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Examining Self-directed Multicellular Organization and 

Morphogenesis of Human Induced Pluripotent Stem Cells 

Ashley Rachel Greeley Libby 

Abstract 

Embryonic morphogenesis is a critical determinant of tissue generation and function, yet 

many of the mechanisms that regulate morphogenic processes remain elusive due to the complex 

and dynamic nature of multicellular interactions and the limited tools to manipulate these systems 

at single cell resolution. Similarly, morphogenesis of human induced pluripotent stem-cell (hiPSC) 

derived organoids proceeds largely through self-organized pattern formation that crudely mimics 

organogenesis. The ability to control specific morphogenic processes would greatly enhance our 

ability to create bona vide human tissue and organ structures; however, robustly directing 

organoid morphogenesis requires development of novel control approaches. The four studies 

described in this dissertation developed systems to study pattern emergence and lineage fate 

specifications in hiPSC 2D and 3D cultures. First, the effects of mechanical regulation on 

population emergence and lineage fate specification was interrogated by mosaic knockdown of 

two mechanical regulators associated with cortical tension and cell-cell adhesion: Rho-associated 

kinase-1 (ROCK1) and E-cadherin (CDH1). Mosaic knockdown induced symmetry breaking (a 

pre-requisite of morphogenesis), which resulted in differential patterns of cell sorting and 

multicellular organization without disrupting pluripotency state. These results describe the 

spatiotemporal dynamics of multicellular self-organization that occur with the emergence of 

heterotypic cell populations within pluripotency allowing for population segregation before lineage 

fate commitment. Second, using machine learning, experimental parameters were optimized to 

yield pre-specified spatial patterns before successful validation in vitro with hiPSCs. Furthermore, 

asymmetric pre-patterning of iPSCs differentially impacted initial germ layer specification within 

differentiating colonies. This study demonstrated demonstrate that parameter optimization 
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achieved by automated machine learning could be used to efficiently predict and control hiPSC 

self-organization. Third, the regulation of CDH1 on organization and lineage fate was examined 

in 3D gastruloid cultures, where both microenvironment and CDH1 knockdown triggered the 

emergence of extra embryonic lineages. This study indicated that microenvironment is essential 

for specific lineage emergence in the early embryo. Fourth in the final study, population 

emergence was examined in neuronal organoid cultures that displayed axial extensions similar 

to neural tube formation and extension. Extending aggregates were dependent on the emergence 

of a neuromesodermal progenitor population alongside neuronal populations. This model of 

neural tube extension provides a platform to probe how disruption of population emergence 

affects morphological phenotypes. Overall, these studies provided avenues to elucidate the 

underlaying multicellular interactions that enable the development  of complex patterning events 

within the developing human embryo on multiple scales and across multiple developmental 

periods.  
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Chapter 1: Introduction 

 

1.1  Overview 

The goal of this dissertation was to interrogate mechanisms behind the symmetry breaking 

events that regulate population emergence and organization within the developing embryo. 

Symmetry breaking is an overarching term used in developmental biology to describe instances 

in the development of complex organisms when organizational events occur that divide what was 

once a homogeneous population into separate heterogeneous populations. The emergence of 

heterogeneity can take the form of changes in gene expression, changes in cell shape, physical 

movement into patterns, etc. However, often developmental symmetry breaking events involve a 

wide variety of complex genetic, behavioral, and morphologic changes at once, making it difficult 

to interrogate the cause of the initial emergent heterogeneity. Therefore, this dissertation outlines 

multiple methods in the form of four studies to interrogate aspects of symmetry breaking events 

using human induced pluripotent stem cells (iPSCs) as a model for early embryonic development. 

The goal of the first study presented in this dissertation was to develop a system in human 

iPSCs that would enable robust control over symmetry breaking events. Thus, an inducible 

CRISPR interference (CRISPRi) system was used in mixed populations of human iPSCs where 

only a portion of the colony contained the CRISPRi machinery. Then, with CRISPRi induction, a 

relatively homogeneous human iPSC population would undergo controlled  symmetry breaking 

as only a subpopulation experienced genetic knockdown. This platform was used to interrogate 

mechanical regulators of population organization: the cell-cell adhesion molecule E-cadherin 

(CDH1) and the tension regulator Rho-associated coiled-coil kinase (ROCK1). Interestingly, 

mosaic knockdown triggered population organizations within human iPSC colonies without 

disrupting pluripotency. When patterned colonies were then differentiated, cells lacking CDH1 
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preferentially differentiated to the mesendoderm when in mixed colonies, while cells lacking 

ROCK1 were able to differentiate to all germ lineages equally. This study provided a unique 

method to control symmetry breaking events and demonstrated the importance of adhesion driven 

symmetry breaking in the regulation of lineage fate decisions. 

With the development of a system to genetically control sub-population emergence, the 

goal of the second study was to apply the behaviors observed in the symmetry breaking in vitro 

studies to a computational model capable of predicting novel patterning events and organizations 

of human iPSCs within colonies. Combining a Cellular Potts-based computational model and a 

pattern recognition framework, a computational system to predict specific experimental 

parameters was created to derive patterning events upon induction of symmetry breaking. 

Executing the in silico derived experimental set up in vitro resulted in multicellular population 

organization that remarkably reflected the in silico predictions in both frequency and extent of 

pattern formation. Furthermore, differentiation of patterned human iPSC colonies resulted in 

divergent patterned cell fate commitment upon morphogen exposure, indicating that directed 

multicellular organization impacts lineage co-emergence. This study demonstrated that 

morphogenic dynamics could be predicted in silico to accurately manipulate human iPSCs in vitro 

to produce desired morphogenetic events, a critical first step towards robustly engineering more 

complex tissues.  

 After establishing control over symmetry breaking events and subsequent human iPSC 

organization in monolayer culture, the goal of the third study was to interrogate the regulation of 

symmetry breaking through changes in adhesions in a 3D space to better mimic multi-dimensional 

organization of embryonic development. Specifically, compaction of the embryo from the morula 

to the early blastocyst and subsequent gastrulation involves a wide variety of multi-dementional 

population organizations and migrations that are difficult to recapitulate in monolayer cultures. 

Therefore, the previously described mosaic knockdown of CDH1 was initiated in 50 cell human 

iPSC 3D aggregates encapsulated in an alginate hydrogel. With mosaic CDH1 knockdown 
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population segregation observed and further complete knockdown of CDH1 triggered emergent 

morphologies reminiscent of embryonic stages. Transcriptome analysis of encapsulated and 

unencapsulated aggregates revealed performed emergence of all three embryonic germ lineages 

without exposure to external morphogens. Moreover, the presence of an extraembryonic-like 

population in only the encapsulated aggregates indicated that micro-environment may play a role 

in generating cues for lineage emergence.  Overall, this study demonstrates an organoid culture 

system mimicking aspects of both morphogenic arrangements and cellular lineage fates that arise 

in the early embryo. 

Moving beyond the initial symmetry breaking events in the embryo such as compaction 

and gastrulation, the final study used the three dimensional culture techniques from the third study 

to interrogate more complex symmetry breaking in the form of body axis extension. An in vitro 

organoid model of axial extension was developed from a previously reported human iPSC 

interneuron differentiation protocol. The resultant organoids recapitulated a large number of 

morphologic and gene expression features found in in vivo axial elongation, forming internal tube-

like epithelial compartments. Additionally, these organoids contained cells simultaneously 

expressing brachyury(T) and SOX2 suggesting the emergence of neuromesodermal progenitors 

(NMPs), which in vivo contribute to both the closing neural tube and paraxial mesoderm. 

Elongations increased in a dose dependent manner with the addition of the small molecule Wnt 

agonist CHIR, recapitulating the in vivo role of Wnt signaling in caudalization and NMP 

emergence. Single cell RNA sequencing revealed increased MIXL1(+) paraxial mesoderm 

populations in extending aggregates. HOX gene expression was regionalized in extending 

aggregates, with hindbrain (HOXB1) expression at the base, while brachial (HOXC6) and thoracic 

(HOXB9) were expressed in the extensions. To explore dorsoventral polarity in the organoids, 

knockdowns of BMP inhibitors Noggin and Chordin were generated using CRISPR interference, 

yielding increased expression of dorsal neural fates in inhibited lines due to loss of endogenous 

BMP inhibition. This study is the first to report robust neural tube axial extension in an organoid 
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system. Further, it demonstrates the power of human iPSC organoid models to elucidate many of 

the underlaying multicellular interactions that drive symmetry breaking enabling the development 

of complex human tissues. 

 This dissertation provides the first description of controlled symmetry breaking events in 

human iPSC culture, a quantitative computational model capable of predicting human iPSC 

patterning events, and a description of multiple unique organoid systems that highlight 

morphogenic symmetry breaking events. Furthermore, it interrogates mechanisms by which 

adhesions regulate lineage emergence in early embryogenesis, enabling the future study of the 

cumulative mechanisms by which robust morphogenesis is controlled. The following introduction 

provides the necessary background on topics critical to this work including, symmetry breaking in 

early embryonic development, stem cell modeling of embryonic development, mechanical 

regulation of patterning, and computational modeling of cellular dynamics. 

 

1.2  Symmetry Breaking in Early Embryonic Development 

Symmetry breaking in biological systems occurs with the emergence of a heterogeneous 

subpopulation, most commonly undergoing changes in cellular polarity, gene expression, 

replication, or cellular morphology. In embryonic development, symmetry breaking events 

characterize the repeated emergence of different cell fates and dictate the creation of the complex 

structures that comprise embryonic tissues. The following sections describe key events in early 

mammalian development that rely on symmetry breaking events and subsequent organization to 

regulate embryo morphogenesis as it transitions between stages. 

 

1.2.1 Compaction 

One of the earliest symmetry breaking events in the developing embryo occurs at 

compaction where a subpopulation of cells in the morula becomes transcriptionally distinct, 
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leading to morphogenic reorganization to form the blastocyst. The blastocyst is divided into two 

structurally distinct tissues: an outer layer of polarized trophectoderm cells which surrounds a 

cavity called the blastocoel, and inner layer of non-polar cells called the inner cell mass (Gueth-

Hallonet and Maro 1992).  The emergence of the trophectoderm and distinction from the inner 

cell mass depends on the co-expression of the transcription factors CDX2 and GATA3 (Ralston 

et al. 2010, 2; Niwa et al. 2005; Strumpf et al. 2005, 2) regulated by the farther upstream 

transcription factor TEAD4 where embryos lacking TEAD4 fail to produce trophectoderm or 

develop the blastocoel cavities (Nishioka et al. 2008; Yagi et al. 2007).   

