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Abstract
Automated quantification of data acquired as part of an MRI exam requires identification of the specific acquisition of rel-
evance to a particular analysis. This motivates the development of methods capable of reliably classifying MRI acquisitions 
according to their nominal contrast type, e.g., T1 weighted, T1 post-contrast, T2 weighted, T2-weighted FLAIR, proton-
density weighted. Prior studies have investigated using imaging-based methods and DICOM metadata-based methods with 
success on cohorts of patients acquired as part of a clinical trial. This study compares the performance of these methods on 
heterogeneous clinical datasets acquired with many different scanners from many institutions. RF and CNN models were 
trained on metadata and pixel data, respectively. A combined RF model incorporated CNN logits from the pixel-based model 
together with metadata. Four cohorts were used for model development and evaluation: MS research (n = 11,106 series), MS 
clinical (n = 3244 series), glioma research (n = 612 series, test/validation only), and ADNI PTSD (n = 477 series, training 
only). Together, these cohorts represent a broad range of acquisition contexts (scanners, sequences, institutions) and subject 
pathologies. Pixel-based CNN and combined models achieved accuracies between 97 and 98% on the clinical MS cohort. 
Validation/test accuracies with the glioma cohort were 99.7% (metadata only) and 98.4 (CNN). Accurate and generalizable 
classification of MRI acquisition contrast types was demonstrated. Such methods are important for enabling automated data 
selection in high-throughput and big-data image analysis applications.

Keywords  Image processing · Image retrieval · Image classification · Machine learning · Deep learning · Magnetic 
resonance imaging

Introduction

Automated quantification of data from a magnetic reso-
nance imaging (MRI) exam typically requires identification 
of the specific type of acquisition relevant to a particular 
analysis. MRI enables images to be collected with a wide 

range of physical properties and with varying contrast [1, 
2]. A typical MRI exam comprises multiple types of MR 
sequences or series, each with its own set of acquisition 
parameters that determines tissue contrast, highlighting 
different properties of the imaged anatomy. Although the 
most common and clinically relevant neuroimaging MRI 
contrasts are T1 weighted (T1), T1 weighted after admin-
istration of a gadolinium-based contrast agent (T1C), T2 
weighted (T2), T2-weighted fluid attenuated inversion recov-
ery (T2-FLAIR), and proton density-weighted (PD) images 
(Fig. 1A), there are many additional kinds of MRI contrasts 
typically acquired, including diffusion-weighted and T2*-
weighted images. The numerous parameters that define each 
acquisition type are therefore encoded as text in the DICOM 
[3] image header alongside the image pixels. Unfortunately, 
the heterogeneity in the way in which many of these param-
eters are entered and encoded in proprietary vendor formats 
make it challenging to unambiguously identify a specific 
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MRI acquisition type for analysis based on the header infor-
mation alone.

The development of automated methods capable of pro-
spectively analyzing real-world, heterogeneously acquired 
MRI data thus motivates the need for strategies to reliably 
and programmatically classify MRI acquisitions according to 
their nominal acquisition contrast types, e.g., T1, T1C, T2, 
T2-FLAIR, PD [1, 4, 5]. For example, monitoring of neurolog-
ical disease progression and of response to therapy using MRI 
involves quantification of serial changes that occur on images 
acquired with similar tissue contrast (e.g., lesion volume based 
on T1-weighted or T2-weighted contrast) [6]. Development of 
artificial intelligence (AI) and machine learning (ML) models 
often depends on the availability of large quantities of specific 
classes of data [7, 8] for training, validation, and testing. MRI 
contrast classification models are therefore an important ele-
ment of content-based image retrieval (CBIR) systems [9–11], 
enabling large medical centers to leverage vast amounts of 
prospectively acquired, but retrospectively analyzed, data for 
population-level computational health research. Similarly, 
using such ML for prospective inference on real-world data 
will require data classification models to identify the rel-
evant input data for the models in order to generate mean-
ingful results. For example, an ML model trained to segment 
lesions on T2-FLAIR images must be able to identify just the 
T2-FLAIR acquisition from an MRI exam comprising poten-
tially 10–20 different acquisitions.

Although relevant features that identify the image con-
trast of an MRI series may consist of both metadata from the 

DICOM header and intrinsic properties of the imaging pixel 
data, the header data is not always consistent. Further, it may 
conflict with the intrinsic imaging contrast, especially when 
longitudinal examinations include data acquired on different 
scanners (manufacturer, field strength, software) with a vari-
ety of scan protocols. There are also a vast range of physical 
scanning parameters associated with each acquisition type, 
and descriptive fields such as the DICOM “series descrip-
tion” (0008,103E) are free-text attributes subject to local 
conventions, technologist choice, and even human error [12]. 
As a result, the header features associated with MRI scans 
are extremely heterogeneous with DICOM attributes that 
often do not explicitly identify the type of acquisition, limit-
ing the ability to automatically retrieve images acquired with 
the same contrast weighting using text-based approaches and 
presenting challenges for development of high-throughput 
methods for automated analysis of MRI data.

