is given in 

Subsection 2.2. This formula was obtained in [7] for a one-dimensional system and a 

linear . Note that if ε does not depend on the concentrations then , 

and we recover the classical Boltzmann distributions. If  is linear in  as 

assumed in [7, 27], then  does not depend on  and the equilibrium concentrations 

are uniquely determined by the potential ψ. In the general case, where  is 

nonlinear in , the equilibrium concentrations are only defined implicitly by (1.4) 

through the potential ψ.

(2) We show by numerical calculations that there are possibly multiple values of 

concentrations c = (c1,…,cM) that can depend on the same potential ψ through the 

generalized Boltzmann distributions. We also construct some examples to prove that the 

free-energy functional can be indeed nonconvex.

(3) We minimize numerically our electrostatic free-energy functional for a radially 

symmetric system of both counterions and coions. By our extensive numerical 

computations, we find several interesting properties of the electrostatic interactions 

attributed to the dependence of dielectric on ionic concentrations. These include the 

depletion of ions near a charged surface that has been previously described by a one-

dimensional model with a linear  [7], the non-monotonicity of ionic 

concentrations near such a surface, and the shift of peaks of the ionic concentration 

profiles due to the increase of surface charges or bulk concentrations.

Our free-energy functional (1.1) extends those in [12, 20, 36, 49], where the dielectric 

coefficient is independent of concentrations, and that in [7], where the dielectric coefficient 

depends linearly on the concentrations. A nonlinear dependence of dielectric coefficient on 

concentrations is significant, as it can lead to the existence of multiple equilibrium 
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concentrations. Our numerical results show interesting phenomena, extending those found in 

[5, 7, 22, 31, 34]. We notice that several authors have studied the dielectric decrement and 

related issues through the polarization of solvent molecules and ions [1, 5, 6, 22, 46].

We organize the rest of the paper as follows: In Section 2, we derive the first variations of 

the free-energy functional and the generalized Boltzmann distributions. In Section 3, we 

derive the second variations of the free-energy functional. In Section 4, we show by 

numerical calculations that the generalized Boltzmann distributions can lead to multiple 

values of concentrations. We also show by examples that the free-energy functional is in 

general nonconvex. In Section 5, we minimize numerically the mean-field electrostatic free-

energy functional for a radially symmetric system. Finally, in Section 6, we draw our 

conclusions.

2. First Variations and Generalized Boltzmann Distributions

Unless otherwise stated, we assume the following throughout the rest of the paper:

(A1) The dielectric coefficient function ε ∈ C1([0,∞)). It decreases monotonically and 

is convex. Moreover, there are two positive numbers εmin and εmax such that

(2.1)

(A2) The set Ω ⊂ ℝ3 is bounded, open, and connected with a smooth boundary Γ = ∂Ω 

(e.g., Γ is in the class C2). The boundary ∂Ω is divided into two disjoint, nonempty, and 

smooth (e.g., in the class of C2) parts ΓD and ΓN;

(A3) The functions ρf : Ω → ℝ, σ : ΓN → ℝ, and ψ∞ : ΓD → ℝ are all given. Moreover, 

ρf ∈ L∞(Ω), σ is the restriction of a W 1,∞(Ω)-function (also denoted by σ) on ΓN, and 

ψ∞ is the restriction of a W 1,∞(Ω)-function (also denoted by ψ∞) on ΓD.

Note that we use standard notion for Sobolev spaces [2, 18, 23].

We denote

Let u ∈ L1(Ω). Suppose

Since  is dense in , we can identify u as an element in , 

the dual space of , and write . We denote
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Let c ∈ X. It follows from the Lax–Milgram Lemma and the Poincaré inequality for 

functions in  [18, 23] that the boundary-value problem of Poisson’s equation (1.3) 

has a unique weak solution ψ = ψ(c), defined by  and

(2.2)

Similarly, we define  to be the unique weak solution to

(2.3)

defined by  and

(2.4)

2.1. First variations

Let c = (c1,…,cM) ∈ X and d = (d1,…,dM) ∈ X. We define

(2.5)

if c + td ∈ X for |t| « 1 and the limit exists, and call it the first variation of F [·] at c ∈ X in 

the direction d.