In preimplantation mouse embryos, changes in TEAD4 signaling are largely regulated by 

the Hippo pathway where nuclear accumulation of Yes-associated protein 1 (YAP1) directs 

TEAD4’s localization within the genome, regulating its transcriptional activity (Hirate et al. 2012; 

Nishioka et al. 2009). Interestingly, changes in YAP1 nuclear accumulation are linked to changes 

in cell-cell adhesions and subsequent cellular polarity as the embryo grows in size and cell 

number (Hirate et al. 2013; Mihajlović and Bruce 2016). Furthermore, YAP1 nuclear accumulation 

has been shown to be mechanically responsive; changes in ECM stiffness as well as tension 

across cellular junctions can drive nuclear localization of YAP1 (Benham-Pyle, Pruitt, and Nelson 

2015; Dupont et al. 2011), suggesting that the physical rearrangement of cells during compaction 

may contribute to trophoblast fate specification. However, the exact relationship between 

changing adhesions and trophoblast specification is unclear. 

 

1.2.2 Gastrulation and Axis Formation 

The next symmetry breaking event that occurs in development is formation of the epiblast 

and the primitive endoderm, followed by gastrulation of the late blastocyst, which also relies on 

changes in polarity and adhesion (Montero and Heisenberg 2004). The late blastocyst is 

composed of two compartments: the epiblast, which will form the embryo proper, and the primitive 

endoderm, which will eventually become the yolk sac. During gastrulation, the epiblast transitions 
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from a relatively homogeneous population of epithelial pluripotent cells to a spatially organized, 

multicellular tissue of distinct progenitor cells. This occurs when cells within the epithelial layer 

begin to express mesenchymal transcription factors like SNAIL and Brachyury, delaminate from 

the epithelial layer, and invade into the surrounding tissue forming the primitive streak (Tada, 

Concha, and Heisenberg 2002; Montero and Heisenberg 2004; Tam and Behringer 1997). The 

delamination of cells not only delineates a change in fate to different mesodermal populations, 

but it is also accompanied by changes in adhesion as cells change from epithelial to mesenchymal 

phenotypes and migrate across the embryo. With  movements associated with gastrulation comes 

the formation of the body axis where the primitive streak delineates the dorsal side of the body 

forming the dorsal-ventral axis as well as establishing the anterior-posterior axis with its direction 

of extension and inherently the left-right body axis (Beddington and Robertson 1999). However, 

the specific dynamics of these processes are not well established due to gastrulation occurring 

post implantation in many model mammalian systems making its direct examination difficult.  

 

1.2.3 Spinal Cord Development 

As the embryo continues to develop past gastrulation, multiple tissues arise and begin to 

morphologically shape the embryo, leading to anisotropic morphologies. For example, the spine, 

a crucial structure that both enables physical support as well as protection of essential neural 

projections that connect the body to the brain, begins to develop at gastrulation. Dysregulation of 

the key processes leading to its formation results in several congenital abnormalities (Kaplan, 

Spivak, and Bendo 2005). The generation of the spine patterns and elongates the anterior-

posterior body axis and specifies the tissues that contribute to the spinal cord (Steventon et al. 

2016; Wilson, Olivera-Martinez, and Storey 2009; Schiffmann 2006; Yamaguchi 2001). Although 

neural tube formation and axial extension have long been studied in model organisms such as 

chick and amphibians, it is complicated to study the multi-cellular interactions that drive this axial 

extension at high spatiotemporal resolution in mammalian embryos because it occurs post-
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implantation (Viebahn 1999; Beddington and Robertson 1999). The following subsection outlines 

our current understanding on how neural tube patterning is established. 

The process of neural tube formation, or neurulation, is characterized by thickening and 

flattening of the neural plate in response to signals from the notochord, followed by folding inward 

ventrally and finally pinching off at the top of the fold to close the tube (J. L. Smith and Schoenwolf 

1989; Tam and Behringer 1997). Coincident with neural tube closure is extension of the anterior-

posterior axis as the entire embryo breaks symmetry and elongates. Concomitant with elongation 

is the establishment of different progenitor zones within the neural tube creating both ventral-

dorsal and rostral-caudal patterning of the neural tube. These patterning events rely on a 

combination of morphogen gradients across the embryo that establish the proper signaling milieu 

to determine progenitor fate based on dorsal-ventral or rostral-caudal location within the 

developing neural tube. Dorsal-ventral  gradients differences in sonic hedgehog (Shh) released 

ventrally from the notochord and bone morphogenic proteins (BMP) released dorsally from the 

roof plate (Ericson et al. 1997; Liem et al. 1995; McMahon et al. 1998). Patterning the rostral-

caudal axis of the embryo is the Wingless-type MMTV integration site family (Wnts), retinoic acid 

(RA) released from the neighboring somites, and fibroblast growth factors (FGFs), which dictate 

convergent extension, progenitor proliferation, and have been shown to regulate HOX gene 

profiles (Janssens et al. 2010; Carpenter 2002; Corral and Storey 2004; del Corral et al. 2003; 

Bel-Vialar, Itasaki, and Krumlauf 2002). 

As the neural tube continues to extend, an additional axial pool of progenitors, called 

neuromesodermal progenitors (NMPs), contributes to both the neural tube and the surrounding 

paraxial mesoderm that eventually becomes that somites (Henrique et al. 2015). This axial stem 

cell pool of NMPs and are marked by high expression of the transcription factors SOX2 and 

Brachyury (Henrique et al. 2015; Gouti et al. 2014) and reside in the caudal lateral epiblast just 

below the closing neural tube. Interestingly, this population of cells is hypothesized to regulate 

the balanced production of neural tissue and surrounding somites that eventually form the spinal 
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cord and vertebrae. However, due to NMP location in the post implantation embryo making 

visualization difficult, the dynamics of NMP symmetry breaking that regulate the production of two 

different tissues are largely unknown, leaving multiple unanswered questions about their 

maintenance, differentiation, patterning, and subsequent regulation over axis extension.  

Overall, spinal cord development provides multiple examples of symmetry breaking. First, 

morphogenic symmetry breaking occurs with physical elongation of the embryonic axis through 

neural tube closure and extension. Second, symmetry breaking is observed in coordinated 

population emergence and patterning of neuronal subtypes specific to location within the 

developing neural tube. Finally, the maintained progenitor pools like NMPs continuously 

demonstrate regulation over population emergence as the embryo continues to develop providing 

a constant source of new tissue through symmetry breaking lineage fate decisions.  

 

1.3 Stem Cell Modeling of Embryonic Development 

The repeated relevance of symmetry breaking events in the development of the early 

embryo and the health implications of their dysregulation in human congenital diseases 

(congenital heart disease, spinal malformations, etc.) highlights the importance of mechanistically 

understanding these basic processes across embryonic development (Kaplan, Spivak, and 

Bendo 2005; Srivastava 2000). However, the dynamics of development have typically been 

difficult to interrogate in vivo due to the physical restrictions, optical opacity, and complex signaling 

milieu inherent to the developing embryo. Furthermore, human specific embryonic processes are 

largely unknown as using human embryos to study morphogenic events presents ethical 

dilemmas. Therefore, to study symmetry breaking events and morphogenesis, it is essential to 

establish an in vitro human system that promotes the coincident development of analogous 

heterogeneous populations.  
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Human pluripotent stem cells (hPSCs) provide an unlimited source of cells that can mimic 

developmental differentiation processes and maintain the ability to self-organize into tissue-like 

structures, such as optic cups, gut organoids, or stratified cortical tissues (Eiraku et al. 2008; 

2011; Spence et al. 2010). Human pluripotent stem cells are split into two main categories: 

embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). ESCs are isolated from 

the inner cell mass of embryos and maintain a cellular state of pluripotency, meaning that they 

have the ability to both renew themselves and differentiate to all three germ lineages (Trounson 

2001). Similarly, iPSCs, which are cells reprogramed from fibroblasts by activating the pluripotent 

gene regulatory network, demonstrate the ability to both renew and differentiate to all three germ 

lineages (Yamanaka 2012; Takahashi et al. 2007). However, despite the inherent ability of both 

ESCs and iPSCs to form multiple cell types in 2D culture or in 3D organoids, stem cell 

differentiations are intrinsically variable (Bredenoord, Clevers, and Knoblich 2017). Historically, 

differentiations that mimic symmetry breaking at gastrulation, allowing for the emergence of all 

three lineages, have been in the form of embryoid bodies. These models are inherently random, 

difficult to robustly reproduce, and do not recapitulate body plan formation during embryonic 

development (Kurosawa 2007; Carpenedo, Sargent, and McDevitt 2007). As a result of this 

variability and the lack of alternative human models that faithfully promote asymmetric 

emergence, many of the mechanisms that control and coordinate human morphogenesis remain 

undefined. Therefore, new approaches to reliably control the emergence and organization of 

multiple cell types would greatly advance tissue modeling and organ developmental studies. 

 

1.3.1 Tri-lineage monolayer differentiations 

Monolayer stem cell differentiations have been developed for a wide variety of cell types 

and range in their purity and reproducibility (Butts et al. 2017; Lian et al. 2012; Spence et al. 2010; 

Gouti et al. 2014). Often, these differentiations rely on the use of either morphogens or small 

molecules added to the cell culture medium to activate certain cell signaling pathways and direct 
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cell lineage fate decisions to the desired cell type. However, even with external signals directing 

cell fate, differentiations in monolayer culture often produce a heterogenous mixture of cells that 

remain largely unorganized, despite the emergence of multiple cell types. These differentiations 

do not reflect the organized tissue patterning observed within the developing embryo. To address 

this, recent techniques have been developed that allow for both multi-population emergence as 

well as organization of multiple cell types in the form of tri-lineage differentiations which mimic 

aspects of both population emergence and patterning as in the early embryo. 

Patterned tri-lineage differentiations can be achieved by stimulating monolayer cultures of 

PSCs on micropatterned surfaces that restrict colony boundaries (Warmflash et al. 2014). When 

morphogens present at gastrulation (BMPs, Wnts, Activin) are added to cultures with such 

boundary conditions, radial patterns of specification emerge: first an outer ring of CDX2(+) cells 

forms, followed by an inner ring of brachyury(+) cells, and a center of SOX2(+); marking an 

extraembryonic-like population, a mesendoderm population and a ectoderm population, 

respectively (Warmflash et al. 2014; Tewary et al. 2017; James et al. 2005; Britton et al. 2019). 

These studies demonstrate that PSCs have an intrinsic ability to undergo symmetry breaking and 

self-organize when presented with boundary conditions. However, despite the ability to generate 

patterns of cells, these systems only produce radial organization events, leaving many 

unanswered questions about how a radially symmetrical embryo at the morula or blastocyst stage 

can robustly generate anisotropic patterning events such as the primitive streak or axial 

elongation.  

