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Abstract

Though fine particulate matter (PM2.5) has decreased in the United States (U.S.) in the 

past two decades, the increasing frequency, duration, and severity of wildfires significantly 

(though episodically) impairs air quality in wildfire-prone regions and beyond. Increasing PM2.5 

concentrations derived from wildfire smoke and associated impacts on public health require 

dedicated epidemiological studies. Main sources of PM2.5 data are provided by government-

operated monitors sparsely located across U.S., leaving several regions and potentially vulnerable 

populations unmonitored. Current approaches to estimate PM2.5 concentrations in unmonitored 

areas often rely on big data, such as satellite-derived aerosol properties and meteorological 

variables, apply computationally-intensive deterministic modeling, and do not distinguish wildfire-

specific PM2.5 from other sources of emissions such as traffic and industrial sources. Furthermore, 

modelling wildfire-specific PM2.5 presents a challenge since measurements of the smoke 

contribution to PM2.5 pollution are not available. Here, we aim to use statistical methods to 

isolate wildfire-specific PM2.5 from other sources of emissions. Our study presents an ensemble 

model that optimally combines multiple machine learning algorithms (including gradient boosting 

machine, random forest and deep learning), and a large set of explanatory variables to, first, 

estimate daily PM2.5 concentrations at the ZIP code level, a relevant spatiotemporal resolution 

for epidemiological studies. Subsequently, we propose a novel implementation of an imputation 
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approach to estimate the wildfire-specific PM2.5 concentrations that could be applied geographical 

regions in the US or worldwide. Our ensemble model achieved comparable results to previous 

machine learning studies for PM2.5 prediction while avoiding processing larger, computationally 

intensive datasets. Our study is the first to apply a suite of statistical models using readily available 

datasets to provide daily wildfire-specific PM2.5 at a fine spatial scale for a 15-year period, thus 

providing a relevant spatiotemporal resolution and timely contribution for epidemiological studies.
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Air pollution; Wildfire; PM2.5; Human health; Machine learning

1. Introduction

Exposure to fine particulate matter with aerodynamic diameter smaller than 2.5 μm (PM2.5) 

is associated with a wide range of acute and chronic adverse health effects (Xing et al., 

2016; Pope and Dockery, 2006), including increased risk of mortality and hospitalization. 

Although PM2.5 has decreased in the United States (U.S.) in the two past decades due 

to stricter air quality policy, wildfires and associated smoke pollution in the western U.S. 

have contributed to poor air quality in wildfire-prone regions and beyond (Schwarzman 

et al., 2021; McClure & Jaffe, 2018). Wildfires are becoming more severe and frequent 

(Westerling and Bryant, 2007; Williams et al., 2019; Goss et al., 2020), impacting PM2.5 

levels (McClure & Jaffe, 2018) and this trend is predicted to continue in the context of 

climate change (Ford et al., 2018; Williams et al., 2019; Neumann et al., 2021).

Wildfire smoke and the resulting PM2.5 air pollution detrimentally impact respiratory health, 

and evidence has shown that it might be more harmful than non-smoke PM2.5 pollution 

(Wegesser et al., 2009, Aguilera et al., 2021). Wildfire PM2.5 has been associated with 

respiratory disease impacts and high hospitalization rates (Gan et al., 2017; Liu et al., 2015; 

Reid et al., 2016; Gan et al., 2017; Liu et al., 2017). However, quantifying the extent and 

variety of health impacts due to wildfire smoke is challenging due to the episodic nature 

of these events, as well as data and methodological limitations that hinder the accurate 

estimation of exposure (Liu et al., 2015). Moreover, studies that isolate PM2.5 concentrations 

attributable to wildfire smoke to study the effects on increased respiratory and other disease 

hospitalizations are scarce (Liu et al., 2017; Aguilera et al., 2021; Marlier et al., 2022) and 

are often limited to small regions and short time scales (e.g., Stowell et al., 2019; Cleland et 

al., 2021).

Accurate estimation of PM2.5 exposures from different sources and at a high spatiotemporal 

resolution is critical for evaluating its health effects, particularly at small temporal (days 

to weeks) and spatial (neighborhood) scales. Although many regions in the U.S. and in 

the world have a substantial network of regulatory PM2.5 monitoring stations that are 

routinely operated by government agencies, their spatial coverage is still very limited in 

terms of accurately representing population exposures, especially in regions with complex 

spatiotemporal variability in emissions, topography, geography, meteorology, land-use and 

population density, such as the state of California (U.S.) (Lee, 2019; Liu et al., 2009). 
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Therefore, studies based only on PM2.5 measured from regulatory monitors would inevitably 

exclude many communities, potentially those most exposed to wildfire smoke.