Theorem 2.1—Let c = (c1,…,cM) ∈ X. Assume there exist positive numbers δ1 and δ2 such 

that δ1 ≤ ci(x) ≤ δ2 for a.e. x ∈ Ω and i = 1,…,M . Assume also that 

. Then

where for each i (1 ≤ i ≤ M) the function δiF [c] : Ω → R is given by
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(2.6)

We shall identify δiF [c] defined in (2.6) as the the first variation of F at c in the ith 

coordinate direction. We note that our assumptions on ci(x) (i = 1,…,M,x ∈ Ω) are expected 

to hold true for a local minimizer c = (c1,…,cM). This can be argued using the same analysis 

in [35, 36], where perturbed, lower energy concentrations are constructed for the usual PB 

free-energy functional, based on the observation that the entropic change is larger than the 

potential change. To prove the theorem, we first prove the following:

Lemma 2.2—Under the assumption of Theorem 2.1, we have

Proof: Denote . By the weak formulations for ψ(c + td) and ψ(c) (cf. (2.2)), and 

the definition of ρ(c) (cf. (1.2)), we have for  that

Setting , we then have by (2.1) that
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Since , we conclude by the Poincaré 

inequality applied to φt that there exists a constant C > 0 independent of t with |t| « 1 such 

that

This proves that . The proof of the convergence 

 is similar and simpler.

Proof: [Proof of Theorem 2.1] Let us write F [c] = Fpot[c] + Fent[c], where

(2.7)

(2.8)

By routine calculations (cf. [12, 35, 36]), we have

(2.9)

Now we have by (1.2) that for |t| « 1

(2.10)

By Lemma 2.2, we have

(2.11)

For the remaining two terms in (2.10), we have by the weak formulation (2.2) for ψ(c) and 

(2.4) for ψD(c) with φ = [ψ(c + td) − ψ(c)]/t that
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(2.12)

It now follows from the weak formulations for ψ(c + td) and ψ(c) (cf. (2.2)) with φ = ψ(c) − 

ψD(c), and Lemma 2.2 that

This and (2.10)–(2.12) lead to

(2.13)

We finally combine (2.9) and (2.13) to obtain the desired first variation.

2.2. Generalized Boltzmann distributions

We call c = (c1,…,cM) ∈ X an equilibrium if the first variation δF [c][d] defined by (2.5) 

exists and is equal to 0 for any d ∈ L∞(Ω,RM). If c = (c1,…,cM) ∈ X satisfies the assumption 

in Theorem 2.1 and is an equilibrium, then δiF [c] = 0 (i = 1,…,M) by Theorem 2.1. 

Straightforward calculations then lead to
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(2.14)

where . We call these the generalized Boltzmann distributions, as 

they generalize the classical Boltzmann distributions  if ε does 

not depend on c, and ψ∞ = 0 which implies ψD = 0. The effect of the boundary data was 

noted in [35, 36]. Note that in general  and hence (2.14) does not explicitly 

determine how the concentrations ci (i = 1,…,M) depend on the potential ψ.

3. Second Variations

Let a,b,c ∈ X. We define

if the quotient is defined when |t| « 1 and the limit exists, and call it the second variation of 

the free-energy functional F at c in the directions a and b.

For c ∈ X and a = (a1,…,aM) ∈ X, let us denote by Ψ(c,a) the unique weak solution to the 

boundary-value problem

defined by  and

(3.1)

Similarly, let us denote by ΨD(c,a) the unique weak solution of the boundary-value problem
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defined by  and

(3.2)

The existence and uniqueness of each of these weak solutions is guaranteed by the Lax–

Milgram Lemma. Note that Ψ(c,a) and ΨD(c,a) are linear in a.

Theorem 3.1

Let ε ∈ C2([0,∞)). Let c = (c1,…,cM) ∈ X. Assume there exist positive numbers δ1 and δ2 

such that δ1 ≤ ci(x) ≤ δ2 for a.e. x ∈ Ω and i = 1,…,M . Let a = (a1,…,aM), b = (b1,…,bM) ∈ 

L∞(Ω,RM). We have

Note that δ2F [c][a,b] is symmetric and bilinear in (a,b). To prove this theorem, let us denote 

for |t| « 1

(3.3)

where  and ψD(c + ta) are defined by (2.2) and (2.4), respectively, with c 

replaced by c + ta. We first prove the following:

Lemma 3.2

Under the assumption of Theorem 3.1, we have Ψ(c,a;t) → Ψ(c,a) and ΨD(c,a;t) → ΨD(c,a) 

in H1(Ω) as t → 0.