Background Literature

Only a few prior studies focus on automatically classify-
ing MRI series acquisition contrast, all underscoring the 
challenging nature of the problem, stemming from the high 
degree of variability in real-world imaging data. Together, 
they reinforce the increasing need for such methods in 
content-based image retrieval (CBIR) [9, 13, 14] and 
automated image analysis pipelines, particularly as the 
field embraces high-throughput, big-data, and machine 

Fig. 1   Examples of images in each category. A T1, T1C, T2, T2-FLAIR, 
and PD are the most common MRI contrasts acquired during neuroim-
aging exams. B Category “OTHER” comprised many kinds of MRI 
sequences, including T2*-weighted images that can look similar to T2 

or PD. Note: though this figure includes all axial images, the model 
was trained, validated, and tested on the raw DICOM files that could be 
acquired in coronal, sagittal, or oblique planes as well
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learning–based methods. However, each study takes a 
different approach to modeling and cohort selection with 
concomitant implications for application to real-world use 
cases with outstanding considerations being applicability 
to different input data (orientation, number of slices, etc.), 
computational cost, and model generalizability. Among 
these, three studies used convolutional neural network 
(CNN) architectures to classify MR images based on 
the imaging pixel data alone. Remedios et al. [13] used 
a multi-step approach to identify T1, T2, and T2-FLAIR 
followed by classification of pre- vs. post-contrast T1 and 
T2-FLAIR images. The authors used 3418 series repre-
senting multiple pathologies, 4 sites, and 5 scanners to 
achieve an overall accuracy of 97.5%. Ranjbar et al. [15] 
classified brain tumor MR images from 20 institutions into 
four contrasts (T1, T1C, T2, T2-FLAIR) with excellent 
accuracy (99.2%). The data in the analysis were acquired 
using clinical research protocols and included only data 
acquired with those 4 acquisition contrast classes. The 
third study, by Pizarro et al. [16], achieved similar results 
(> 99% accuracy) also adding proton density (PD) and 
magnetic transfer ON and OFF and even deploying the 
algorithm in an image-processing pipeline. The descrip-
tion of the dataset includes over 100 institutions with over 
45,000 MRI series, though they mention only that they 
were acquired through clinical trials and do not describe 
the pathology or heterogeneity in scanner acquisitions. 
Clinical trials are often more uniform in their scanning 
acquisition parameters across institutions, and they do 
not necessarily reflect real-world clinical performance. 
In addition, the methodology requires 30 axial slices as 
input and a second neural network in order to classify a 
single MRI series into its contrast, limiting the applicabil-
ity of this algorithm to volumes containing over 30 slices. 
Finally, though these studies achieve highly accurate 
results, they do not address classification of brain MRI 
series that are acquired with other contrast mechanisms, 
which is necessary for real-world clinical applications.

Another recent study by Gauriau et al. achieved accu-
racies between 97.5 and 99.96% from MRI-associated 
DICOM metadata alone [12]. This approach is appealing 
because inference is less computationally expensive and is 
faster compared with methods based on pixel-level imaging 
data. Their model was trained and validated on two very 
large datasets from different institutions and achieved very 
high accuracy. The study used ground truth contrast labels 
defined from the DICOM “Series Description” attribute, 
which is known to be unreliable for real-world exams. The 
authors acknowledge the limitation of this approach, noting 
that for up to 10% of series, the contrast mechanism could 
not be accurately identified by the series description alone.

Preliminary efforts in the present work to classify MRI 
data from the UCSF clinical radiology PACS using the 

“Series Description” alone were even less successful than 
those reported above. There were 18 times as many unique 
series descriptions observed in clinically acquired multi-
ple sclerosis (MS) exams compared with the number of 
unique descriptions observed in MRI exams from a lon-
gitudinal MS research study, despite the selected clinical 
cohort comprising 60% fewer exams. The average number 
of series per “Series Description” decreased from 179 for 
the research cohort to only 3 for the clinical cohort. This is 
not surprising as clinical trial protocols result in relatively 
consistent acquisition parameters including consistent use 
of “Series Descriptions.”

In addition to the primary challenge of accurately clas-
sifying the MRI acquisition contrast in brain exams, the 
problem is further complicated by missing or mislabeled 
anatomical region. The DICOM “Body Part Examined” 
(0018,0015) tag is frequently missing or contains incorrect 
labels which confounds CBIR from PACS.

These challenges motivated the present work aimed at 
developing and validating methods to automatically clas-
sify brain MR images according to their specific types of 
acquisition contrast using a combination of metadata and 
pixel-based machine learning approaches. We included 
images acquired for patients with MS and with gliomas. 
Specifically, the main objective was to obtain high accuracy 
for arbitrary real-world MRI exams of MS patients sampled 
from the UCSF clinical PACS. These data are not subject to 
the strict protocols of clinical trials and are therefore much 
more challenging to automatically classify. This distinction 
is crucial, as this scenario describes the real clinical setting 
in which models and analysis pipelines are deployed. A sec-
ondary objective of this study was to test the performance 
of the present models on datasets acquired from vastly 
different pathological profiles by testing the classification 
algorithm on other disease cohorts including exams from 
patients with high-grade gliomas. The prediction accuracy 
among four approaches was compared in order to deter-
mine the optimal contrast classification model: 1) a meta-
data only, rule-based approach; 2) a metadata-only machine 
learning model; 3) an imaging-only convolutional neural 
network; and 4) a combined ensemble model that uses both 
metadata and imaging data. The hypothesis of this study is 
that the combined model using metadata and imaging data 
together will obtain the highest classification accuracy.

Methods

Datasets

Four MRI datasets were included in this analysis: 1) an 
MS research (MSR) dataset consisting of 1731 exams 
[17]; 2) a glioma research (GR) dataset consisting of 
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179 newly diagnosed and recurrent glioma exams [18, 
19]; 3) a post-traumatic stress disorder research dataset 
(ADNIR) consisting of 116 exams from the publicly avail-
able ADNIDOD dataset [20]; and 4) a clinical MS (MSC) 
dataset consisting of 311 exams that are representative 
of typical real-world institutional PACS data acquired 
on multiple scanners and external sites  (Table 1). The 
ADNIR data used in this article were obtained from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
database (adni.loni.usc.edu) designed to test whether 
serial magnetic resonance imaging (MRI), positron emis-
sion tomography, other biological markers, and clinical 
and neuropsychological assessment can be combined to 
measure the progression of mild cognitive impairment and 
early Alzheimer’s disease. MSC exams retrieved from the 
UCSF PACS were acquired with varying scan protocols at 
UCSF and external sites, resulting in a total of 104 unique 
combinations of “Manufacturer” (0008,0070), “Manu-
facturer Model Name” (0008,1090), “Software Versions” 
(0018,1020), and “Magnetic Field Strength” (0018,0087); 
814 values of “Protocol Name” (0018,1030); and 32% of 
the studies being acquired at external institutions. Datasets 
MSR, GR, and ADNIR were obtained with well-defined 
research acquisition protocols. GR has much more exten-
sive pathology per exam compared with MSR, MSC, or 
ADNIR. All UCSF data used in this work were deidenti-
fied prior to analysis and used according to IRB approval. 
The deidentification process did not remove or modify any 
of the DICOM attributes used for the metadata analysis 
in this work.