Various approaches have been proposed to model PM2.5 (from any source) in the 

recent decade, mainly using Chemical Transport Models (CTMs), statistical models or 

a combination of the two approaches. Datasets used to predict PM2.5 vary from satellite-

derived aerosol optical depth, land-use variables, chemical transport models output, and 

relevant meteorological variables such as temperature and wind velocity (Di et al., 2019; 

Lee, 2019; Li et al., 2020; Reid et al., 2021; Yu et al. 2022). Some studies have combined 

spatiotemporal datasets to perform sophisticated modeling of PM2.5 exposure to wildfire 

smoke using data-adaptive machine learning, coupled with output from empirical and 

deterministic models (Fadadu et al., 2020).

Recent studies typically estimate PM2.5 at a 1 km × 1 km grid cell resolution to provide 

fine spatial granularity (Di et al., 2019; Lee, 2019; Li et al., 2020; Yu et al. 2022). However, 

several challenges arise when using gridded space. First, the differing spatial resolution of 

available datasets oftentimes makes necessary the implementation of downscaling methods 

and similar steps to prepare predictor datasets at a comparable spatial scale. Secondly, 

working with datasets of 1 km2 cells comprising large areas, such as California, translates 

into issues with big data handling, storage, and computing capabilities that might not be 

available to most researchers and air quality policy makers. A recent study by Reid et 

al. (2021) provided estimates at the ZIP code level (among other spatial scales).ZIP code 

level estimation is appropriate for public health applications given that data records are 

usually associated with patients’ address of residence (with ZIP code information as the 

smallest geographical scale). Nonetheless, research on methods of air pollutants like PM2.5 

involving large datasets and computationally-intensive deterministic models must consider 

the technical limitations in the existing methodologies.

In addition, most previous studies focused on estimating overall PM2.5 concentrations, 

without distinguishing among sources of emission such as wildfire smoke and non-smoke 

sources. In addition to implementing approaches based on physical processes (e.g., chemical 

transport models), statistical approaches can also be employed to isolate wildfire-specific 

PM2.5. Accurately measuring the location and severity of wildfire PM2.5 exposure is key for 

evaluating impacts on public health, but currently remains empirically challenging. For this 

reason, we propose a novel approach using spatiotemporal multiple imputation to estimate 

wildfire-specific PM2.5 based on a counterfactual approach. Specifically, we used a suite of 

machine learning algorithms and readily available data to estimate daily wildfire-specific 

PM2.5 at ZIP code level, a relevant spatial resolution for public health and epidemiological 

studies. We apply and test our methodology in California ZIP codes for the 2006–2020 

period.

2. Materials and methods

Our study region is the state of California, located on the West Coast in the U.S. (Fig. 1). 

California coastal areas are, for the most part, densely populated, contrasting with inland 

regions. The data used in the estimation of daily, ZIP code level PM2.5 using a set of 
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machine learning techniques covered the period 2006–2020 and are described in detail in 

the subsequent sections. A summary of statistics for continuous variables used is included in 

Table S1 in Supplemental Material.

Satellite-derived data were pre-processed using the Google Earth Engine (GEE; Google 

Earth Engine Team, 2015). GEE makes it possible to rapidly process vast amounts of 

satellite imagery at large scale with the power of cloud computing (Gorelick et al., 2017). 

All values for response and explanatory variables (see below) were extracted at the location 

of PM2.5 monitoring sites, and at population-weighted centroids for the estimation of ZIP 

code level PM2.5.

Figure S1 (Supplemental Material) summarizes the main steps involved in estimating daily 

PM2.5 concentrations at ZIP codes in California. Once we obtain the PM2.5 concentrations 

from all sources, we isolate the wildfire-specific concentrations on ZIP codes and days 

in California exposed to smoke. Briefly, we apply a multiple imputation approach, which 

iteratively fits random forest models to impute non-smoke PM2.5 concentrations for a given 

ZIP code and day categorized as exposed to wildfire smoke, and then subtract them from 

counterfactual PM2.5 concentrations (i.e., what would be measured in the absence of wildfire 

smoke). All methods used in our approach are further described in the sections below.

2.1. Response variable: PM2.5 measurements

We used in situ daily PM2.5 measurements (2006–2020) from the United States 

Environmental Protection Agency (EPA) Air Quality System (AQS) (https://www.epa.gov/

aqs) that were collected by state, local, and tribal air pollution control agencies. The AQS 

PM2.5 network includes both continuous daily monitoring and 24-hour sampling on a 1-in-6 

day, 1-in-3 day and everyday schedule. Measurements (n = 575,582) were taken from 

California monitoring sites (n = 219; locations shown in Fig. 1).

2.2. Explanatory variables

We included several potential explanatory variables for the estimation of PM2.5 in our 

study region. Time-varying variables such as satellite-derived aerosol properties and fixed 

properties such as elevation are described in detail in the following sections. In addition, we 

included information for explanatory variables such as county, air basin within California 

(Fig. 1; https://ww2.arb.ca.gov/applications/emissions-air-basin), day of the week, month, 

season, and site latitude and longitude.