 

1.3.2 Organoids 

  An additional example of symmetry breaking and patterning in vitro, is the creation of 

organoid models where PSC differentiations are conducted in three dimensional environments, 

yielding multiple cell types that spatially organize into structures reminiscent of embryonic tissues 

(Bredenoord, Clevers, and Knoblich 2017). Such organoid models have been established for 
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multiple organ systems such as gut, brain, and liver (Lancaster and Knoblich 2014; Clevers 2016). 

In these systems, PSCs or progenitors are exposed to signaling cues which drive lineage fates 

toward specific tissues; a signaling milieu which is reinforced by  endogenous signaling between 

cells. A combination of these exogeneous and endogenous signals allows for the emergence of 

the many cell types involved in that tissue’s structure and function. Organoids offer potential in 

both therapeutic research and basic scientific discovery as they can be used to recapitulate 

elements of development and disease, offering opportunities that range from mechanistic 

interrogation of biological processes to drug testing. However, a major limitations of organoid 

models is the wide variety of phenotypes that are generated from a single differentiation. 

Structural organization within organoids systems is difficult to both control and repeat 

(Bredenoord, Clevers, and Knoblich 2017). This lack of precision is highly contrast to the 

robustness of embryonic development and organogenesis where generation of body plan and 

tissue structure is tightly regulated. Therefore, engineered platforms that control symmetry 

breaking and organization would facilitate the mechanistic study of the biological processes that 

regulate morphogenesis.  

 

1.3.3 CRISPRi as a Tool to Induce Asymmetry 

A hallmark of symmetry breaking is the asymmetric co-emergence of distinct cell 

populations that then can self-organize to form developmental patterns, multicellular structures, 

and ultimately, functional tissues and organs (Bronner 2016; Lancaster and Knoblich 2014; Sasai 

2013). Controlling cellular heterogeneity in vitro is often achieved by independent differentiation 

of hPSCs followed by re-combination of distinct cell types, which fails to mimic parallel cell-type 

emergence (Matthys, Hookway, and McDevitt 2016). Attempts to engineer in vitro systems that 

yield controlled emergence of spatial organization often rely on extrinsic physical restriction of 

cells to direct subsequent multicellular pattern formation (Warmflash et al. 2014; Hsiao et al. 

2009). Physical constraints allow the observational study of cell-cell interactions within defined 
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regions, but artificially restrict cell behaviors by limiting the degrees of freedom in which 

morphogenic phenomena can occur. Additionally, current tools to interrogate gene function, such 

as genetic knockouts or siRNA (Boettcher and McManus 2015), cannot selectively perturb gene 

expression of subpopulations of cells in situ, which is required to generate controlled asymmetry 

analogous to embryonic morphogenesis.  

 Several of these limitations can be addressed with inducible CRISPR interference 

(CRISPRi) systems in mammalian cells (Larson et al. 2013; Mandegar et al. 2016; Gilbert et al. 

2014). CRISPRi uses the gene editing tools of CRISPR (Qi et al. 2013; Jinek et al. 2013; Cong et 

al. 2013) but prevents double stranded breaks by using a catalytically dead Cas9 (dCas9). With 

additional fusion of the dCas9 to a Krüppel associated box (KRAB) domain allows for gene 

repression by guide RNA mediated binding of the dCas9-KRAB to the transcription start site of 

the gene or interest, preventing polymerase binding and subsequent transcription (Larson et al. 

2013). Furthermore, inducible CRISPRi systems enable temporal regulation over specific genetic 

targets with limited off-target effects (Boettcher and McManus 2015). Thus, with temporal 

knockdown constraints, precisely-controlled biological systems can be engineered to induce well-

defined genetic perturbation at explicit times and within defined populations of cells, mimicking 

developmental symmetry-breaking events. Moreover, applying such a technology to stem cell 

populations will facilitate mechanistic study of symmetry breaking in a wide variety of tissues as 

the same PSC line containing a CRISPRi system can be used in trilineage differentiations or in 

multiple types of organoids systems, allowing for robust genetic control over population 

emergence. Overall, the advent of CRISPR technologies presents multiple avenues to regulate 

population emergence in vitro which not only engineers control over heterogenous systems, but 

also provide methods by which to robustly interrogate morphogenic processes dependent of 

population emergence and symmetry breaking. 
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1.4 Mechanical Regulation of Patterning 

Symmetry breaking events can occur not only at the gene expression level, but also at  

the physical morphogenic level. Morphogenic asymmetries arise from reorganization of cells due 

to local changes in mechanical tissue stiffness and cell adhesions that facilitate physical 

organization of developing embryos (Krieg et al. 2008; Maître et al. 2012; Heisenberg and 

Bellaïche 2013). Mechanical rearrangement is necessary for many aspects of morphogenesis, 

including cell polarity, collective movement, multicellular organization, and organ size regulation 

(Arboleda-Estudillo et al. 2010; Maître 2017). Differential adhesion (Foty and Steinberg 2004; 

2005) and cortical tension (Essen 1997; Krieg et al. 2008) are critical determinants of 

mechanically-driven cell sorting, in which both processes are known to contribute to tissue 

organization (Lecuit and Lenne 2007). In cortical tension-dominated sorting, variable actin 

cytoskeleton-generated cortex tension stimulates sorting of individual cells, whereas differential 

adhesion sorting promotes segregation of cell populations due to intercellular homophilic 

adhesions. In this thesis specific molecules regulating either cell-cell adhesion or cortical tension 

are manipulated to introduce physical asymmetries within populations of iPSCs. However, 

although the regulation of cellular organization by physically forces has been highly studied, how 

changing adhesions and cortex tension regulate the coordination of lineage fate decisions with 

emergence of patterns is not completely understood.  

 

1.4.1 Cell-cell Adhesion Regulation of Morphogenesis 

The regulation of changing adhesions is required for many developmental morphogenic 

processes including mesoderm formation, neural crest formation, heart field migration, and heart 

septa formation (Heasman et al. 1994; Montero and Heisenberg 2004; Radice et al. 1997; Xu, 

Baribault, and Adamson 1998). These distinct morphogenic events that rely on epithelial to 

mesenchymal transitions (EMT) are often characterized by subpopulation organization, 
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delamination from an epithelial layer, and subsequent migration across the embryo (C.A. Burdsal, 

C.H. Damsky, and R.A. Pedersen 1993); all of which rely on changing intercellular adhesion. 

Consequently, the regulation of changing intercellular contacts in coordination with lineage 

transitions is essential for robust morphogenic processes. Despite much research into how 

changing intercellular adhesion molecules regulate cell population movement, there has been 

little work mechanistically examining connections between changing intercellular adhesions and 

lineage fate decisions. 

An important family of intercellular adhesion molecules involved in morphogenesis are 

cadherins. Cadherins are single pass Ca2+-dependent transmembrane glycoproteins that mediate 

cell-cell adhesions. E-cadherin (CDH1), a type I classical cadherin, is widely associated with early 

developmental morphogenesis(Ringwald et al. 1987). Unsurprisingly, the reduction of CDH1 

levels is essential to EMT and its regulation of subsequent morphogeneic processes (Heasman 

et al. 1994; Przybyla, Lakins, and Weaver 2016). Consequently, CDH1 has been implicated in 

the control of downstream lineage fate decisions that help to regulate morphogenesis in a range 

of animal models (Przybyla, Lakins, and Weaver 2016; Li et al. 2010; C.A. Burdsal, C.H. Damsky, 

and R.A. Pedersen 1993). For example, prevention of its down regulation in chick embryos results 

in wide spread developmental defects including lack mesenchymal mesoderm and neural crest 

formation(Nieto et al. 1994). Additionally, in vivo over-expression of CDH1 in Xenopus laevis 

prevents the induction of the mesoderm lineage during gastrulation(Heasman et al. 1994). 

Furthermore, changes in CDH1 contacts coordinate with in vitro stem cell lineage decisions. 

These studies suggest that CDH1 may play a larger role in lineage specification during 

morphogenesis, in addition to regulating the self-organization and migration of cell populations. 

Overlap between CDH1 control over adhesion and potential control over lineage 

specification, lies with the intracellular domain of the CDH1 complex. The intracellular CDH1 

complex involves multiple scaffolding proteins: β-catenin, α-catenin, γ-catenin (plakoglobin) and 

p120-catenin. These proteins serve as mediators that attach the cytoplasmic domain of CDH1 to 
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the actin cytoskeleton, allowing for physical anchorage and stabilization of intercellular adhesions 

(Leckband and Rooij 2014; Steinberg and McNutt 1999; Huber et al. 2001). Interestingly the 

CDH1 complex proteins have been characterized to have multiple interactions within the cell 

outside of their role in adhesion within the CDH1 complex (A. L. Smith et al. 2012; Munemitsu et 

al. 1995; Przybyla, Lakins, and Weaver 2016; Heuberger and Birchmeier 2010). In particular, the 

protein β-catenin has the ability to translocate to the nucleus and drive transcriptional regulation. 

Within the nucleus, canonical β-catenin transcriptional regulation is key to the Wnt 

signaling(Dale 1998). Wnt ligand binding disrupts the β-catenin destruction complex from 

degrading cytoplasmic β-catenin, allowing for β-catenin accumulation, phosphorylation, and 

eventual translocation to the nucleus. In the nucleus, β-catenin interacts with LEF/TCF 

transcription factors, promoting the transcription of downstream targets of the Wnt pathway 

essential to lineage specification(Dale 1998). Consequently, the inhibition of β-catenin prevents 

mesoderm induction in Xenopus embryos(Heasman et al. 1994). However, the TCF transcription 

factors involved in the Wnt pathway are not the only interactors reported for β-catenin within the 

nucleus. In fact, a large body of scientific literature indicates the overlap of the Hippo, TGFβ, and 

Wnt signaling pathways by varying transcription factor interactions with β-catenin(B. Zhou et al. 

2012; Benham-Pyle, Pruitt, and Nelson 2015; Dale 1998; Attisano and Wrana 2013). β-catenin 

can interact with the YAP/TAZ transcription factor complex as a part of the Hippo pathway as well 

as with SMAD2/3 nuclear complex involved in the TGFβ signaling pathway(B. Zhou et al. 2012; 

Benham-Pyle, Pruitt, and Nelson 2015). This poses additional intrigue into the regulation of 

lineage fate decisions by β-catenin because the YAP/TAZ pathway has been shown to help 

establish and maintain pluripotent expansion of stem cells (Ohgushi, Minaguchi, and Sasai 2015).  

And the Activin and Nodal pathways, a sub-set of the TGFβ family, are associated with continued 

maintenance of the transcriptional pluripotency network in human stem cells (James et al. 2005).  