Labels

Each MRI series in the MSR and MSC datasets was 
assigned one of the following weak labels using a rule-
based model: T1 weighted (T1), T1 post-contrast weighted 
(T1C), T2 weighted (T2), proton density (PD), and T2 
FLAIR (T2_FLAIR). A catch-all category of other con-
trast types called “OTHER” was used to describe addi-
tional series such as diffusion-weighted and T2*-weighted 
images often acquired based on the application (Fig. 1B). 
No distinction was made between labeling spin-echo and 

spoiled gradient recalled echo images as they both pro-
vide the same information for interpretation by users in 
the context of the target UCSF Bridge application for MS. 
Images with substantial artifacts, e.g., motion or ringing, 
were also labeled as OTHER even if originally acquired 
with one of the 5 relevant contrasts. Image volumes and 
preliminary labels from both MSC and MSR datasets 
were subsequently visually verified by two brain imag-
ing scientists (J.C.C. and J.G.C.). Visual review was per-
formed using an in-house tool developed in Python that 
presented the images in a medical image viewer together 
with a window containing the DICOM metadata to aid in 
the classification. The reader was able to window-level, 
change slice and FOV, read DICOM attributes, and then 
select the classification from a drop-down menu which 
stored the information in a flat-file format for use in train-
ing. Although the GR and ADNIR datasets were already 
labeled, approximately 25% of MRI series from these 
datasets were randomly chosen for manual visual review 
to ensure correctness (J.G.C.). MRI localizers [21] were 
excluded based on their DICOM Series Description attrib-
ute together with the number of imaged slices in the series 
because they are typically acquired with the PD MRI con-
trast class but rarely used clinically or in research due to 
their low resolution or limited field of view.

Training and Testing Splits

Because the primary objective was to assess the ability of a 
model to accurately classify the MSC dataset which repre-
sents the real-world heterogenous data located in a clinical 
PACS, MSC was randomly split by exam into 33.3% train-
ing, 33.3% validation, and 33.3% test sets. This allowed for 
representation of heterogeneous, “messy” data in training 
while also creating validation and test sets with similar dis-
tributions. The datasets MSR and ADNIR were acquired 
with research protocol and are much more uniform; thus, 
testing the algorithm on these datasets would not have pro-
vided insight into the performance of the algorithm on real-
world data, and therefore 100% of both datasets were used 
for training. GR was a relatively small and homogeneous 
research cohort and was included in this study primarily 
for testing how well the model would perform on data with 

Table 1   Data distribution. Training, validation, and test splits for each are defined in the text

Dataset Dataset type Number of 
exams

Total series T1 T1C T2 T2 FLAIR PD OTHER

MS research (MSR) Research protocol 1731 11,106 3562 1679 1332 887 1392 2254
MS clinical (MSC) Heterogeneous 311 3244 655 722 384 593 75 815
Glioma (GR) Research protocol 180 612 145 170 126 167 0 4
PTSD (ADNIR) Research protocol 116 477 101 0 117 125 0 134
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more extensive pathology compared with the MS cohort. GR 
was therefore split into 50% validation and 50% test sets to 
evaluate whether the developed models were robust enough 
to accurately predict image contrast, even when presented 
with MR images containing more extensive pathology than 
they had previously been trained on.

Rule‑Based Classification

MRI image contrast is determined by multiple scanning 
parameters such as the “Echo Time” (0018,0081) and “Rep-
etition Time” (0018,0080) that are stored as attributes in the 
DICOM header. In addition, administered contrast agents 
are often indicated in the DICOM header, e.g., “Contrast 
Bolus Agent” (0018,0010). Although the “Series Descrip-
tion” (0008,103E) tag may explicitly define the acquisition 
contrast in some data sets, it is highly variable and subject 
to operator entry error. A rule-based model using metadata 
from DICOM attributes was developed to derive weak con-
trast classification labels from the MSR and MSC cohorts. 
This model was based on a priori knowledge [1, 22, 23] of 
DICOM acquisition parameter values (“Echo Time,” “Rep-
etition Time,” “Flip Angle” (0018,1314), “Inversion Time” 
(0018,0082), “Scanning Sequence” (0018,0020), and “Con-
trast Bolus Agent”) used to scan with specific image con-
trast weighting [24]. The rule-based approach was developed 
in-house in Python using Pydicom [25] to extract DICOM 
header attributes.

Metadata‑Only Model Development

A set of DICOM metadata attributes, was extracted from 
the datasets using the Pydicom python package [25] and is 
listed in Table 2. The majority of the attributes were taken 
from the DICOM “MR Image Module” [26] and relate to the 
physics of the MR acquisition that could impact tissue con-
trast. Other DICOM tags relating to the image dimensional-
ity and resolution were included to help differentiate some 
lower resolution functional imaging series from higher-res-
olution structural images. The “Contrast Bolus Agent” tag 
was included to assist with identification of T1C images, 
though the field is not used consistently. “SOP Class UID” 
was included as a convenience to filter DICOM “Secondary 
Capture” [27] objects during preprocessing with these image 
types automatically labeled as “NA.” Several engineered fea-
tures representing properties of each series (“Number Of 
Files,” “Number of Images,” “Number of Volumes”) were 
added to assist with differentiation of functional and multi-
volume acquisitions (e.g., perfusion imaging [28, 29]). Miss-
ing string-type attributes were replaced with “None” and 
empty numeric attributes were replaced with the mean of 
the feature in the training data. The majority of these attrib-
utes were numeric; those that were string-type features were 