2.2.1. Aerosol optical depth—Aerosol Optical Depth (AOD), a satellite-derived 

parameter measuring the degree to which suspended particles affect the transmission of 

light, is an indirect measure of the particles present in a column of air at a given time. 

The Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm has been 

recently developed to retrieve AOD measurements from raw Moderate Resolution Imaging 

Spectroradiometer (MODIS) data at 1 km × 1 km resolution (Lyapustin and Wang, 2018). 

MAIAC leverages spatial and temporal algorithms to simultaneously retrieve atmospheric 

aerosols and bidirectional reflectance from MODIS data. MAIAC further detects clouds 

and corrects atmospheric effects over both dark vegetated surfaces and bright desert targets 
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to obtain better daily AOD values at a high spatial resolution (1 km × 1 km) (Lyapustin 

and Wang, 2018). The algorithm is also tuned to reduce masking of wildfire smoke as 

clouds (Lyapustin et al., 2012) and we use the binary MODIS Quality Assurance (QA) 

flags to select the cloud-free data with optimal quality. Since absorption optical depth 

of aerosol species varies with wavelength (Bergstrom et al., 2007), AOD measurements 

at different wavelengths can account for different chemical compositions of PM2.5, and 

thus, be potentially helpful to achieve accurate modeling. We, therefore, included AOD 

measurements at 470 nm and 550 nm from both the Aqua and Terra satellites. We used the 

average of these AOD measurements obtained by Terra (passing time roughly at 10:30 am, 

local time) and Aqua (1:30 pm, local time) satellites.

2.2.2. Meteorological variables—Meteorological conditions such as wind velocity 

and temperature can affect PM2.5 concentrations (Tai et al., 2010; Chen et al. 2020). 

Precipitation, minimum and maximum temperatures, surface shortwave radiation, specific 

humidity, wind velocity and wind direction data were extracted from the high-resolution 

Gridded Surface Meteorological dataset (gridMET; Abatzoglou, 2013). The gridMET 

dataset blends the high-resolution spatial data from Parameter-elevation Regressions on 

Independent Slopes Model (PRISM) with the high temporal resolution data from the 

National Land Data Assimilation System (NLDAS) to produce a spatially and temporally 

continuous, complete, high-resolution (1/24th degree ~ 4-km) gridded dataset of daily 

surface meteorological variables across the contiguous US.

2.2.3. Land-use variables—Land-use variables are proxies for local emissions and 

background air pollution levels. Land-use variables approximate emission of air pollutants, 

often at kilometer or sub-kilometer scale. We prepared (1) land-use coverage types, 

(2) distance to nearest highway, (3) distance to coastline, (4) elevation, and (5) NDVI 

(normalized difference vegetation index), to capture the impact of emissions from 

neighboring areas. Land cover variables, including forest cover and impervious surfaces, 

were retrieved from the National Land Cover Database (NLCD, https://catalog.data.gov/

dataset/usgs-2011-nationallandcover). The spatial resolution of the NLCD coverage is 30 

× 30 m2 and data are available roughly every 3–5 years. Since land-surface characteristics 

can be assumed to change gradually, missing values in gap years are replaced by linear 

interpolation between neighboring values (Verbesselt et al., 2010) using data available in 

the last 20 years (2001, 2004, 2006, 2008, 2011 and 2016). The linear interpolation of land 

cover data has been previously used in other modeling efforts (e.g., Di et al., 2019; Li et al., 

2020).

Distance to the nearest highway was computed using Caltrans - State Highway Network 

using a geographic information system (GIS; ArcGIS Pro version 2.6.3.; ESRI, 2020). 

Similarly, we estimated the distance from the California coastline with respect to the 

location of monitoring points and population-weighted ZIP code centroids. Elevation was 

derived from the 3-arc-second (90-meter) Shuttle Radar Topography Mission (SRTM) 

dataset distributed by USGS Earth Resources Observation and Science (EROS) Data Center 

(https://www.usgs.gov/centers/eros).
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The NOAA Climate Data Record (CDR) of AVHRR Normalized Difference Vegetation 

Index (NDVI; Vermote et al., 2014) contains gridded daily NDVI derived from the NOAA 

AVHRR Surface Reflectance product. It provides a measurement of surface vegetation 

coverage activity, gridded at a resolution of 0.05° and computed globally over land surfaces.