Interestingly, feedback between CDH1 adhesion and β-catenin signaling has been 

demonstrated in all of these transcriptional control pathways. Mechanical perturbations of CDH1 
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have been shown to result in nuclear localization of β-catenin, and conversely canonical-Wnt 

signaling activates Snail and Slug, transcription factors that down-regulate CDH1 

expression(Heuberger and Birchmeier 2010; Cano et al. 2000; B. P. Zhou et al. 2004; Bolós et 

al. 2003; Benham-Pyle, Pruitt, and Nelson 2015). Mechanical strain via CDH1 contacts results in 

nuclear localized Yap1 and β-catenin, which have been shown to complex and regulate epithelial 

cell cycle entry and consequently tissue size (Benham-Pyle, Pruitt, and Nelson 2015, 1; Heallen 

et al. 2011). Moreover, activation of the TGFβ/Activin/Nodal pathway in human embryonic stem 

cells can be induced by mechanical strain and contributes to prevention of differentiation (Saha 

et al. 2008; James et al. 2005; Saha et al. 2006). The combination of these findings provides a 

strong scientific premise that  CDH1’s mechanical activity at the plasma membrane may regulate 

how β-catenin interacts with these downstream pathways during differentiation. The changing 

adhesions in EMT mediated by reduction CDH1 contacts may result in the release of membrane-

bound β-catenin that could activate and amplify the canonical-Wnt pathway as well as interact 

with the Activin/Nodal and YAP/TAZ pathways to help facilitate a transition out of pluripotency 

(Przybyla, Lakins, and Weaver 2016). Consequently, in vivo mesodermal defects with CDH1 

overexpression, similar to β-catenin depletion, may be due to the recruitment of β-catenin to over 

expressed CDH1 junctions, reducing the cytoplasmic and nuclear pool of signaling-competent β-

catenin (Heuberger and Birchmeier 2010). In fact, in pathological situations where CDH1 is down-

regulated, β-catenin once held at CDH1 junctions can translocate to the nucleus, resulting in EMT 

(Kam and Quaranta 2009; Gottardi, Wong, and Gumbiner 2001). Despite the evidence pointing 

toward a transcriptional regulation of lineage fate via CDH1 regulated β-catenin availability and 

downstream signaling, there has been little mechanistic interrogation of how changing adhesions 

associated with developmental morphogenesis and EMT play a larger role in lineage 

specification. More over the vast majority of our understanding of CDH1 comes from the study of 

animal models, which have different transcriptional networks in the control of pluripotency 

maintenance and lineage transitions (Kattman et al. 2011; Dalton 2013; Takashima et al. 2014), 



 17 

making conclusions about human CDH1 developmental mechanisms difficult to solidify. As a 

result, fundamental questions about how CDH1 coordinates human morphogenic events and 

lineage fate have yet to be answered and have led to contradictory literature on CDH1’s role in 

human pluripotency maintenance.  

 

1.4.2 Cortical Tension Regulation of Morphogenesis 

As the embryo begins to form complex tissue shapes, in parallel with the changing 

adhesions that regulate processes such as EMT, changes in tensile forces also help to shape 

epithelial tissues within the early embryo. In particular, the tension across the actin cytoskeleton 

and adhesions effectively couple cells within an epithelial sheet (Brodland 2002; Hočevar 

Brezavšček et al. 2012). This tension can generate a wide range of morphogenic changes where 

the mechanically steady state of the tissue and thus its subsequent shape are dictated by 

generation of force across the tissues surface or the cortex or each individual cell (Lecuit and 

Lenne 2007; Lecuit and Yap 2015; Brodland 2002).  

Individual cells generate tension through the activation of the actin cytoskeleton contractile 

machinery. Specifically, non-muscle myosin II motors are actin binding proteins that localize to 

organized bundles of actin filaments at the cortex of cells. Here they act as linkers between actin 

filaments and can drive constriction of the cellular cortex by movement along parallel actin 

filaments (Vicente-Manzanares et al. 2009; Henn and Cruz 2005). Interestingly, the asymmetric 

distribution of actin filaments and myosin motors drives several processes in early developmental 

morphogenesis, such as inner cell partitioning of the early embryo (Samarage et al. 2015; 

Ducibella and Anderson 1975), gastrulation (Krieg et al. 2008), axis extension (Tahinci and Symes 

2003; Butler et al. 2009; Dawes-Hoang et al. 2005), and neural plate folding (Rolo, Skoglund, and 

Keller 2009).  

Non-muscle motor myosin II is a hexameric protein formed of two heavy chains, four light 

chains where its conformation is regulated by phosphorylation of the light chains by myosin 
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phosphatase (Vicente-Manzanares et al. 2009; Somlyo and Somlyo 2000). Myosin phosphatase 

itself is regulated by both fluctuations in intracellular calcium as well as Rho family GTPases and 

downstream Rho kinases where RhoA activates Rho-associated coiled-coil containing protein 

kinase (ROCK1) which then in turn activates myosin phosphatase through phosphorylation. This 

complicated signaling cascade allows for multiple cellular signaling mechanisms to regulate 

myosin activation and subsequent generation of tension. For example, the wnt planar cell polarity 

pathway activates actin cytoskeleton reorganization via activation of RhoA, initiating the signaling 

cascade that results in contractility (Tada, Concha, and Heisenberg 2002; Matthews et al. 2008; 

Kim and Han 2005).  

Beyond cortical tension’s roles in cellular and tissue organization, the changing of tension 

has also been implicated in lineage fate decisions within the embryo as well as PSC 

differentiations. At gastrulation, the embryo generate three separate germ lineages which have 

been shown to display differences in cortical tension both in vivo as well as in in vitro culture 

(Krieg et al. 2008; Sliogeryte et al. 2014). Organ stratification of the epidermis has been shown to 

be reinforced by changes in cortical tension that lead to differences in proliferation and 

differentiation as cells move upward through the stratified tissue (Miroshnikova et al. 2018). 

Furthermore, uneven distribution of myosin leads to asymmetric cell division in multiple 

progenitors as they undergo differentiation (Ou et al. 2010; Lechler and Fuchs 2005), suggesting 

that symmetry breaking in tension generation at the individual cell level can also regulate lineage 

fate decisions. In addition, the reduction of asymmetries in cortex tension is associated with 

stabilization of cellular fates. For example, ROCK inhibition and thus reduction in tension 

generation is often used in human pluripotent cell culture and has been implicated in pluripotency 

maintenance (Ohgushi, Minaguchi, and Sasai 2015; McBeath et al. 2004). However, how 

changes in cortex tension might mechanistically regulate cell fate as well as changes in 

morphology is not well understood. 
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1.5 Computational Modeling of Cellular Behaviors 

Computational modeling offers a method to systematically study the regulation of 

symmetry breaking events and morphogenesis without the limitations presented by in vitro or in 

vivo experimentation. Specifically, patterns generated by biological systems during 

morphogenesis often resemble solutions to mathematical models such as non-linear reaction 

diffusion systems from chemistry or magnetic spin model systems from solid state physics  

(Heisenberg 2017; Turing 1952; Marcon and Sharpe 2012; Graner and Glazier 1992). As a result, 

the interplay between in silico mathematical modeling of biological systems and in vivo and in 

vitro experiments interrogating such models has shaped our understanding of developmental 

morphogenesis. However, such experiments are limited by the ability to measure characteristic 

properties of the biological system and perturb those properties in a spatio-temporally controlled 

way. Where computational models can control all aspects of an experiment, often both in vivo 

and in vitro systems have limited manipulations that can be performed to test a hypothesis, limiting 

the ability to match a computational model with a biological one with high fidelity.  

For example, although computational approaches can test general principles of biology in 

silico, it is often difficult to directly map these models to specific in vitro mechanisms and 

perturbations, making it challenging to systematically synthesize experimentally tractable 

perturbations in silico that can be accurately reproduced in vitro. Previously, several groups 

(M. Molitoris et al. 2016; Tewary et al. 2017; Warmflash et al. 2014) have induced radial 

organization of differentiated germ layers by restricting hPSC colonies to micropatterned islands, 

or have used molecular engineering of cell surface and/or substrate properties to extrinsically 

control cell location and subsequent multicellular patterning in vitro (M. Molitoris et al. 2016; Hsiao 

et al. 2009; Chandra Ravi A. et al. 2005; L. MacKay, Sood, and Kumar 2014; Toda et al. 2018). 

However, the resulting patterns that arise spontaneously afford limited control of precise 

multicellular organization or override the intrinsic mechanisms that regulate cell-mediated 
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morphogenic assembly. Theoretical in silico frameworks have been developed to computationally 

model multicellular organization (Bartocci et al. 2016; Briers et al. 2016; Sharpe 2017) and 

automate the design of non-spatial cellular logic (Nielsen et al. 2016). However, despite the 

independent development of these in vitro and in silico frameworks for multicellular patterning, 

the ability of the in silico framework to predict a set of manipulations to generate de novo 

multicellular organization in vitro has yet to be fully demonstrated. In Chapter 3 of this dissertation, 

we discuss the development of an extended Cellular Potts computational model that successfully 

relates in silico predictions of pattern formation with attainable in vitro outputs through the use of 

machine learning and mathematical optimization. 

 

1.5.1 Agent Based Models 

Agent based models (ABMs) offer a unique opportunity to computationally model 

collective cellular behaviors while maintaining individual cell identity. ABMs consist of agents that 

maintain autonomous decision making processes in reaction to a given set of inputs (Bonabeau 

2002). By representing cells as individual agents, ABMs allow for discrete models of cell behavior 

to environmental stimuli where individual cells make cell state decisions (Van Liedekerke et al. 

2015; Thorne et al. 2007). ABMs are incredibly dynamic and can incorporate environment, time, 

and interactions between agents, making them particularly efficient at representing spatial 

patterning as a result of multiple interactions (Glen, Kemp, and Voit 2019). Additionally, ABMs are 

often designed to relate measurable metrics of cellular behavior directly to the established rules 

for decision making in the model, allowing for simulations that go beyond theory and are based 

on biological measurements (Thorne et al. 2007; Glen, Kemp, and Voit 2019). Furthermore, 

because ABMs allow for individual cellular behaviors to be established, they allow for the 

examination of emergent properties at the tissue level that result from distinct single cell decisions. 
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1.5.2 Cellular Potts Model 

There are several established ABM frameworks that can be used to model symmetry 

breaking and cellular population emergence such as vertex models (Fletcher et al. 2014), spring 

force models (Güdükbay, Özgüç, and Tokad 1997), or the Cellular Potts model (Voss-Böhme 

2012; Marée, Grieneisen, and Hogeweg 2007). The large differences between these ABM 

frameworks are based on their ability to incorporate the movement of cells, where the spring force 

models do not allow for cell movement (Gusev 2004; Güdükbay, Özgüç, and Tokad 1997), vertex 

based models allow for epithelial sheet movement (Hočevar Brezavšček et al. 2012), and Cellular 

Potts models allow for dynamic cellular movements (Scianna, Preziosi, and Wolf 2012; Szabó 

and Merks 2013). Because, early mammalian development relies on a wide variety of cellular 

movements in coincidence with fate emergence (Montero and Heisenberg 2004), the Cellular 

Potts model provides a rich, computationally-efficient framework to interrogate multicellular 

morphogenic patterning as a result of symmetry breaking events at the single cellular level. 