hashed to numeric values using the SHA256 algorithm in the 
Python hashlib library [30]. This was done to automate the 
mapping of string-based features representing enumerated 
values (e.g., “Scanning Sequence”) to numeric feature val-
ues amenable to modeling. This permitted new enumerated 
attributes to be added without requiring an explicit mapping 
and was considered important for creating a model training 
strategy that could be extended to other modalities or ana-
tomical domains. Support vector machine (SVM) and ran-
dom forest (RF) models using these features were developed 
in the scikit-learn python package (svm.LinearSVC, svm.
SVC, ensemble.RandomForestClassifier) [31, 32]. Fivefold 
cross-validation (model_selection.cross_val_score [33]) 
on the training data was used to evaluate which algorithm 
was best suited for predicting MRI contrast from DICOM 
metadata.

For RF models, randomized cross validation (Randomized-
SearchCV in sklearn) [33] was used to search for the optimal 
set of hyperparameters (n_estimators, max_features, max_
depth, min_samples_split, min_samples_leaf, bootstrap) using 
the training set only. An RF using all training data (instead of 
4/5) was retrained using the optimal hyperparameters returned 
from the search. Impurity-based feature importance scores 
derived from the trained RF are biased toward high-cardinality 
features, and because of this the “permutation importance” 
function (inspection.permutation_importance) [34] in sklearn 
was used to calculate the relative feature importance for the 
training, validation, and test sets. Briefly, permutation impor-
tance is defined as the decrease in a model score function when 
a single-input feature is shuffled [35]. Features were permuted 
five times. Finally, the algorithm was tested on the validation 
and test MSC and GR datasets. This algorithm is referred to 
as the “metadata only” model.

Imaging‑Based Model Development

Image-based methods were trained using only the two-
dimensional center slice of each volume as input. The origi-
nal unprocessed DICOM slice passing through the center 
DICOM LPS location was used as the center slice of the vol-
ume. During training, the center slice was transformed with 
random horizontal and vertical flips (p = 0.5), random affine 
rotations and translations, and slight alterations to bright-
ness, contrast, saturation, and hue and resized to 224 × 224. 
A ResNet-50 convolutional neural network (CNN) archi-
tecture [36, 37], pre-trained on ImageNet [38], was chosen 
to initialize the model weights. Data were normalized using 
the ImageNet normalization means and standard deviations 
[39]. The final layer of the ResNet-50 was replaced with 
a fully connected layer with 6 outputs representing the 6 
contrast categories. A cosine differential learning rate with 
a maximum value of 0.0003 was used together with a weight 
decay coefficient of 0.0001. The model was trained for 40 
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epochs, but early stopping was employed such that the high-
est accuracy model on the validation dataset was saved. All 
deep learning experiments were implemented using PyTorch 
1.9. This model is referred to as the “imaging only” model.

MRI exams may comprise different anatomies and even 
nominally neurological exams may include spinal cord 
images. The DICOM “Body Part Examined” (0018,0015) 
tag is unreliable with only 21% of MSC series containing 
this tag. Of the images that were not brains, based on vis-
ual inspection, 23% contained this DICOM tag. Of those 

non-brain images with this DICOM tag, 64% were incor-
rectly labeled as “BRAIN” or “HEAD” though primarily 
comprising spinal anatomy. A binary classifier was therefore 
also developed to assist with preliminary selection of brain 
vs. not-brain images, which was of primary relevance to the 
motivating use cases. Briefly, 2362 exams (21,114 series) 
from the above cohorts were manually labeled as “BRAIN” 
or “OTHER” by visual inspection as described above. The 
center slices from each series were transformed with ran-
dom horizontal and vertical flips (p = 0.5), random affine 

Table 2   Metadata-only model 
feature importances for 
training, validation, and test 
sets. Derived features such as 
NumberOfVolumes has DICOM 
tag = None