Proof—Consider |t| « 1. By the weak formulations for ψ(c + ta) and ψ(c) (cf. (2.2)) and the 

definition of ρ(c + ta) and ρ(c) (cf. (1.2)), we have for any  that

With our notation Ψ(c,a) and Ψ(c,a;t), and the weak formulation for Ψ(c,a) (cf. (3.1)), this 

leads to
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Setting , we then obtain

Since  is bounded in Ω and  in Ω, we thus have by the assumption on 

, the Cauchy–Schwarz inequality, and Lemma 2.2 that

This and the Poincaré inequality for functions in  imply the convergence Ψ(c,a;t) → 

Ψ(c,a) in H1(Ω) as t → 0. The convergence ΨD(c,a;t) → ΨD(c,a) in H1(Ω) as t → 0 can be 

proved similarly.

Proof—[Proof of Theorem 3.1] We first consider Fent[c] defined in (2.8). By the 

boundedness of all a, b, and c, and Lebesgue’s Dominated Convergence Theorem, we have 

by (2.9) that

LI et al. Page 12

Commun Math Sci. Author manuscript; available in PMC 2016 February 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(3.4)

We now consider Fpot[c] defined in (2.7). By (2.13) and using our notation Ψ(c,a;t) and 

ΨD(c,a;t) (cf. (3.3)), we have

Consequently, since

we have by Lemma 2.2 and Lemma 3.2, and by rearranging terms, that
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By the weak formulation for Ψ(c,b) (cf. (3.1) with b replacing a) with φ = Ψ(c,a), the weak 

formulation for Ψ(c,b) (cf. (3.1) with b replacing a) with φ = ΨD(c,a), and the weak 

formulation for ΨD(c,b) (cf. (3.2) with b replacing a) with φ = Ψ(c,a), we therefore obtain

This and (3.4) imply the desired second variation.
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4. Non-Convexity of the Free-Energy Functional

By Theorem 3.1, the second variation δ2F [c] is not necessarily positive definite, i.e., δ2F [c]

[a,a] may not be positive, as  by our assumption that is based on experimental 

data. This indicates that the free-energy functional (1.1) may be nonconvex. We investigate 

this non-convexity by examining the generalized Boltzmann distributions. If we assume ψ∞ 

= 0 on ΓD, then ψD = 0 in Ω, cf. (2.4), and hence the generalized Boltzmann distributions 

(2.14) become

(4.1)

where ψ = ψ(c). Summing over all i and using the notation , we obtain

Based on these considerations, we define for any given s ∈ ℝ and v ≥ 0

Notice that if c = (c1,…,cM) satisfies the generalized Boltzmann distributions (4.1), s = ψ(c), 

and v = |∇ψ(c)|, then .

We now consider an ionic solution occupying the annulus region 10 < r = |x| < 60 (in Å) 

with the charge density σ = −0.02 e/Å2 on r = 10. We assume there are two ionic species in 

the solution with Z1 = 1, Z2 = −1, , and . We choose 

 which we used to fit experimental data, cf. Figure 1.1. From our 

numerical computational results (cf. Section 5 for details), we fix a few selected values of ψ 

and |∇ψ| near the charged surface r = 10, and then plot in Figure 4.1 (Left) the graph of 

function , where we use c instead of  instead of ψ. We 

observe that there are multiple solutions to the equation G(c) = 0 for some values of φ and |

∇φ|, indicating that the generalized Boltzmann distributions may not determine uniquely the 

concentrations through the electrostatic potential. In Figur 4.1 (Right), we plot zeros of G(c) 

= 0 vs. c. We see that there are three zeros when the electrostatic potential is large in 

magnitude.
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We now construct two examples to show that the free-energy functional (1.1) is in general 

nonconvex. For simplicity, we take ε0 to be the unity.

Example 1

Let σ, β, λ, µ ∈ R with β > 0 and λ > 0. We consider the functional

(4.2)

for functions c = c(x) ≥ 0 with x ∈ (0,1), where the potential ψ = ψ(x) is determined by

Here, ε(c) = 70e−0.22c + 10, which was used to fit experimental data in Figure 1.1. This 

model can be viewed as reduced from a three-dimensional model with the ionic 

concentration and electrostatic potential only varying in the x-coordinate direction.

If c is a constant function, then we have by simple calculations that

(4.3)

where c∞ = λ−1eβµ. The function F [c], with σ = −0.04, β−1 = 1, and c∞ = 0.1, is plotted in 

Figure 4.2. We find that it has two local minima at c = 0 and c ≈ 48.4, and that it is 

nonconvex. Hence, the functional F [c] defined in (4.2) is not convex in general.