The Cellular Potts Model (CPM) is an extension of Isling models (Yang 1952) and 

represents the spatial environment of cells grown in a monolayer using a 2D square lattice grid 

(Marée, Grieneisen, and Hogeweg 2007). Each square region in the grid (i.e. a lattice site) 

represents a partial region of a cell’s membrane or the medium surrounding a cell. Therefore, 

cells are represented in the model as combinations of connecting lattice sites. A cell ID is assigned 

to each lattice site to identify the region of a cell that occupies a lattice site. For example, 100 

connected lattice sites each having a cell ID equal to 1 represent a single cell. Complex behaviors 

such as preferential cell-cell adhesions, cortical tension, and cell migration, are achieved by 

probabilistically copying lattice sites to adjacent regions, which in the CPM is known as a copy 

attempt. Each copy attempt is accepted with a probability related to a Hamiltonian function which 

represents the sum of competing forces influencing intracellular behaviors and cell interactions 

with the environment. For example, conservation of cell area, locally polarized cell migration, cell-

cell adhesion, and cortical tension, and chemotaxis. Every competing force is represented by a 
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score and a weight, where the score represents a reward or penalty depending on the divergence 

of a cell from its target behavior, while the weight represents the relative importance of the 

respective cell behavior. Every time a simulation is run the model aims to reach an equilibrium 

state dictated by the probabilistic rewards and penalties for individual cellular behaviors. Thus, 

the model predicts cellular organization and migration behaviors based off of the given set of rules 

for every simulated cell. 

 

1.5.3 Pattern Classification, Machine learning, and Optimized Pattern Prediction 

Both in vitro biological systems and in silico computational models of pattern generation 

generate large data sets where individual patterns each need to be classified. However, manual 

classification for such data sets is not tractable due to length of time to process every sample and 

the possibility that a human classifier may miss subtle patterns in the data that are biologically 

relevant. Thus, there is a need for a systematic classification system of said patterns, where 

similar emergent patterns can be grouped together in an unbiased manner. Machine learning 

offers a high throughput unbiased approach to classify emergent patterns and their similarity with 

one another. In particular, rule based classification algorithms that use decision trees allow for 

the generation of hierarchical partitioning of a data set and can generate a similarity relation or 

metric between patterns (Cohen 1995; Aggarwal 2014; Bartocci et al. 2016). By treating each 

simulated configuration or empirical colony image as an individual sample in a data set, a rules-

based classifier creates a simple set of rules to categorize the different configurations of cells 

available to the in silico simulation and in vitro pattern generation system. 

One way to generate these rules-based classifiers, first a training data set is generated 

with a diverse sample of the multicellular patterns generated by the model. From this training data, 

a set of rules are derived that represent the complexity of the image as a set of higher-order 

properties useful for classification. Finally, these generated rules are applied to novel images and 

patterns to enable comparison between patterns and allow ranking patterns when optimizing 
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towards a target configuration (Coenen and Leng 2007). In the case of spatial patterning, Tree 

Spatial Superposition Logic can be used to classify pattern types (Haghighi et al. 2015; Bartocci 

et al. 2016; Briers et al. 2016). This algorithm uses quadtree logic to represent the spatial 

relationships within a complex image (Bartocci et al. 2016; Finkel and Bentley 1974; Jackins and 

Tanimoto 1983) where every image generates a unique quad tree representation that maps the 

complexity of the image to a reduced vector of values reflecting higher level image structure. 

Thus, the TSSL creates a reduced version of the image that allows for rapid comparison of image 

patterns and yields a score of pattern similarity. Despite the rapid advances in classification 

algorithms, these machine learning techniques are often used as endpoint analyses of biological 

systems, leaving many potential opportunities to employ feedback from the rules gleaned from 

classification algorithms to predict and modulate the biological phenomena that produce such 

patterns. 

 

 

1.6  Concluding Remarks 

In conclusion, embryonic development is marked by repeated symmetry breaking events 

and subsequent morphogenic reorganizations. The emergence of heterogeneity can range from 

changes in transcription to differences in physical cell properties across the embryo. However, 

methods to dynamically interrogate these processes in vivo are limited due to the inaccessibility 

of the embryo at such timepoints, lack of robust tools, and complexity of the embryonic system. 

Therefore, pluripotent stem cells models paired with computational modeling offer a unique 

opportunity to develop robust and controllable models for symmetry breaking events in early 

developmental processes. 

 This thesis presents a unique combination of bio-engineering, developmental biology, and 

computational modeling to overcome these limitations, interrogating adhesion regulation of 
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heterogeneity and lineage fate decisions. The work described here sets the stage for future 

studies examining the role of population heterogeneity on tissue formation eventually highlighting 

the series of events necessary to build an organ and enabling the creation of functional 

therapeutic tissues outside of the body. 
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Chapter 2: Spatiotemporal mosaic self-patterning of pluripotent stem 

cells using CRISPR interference 

 

2.1 Introduction 

Embryos begin as a collection of relatively heterogenous cells that transition through 

stages that involve the emergence of multiple cell populations that then self-organize to form 

embryonic tissues (Montero & Heisenberg, 2004). This embryonic morphogenesis involves 

interactions of these emergent asymmetric cell populations to form complex multicellular 

patterns and structures comprised of distinct cell types. Furthermore, cellular rearrangement 

coordinates with mechanical changes in cellular cortical tension as well as dynamic changes in 

cell-cell adhesions (Arboleda-Estudillo, n.d.; Krieg et al., 2008; Lecuit & Lenne, 2007; Schäfer, 

Narasimha, Vogelsang, & Leptin, 2014). However, current methods to model morphogenic events 

lack control over cell-type co-emergence and offer little capability to selectively perturb specific 

cell subpopulations.  

In this study, we explored whether mechanical manipulation of human induced pluripotent 

stem cells (iPSCs) sub-populations results in controllable cell driven self-organization into 

repeatable patterns. We employed an inducible CRISPR interference (CRISPRi) system in iPSCs 

(Mandegar et al., 2016) to silence key proteins that regulate cell adhesion (CDH1) and cortical 

tension (ROCK1). We genetically induced controlled symmetry-breaking events within human 

iPSC populations by creating mixed populations of human iPSCs with and without the CRISPRi 

system and then induced mosaic knockdown (KD). Mosaic KD was employed to interrogate how 

the creation of physical asymmetries in an otherwise homogeneous population leads to 

multicellular organization and pattern formation. We show that induction of mosaic KD of ROCK1 
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or CDH1 results in a “bottom-up” cell-driven pattern formation of human iPSC colonies while 

preserving pluripotency.  

 

2.2 Materials and Methods 

2.2.1 Human iPSC line generation and culture 

All work with human iPSC lines was approved by the University of California, San 

Francisco Human Gamete, Embryo and Stem Cell Research (GESCR) Committee. Human iPSC 

lines were cultured in feeder-free media conditions on growth factor-reduced Matrigel (BD 

Biosciences) and fed daily with mTeSRTM-1 medium (STEMCELL Technologies)(Ludwig et al., 

2006). Accutase (STEMCELL Technologies) was used to dissociate iPSCs to single cells during 

passaging. Cells were passaged at a seeding density of 12,000 cells per cm2 and the small 

molecule Rho-associated coiled-coil kinase (ROCK) inhibitor Y-276932 (10μM; Selleckchem) was 

added to the media upon passaging to promote survival (Park, Kim, Jung, & Roh, 2015; Watanabe 

et al., 2007).  

The generation of the ROCK1 CRISPRi line was  previously created and described by 

Mandegar et al. (Mandegar et al., 2016). For the generation of the CDH1 CRISPRi lines, five 

CRISPRi gRNAs were designed to bind within 150bp of the TSS of CDH1 and cloned into the 

gRNA-CKB vector using BsmBI ligation following the previously described protocol (Mandegar et 

al., 2016) (Table 2.1). gRNA expression vectors were nucleofected into the CRISPRi-Gen1C 

human iPSC line from the Conklin Lab using the Human Stem Cell Nucleofector Kit 1 solution 

with the Amaxa nucleofector 2b device (Lonza). Nucleofected cells were seeded into 3 wells of a 

6-well plate (~7400 cell/cm2) in mTeSRTM-1 media with Y-27632 (10μM) for 2 days and treated 

with blasticidin (10μg/ml) for a selection period of 7 days. Surviving colonies were pooled and 

passaged in mTeSRTM-1 with blasticidin and Y-27632 for a single day then  
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Table 2.1: Table 2.1 displays guide RNA sequences used for CRISPRi knockdown.  
 
Guide RNA (gRNA) Target Location to TSS Sequence 
CDH1 -141 TCACCGCGTCTATGCGAGGC 
CDH1 -161 CACCCGGCCTCGCATAGACG 
CDH1 -68 CCCGTACCGCTGATTGGCTG 
CDH1 -46 TCAGCCAATCAGCGGTACGG 
CDH1 -6 GCAGTTCCGACGCCACTGAG 
ROCK1 (Mandegar et al., 2016) +11 CGGGGCGCGGACGCTCGGAA 
KCNH2 (Off Target Guide) -175 TTCTGGGCGCGCGAGTCCCA 

 

transitioned to mTeSRTM-1 media only. Once stable polyclonal populations of CDH1 CRISPRi 

iPSCs for each of the five guides were established, the cells were incubated with doxycycline 

(2μM) for 96 h. KD efficiency was evaluated by mRNA collection and subsequent qPCR, 

comparing levels of transcript with a time-matched control of the same line without CRISPRi 

induction. The CRISPRi CDH1 cell line with the guide producing the best KD was selected (gRNA 

-6).  

To generate the WT-GFP line, 2 million WTC clone11 human iPSCs were nucleofected 

as previously described with the knock-in plasmid containing a CAG promoter-driven EGFP and 

AAVS1 TALEN pair vectors (Figure 2.1A). After cell recovery, puromycin (0.5 μg/ml) was added 

to the media for a selection period of 7 days. Individual stable EGFP-expressing colonies were 

picked using an EVOS FL microscope (Life Technologies) and transferred to individual wells of a 

24-well plate in mTeSR media with Y-27632 (10μM) and subsequently expanded into larger 

vessels. 