Metadata only

Rank DICOM tag Name Feature 
importance—
train

Feature 
importance—
valid

Feature 
importance—
test

0 (0018,0010) ContrastBolusAgentBinarized 0.01199 0.17513 0.16201
1 (0018,0081) EchoTime 0.10565 0.04165 0.03331
2 (0018,0082) InversionTime 0.00128 0.02531 0.02608
3 (0018,0080) RepetitionTime 0.00074 0.01325 0.01304
4 (0018,0095) PixelBandwidth 0.00060 0.00618 0.01049
5 (0020,0011) SeriesNumber 0.00022 0.00088 0.00567
6 (0018,1314) FlipAngle 0.00047 0.00530 0.00567
7 (0018,0020) ScanningSequence 0.00043 0.00780 0.00454
8 (0018,0091) EchoTrainLength 0.00014 0.00338 0.00241
9 (0018,0093) PercentSampling 0.00005  − 0.00044 0.00184
10 (0018,0022) ScanOptions 0.00046 0.00162 0.00113
11 (0018,0088) SpacingBetweenSlices −0.00019 0.00074 0.00099
12 (0018,0089) NumberOfPhaseEncodingSteps 0.00000 0.00000 0.00085
13 (None) NumberOfFiles −0.00005 0.00000 0.00071
14 (0018,0094) PercentPhaseFieldOfView 0.00011 0.00044 0.00057
15 (0018,0025) AngioFlag 0.00000 0.00000 0.00057
16 (0018,0083) NumberOfAverages 0.00019 0.00000 0.00028
17 (0018,0050) SliceThickness −0.00002 −0.00029 0.00028
18 (0020,1002) ImagesInAcquisition 0.00006 0.00088 0.00028
19 (0018,0086) EchoNumbers 0.00002 0.00015 0.00014
20 (0018,0024) SequenceName 0.00000 0.00074 0.00000
21 (0018,0087) MagneticFieldStrength 0.00000 0.00044 0.00000
22 (0018,1310) AcquisitionMatrix 0.00002 0.00000 0.00000
23 (0008,0016) SOPClassUID 0.00002 0.00000 0.00000
24 (0018,1251) TransmitCoilName 0.00000 0.00000 0.00000
25 (0018,0085) ImagedNucleusQuantized 0.00000 0.00000 0.00000
26 (None) NumberOfVolumes −0.00002 0.00000 0.00000
27 (0018,0021) SequenceVariant 0.00006 0.00059 0.00000
28 (0018,0023) MRAcquisitionType 0.00003 −0.00029 0.00000
29 (0018,0015) BodyPartExamined 0.00000 0.00000 -0.00014
30 (0028,0030) PixelSpacing 0.00014 0.00000 -0.00043
31 (0018,1312) InPlanePhaseEncodingDirection −0.00003 0.00029 -0.00043
32 (None) NumberOfImagePositions 0.00014 −0.00059 -0.00043
33 (0018,0084) ImagingFrequency 0.00017 0.00074 -0.00128
34 (0028,0011) Columns 0.00002 0.00074 -0.00213
35 (0028,0010) Rows 0.00014 0.00088 -0.00227
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rotations, resized to 224 × 224, and normalized by mean 
centering and standard deviation scaling. A ResNet-50 con-
volutional neural network (CNN) architecture [36, 37], pre-
trained on ImageNet [38], was chosen to initialize the model 
weights. The model achieved 99% accuracy on the validation 
set. This model was used for inference during preprocessing 
to limit analysis to brain images.

Model Analysis and Evaluation

Each center MR image was sent through the trained con-
trast classifier CNN network and the final 6 logit outputs 
were saved before application of the softmax function. First, 
t-distributed stochastic neighbor embedding (t-SNE) [40] 
was performed on these final 6 features using scikit-learn 
[41]. Regions of the t-SNE clusters were visually investi-
gated in order to assess 1) whether there were obvious visual 
differences between images among regions within the same 
cluster and 2) whether the misclassified images had visual 
similarities to their neighbors. The final 6 logit values were 
also combined together with the metadata features using a 
RF classifier as described above. The new RF model was 
refitted on the training data, resulting in a combined imaging 
plus metadata-based machine learning model. This model 
is referred to as the “combined” model. A command line 
Python utility was developed for using the trained models to 
infer contrast classifications prospectively as part of image 
processing pipelines. The application takes the path to a 
DICOM exam as input and returns the predicted contrast 

classification for each series, or “NA” for non-imaging 
series, for example, those containing “Secondary Capture” 
DICOM images. The utility is able to run on either GPU or 
exclusively CPU-enabled hosts.

Results

Rule‑Based Classification Results

The rule-based approach utilizing a priori knowledge [1, 
22, 23] of acquisition parameters obtained from DICOM 
attributes achieved 73.9%, 74.5%, 81.8%, and 78.2% accura-
cies on MSC validation, MSC test, GR validation, and GR 
test sets, respectively (Tables 3 and 4). Overall and per-class 
accuracy for the rule-based model are listed in Tables 3 and 
4; notably, there is no “training,” but training, validation, and 
test sets are separated to serve as a comparison point for the 
following models that require training.

Modeling Results

The main objective of the present work was to obtain high-
accuracy classification on the MSCdataset as it represents a 
real-world multi-site clinical data set. Table 3 presents vali-
dation and test set accuracies as well as per-class accuracies 
for the test set for the metadata-only, imaging-only, and com-
bined models. The models that included imaging features 

Table 3   Final model 
comparison results (MS clinical 
dataset, MSC)

* Accuracy after correcting mislabeled cases

Cohort: MSC data only

Overall accuracy Testing class accuracy

Classifier Validation Test T1 T1C T2 T2 FLAIR PD Other

Rule based 73.9% 74.5% 55.7% 47.5% 33.6% 99.0% 62.1% 93.7%
Metadata RF 94.0% (94.5%) 95.4% (95.6%)* 97.3% 95.5% 98.4% 100.0% 72.0% 91.4%
Imaging CNN 97.4% (98.0%) 96.9% (97.1%) 99.1% 95.5% 100.0% 95.6% 88.0% 96.9%
Imaging 

CNN + metadata 
RF

97.7% (97.9%) 97.5% (97.7%) 99.1% 96.8% 99.2% 99.5% 88.0% 95.6%

Table 4   Final model 
comparison results (Glioma 
Research Dataset, GR)

Cohort: glioma (GR)

Overall accuracy Testing class accuracy

Classifier Validation Test T1 T1C T2 T2 FLAIR PD Other

Rule based 81.8% 78.2% 88.2% 97.6% 13.8% 95.0% NA 100.0%
Metadata RF 99.7% 99.7% 100.0% 100.0% 100.0% 100.0% NA 50.0%
Imaging CNN 98.4% 98.4% 100.0% 100.0% 92.2% 100.0% NA 100.0%
Imaging 

CNN + metadata 
RF

94.7% 94.1% 100.0% 100.0% 71.0% 100.0% NA 100.0%
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outperformed the metadata-only models in validation and 
test set accuracies (> 97% compared to ~ 95%).