2.2.4. Thermal inversions—Radiosondes, routinely launched using helium balloons 

twice daily, provide a vertical profile of temperature measurements and are well suited for 

estimation of low-level temperature inversions. We used radiosonde measurements taken at 

both 0 UTC (4 pm local time) and 12 UTC (4 am), available at NOAA/ESRL Radiosonde 

Database (esrl.noaa.gov/raobs) three sites in California (locations shown in Fig. 1). By 

considering inversions that were present at both soundings on a given day, we excluded 

short-lived nighttime surfaced-based inversions produced by intense radiational cooling 

overnight (Gillies et al. 2010, Beard et.al 2012). Measurements at Oakland (Northern 

California) and Miramar (Southern California) are representative of coastal California and 

the Central Valley (as shown by Iacobellis et al., 2010), and the Edwards Airforce Base 

location was included to represent inland/desert regions. Inversions are stable features acting 

as lids on upward motion trapping pollution close to the surface. Daytime temperature 

inversions are typically produced by large-scale subsidence as the major ingredient and tend 

to be homogeneous over large areas (Iacobellis et al., 2010; Clemesha et al., 2017), so the 

sparse observational radiosonde network is largely adequate to resolve California inversions.

An inversion is defined to be present when a temperature at a given altitude in the 

sounding is warmer than the temperature at an altitude below it. The temperature profile 

is examined between the surface and 700 hPa level. Inversion strength (DT) is calculated as 

the temperature difference between the top and bottom of the inversion region (Iacobellis et 

al. 2010); Clemesha et al. 2017). In cases where more than one inversion is observed, the 

inversion having the largest value of DT is used (Clemesha et al., 2017). Inversion strength 

is an important factor determining pollution concentration levels in the Central Valley and 

in southern coastal California (Iacobellis et al., 2010). We also included the inversion base 

(ZBASE), which is the lowest elevation before warming begins (i.e., at the bottom of the 

inversion; Iacobellis et al. 2010; Clemesha et al. 2017).

2.2.5. Smoke plumes and wildfire data—Smoke plumes were obtained from the 

NOAA Hazard Mapping System (HMS; Ruminski et al., 2006), available in the region 

of North America from September 2005 onward (https://satepsanone.nesdis.noaa.gov/pub/

FIRE/web/HMS/). The HMS product uses visible satellite imagery and trained satellite 

analyst skills to estimate the spatial extent of smoke, though it cannot discern whether a 

given plume is at ground level or higher in the atmosphere (Rolph et al., 2009). In addition, 

the HMS smoke-plume extent data has not been validated and could thus have systematic 

biases because discrimination of smoke can vary by region, season, and weather conditions 

(Brey et al., 2018). However, HMS smoke plumes remain a common binary metric used 

to determine if smoke is present in the atmospheric column on a given day (Lipner et al., 

2019). The HMS smoke products are stored as polygon shapefiles representing the spatial 

extent of daily smoke plumes. A smoke binary variable was created by intersecting ZIP code 
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polygons with smoke polygons, which was then used as an indication of daily exposure to 

wildfire PM2.5.

We included additional wildfire related variables such as distance to and maximum area of 

the nearest wildfire perimeter within a 100 km radius. For this, we used wildfire perimeter 

polygons provided by the Fire and Resource Assessment Program (FRAP) of the California 

Department of Forestry and Fire Protection (CalFire; https://frap.fire.ca.gov/frap-projects/

fire-perimeters/) and the fire points (i.e., thermal anomalies identified by trained analysts) 

from the above HMS dataset.

2.3. Missing values

Missing values occurred among both response and explanatory variables. To estimate PM2.5 

concentration at all ZIP codes in California and during the entire study period, it is essential 

to fill in the missing values. In the case of satellite-derived data, missing measurements 

mainly occur due to cloud cover on a given day. We identified explanatory variables with 

no missing values, namely land-use types and meteorological variables, and used these as 

predictors in a iterative and fast implementation of random forest models to impute missing 

values for other explanatory variables such as AOD and NDVI. We used the R Package 

missRanger (Mayer, 2019) to do fast missing value imputation by chained random forest. 

Using this method, each variable is imputed by predictions from a random forest using all 

other variables as covariates. The algorithm iterates multiple times over all variables until 

the average out-of-bag prediction error of the models stops to improve (Mayer, 2019). We 

report the out-of-bag error for imputed variables in Supplementary Information (Table S2), 

as a measure of imputation (prediction) accuracy.

2.4. Machine learning for PM2.5 estimation

We assembled daily values for response (observed PM2.5) and explanatory variables for 

each of the air quality monitoring points (n = 219) available in California. We first set 

aside observations from 5 monitoring sites (selected to represent different areas of our study 

region; see Fig. 1) for independent testing of our model as a hold-out, test dataset to evaluate 

the model performance. Of the remaining observations, 80% was used for training our 

machine learning models and 20% for validation (i.e, optimization of the machine learning 

model parameters obtained during the training process, using 10-fold cross-validation). We 

ran three base learner algorithms (detailed below) and then stacked these into an ensemble 

model to generate estimates of PM2.5 for prediction testing and to eventually estimate daily 

PM2.5 concentrations at the ZIP code level.

2.4.1. Base learners—To run the machine learning algorithms, we used H2O (Cook, 

2016), an open-source big data platform, to achieve higher performance and reduce 

processing time in our analysis using R software (version 4.0.3; R Core Team, 2020). 