All cell lines were karyotyped by Cell Line Genetics and were deemed karyotypically 

normal before proceeding with experiments (Figure 2.1B) 
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Figure 2.1: Maintenance of normal human iPSC karyotypes. (A) Vector map of constitutive 
GFP cloned into WT human iPSCs to create the WT-GFP line. (B) Karyotypes of all cell lines 
used in experiments displayed no chromosomal defects. Passage numbers are indicated by p#. 
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2.2.2 Generation of mixed colonies 

Cell aggregates of ~100 cells were created using 400 X 400 μm PDMS microwell inserts 

in 24-well plates (~975 microwell per well) similar to previously published protocols (Hookway, 

Butts, Lee, Tang, & McDevitt, 2015; Ungrin, Joshi, Nica, Bauwens, & Zandstra, 2008). Dissociated 

iPSC cultures were resuspended in mTeSRTM-1 supplemented with Y-27632(10 μM), mixed at 

proper ratios and concentration (100 cells/well), added to microwells, and centrifuged (200 rcf). 

After 18 h of formation, 100 cell aggregates were transferred in mTeSRTM-1 to Matrigel-coated 

96-well plates (~15 aggregates/cm2) and allowed to spread into 2D colonies.  

 

2.2.3 Western blot 

Human iPSCs were washed with cold PBS, incubated for 10 min on ice in RIPA Buffer 

(Sigma-Aldrich), and supernatant collected. Three replicates were used for each condition. The 

supernatant protein content was determined using a Pierce BCA Protein Assay kit (Thermofisher 

Scientific) colorimetric reaction and quantified on a SpectraMax i3 Multi-Mode Platform (Molecular 

Devices). Subsequently, 20 μg of protein from each sample was resolved by SDS-PAGE and 

transferred to a nitrocellulose membrane (Invitrogen). The membranes were incubated overnight 

at 4 °C with primary antibodies: anti-ROCK1 (AbCAM 1:200), anti-CDH1 (AbCAM 1:200), anti-

GAPDH, (Invitrogen 1:10,000), followed by incubation (30 min at room temperature) with infrared 

secondary antibodies: IRDye 800CW and IRDye 680CW (LI-COR 1:13,000), and imaged on the 

Odyssey Fc Imaging System (LI-COR Biosciences). Protein levels were quantified using Image 

Studio Lite (LI-COR Biosciences). 

 

2.2.4 RNA isolation and qPCR 

Total RNA isolation was performed using a RNeasy Mini Kit (QIAGEN) according to 

manufacturer’s instructions and quantified with a Nanodrop 2000c Spectrometer (ThermoFisher 

Scientific). cDNA was synthesized by using an iScript cDNA Synthesis kit (BIORAD) and the 
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reaction was run on a SimpliAmp thermal cycler (Life Technologies). To quantify individual genes, 

qPCR reactions were run on a StepOnePlus Real-Time PCR system (Applied Biosciences) and 

detected using Fast SYBR Green Master Mix (ThermoFisher Scientific). Relative gene expression 

was determined by normalizing to the housekeeping gene 18S rRNA, using the comparative 

threshold (CT) method. Gene expression was displayed as fold change of each sample (ROCK1 

CRISPRi or CDH1 CRISPRi) versus the off-target guide control (KCNH2 CRISPRi). The primers 

were designed using the NCBI Primer-BLAST website and are listed in Table 2.2. Statistical 

analysis was conducted using a two-tailed unpaired t-test between any two groups (p<0.05, n=3). 

 

2.2.5 Atomic Force Microscopy 

All AFM indentations were performed using an MFP3D-BIO inverted optical atomic force 

microscope (Asylum Research) mounted on a Nikon TE2000-U inverted fluorescent microscope. 

Silicon nitride cantilevers were used with spring constants ranging from 0.04 to 0.06 N/m and 

borosilicate glass spherical tips 5 µm in diameter (Novascan Tech). Each cantilever was 

calibrated using the thermal oscillation method prior to each experiment. Samples were indented 

at 1 µm/s loading rate, with a maximum force of 4 nN. Force maps were typically obtained as a 

6x6 raster series of indentations utilizing the FMAP function of the IGOR PRO build supplied by 

Asylum Research, for a total of 36 data points per area of interest measured every 5 microns. 

Two 5 micron by 5 micron areas of interest were sampled for each sample. The Hertz model was 

used to determine the elastic modulus of the sample at each point probed. Samples were 

assumed to be incompressible and a Poisson’s ratio of 0.5 was used in the calculation of the 

Young’s elastic modulus. 

 

2.2.6 Time-lapse imaging  

Human iPSC colonies were imaged in 96-well plates (ibidi) on an inverted AxioObserver 

Z1 (Ziess) with an ORCA-Flash4.0 digital CMOS camera (Hamamatsu). Using ZenPro software, 
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colony locations were mapped and a single colony was imaged daily for 6 days. To obtain time-

lapse movies, a single colony was imaged over the course of 12 h at a rate of one picture taken 

every 30 min. 

 

2.2.7 Immunofluorescence staining 

Human iPSC colonies were fixed for 30 min in 4% paraformaldehyde (VWR) and washed 

3X with PBS. Fixed colonies were permeabilized with 0.3% Trition X-100 (Sigma Aldrich) 

throughout blocking and antibody incubation steps. Samples were incubated in primary antibodies 

over night at 4 °C, subsequently washed with PBS and incubated in secondary antibodies for an 

hour at room temperature. Primary antibodies used were: anti-OCT4 (SantaCruz 1:400), anti-

SOX2 (AbCAM 1:400), anti-Zo1 (LifeTechnologies 1:400), NANOG (AbCAM 1:300), anti-β-

catenin (BD Biosciences 1:200), anti-EpCAM (Millipore 1:200). All secondary antibodies were 

used at 1:1000 and purchased from Life Technologies.  

 

2.2.8 EDU Incorporation Assay 

Pure populations of WT, CRISPRi control, CRISPRi ROCK1, and CRISPRi CDH1 were 

treated with DOX (2μM) for 5 days in series. Cultures were then pulsed with EDU by 

supplementing Click-It EDU (10μM) to the media for 6 hours. Cultures were then washed 3X with 

PBS and fixed with 4% paraformaldehyde (VWR) for 15 min and subsequently washed with PBS. 

Samples were then permeabilized in PBS with 0.5% Triton-X 100 (Sigma Aldrich) for 20 minutes.  

Samples were them incubated with Click-It EDU detection kit as per manufacturer’s instructions 

(ThermoFisher Scientific). Samples were then analyzed via FLOW on a BD LSR-FLOW 

Cytometer. Analysis was done on a minimum of 10,000 events. 
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2.2.9 FLOW Analysis 

Mixed human iPSC populations and pure population controls were dissociated from tissue 

culture plates and washed with PBS. Cells were fixed for 15 minutes with 4% paraformaldehyde 

(VWR) and washed 3X with PBS. Samples were incubated in Hoechst stain for 30 minutes and 

run on a LSR-II analyzer (BD Biosciences) to detect ratio of WT-GFP(+) to CRISPRi mCherry(+) 

populations as well as EDU incorporation. Analysis was done on a minimum of 10,000 events. 

 

2.2.10 FACS 

Mixed human iPSC populations and pure population controls were dissociated from tissue 

culture plates and washed 3X with PBS. A LIVE/DEAD stain (ThermoFisher Scientific) was used 

per manufacture instructions. Prior to sorting, cells were suspended in PBS supplemented with 

Y-27632(10 μM) and kept on ice. A BD FACSAria II cell sorter (BD Biosciences) was used to 

isolate pure populations of WT-GFP and CRISPRi iPSCs by first identifying the live cells via the 

LIVE/DEAD(350) stain and subsequently sorting the mCherry(+) GFP(-) populations from the 

mCherry(-)GFP(+) populations directly into TRIzol LS Reagent (ThermoFisher Scientifc). 

Samples were then stored at -80 °C until subsequent mRNA extraction.  

 

2.2.11 Fluidigm 96.96 Array 

Sorted human iPSCs stored in TRIzol LS were thawed on ice and mRNA was extracted 

using a Direct-zol RNA MiniPrep Plus kit (ZYMO Research) following the manufacturer’s 

instructions. RNA was converted to cDNA using the iScript cDNA synthesis kit (Bio-Rad). Forward 

and reverse primers for genes were designed using NCBI’s Primer-BLAST (Sup. Table 3). 

Primers were pooled to 500 nM to enable specific-target amplification and cDNA was amplified 

with PreAmp Master Mix (Fluidigm) and pooled primers for 15 cycles. Pre-amplified samples 

mixed with 2X SsoFast EvaGreen Supermix with low ROX(Bio-Rad) and 20X DNA Binding Dye 

Sample Loading Reagent (Fluidigm), and 10 μM primer sets were mixed with 2X Assay Loading 
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Reagent (Fluidigm). 5 μl of diluted cDNA and primers and were loaded onto the IFC chip per 

manufacturer’s instructions and loaded into the chip using the IFC Controller HX (Fluidigm). qPCR 

was run for 40 cycles in the IFC chip using the BioMark HD in the BioMark HD Data Collection 

Software. Resulting data was analyzed in the Real-Time PCR Analysis Software. All instruments 

and software involved with the IFC chip were manufactured by Fluidigm. Gene expression levels 

were calculated with respect to time-matched pure populations of WT iPSCs, and hierarchically 

clustered and plotted using Genesis software (Institute for Genomics and Bioinformatics, Graz 

University of Technology). 

 
Table 2.2: qPCR primers. Table 2.2 outlines primer sequences used for gene expression 
analysis by quantitative PCR.  
 

Gene Description Gene Symbol Forward Primer Reverse Primer 
18S ribosomal RNA 18S CTTCCACAGGAGGCCTACAC CTTCGGCCCACACCCTTAAT 
Rho associated coiled-coil 
containing protein kinase 1 

ROCK1 GTTCCCCTTCCGAGCGTC TGTCCGCCTTCCTGTTCAAA 

E-cadherin CDH1 CGGGAATGCAGTTGAGGATC AGGATGGTGTAAGCGATGGC 
POU domain, class 5, 
transcription factor 1 

POU5F1 ATGCATTCAAACTGAGGTGCCT AACTTCACCTTCCCTCCAACCA 

SRY box 2 SOX2 TCAGGAGTTGTCAAGGCAGAG GCCGCCGCCGATGATTTGTTAT 
Homeobox protein nanog NANOG CAATGGTGTGACGCAGGGAT TGCACCAGGTCTGAGTGTTC 
Brachyury BRA (T) TTTCCAGATGGTGAGAGCCG CCGATGCCTCAACTCTCCAG 
SRY box 9 SOX9 GAGCGAGCGGTGCATTTG TGGTGTTCTGAGAGGCACAG 

 
Table 2.3: Fluidigm primer sequences. Table 2.3 shows gene targets and primer sequences 
used for the Fluidigm 96.96 array gene expression analysis. 
 