Example 2

We consider the free-energy functional

(4.4)

for functions c = c(x) ≥ 0 with x ∈ (0,1), where the potential ψ = ψ(x) is determined by

The function ε = ε(c) is defined by
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(4.5)

It can be verified that this is a C1-function, monotonically decreasing, convex, and bounded 

above and below by positive constants. See Figure 4.3 (Left) for a plot of this function.

For constant functions c, we have

(4.6)

Figure 4.3 (Right) is a plot of the function F [c] defined in (4.6). We see clearly that this 

function F [c] is not convex. Hence the functional F [c] defined in (4.4) is not convex.

5. Numerical Study of a Model System

We minimize numerically the free-energy functional (1.1) and (1.3) with

where RD and RN are two given positive numbers such that RD < RN. We assume that ρf = ρf 

(r) is a function of r = |x|, ψ∞ is a constant, and σ is also a constant. By the radial symmetry, 

we assume the concentrations and potential are functions of r = |x| and write c = c(r) and ψ = 

ψ(r). The free-energy functional (1.1) and the boundary-value problem of Poisson’s equation 

(1.3) become now

(5.1)

(5.2)

Here we use  instead of µi (i = 1,…,M) as input parameters. We have  (i 

= 1,…,M). With our radially symmetric setting, we can easily observe and verify that the 

solution ψD to the boundary-value problem (2.3) is ψD = ψ∞, a constant. By Theorem 2.1, 

the first variations of the free-energy functional (5.1) in the coordinate directions are then 

given by

LI et al. Page 17

Commun Math Sci. Author manuscript; available in PMC 2016 February 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(5.3)

We employ a steepest descent method to minimize the free-energy functional (5.1). After 

initializing the concentrations c = (c1,…,cM), we follow these steps:

(1) Solve Poisson’s equation (5.2) to update the potential ψ.

(2) Compute the first variations δiF [c] (i = 1,…,M) by (5.3).

(3) Update the concentrations: ci ← ci − γdi (i = 1,…,M), where γ > 0 is a pre-chosen 

parameter.

(4) Check if  with a pre-chosen tolerance εtol. If 

not, go back to (1).

We choose the parameter γ in Step (3) to be very small to ensure that all ci > 0 in each 

iteration. In case ci < 0 for some i, we can change γ to a smaller value to update ci. Note that 

we only find numerically local minimizers that are sometimes more interesting in terms of 

physical properties than global minimizers.

We now fix RN = 10 Å and RD = 60 Å, and vary the surface charge density σ from −0.005 to 

−0.025 e/Å2. As surface charges generally represent the main part of fixed charges, we set ρf 

= 0. Moreover, since we are mainly interested in the counterion concentrations and 

electrostatic potentials near the charged surface, we set ψ∞ = 0. We use kBT as units of 

energy. We consider two systems.

System I: M = 2, Z1 = 1, Z2 = −1, , and .

System II: M = 3, Z1 = 2, Z2 = 1, Z3 = −2, , , .

In each of our numerical computations, we observe the decay of the free energy and the 

convergence of concentrations in our iterations. This indicates that our numerical method is 

reliable.

5.1. Comparison of different dielectric relations: Counterion depletion

We compare equilibrium concentrations and electrostatic potentials corresponding to the 

following four different dielectric coefficient functions :

(5.4)

Note that all these functions are convex and monotonically decreasing with the maximum 

value 80 at . In addition ε3(∞) = 0 and ε4(∞) = 10. The linear dependence  is 
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used in [7]. The form  is proposed in [31]. We used  to fit the experiment data 

in Figure 1.1.

We consider System I with the surface charge density σ = −0.005 e/Å2. In Figure 5.1, we 

plot profiles of the equilibrium concentrations for both counterion and coion species for the 

four different dielectric coefficient defined in (5.4). The four concentration profiles for the 

species of coions nearly overlap and become one. It is the curve below all the other four for 

the counterion concentrations. The inset shows the graph of  (1 ≤ i 

≤ 4) as a function of the radial variable r. We observe differences of the counterion 

concentrations in the vicinity of the charged surface, even at such a relatively low surface 

charge density. The counterion concentrations corresponding to , , and 

are smaller than that predicted by the classical PB theory that corresponds to . Such 

counterion depletion is expected as explained in Introduction and as found in [7].

We now still consider System I but increase the surface charge density to σ = −0.012 e/Å . 