Specifically, training and data processing is done in the high-performance H2O cluster rather 

than in R memory on a local computer.

We used three base learners available within the H2O framework for machine learning: 

deep learning, distributed random forest, and gradient boosting (Cook, 2016). Unlike linear 
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regression, these algorithms are non-parametric and have no requirements concerning the 

form of the probability density function of the response variable·H2O’s Deep Learning (DL) 

is based on a multi-layer, feedforward artificial neural network that is trained with stochastic 

gradient descent (iterative method for optimizing loss function) by updating weight using 

back-propagation (fine-tuning the weights of a neural net based on the error rate (i.e. loss) 

obtained in the previous epoch or iteration). The network may contain many hidden layers 

consisting of nodes, and there may be intermediate layers between the input and output 

layers. Variable importance for DL is estimated using the Gedeon method, which considers 

the weights connecting the input features to the first two hidden layers (Candel et al. 2016).

Distributed Random Forest (DRF; Breiman, 2001) generates a forest of de-correlated 

regression trees and then averages them for reducing the variance of an estimated prediction 

function. A bootstrap sample is chosen at random with replacement from the data. Some 

observations end up in the bootstrap sample more than once, while others are not included 

(“out-of-bag”, OOB). The excluded OOB data are predicted from the bootstrap samples and 

by combining the OOB predictions from all trees. DRF allows estimation of the variable 

importance by calculating percentage increase in mean square error by shuffling the values 

of the OOB samples.

Gradient Boosting Machine (GBM; Friedman, 2001) is a forward learning ensemble method 

that uses a tree-based ensemble of weak models (decision trees). Whereas random forest 

builds an ensemble of deep independent trees, GBMs build an ensemble of shallow trees 

(weak learner or regression tree) in sequence with each tree learning and improving on the 

previous one. A gradient descent procedure is used to minimize the loss when adding trees. 

The general idea of gradient descent is to adjust parameter(s) iteratively to minimize a loss 

(or cost) function, the error between predicted values, and the actual values.

We trained these models individually on all response (PM2.5) and explanatory variables, 

with optimal parameters of each machine learning algorithm selected by conducting a 

grid-search. We chose a cartesian grid search where we specified a set of values for 

each hyperparameter of interest and trained and validated each base learner for every 

combination of the hyperparameter values. Once the grid search was completed, we used 

MSE as performance metric to choose the optimal model hyperparameters (see Table S3 in 

Supplemental Information).

We validated our base learner models with k-fold cross-validation (k = 10), a standard 

method for estimating the performance of a machine learning algorithm on a dataset. In 

k-fold cross-validation, the original dataset is divided into groups of observations (or folds) 

of approximately equal size, whereas the first fold is treated as a validation set (i.e., the set 

that is held out), while the remainder constitutes the training set (James et al., 2014). The 

prediction error is estimated on the held-out folds.

2.4.2. Ensemble model—H2O’s Stacked Ensemble method is a supervised ensemble 

machine learning algorithm that finds the optimal combination of a collection of prediction 

algorithms using a process called stacking. Unlike bagging and boosting, the goal in 

stacking is to ensemble strong, diverse sets of learners together. Specifically, stacking 
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involves training a learning algorithm to combine the predictions of multiple learning 

algorithms. First, all base learner algorithms are trained using the available data, then a 

combiner algorithm, the metalearner, is trained to make a final prediction using all the 

predictions of the other algorithms as additional inputs. It has been shown that stacking 

typically yields a better performance than any single one of the trained models in the 

ensemble (Yang, 2017). We used stacking to combine the base learners described above to 

generate PM2.5 predictions. We then used the ensemble model to estimate daily PM2.5 at the 

ZIP code level within 2006–2020 in California.

Once PM2.5 estimates were obtained, we compared our estimates from the ensemble model 

with PM2.5 concentrations obtained by Di et al. (2019) and Reid et al., (2021). For this 

purpose, we extracted the estimated concentrations at California ZIP code locations from 

the 1 km × 1 km dataset available online for years 2000–2016 (Di et al., 2019). Reid et al. 

(2021) estimated PM2.5 concentrations at ZIP code level, using the location of population-

weighted centroids as we did in our study.

2.5. Wildfire PM2.5 estimation

After estimating daily PM2.5 from any source at the ZIP code level within 2006–2020, 

we used a multiple imputation approach to estimate counterfactual PM2.5 concentrations 

that would have been observed in the absence of wildfire smoke, and then compared our 

observed values to estimated counterfactual PM2.5 concentrations to estimate wildfire smoke 

specific PM2.5.

More specifically, we followed these steps (summarized in Fig. 2): 1) We define the 

exposure to wildfire for a given ZIP code day if the smoke plume polygon intersects 

with the ZIP code polygon (i.e., if the ZIP code was covered by smoke on that day). 