Gene Name Gene 
Symbol 

Forward Primer Reverse Primer 

18S ribosomal RNA 18S CTTCCACAGGAGGCCTACAC CTTCGGCCCACACCCTTAAT 
Polyubiquitin C precursor UBC AGTAGTCCCTTCTCGGCGAT GACGATCACAGCGATCCACA 
POU domain, class 5, 
transcription factor 1 

POU5F1 ATGCATTCAAACTGAGGTGCCT AACTTCACCTTCCCTCCAACCA 

SRY box 2 SOX2 TTTGTCGGAGACGGAGAAGC TAACTGTCCATGCGCTGGTT 
Homeobox protein nanog NANOG CAATGGTGTGACGCAGGGAT TGCACCAGGTCTGAGTGTTC 
C-myc protein MYC CAAGAGGCGAACACACAACG GTCGTTTCCGCAACAAGTCC 
Fibroblast growth factor 8 FGF8 GCGCATCCCTAGTGAAGGAG CCGTCTCCACGATGAGCTTT 
Fibroblast growth factor 4 FGF4 AGTACCCCGGCATGTTCATC TCATCCGAAGAAAGTGCACCA 
Fibroblast growth factor 
receptor 1 

FGFR1 GTCTGCTGACTCCAGTGCAT ACGGTTGGGTTTGTCCTTGT 

Fibroblast growth factor 
receptor 2 

FGFR2 ACAGTTTCGGCTGAGTCCAG CATGACCACTTGCCCAAAGC 

Fibroblast growth factor 
receptor 3 

FGFR3 AGGAGCTCTTCAAGCTGCTG ACAGGTCCAGGTACTCGTCG 

Fibroblast growth factor 
receptor 4 

FGFR4 GAGGAGGACCCCACATGGA TACTACCTGGCCAAAGCAGC 

Epidermal growth factor 
receptor 

EGFR CTAAGATCCCGTCCATCGCC GGAGCCCAGCACTTTGATCT 

Epidermal growth factor EGF GTCTTGACTCTACTCCACCCC CTCGGTACTGACATCGCTCC 
Nodal NODAL CTGGAGGTGCTGCTTTCAGG CCCATCCACTGCCACATCTT 
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Gene Name Gene 
Symbol 

Forward Primer Reverse Primer 

Bone morphogenic protein 
4 

BMP4 CGGAAGCTAGGTGAGTGTGG CATAGGTCCCTGCAGTAGCG 

Bone morphogenic protein 
7 

BMP7 CACTCGAGCTTCATCCACCG GGGTACTGAAGACGGCCTTG 

Cerberus 1 CER1 TTTGCTTTGGGAAATGCGGG CTCCGTCTTCACCTTGCACT 
Wnt family, member 2 WNT2 GCTACGACACCTCCCATGTC GGTCATGTAGCGGTTGTCCA 
Wnt family, member 3 WNT3 CACAACACGAGGACGGAGAA GCTTCCCATGAGACTTCGCT 
Wnt family, member 5A WNT5A TCTGGCTCCACTTGTTGCTC CGACCACCAAGAATTGGCTTC 
Wnt family, member 11 WNT11 TCTTTGGGGTGGCACTTCTC TGCCGAGTTCACTTGACGAG 
Inhibin A INHBA GCTCAGACAGCTCTTACCACA CCTCTCAGCCAAAGCAAGGG 
Transforming growth factor 
beta 1 

TGFB1 CTGTCCAACATGATCGTGCG TGACACAGAGATCCGCAGTC 

Transforming growth factor 
beta 2 

TGFB2 CGACGAAGAGTACTACGCCA TCAAGGTACCCACAGAGCAC 

SMAD family, member 1 SMAD1 TGTATTCGTGAGTTCGCGGT CCAAATGCAAAAGGACAGCAGA 
SMAD family, member 2 SMAD2 GCTCCCTCCGTCTTCCATAC CTTGTATCGAACCTCCCGGC 
Dickkopf-related protein 1 DKK1 GGGTCTTTGTCGCGATGGTA CTGGTACTTATTCCCGCCCG 
Dickkopf-related protein 2 DKK2 GGTACTCGGCACAGAGATCG CCCTGATGGAGCACTGGTTT 
Left right determination 
factor 1 

LEFTY1 GCCATCGAGGGACTTGACTT AAACTGAGCAAGGGCTCTCC 

CAMP responsive element 
binding protein 1 

CREB1 CTCAGCCGGGTACTACCATTC CATGTTACCATCTTCAAACTGACG 

Fos proto-oncogene FOS CCGAGCTGGTGCATTACAGA ACACACTCCATGCGTTTTGC 
Jun proto-oncogene JUN GTGCCGAAAAAGGAAGCTGG CTGCGTTAGCATGAGTTGGC 
Notch 1 NOTCH1 GCAAGAACGCCGGGACA GGCTGGCACGATTTCCCTGA 
Notch 2 NOTCH2 GATACAGATGCGAGTGTGTCCC AGACAATGCCCTGGATGGAAAA 
Notch 3 NOTCH3 GGACGTCAGTGTGAACTCCT GAAACTCCCTGCCAGGTTGG 
Notch 4 NOTCH4 GAGACGTGCCAGTTTCCTGA GAGGCAAGTGCACAAGAAGC 
GATA binding protein 4 GATA4 ACCTGGGACTTGGAGGATAGCAAA CCATCAGCGTGTAAAGGCATCTGA 
Delta like canonical notch 
ligand 1 

DLL1 GGAGGCACTGTGACGACAA GCACACTCGCACACATAGC 

Chordin CHRD TATGCCTTGGACGAGACGTG GGTTGGGCACTCTGGTTTGA 
Caudal type homeobox 2 CDX2 GCAGCCAAGTGAAAACCAGG TTCCTCTCCTTTGCTCTGCG 
Actin, alpha 2 ACTA2 AAAGCAAGTCCTCCAGCGTT TAGTCCCGGGGATAGGCAAA 
GATA binding protein 6 GATA6 TCTCCATGTGCATTGGGGAC AAGGAAATCGCCCTGTTCGT 
SRY-box 17 SOX17 GGACCGCACGGAATTTGAAC TAATATACCGCGGAGCTGGC 
Eomesdoermin EOMES AGTCACCTTCTTCCAGCGTG CCTCTTCCGAGGGGAAGGTA 
Alpha fetoprotein AFP CTGCTGCAGCCAAAGTGAAG ATAGCGAGCAGCCCAAAGAA 
Hes family BHLH 
transcription factor 1 

HES1 AAAAATTCCTCGTCCCCGGT ATGCCGCGAGCTATCTTTCT 

Brachyury transcription 
factor 

T TTTCCAGATGGTGAGAGCCG CCGATGCCTCAACTCTCCAG 

Snail family transcriptional 
repressor 1 

SNAI1 CGAGTGGTTCTTCTGCGCTA GGGCTGCTGGAAGGTAAACT 

Snail family transcriptional 
repressor 2 

SNAI2 GCTACCCAATGGCCTCTCTC CTTCAATGGCATGGGGGTCT 

Mesoderm posterior BHLH 
transcription factor 1 

MESP1 GACCCATCGTTCCTGTAC CTGAAGAGCGGAGATGAG 

Paired box 6 PAX6 GAGCGAGCGGTGCATTTG TCAGATTCCTATGCTGATTGGTGAT 
Nestin NES CCACCCTGCAAAGGGAATCT GGTGAGCTTGGGCACAAAAG 
E-cadherin CDH1 GCTGGACCGAGAGAGTTTCC CAAAATCCAAGCCCGTGGTG 
N-cadherin CDH2 CATTGCCATCCTGCTCTGCATC GCGTTCTTTATCCCGGCGTTTC 
P-cadherin CDH3 GACACCCATGTACCGTCCTC TTCTGCGGCAACAGAGAACA 
Lymphoid enhancer binding 
factor 1 

LEF1 CCCGTGAAGAGCAGGCTAAA AGGCAGCTGTCATTCTTGGA 

Beta catenin CTNNB1 GCGCCATTTTAAGCCTCTCG GAGTAGCCATTGTCCACGCT 
Junction plakoglobin CTNNG CCCCATACTCAGTAGCCACG CATCCTCCTCCATGATGCCC 
Alpha catenin CTNNA1 TCGGGCCTCTGGAATTTAGC CAGCCAAAACATGGGCCTTC 
Protocadherin 8 PCDH8 GCTGATCGTCATCATCGTGC AAGGTGAGCACGTCGAACAT 
Protocadherin 1 PCDH1 GGGACTGACTGCTCTTGTGG CTCCCAATGAGGGTGTTGGG 
Gap junction protein 
gamma 1 

GJC1 CCCGTGCTACAATGGACCAA TCTAGCAGGCGAGTCAGGAA 

Gap junction protein alpha 1 GJA1 AGCCACTAGCCATTGTGGAC CCACCTCCACCGGATCAAAA 
Integrin subunit alpha v ITGAv ACAAATGCTCCTAGGCACCC GCGGGTAGAAGACCAGTCAC 
Integrin subunit alpha 4 ITGA4 CAGGTTTAAAGCATGGCCACA TGGCATTGGCATTGTGTACC 
Integrin subunit beta 3 ITGB3 ACCAGTAACCTGCGGATTGG TCCGTGACACACTCTGCTTC 
Integrin subunit beta 1 ITGB1 GCCGCGCGGAAAAGATG ACATCGTGCAGAAGTAGGCA 
Integrin subunit alpha 1 ITGA1 GGCAGCACAATTCATGCACA AAATGTACACAGCTCCCCCG 
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Gene Name Gene 
Symbol 

Forward Primer Reverse Primer 

Integrin subunit alpha 3 ITGA3 TAGGCAGCTTCATCCTGCAC GTCCTGCCACCCATCATTGT 
Integrin subunit alpha 5 ITGA5 TTACGGGACTCAACTGCACC AGCCTGAAACACTCAGCCTC 
Integrin subunit alpha 6 ITGA6 ACACAGCATTGTATATGTGAAGCA CCGAATCCCATTGCTTTGGC 
Integrin subunit beta 2 ITGB2 CAACCCACCACTTCCTCCAAG ACTTCGTGCACTCCTGAGAGA 
Integrin subunit alpha 2 ITGA2 CGGTTATTCAGGCTCACCGA CCTCGGGGCCTTCAAGAAAT 
Epithelial cell adhesion 
molecule 