In Figure 5.2, we plot concentrations and potential similar to those in Figure 5.1. We see 

clearly that the counterion depletion near the charged surface is enhanced for the 

concentration-dependent dielectric coefficient  (i = 2,3,4). This is because that the 

increase of the surface charge leads to the increase of the electric field, which in turn 

decreases more the concentration by the factor  in the generalized 

Boltzmann distributions, since  is larger. We find that, for the case of linear 

dependence , our numerical solution is quite sensitive. As the concentration 

becomes large, the dielectric coefficient can be very close to zero and even negative, leading 

to an unphysical situation that corresponds to the loss of ellipticity mathematically.

5.2. Effect of surface charges and bulk concentrations: Non-monotonicity of counterion 
concentrations

We now consider System I with  defined in (5.4). We compute the equilibrium 

concentration and electrostatic potential with the surface charge densities σ = −0.01 e/Å2, 

−0.015 e/Å2, −0.02 e/Å2, and −0.025 e/Å2, respectively, and plot our numerical results in 

Figure 5.3. We observe that the counterion concentration is non-monotonic for a large 

surface charge density. The dielectric function  is also non-monotonic. Moreover, 

for large surface charge densities, as the surface charge increases, the counterion 

concentration at the surface (i.e., at r = RN = 10 Å) decreases, and the peak of the counterion 

concentration profile gets higher and moves further away from the surface. All these result 
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from the competition between the surface-counterion attraction and the counterion depletion 

near the surface.

In Figure 5.4, we plot the counterion concentration at the charged surface and the maximum 

value of counterion concentration as functions of the surface charge density. For 

comparison, we also plot the results predicted by the classical PB theory. We observe that 

the differences are significant for large surface charges: the counterion concentration at the 

charged surface predicted using  decreases but that predicted by the classical PB 

equation increases. Moreover, the maximum value of counterion concentration predicted 

with  increases as the surface charge density increases. We also plot the 

electrostatic potential at the charged surface in Figure 5.4 (Right). As the surface charge 

density increases, the electrostatic potentials at the charged surface predicted by the classical 

PB are weaker than those predicted with . This is because that the screening effect 

with the ionic decrement is weaker.

We now fix the surface charge density σ = −0.012 e/Å2 and vary the bulk concentrations 

(i = 1,2). From Figure 5.5 (Left), we observe that larger bulk concentrations lead to the 

stronger depletion effect. From Figure 5.5 (Right), we see that the counterion distribution is 

monotonic for low bulk concentrations and is non-monotonic after bulk concentrations 

exceed 0.2 M. Their differences increase as the bulk concentrations increase.

We now consider System II in which there are two species of counterions and one species of 

coions. In Figure 5.6, we plot concentration profiles for different values of surface charge 

density. We can again observe the ionic depletion for high surface charges.

6. Conclusions

We have studied a variational problem of minimizing a mean-field electrostatic free-energy 

functional to investigate how the ionic concentration dependent dielectric response can 

affect the equilibrium properties of electrostatic interactions of an ionic solution near a 

charged surface. Our basic modeling assumption is that the dependence of the dielectric 

coefficient on the sum of individual ionic concentrations is qualitatively the same as that on 

the salt concentrations for which experimental data are available. Such dependence is 

expressed mathematically as a continuous, monotonically decreasing, and convex function.

We have rigorously derived the first and second variations of the free-energy functional. 

Analytic formulas of such variations are useful in understanding the behavior of such a 

functional and in numerical computations. From the generalized Boltzmann distributions, 

we see that the ionic depletion can occur due to the high concentration low permittivity 

relation. The formula of the second variation of the functional indicates the functional can be 

nonconvex. We indeed show that it is so for some model systems.

We have also developed a numerical method and performed computations with a three-

dimensional, radially symmetric geometry for a system with a single counterion species or a 
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system with two multi-valence counterion species. Our computational results show the ionic 

depletion near a charged surface with both low and high surface charges. Moreover, we have 

demonstrated that the increase of the surface charge density will lead to the non-

monotonicity of concentration profiles. These results confirm experimental findings and also 

indicate that the classical PB theory does not capture the ionic depletion and other 

properties. One of the key points is that the counterions are attracted to the charged surface 

but in the meantime crowded counterions decreases the permittivity of the solution. With 

our efficient mean-field variational model, we have confirmed this.