2) Based on the above exposure definition, we temporarily remove the ZIP code days 

exposed to wildfire smoke from our original PM2.5 dataset. 3) Using the multiple imputation 

approach via fast random forest, we imputed the values of non-smoke PM2.5 on all ZIP 

code days categorized as exposed to smoke. Briefly, the algorithm is based on an iterative 

imputation approach that uses a fast implementation of random forest to fill missing values, 

in this case, the non-smoke PM2.5 concentrations on ZIP code days categorized as exposed 

to wildfire smoke. Thus, this step provided estimates of background PM2.5 unrelated to 

wildfire smoke contribution. We impute the non-smoke concentrations by a) using only 

the PM2.5 concentrations available for unexposed ZIP code days, and b) using PM2.5. As 

before with covariates such as day of the week, month of the year and year. The out-of-bag 

prediction error resulting from the imputation approach acts as an indication of imputation 

accuracy. 4) Finally, we then all non-smoke PM2.5 values from the original daily PM2.5 

concentrations to obtain the levels of PM2.5 attributable to wildfire smoke in ZIP code days 

previously categorized as exposed.

Since there is no gold-standard dataset for the validation of wildfire-specific PM2.5 

concentrations, we relied on the HMS smoke products described in Section 2.2.5. We 

used the smoke density classification reported for HMS smoke plumes starting in 2010 

and plotted the distribution of our resulting wildfire-specific PM2.5 concentrations that 
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corresponded to the ZIP code days impacted by the three classes of smoke density: light, 

medium and heavy.

3. Results

3.1. Base learners and ensemble model performance

Model performance was relatively similar for all three base learners: deep learning (DL), 

random forest (DRF) and gradient boosting (GBM). Resulting optimal hyperparameters 

using the grid search are detailed for each base learner in Table S3. Model fit metrics for the 

base learners are presented in Table S4 in Supplemental Information.

In terms of explanatory variables and their degree of importance in explaining PM2.5 

variation, wind velocity, inversion strength and aerosol optical depth (AOD) appeared to 

be among the most influential in both DRF and GBM models (Fig. 3). For the deep 

learning algorithm, wind direction appears as the most influential, followed by land cover 

variables. Both wind direction and velocity are expected to explain the variation in PM2.5 

transport from upwind and/or surrounding sources, e.g., wildfire or traffic emissions. Air 

temperature and thermal inversions can affect the formation of particles by promoting 

photochemical reactions between precursors, or by allowing the accumulation of unhealthy 

levels of PM2.5 close to ground level. In addition, AOD indirectly measures aerosols in the 

atmospheric column and thus typically explains an important portion of the variation in 

PM2.5 concentrations.

Stacking all three base learners in our ensemble model improved model prediction 

capabilities, with a prediction R2 of 0.83 for all sites and 0.78 for the hold-out test dataset 

(Table 1). The ensemble model appears to underpredict high values (roughly, > 300 μg m−3) 

of PM2.5 concentrations, as seen in the comparison between observed and predicted PM2.5 

in monitoring sites across California (Fig. 4). However, like in most statistical approaches, 

it is expected to underpredict at very high values (Reid et al., 2021), particularly since these 

PM2.5 concentrations might be associated with episodic events such as wildfires.

3.2. PM2.5 estimated at the ZIP code level in California

Mean PM2.5 concentrations from all sources estimated at the ZIP code level are shown in 

Fig. 5. These averages over the 15-year study period (2006–2020) tend to be highest around 

the Central Valley region, as well as in highly populated areas in Southern California coastal 

ZIP codes. The highest non-smoke PM2.5 median concentrations in the Central Valley, 

where agricultural activities are concentrated, occurred during Fall and Winter months 

(Figure S2 in Sup. Information).

We compared our PM2.5 estimates derived from the ensemble model to those previously 

obtained by Di et al., (2019) and Reid et al., (2021). Figure S3 (displaying the correlation 

matrix between datasets; found in Sup. Information) shows that our estimates were most 

highly correlated with the values obtained by Di et al., 2019 (correlation of 0.78) and one 

of the efforts involving a random forest model by Reid et al., 2021 (correlation of 0.73). 

Differences in methodology, predictors used and spatial scales between the two modeling 

efforts can account for the differences observed.
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3.3. Wildfire-specific PM2.5 at ZIP code level

Fig. 6 shows the 15-year mean concentrations of wildfire-specific PM2.5 estimated by the 

multiple imputation method. The out-of-bag error in the univariate imputation step for the 

non-smoke PM2.5, used in the estimation of wildfire-specific PM2.5, was 0.007849 (i.e., 

error rate 0.78 %) when relying on only PM2.5 concentrations for unexposed ZIP codes in 

the imputation. Comparable results were obtained when adding covariates such as day of the 

week, month of the year and year in the imputation approach. Results from this sensitivity 

analysis and imputation accuracy metrics (i.e., oob) is shown in Table S5.