Metadata Modeling Results

The metadata-only modeling strategy utilized an RF 
based on the accuracy from both fivefold cross validation 
compared with SVM and subsequent RF hyperparameter 
search experiments. The final RF model was trained with 
the following input parameters [31]: number of estima-
tors = 450, minimum number of samples per split = 2, 
minimum number of samples in each leaf = 4, maximum 
number of features = sqrt, maximum depth of trees = 66, 

and bootstrapping on. Permutation importance calcula-
tions for each feature are listed in Table 2 and depicted 
in Fig. 2. The feature importance calculations suggest 
that removing the “ContrastBolusAgentBinarized” field 
decreased accuracy by 1.2%, 17.6%, and 16.2% (training, 
validation, test), while removing “EchoTime” decreased 
the accuracy by approximately 10.6%, 4.1%, and 3.3%, 
respectively. “InversionTime” and “RepetitionTime” 
were increasingly important in the validation and test sets 
compared with the training set (Table 2). Note that per-
mutation analysis may be limited in cases of correlated 
features, where the permutation of only one of the corre-
lated features may reflect a misleadingly low importance 

Fig. 2   RF feature importance 
graphs on validation and test 
sets. The permutation feature 
importance was calculated for 
the random forest experiments. A 
The metadata-only model feature 
importance calculations depict 
that removal of the contrast 
bolus agent feature decreased 
the accuracy between 15 and 
17.5%, while removal of the next 
most important feature—echo 
time—decreased the accuracy by 
approximately 3%. B The com-
bined model feature importance 
calculations depict that when 
imaging features are added, they 
decrease the importance of the 
contrast bolus agent feature. It 
can be inferred that the T1 and 
T1C logits, now the two most 
important features, contain the 
information that the contrast 
bolus agent feature contained 
metadata-only model in (A)
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[35]. The final result on the MSC dataset achieved 99.7%, 
94.0%, and 95.4% on the training, validation, and test set, 
respectively (Table 3). The most common mistake made 
on the MSC dataset was the incorrect classification of 
images containing artifacts (due to motion, Gibbs ringing, 
or aliasing) that were labeled as OTHER instead of their 
original acquisition contrast. This was not surprising given 
that the algorithm had no access to pixel-level imaging 
data. The next most common mistake was classifying T1 
as T1C and vice versa. Upon inspection of all misclassified 
MRI series, a few series were found to have the incorrect 
ground truth label but were classified into their correct 
contrast by the classifier. After adjusting for the incor-
rect ground truth labels, the MSC validation and test set 
accuracies increased to 94.5% and 95.6%, respectively. On 
the GR dataset, the metadata-only model performed better 
(99.7% validation, 99.7% test) than models that included 
imaging data, with only 2 misclassified images in total: 
one from each of the GR validation and test sets (Table 5).

Image‑Based Modeling Results

The imaging-only CNN achieved 2.5% higher average 
accuracy over the MSC validation and test sets compared 
to the metadata-only model, with a final MSC validation 
and test set accuracy of 97.4% and 96.9%. Similarly to the 
metadata model, the most common mistake was misclas-
sifying T1 for T1C and vice versa; this misclassification is 
visualized in the t-SNE analysis (Fig. 3E). Misclassifica-
tion analysis revealed that the CNN properly identified 7, 
6, and 1 (train, validation, and test) images that had been 
assigned an incorrect ground truth label, a much higher 
number than the metadata-only or combined models 
detected (Table 6). When adjusting for the proper identi-
fication of these images, the imaging-only CNN achieved 
98.0% and 97.1% on the validation and test MSC set. 
Although the imaging-only CNN performed worse than 
the metadata-only GR dataset, classifying 10 MRI series 
incorrectly (5 each from the GR validation and test set), 
all of these mistakes were on sagittal T2-weighted images 
obtained with higher contrast than what was seen by the 
network in training (Fig. 3I).

Combined Modeling Results

The combined imaging and metadata model consisted 
of a trained RF using the features of the metadata-only 
model together with the 6 logit values outputted from the 
image-based model CNN. Compared with metadata-only 
and imaging-only models, the combined model performed 
the best on the MSC dataset achieving 97.7% and 97.5% 
on validation and test data, respectively. When adjusting Ta
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for the misclassified MSC data, the accuracy increased to 
97.9% and 97.7% for the validation and test set, which was 
comparable to the imaging-only model. For the combined 
model, the T1, T1C, T2, and OTHER logits were the most 
important features, while the importance of “EchoTime” and 
“ContrastBolusAgentBinarized” was diminished (Table 7). 
Interestingly, the accuracy dropped significantly for the 
GR validation and test sets with 32 out of 34 misclassifi-
cations associated with high-resolution, high-contrast 3D 
T2-weighted images classified as OTHER instead of T2 
weighted (Fig. 3I).

t‑SNE results

Figure 3A depicts the results of the t-SNE analysis. In order 
to evaluate whether there were visual differences among 
regions within the same cluster, the coordinates of the t-SNE 
were used to visualize images from various subregions. 
Given that a catch-all category of OTHER was used to rep-
resent less-common acquisitions, it was of great interest to 
explore how the subregions of this group are separated by 
acquisition type. Figure 3B–D depicts representative images 
corresponding to each subregion. Region B is largely com-
posed of axial gradient-echo echo-planar images with severe 
spatial distortion artifacts. HARDI diffusion tensor images 
make up region C, while susceptibility-weighted images 
(SWI) make up region D. An additional region proximate 
to region D represented a cluster of high resolution, high 
contrast T2*-weighted images (not pictured).

T-SNE analysis also allowed the visualization of maxi-
mally separated regions in each cluster. Regions G and 
H both correspond to the cluster of T1-weighted images 
containing a mixture of sagittal and axial images that 
had no obvious difference in gray-white matter contrast. 
Regions I, J, and K corresponded to the T2-weighted clus-
ter. Region I, which protruded from the main cluster shape 
near the T1C cluster, contained the high-resolution, high-
contrast 3D T2-weighted images from the GR cohort that 
were classified incorrectly in the prior analyses (Table 5). 
Although regions J and K were overall similar, region K 
was mostly axial while region J also contained sagittal 
images. The presence of non-yellow points in region M 
of the T2-FLAIR cluster (e.g., blue T2, top left of cluster) 
contained a mix of sagittal, axial, and coronal images—
many with extensive pathology, compared to the adjacent 
highly uniform axial T2-FLAIR images found in region 
L. On the contrary, regions N and O of the PD cluster 
had no striking visual differences despite being maximally 
separated.