It should be noted that a linear dependence  (cf. (5.4)) leads to the illposedness of 

Poisson’s equation (cf. (1.3)). The nonlinear dependence of the dielectric coefficient on the 

ionic concentrations, however, leads to the lack of compactness needed in proving the 

existence of a minimizer by the usual argument of direct methods in the calculus of 

variations. To prove the existence, we will then need to construct carefully a free-energy-

minimizing sequence that is weakly compact. The nonconvexity of the functional is different 

from that for the classical PB functional. It will be interesting to understand if such 

nonconvexity can be used to model the transition from weak to strong interactions in an 

ionic solution.

Our numerical algorithm is fairly general. The key of our algorithm is the self-consistency: 

In each step of relaxing the free-energy functional, we solve Poisson’s equation with the 

concentration dependent dielectric coefficient. We update the concentrations and 

electrostatic potential alternatively. If one simply uses the classical Boltzmann distributions 

for ci’s in , one may not be able to capture the ionic depletion as shown in the 

recent work [38].

One of the ion-specific properties is the ionic size effect. In recent years, the PB-like mean-

field models that account for ionic size effects have been developed [5, 7, 8, 22, 35–37, 39, 

55, 59, 61]. Our experience is that a large (in terms of magnitude) surface charge density is 

needed to capture the ionic size effect in such models, while only a small charge density is 

needed to capture the ionic decrement near a charged surface. It will be therefore interesting 

to see the transition characterized by the surface charge density. Another important issue 

that we have not addressed here is the Born solvation energy of ions [41, 56, 60]. Additional 

equations may be needed to describe such energy. It is interesting to understand whether the 

inclusion of the Born solvation energy will also lead to the correction term in the generalized 

Boltzmann distributions. Finally, in terms of applications, how to apply our results to 

modeling charged macromolecules, such as proteins, in an aqueous environment is of great 

interest.
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Fig. 1.1. 
The dielectric coefficient for NaCl solution. The experimental data 1 and 2 are taken from 

[27] and [40], respectively. The fitted form is . The maximum relative 

error at data points is 2%.
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Fig. 1.2. 
A schematic view of an ionic solution. The solvent occupies the grey region Ω. Small circles 

with plus and minus signs represent cations (positively charged ions) and anions (negatively 

charged ions), respectively.
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Fig. 4.1. 
Left: G(c) vs. c for different values of φ and |∇φ|. Right: Zeros of G(c) vs. φ and |∇φ|. The 

three dots on the vertical line indicate the three zeros of G(c).
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Fig. 4.2. 
Graph of the function F [c] defined in (4.3).
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Fig. 4.3. 
Left: Graph of the function ε = ε(c) defined in (4.5). Right: Graph of the function F [c] 

defined in (4.6).
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Fig. 5.1. 
The concentrations vs. radial distance to the charged surface for System I with the surface 

charge density σ = −0.005 e/Å2. The four curves with indicated symbols are the counterion 

concentration profiles. The four coion concentration profiles nearly overlap and become one 

curve which is the lowest curve. Inset: the graph of function  for i = 1, … , 4.
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Fig. 5.2. 
The concentrations vs. radial distance to the charged surface for System I with the surface 

charge density σ = −0.012 e/Å2. The four curves with indicated symbols are the counterion 

concentration profiles. The four coion concentration profiles nearly overlap and become one 

curve which is the lowest curve. Inset: the graph of function  for i = 1, … , 4.
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Fig. 5.3. 

System I with . Left: The ionic concentrations vs. the radial distance to the charged 

surface. The four counterion concentration profiles for the four different values of the 

surface charge density are indicated by the symbols. The four corresponding coion 

concentrations overlap and become one curve which is the lowest one. Right: The 

electrostatic potentials vs. the radial distance to the charged surface for different values of 

the surface charge density.
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Fig. 5.4. 
Left: The Counterion concentration at the charged surface and the maximum value of 

counterion concentration vs. the surface charge density. Right: The electrostatic potential at 

the charged surface vs. the surface charge density.
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Fig. 5.5. 
Left: Concentrations vs. radial distance to the charged surface with different ionic 

concentrations. Right: The counterion concentration at the charged surface and the maximal 

value of counterion concentration vs. bulk ionic concentration.
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Fig. 5.6. 
Ionic concentrations vs. radial distance to the charge surface with different values of surface 

charge density σ. Upper left: σ = −0.005e/Å2. Upper right: σ = −0.01e/Å2. Lower left: σ = 

−0.015e/Å2. Lower right: σ = −0.02e/Å2.
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