The highest mean concentrations for wildfire-specific PM2.5 are observed in Northern 

California, which were widely affected by extreme wildfire events during 2008 and the last 

four years in our study period. Concentrations for other wildfire-prone areas like Southern 

California (SoCal), where major wildfire events occurred in the fall of 2007 (also shown 

in Figure S4) and 2008 were lower than in the Northern counterpart. The high value in 

the Southern coast shown in Fig. 6 corresponds to an extreme and prolonged (month-long) 

wildfire event (the Thomas Fire) that occurred in December 2017 (wildfire PM2.5 for this 

month shown in Figure S4). In addition, a closer look at the wildfire events in September 

2020, when practically the entire state of California was covered by smoke for several days 

at a time, and November 2018 (Northern California) showed that wildfire-specific PM2.5 

were well represented spatially (Figure S4 in Sup. Information). When compared and related 

to the smoke density reported in the HMS datasets for smoke plumes on a given day, we 

observed that higher concentrations of wildfire PM2.5 were associated with heavy smoke 

density plumes, whereas the opposite occurred with smoke plumes with light smoke density 

(Figure S5). Lastly, Table S6 shows a summary of wildfire-specific PM2.5 over the 15-year 

period, as well as the estimated daily PM2.5 from non-smoke and all sources in California 

ZIP codes.

4. Discussion

Our final ensemble model incorporated PM2.5 predictions from three machine learning 

algorithms, random forest, deep learning and gradient boosting, achieving excellent 

predictive performance (R2 of 0.78 and RMSE of 3.51 μg m−3). These machine learning 

algorithms used approximately 50 predictor variables, ranging from satellite-derived aerosol 

properties, land-use and meteorological data. With the trained model, we predicted daily 

all-sources PM2.5 within a 15-year period (2006–2020) at ZIP code population-weighted 

centroids in California (n > 9 million observations). Daily, ZIP code level predictions 

indicated that our model was successful in capturing the spatial distribution and temporal 

peaks in wildfire-related PM2.5.

Our ensemble model metrics above compare with previous efforts of PM2.5 estimation in 

California (e.g., Li et al., 2020) and the U.S. (Di et al., 2019) using a 1 km × 1 km grid for 

prediction. For instance, Li et al., (2020) reported a prediction R2 of 0.87 (RMSE = 2.29 μg 

m−3) for weekly PM2.5 concentrations in California within 2008–2017. Reid et al. (2021) 

reported prediction R2 values ranging between 0.52 and 0.73 for PM2.5 estimation in the 

Western U.S within 2008–2018. In addition, Stowell et al., (2020), who focused on Southern 

California, demonstrated the usefulness of remote sensing products such as MAIAC AOD 
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to achieve better exposure data in unmonitored regions. In fact, in our models, AOD was 

among the most important variables in explaining PM2.5 variability.

Except for a few recent studies (Liu et al., 2017; Lipner et al., 2019; Aguilera et al., 

2021; Sorensen et al., 2021; Heft-Neal et al., 2021), isolating wildfire-specific PM2.5 is 

still an uncommon practice when estimating PM2.5 exposure datasets. For instance, Li et 

al., 2020 studied wildfire-related weekly concentrations of PM2.5 in California and assessed 

their spatiotemporal patterns within their 10-year span study. These weekly concentrations 

included other sources of PM2.5, in addition to wildfire smoke. However, since different 

sources of PM2.5 might have differential impacts on human health (Wegesser et al., 

2009; Ostro et al., 2016; Aguilera et al., 2021), it is particularly important to isolate 

wildfire-specific concentrations from other sources of PM2.5, such as traffic emissions, for 

prospective epidemiological studies.

For the estimation of wildfire-specific concentrations, authors like Liu et al. (2017), relied 

on chemical transport models (CTM), which can be data and computationally intensive and 

based on several assumptions. In addition, CTM model results tend to be limited to estimates 

at the county level (e.g., Liu et al., 2017), shorter time periods (e.g., months) or at non-daily 

temporal resolutions. Most studies mentioned above (i.e, Lipner et al., 2019; Aguilera et 

al., 2021; Sorensen et al., 2021; Heft-Neal et al., 2021) have used HMS smoke plumes and 

seasonal background PM2.5 to estimate wildfire-specific concentrations, among other similar 

methods. In our current study, which also uses HMS smoke plumes as an initial binary 

classifier for exposure, we implemented a fast random forest algorithm for the imputation 

of background (non-smoke) PM2.5 on given ZIP codes and days classified as exposed to 

wildfire smoke. In addition to PM2.5 from all sources, our current efforts provide daily 

wildfire-specific PM2.5 estimates for the entire region of California within a 15-year span, 

directly estimated at the location of population-weighted centroids of individual ZIP codes.