To complement the analysis of within-cluster differ-
ences, the overlapping region of the T1 and T1C clusters 
was examined to answer whether the misclassified images 
had visual similarities to their neighbors. Examples from Ta
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region E demonstrate that many of the T1 images pre-
dicted as T1C had low gray-white matter contrast, typical 
of T1C images. In addition, T1C images misclassified 

as T1 had very little or no evidence of contrast enhance-
ment in the center slice, and therefore retained their gray-
white matter contrast even in the post-contrast setting. 

Fig. 3   t-SNE of the 6 logits derived from the final layer of the con-
volutional neural network. A t-Stochastic neighbor embedding of 
the logits output from the CNN. B Examples of images and series 
descriptions that correspond with the region B on the t-SNE plot, 
represented largely by gradient-echo echo-planar images. C HARDI 
diffusion volumes largely representing region C on the t-SNE plot. 
D Susceptibility-weighted images corresponding to region D on the 
t-SNE plot. E Misclassified T1 and T1C images in region E that 
appear similar to the contrast of the other labeled as truth/predic-
tion. F In contrast to region E, region F contains highly uniform axial 
T1C images. G–H images corresponding to regions G and H, respec-
tively. Though maximally separated, these regions both contain axial 

and sagittal images that appear similar in contrast. I Region I con-
tains high-contrast, high-resolution 3D T2-weighted images that have 
their own distinct area within the T2-weighted cluster. J, K Region J 
contains both axial and sagittal images with varied contrast compared 
with region K which appears more uniform. L Examples of images 
located in region L depicting uniform, axial T2-FLAIR images with 
little evidence of pathology. M Examples of images located in region 
M of the yellow cluster, representing coronal, sagittal, and axial 
T2-FLAIR images with extensive pathology. N, O This cluster of PD 
images does not appear different when comparing maximally sepa-
rated regions N and O
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Compared with region E, images from region F were 
more uniform in appearance with similar contrast and 
axial orientation.

Discussion

Being able to automatically identify and quantify heteroge-
neously acquired MRI images will be central to delivering 
imaging-based precision medicine to the point of care in the 
real world. In this study, multiple algorithms were developed 
to predict the contrast mechanism of diverse MRI series 
with > 97% accuracy. These tools were developed to satisfy a 
real institutional clinical objective for the UCSF Bridge appli-
cation [42]. Bridge is a web-based application that displays 
longitudinally aligned MR images acquired with similar con-
trast to clinicians alongside other pertinent clinical metrics, 
biomarkers, and therapy history [43] (Fig. 4B). The MRI 
series contrast classifiers presented in this study represent an 
important step in the image analysis pipeline, after classifying 
the MRI series by the anatomical region and before longitu-
dinal image registration [44, 45]. By streamlining the pres-
entation of longitudinal imaging and presenting it in a com-
prehensive personalized dashboard with statistical context, 
the tool aims to facilitate the patient-clinician consultation 
and discussion of treatment options. Misclassification of the 
contrast of a particular MRI series within an exam or selection 
of a low-quality image can lead to inaccurate interpretation of 
the imaging data. Retrieving high-quality images of the brain 
that were acquired with the contrast of interest is crucial for 
achieving accurate, high-throughput data preparation.

This work overcomes some of the limitations in prior 
work through requiring 1) only a single slice from each 
patient which can be acquired in any orientation: coronal, 
sagittal, axial, or oblique; 2) the center for image-based com-
putation rather than the entire 3D volume, yielding compu-
tational advantages over models requiring 3D or multi-slice 
data; 3) ground-truth classification determined by a process 
of automatic rule-based derivation of weak labels, followed 
by visual review and correction by multiple reviewers; 4) 
inclusion of an additional “OTHER” category that does not 
force the algorithm to return the fixed set of contrast types. 
The performance of the following models was compared to 
1) a rule-based classifier, 2) a metadata-only RF classifier, 
3) an imaging-only convolutional neural network, and 4) a 
combined model that uses both imaging data outputs from 
(3) and metadata in a RF. The primary goal was to obtain 
high accuracy on the MSC dataset, a heterogeneous clinical 
cohort, while the secondary goal was to obtain good classi-
fication accuracy on the GR dataset, containing images with 
more extensive pathological burden. All three trained algo-
rithms vastly improved the classification performance over 
the rule-based approach, with models including imaging Ta
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(imaging-only and combined models) performing the best 
on the MSC validation and test sets.

The imaging-only and combined model were comparable 
in their performance on the MSC dataset, with the imaging-
only model achieving 98.0% validation and 97.1% test set 
accuracy, and the combined model achieving 97.9% valida-
tion and 97.7% test set accuracy, respectively (Table 3). The 
combined model improved the classification of T2-FLAIR 
images in the test set and decreased the number of T1 pre- 
and post-contrast mistakes made by the algorithm. The 
imaging-only CNN improved upon the classification of the 
OTHER category compared with the combined model for 
the MSC dataset. With the perspective of delivering the 

image contrast of interest for the MSC dataset, the com-
bined model outperformed the imaging-only model.

Conducting a t-SNE analysis (Fig. 3) helped shed light 
on why certain groups of images were misclassified by the 
imaging-only CNN. The between-cluster t-SNE analysis of 
the T1 and T1C images in region E of Fig. 2 confirmed 
that the CNN misclassified T1 and T1C images that were 
visually similar to one another. The canonical features that 
visually differentiated T1C from T1 images were regions 
of bright contrast enhancement and lower gray-white mat-
ter contrast. Visual observation of misclassified cases sug-
gested that the T1C images that were misclassified as T1 
by the CNN were those that retained their dynamic range 

Fig. 4   The application of contrast classification in MRI. A, top: 
Representative longitudinal exams from a single patient retrieved 
from the clinical PACS. Exams 1–3 consist of different numbers and 
types of acquisition sequences and even different anatomical regions. 
Acquisitions indicated in red are spine images despite being labeled 
as brain in the DICOM headers. Typical downstream applications 

require identification of input images acquired with specific tissue 
contrast. Images circled in yellow represent T1-weighted images from 
each exam used as input to a downstream application. B, bottom: 
Representative downstream application to align longitudinal MRI 
exams for visual review
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and gray-white matter contrast due to little or no enhance-
ment. Within-cluster t-SNE analysis of the OTHER clus-
ter of images (Fig. 3B–D) demonstrated that the resulting 
logit values from the imaging-only CNN model contained a 
rich diversity of imaging features that were able to numeri-
cally differentiate different kinds of images within the same 
label without explicitly defining them during training. The 
observation that the imaging-only CNN resulted in spatial 
clustering of the HARDI, SWI, and GRE EPI image types 
within the t-SNE analysis suggests the feasibility of classify-
ing these additional acquisition contrasts that would need to 
be investigated in further studies.

The generalizability of the models to images from a dif-
ferent disease domain which contained a more extensive 
disease burden was examined by testing performance of the 
present models on a glioma research imaging dataset. The 
best performing algorithm was the metadata model achiev-
ing 99.7% on both validation and test GR datasets, classify-
ing only one image incorrectly in each of the GR validation 
and test sets. This is likely due to the strict research protocol 
that resulted in both homogeneous acquisition of the images 
and consistent labeling of metadata. Contrary to expecta-
tions, the combined model had lower accuracy on the GR 
dataset due to the classification of a set of high-resolution 
3D T2-weighted images acquired with a BrainLab protocol 
as OTHER (Fig. 3I). These high-resolution T2-weighted 
images with much longer TR than the T2-weighted images 
seen in training (2912.5 ms vs. 2370.9 ms) which drasti-
cally changed the image contrast were not included in the 
training dataset. The imaging-only CNN segregates these 
images into their own small, separated section within the 
T2-weighted cluster. Taken together, the information stored 
in the imaging-based logits, the TR difference contained 
in the metadata, and the lack of similar acquisitions in the 
training data likely all contributed to the combined RF fail-
ing to segregate these specific images from the rest of the 
T2-weighted images. This underscores the risks of infer-
ring on data with characteristics not present in the training 
set. Before deploying these models for clinical imaging of 
patients with glioma, the model would need to be retrained 
with examples of these high-resolution, T2-weighted 3D 
images and all three algorithms tested on clinical glioma 
data stored in an institutional PACS, where it is expected that 
imaging-based models would perform at least comparably 
with metadata-only models, similar to the MSC data.

Though the combined model only slightly outperformed 
the imaging-only CNN on the MSC dataset, it was clear that 
the metadata features that describe the acquisition param-
eters were highly valuable for classifying the acquisition 
and contrast. However, there also were advantages to using 
an imaging-only model in some contexts. Compared with 
the combined model, the imaging-only model performed 
comparably on the MSC data while increasing the accuracy 

on the GR dataset, due to generalizing better to the high-
contrast, high-resolution 3D T2-weighted images that it 
had not seen before. The number of misclassified images in 
the training data that were, in fact, labeled incorrectly was 
also increased for the imaging-only model compared with 
the others, indicating it was more robust to overfitting to 
the training set. Compared with the metadata-only model, 
the imaging-only CNN was able to identify series that were 
impacted by severe artifacts as OTHER instead of the con-
trast that it was acquired with, which is beneficial in the 
target MS pipeline. However, it may be the case that in other 
applications, a T1 image delivered with substantial artifacts 
is preferable to no T1 image selected at all for a timepoint; 
in that case, this would be a disadvantage. Though using 
imaging data is more computationally expensive compared 
with metadata alone, the inference time difference is nomi-
nal in the context of the Bridge application since the only 
preprocessing step required is calculating the center of the 
image volume to identify the slice most representative of 
the image contrast. Though metadata-only models shorten 
inference time at scale, they have lower overall accuracy 
and will never be able to filter out MRI sequences with arti-
facts, which is essential for preventing downstream issues 
with alignment and display. Therefore, for use cases that 
require delivering high-quality images to an application, 
an imaging-only CNN model is advantageous for contrast 
classification.

Though the heterogeneous clinical data in the MSC data-
set was visually reviewed and labeled, it is still subject to 
human labeling error. The authors acknowledge that multi-
ple reviewers for each sequence would have likely increased 
data-label fidelity and potentially improved model perfor-
mance. In addition, though the model was trained on clinical 
PACS data derived from many institutions, there may still 
be bias as to where those prior imaging centers were located 
and the machines those data were acquired on. Therefore, 
it may be the case that this model would perform worse on 
data derived from machines or institutions with lesser rep-
resentation in the MSC dataset.

Conclusion

In this study, different modeling paradigms for classifying 
MRI series based on their acquisition contrast were devel-
oped and evaluated. Classification accuracies sufficient for 
deployment within the pipeline detailed in Fig. 4B were 
achieved for the classification of clinical data for both the 
Bridge application and a separate MRI dataset of patients 
with glioma with more extensive disease that was not seen 
in training. The t-SNE analysis suggests that the imaging-
based CNN might possess power to differentiate additional 
contrasts such as ADC maps, HARDI, and T2*-weighted 
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images. This could suggest generalization power for a broad 
range of applications. Future directions will aim to explore 
this question by extending the present models to additional 
acquisition types (e.g., high-resolution, high-contrast 3D 
T2-weighted images) and anatomy through retraining and 
validation with supplementary datasets Given that robust 
automated data selection is a critical preliminary step in 
many high-throughput clinically deployed inference pipe-
lines and also for content-based retrieval in large-scale com-
putational health studies, such methods hold promise for 
multiple applications.
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