We acknowledge that our approach has limitations. For instance, the number and extent of 

smoke plumes used to categorize exposed ZIP code days represent a conservative estimate 

due to the limitations of visible satellite data (e.g., cloud cover and consideration of the 

entire atmospheric column). In addition to all the above, our definition of smoke exposure 

may have caused misclassification, to a small extent, of smoke PM2.5 as non-smoke PM2.5 

and vice versa. Related issues that can arise are the occurrence of negative values in the 

estimation of wildfire-specific PM2.5, which can occur when most ZIP codes on a given 

day (or consecutive days) are covered by smoke. Though these cases are rare (in our case, 

only 1.5% of exposed ZIP code days were covered by an extent of 90% of more within the 

study region), we can suggest alternative approaches such as relying on seasonal patterns of 

background PM2.5 or applying metrics such as robust differences as proposed by Bekbulat et 

al. (2021) for days with high percent coverage of smoke plumes in the area of interest.

Regarding our implementation of machine learning algorithms, we note that a limited 

number of these is currently implemented within the H2O framework (Cook, 2016). Thus, 

the reliance on H2O is also a limitation. Other non-supported algorithms in H2O such 

as extreme gradient boosting (XGBoost) would also be worth considering as they have 

demonstrated high predicting capabilities in other studies estimating PM2.5 concentrations 
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(e.g., Just et al., 2020). In relation to the suite of statistical methods used in our study, we 

acknowledge that the uncertainties from previous steps can cascade in the subsequent steps 

in our approach. However, it is worth noting that each model output in our approach is 

validated with the best available dataset and that model fit and performance metrics for the 

machine learning algorithms were comparable to similar studies in the literature.

Lastly, we also note that we did not differentiate other specific sources of PM2.5 (e.g., 

traffic emissions, agricultural burns, prescribed forest fires, etc.) besides wildfire-specific 

concentrations, which could be addressed in future work. Moreover, though relevant in the 

study of impacts on public and environmental health, we do not consider the chemical 

speciation of PM2.5 as such data is scarce, though this will be addressed in future work.

5. Conclusion

Epidemiological studies on the detrimental health impacts of exposure to fine particulate 

matter (PM2.5) from different sources of emission can inform regulatory policy and identify 

vulnerable communities. For this reason, it is imperative to isolate the contribution of 

wildfire smoke from other sources, such as traffic and industrial emissions. Our study design 

allows researchers to construct and train machine learning models capable of predicting 

PM2.5 at specific locations, such as ZIP code population-weighted centroids, thus avoiding 

highly computationally intensive efforts of predicting into unmonitored gridded space in 

large, mainly inhabited regions.

Our statistical approach can be generalized to other large heterogenous regions with high 

variability in emission sources, land-use, topography, meteorology, and population growth. 

Using multisource and readily available data integrated into an ensemble machine learning 

framework allowed us to capture temporal and spatial variability over our study region, 

including days where wildfires were present, and isolating the wildfire-specific contribution 

as a source of PM2.5 pollution in California ZIP codes.
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Fig. 1. 
Study area (California, USA; see inlet figure) divided into 15 Air Basins by the 

California Air Resources Board. The Environmental Protection Agency’s Air Quality 

System monitoring sites (EPA AQS Sites, grey dots) are also shown. Of these sites, 5 

testing sites (shown here as white diamonds) were selected to evaluate the performance of 

our machine learning ensemble model. Locations (n = 3) of radiosonde measurements for 

inversion properties are also shown.
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Fig. 2. 
Flowchart of steps followed to estimate daily wildfire-specific PM2.5 at ZIP code population 

weighted-centroids in California within 2006–2020.
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Fig. 3. 
Variable Importance for the top 10 explanatory variables in the Base Learner Models.
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Fig. 4. 
Observed versus Modeled PM2.5 Concentrations at all EPA AQS Monitoring Sites (R2 = 

0.83). Dashed blue line corresponds to the reference (1-to-1) line; red line is the linear model 

fit. (For interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.)
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Fig. 5. 
Mean (top) and maximum (bottom) PM2.5 concentrations from all sources at ZIP codes 

within the 2006–2020 study period, estimated by the ensemble model with predictors at ZIP 

code population-weighted centroids. Uninhabited ZIP codes are shown in gray.
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Fig. 6. 
Mean (top) and maximum (bottom) wildfire-specific PM2.5 concentrations at ZIP codes 

within the 2006–2020 study period.
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Table 1

Model Performance Metrics for Ensemble Model using an optimal combination of the three base learners 

(Deep Learning, Random Forest and Gradient Boosting). Units for RMSE and MAE are μg m−3.

Ensemble Model

Model Performance Metrics Training Validation Hold-out Test (5 Sites) Prediction at all Sites

RMSE 3.40 5.61 3.51 4.37

Mean Absolute Error (MAE) 2.19 2.90 2.39 2.39

R-squared 0.87 0.67 0.78 0.83
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