EPCAM GAACACTGCTGGGGTCAGAA TCCTTCTGAAGTGCAGTCCG 

Rho associated coiled-coil 
containing protein kinase 1 

ROCK1 GTTTGAACAGGAAGGCGGAC ATGCCCGATGGAGACTTAGC 

Rho associated coiled-coil 
containing protein kinase 2 

ROCK2 TCCCGATAACCACCCCTCTT TGCCTTCATCTGTAGACCTCTG 

Myosin heavy chain 9 MYH9 TGGTTTACCTGCACCGTTGA TTCGGCAACCAGTGTAGACC 
Myosin heavy chain 10 MYH10 GGTGGGTTTGGGACTGAGG ACAGCCCTGTCCACAAAGAG 
Myosin light chain 9 MYL9 TTGACAAGGAGGACCTGCAC GCGTTGCGAATCACATCCTC 
Myosin light chain 12B MYL12B CCCTGTGCCCAACACTATCC ACACATTGGATGTTGCACGC 
Myosin light chain 12A MYL12A GCACTTGGTCAATACCACGC CGAGAATCCGAGCACCTCTC 
Ras homolog family 
member A 

RHOA ACACACCAGGCGCTAATTCA CCCCAGAGCTATGCCAACAA 

Protein tyrosine kinase 2 PTK2 TGGGCGGAAAGAAATCCTGC GCCCGTCACATTCTCGTACA 
Mitogen-activated protein 
kinase 8 

MAPK8 CTGAAGCAGAAGCTCCACCA CACCTAAAGGAGAGGGCTGC 

EPH receptor A2 EPHA2 TTCCATTAAGGACTCGGGGC ATCAGGTCCCACTTCCTTGC 
EPH receptor A3 EPHA3 GCTGAAGACGGCACTAGGAC AGGGCAGTGAGAGGAGCATA 
EPH receptor A4 EPHA4 ACGCGTGCTCATCTTGTGTA GTCGAGGAGAGGACAGGTCT 
EPH receptor B2 EPHB2 CAGCATTACCCTGTCGTGGT GGGGTCACTTCTGTCATGGT 
EPH receptor B4 EPHB4 GTCCCGCGCGGAGTATC CCTGAGGGAATGTCACCCAC 
Ephrin A5 EFNA5 CTTCTCGCTCTCCTACCCCT ACACACATCCAGAGCACCAG 
Ephrin B2 EFNB2 GGAAGTACTGCTGGGGTGTT GTGCATCTGTCTGCTTGGTCT 
Beta-actin ACTB ACAGAGCCTCGCCTTTGCC GAGGATGCCTCTCTTGCTCTG 
Death associated protein 
kinase 3 

DAPK3 GAGAATCTGAGGAGCTGGGTT GAACTTGGCTGCGTACTCCT 

 

 

 

2.2.12 Differentiations 

For the Dual SMAD and CHIR germ lineage differentiations. 100 cell mixed colonies were 

generated as previously described, cultured in mTeSRTM-1 medium (STEMCELL Technologies), 

and allowed to form patterns for 5 days. On the 5th day either SB 435142 (10μM; Sigma-Aldrich) 

and LDN 193189 (0.2μM; Sigma-Aldrich) or CHIR 99021 (12μM; Selleckchem) were 

supplemented into the media. CHIR was pulsed for 24 hour periods on day 5 and day 8 of the 

mesendoderm directed differentiation. Dual SMAD inhibition was kept constant for 6 days by 

maintaining SB and LDN in the media to direct germ lineage to an ectodermal fate. 6 days after 

the induction of differentiation, colonies were washed 3X with PBS and fixed for staining with 4% 

paraformaldehyde (VWR) as previously described. 

 



 56 

2.2.13 Computational Image Analysis 

For the radial position computational analysis fluorescent images were split into single 

RGB channel images using  the python module scikit-image (Walt et al., 2014) where the red 

channel denoted CRISPRi cells, the green channel denoted WT cells, and the blue channel 

denoted DAPI staining of the entire colony. A mask of each channel was created by thresholding, 

removing small objects, and removing small holes. The radius(r) of  each colony was calculated 

using the DAPI mask and the ratio of inner red cell area vs. outer red cell area was calculated by 

taking the logical AND of the red channel mask and the DAPI mask above ¾ r vs the logical AND 

of the red channel mask and the DAPI mask below ¼ r and normalizing to the total red mask area. 

To ensure accuracy the inner vs. outer red ratio was averaged with the inverse of the inner vs. 

outer green ratio (calculated in the same manner using the green channel mask). 

For the differentiation analysis fluorescent images were split into single RGB channel 

images where the red channel denoted CRISPRi cells, the green channel denoted WT cells, and 

the blue channel denoted either PAX6 or EOMES positive cells. The pixel area of cell types was 

determined by thresholding the WT, CRISPRi, or EOMES/PAX6+ images, removing small objects 

and removing small holes to create a mask of the area covered by each individual cell type.  The 

EOMES/PAX6+ population was calculated by taking the logical AND of either the WT and 

EOMES/PAX6+ mask or the CRISPRi and the EOMES/PAX6+ masks and then normalizing to 

total area of the WT or CRISPRi mask respectively. The ratio of EOMES/PAX6+ cells in CRISPRi 

cell compared to WT was calculated by dividing the normalized EOMES/PAX6+ area of the 

CRISPRi mask by the normalized EOMES/PAX6+ area of the WT mask. 

 

2.2.14 Statistics 

To ensure random sampling of colonies in all cell mixing experiments, 10 colonies were 

chosen at random on day 0 before pattern formation and traced throughout the experiment using 

time lapse imaging. Each experiment was performed with at least three biological replications 
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unless otherwise mentioned. For immunostaining experiments, 5 randomly selected fields of view 

were imaged per colony, with the exception of the differentiation experiments (Figure 2.14) where 

25 fields of view were imaged per colony to account for any increased variation in lineage markers 

after differentiation. Unpaired T-tests were used to compare two groups with a false discovery 

rate of 1% (Benjamini–Hochberg–Yekutieli method). One-way analysis of variance (ANOVA) was 

used to compare three or more groups, followed by post-hoc pairwise comparisons by Tukey’s 

tests. In gene expression analysis, three replicates were used for each condition, and all gene 

expression was normalized to control mixed populations (off-target guide without knockdown) to 

control for any gene expression changes due to mixing or the process of FACS sorting. In all 

comparisons, significance was specified as p ≤ 0.05.  

 

2.3 Results 

2.3.1 CRISPRi KD in human iPSCs modulates epithelial morphology. 

To establish an inducible CRISPRi KD of ROCK1 or CDH1, we used a doxycycline (DOX)-

inducible CRISPRi human iPSC line (CRISPRi-Gen1C) (Mandegar et al., 2016) (Figure 2.2). 

Guide RNA (gRNA) sequences designed to target the transcription start site of ROCK1 or CDH1 

(Table 2.1) were introduced into CRISPR-Gen1C human iPSCs and KD was induced by the 

addition of DOX (2 μM) into cell culture media. After three days of KD induction, ROCK1 mRNA 

levels were <30% of iPSCs without DOX treatment, and CDH1 mRNA levels in CDH1 KD human 

iPSCs were <10% compared to untreated controls (Figure 2.2C). Protein KD followed a similar 

trend where KD populations compared to untreated controls resulted in <20% ROCK1 protein and 

<10% of CDH1 protein by day three of DOX treatment, and reduced protein levels were 

maintained through day six of CRISPRi induction (Figure 2.2C, Figure 2.3). 

 Both the ROCK1 KD cells and the CDH1 KD cells retained epithelial human iPSC 

morphologies without single cell migration away from the colonies (Figure 2.2D). However, CDH1 
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KD iPSCs displayed irregular colony shapes that maintained smooth peripheral edges, but 

contained regions lacking cells within colonies (Figure 2.2D). Conversely, ROCK1 KD iPSCs 

displayed round colony shapes (similar to wildtype human iPSCs) but individual cells along the 

border of ROCK1 KD colonies extended protrusions out away from the colony (Figure 2.2D). As 

expected, human iPSCs treated with the small-molecule ROCK inhibitor Y-27632 yielded a similar 

morphology to the ROCK1 KD human iPSCs with extended cell protrusions at the colony borders 

(Figure 2.4). 

 To further confirm the physical effects of knocking down CDH1 or ROCK1 selectively in 

human iPSCs, we performed immunofluorescent (IF) staining of CDH1 expression. After 5 days 

of DOX treatment, CDH1 KD iPSCs exhibited a complete loss of CDH1 expression, as expected, 

whereas the ROCK1 KD iPSCs and the control iPSCs (with off-target CRISPRi guide) maintained 

robust expression of CDH1 along the plasma membrane (Figure 2.2E). To interrogate cell cortical 

tension, the contact angles between cells were measured based on IF of zona occluden-1 (ZO1), 

a protein associated with tight junctions (Figure 2.5A). Contact angles were not statistically 

different in either the ROCK1 KD or CDH1 KD cells compared to the control, but all populations 

displayed a subtle reduction in mean contact angle with DOX addition that was not significantly 

different between any of the groups (Figure 2.5B). However, when direct measurements of iPSC 

elasticity were taken using atomic force microscopy after 6 days of KD, ROCK1 KD cells displayed 

a two-fold higher cortical stiffness than the control and CDH1 KD populations, whereas the latter 

groups did not differ from one another (Figure 2.2E). Therefore, CRISPRi silencing of targeted 

genes associated with cellular mechanical properties resulted in distinct physical differences 

between the otherwise similar cell populations. 
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Figure 2.2: CRISPRi of ROCK1 and CDH1 modulate physical properties of the cell.(A) Schematic of 
ROCK1 and CDH1 within a cell. CDH1 is a trans-membrane adhesion molecule that locates to the borders 
of cells and ROCK1 is a cytoplasmic kinase that acts upon non-muscle myosin II. (B) Schematic of the 
CRISPRi system. Doxycycline addition to the human iPSC culture media leads to the expression of 
mCherry and dCas9-KRAB to induce knockdown of target gene. (C) qPCR and western blot quantification 
of knockdown timing; knockdown of both mRNA and protein were achieved by day three of DOX treatment 
when compared to untreated human iPSCs (p<0.05, n = 3, data represent mean ± SD). (D) Brightfield 
imaging of knockdown human iPSCs indicated morphological differences in colony shape (white arrows) 
and cell extensions (black arrows) at colony borders. (E) Live reporter fluorescence for dCas9-KRAB 
expression (red) and immunostaining for CDH1 (gray) demonstrated loss of CDH1 in induced CDH1 
CRISPRi human iPSCs, but maintenance of CDH1 contacts in the off-target control and ROCK1 KD human 
iPSCs. (F) Atomic force microscopy (AFM) of knockdown populations exhibited a twofold increase in 
Young’s elastic modulus of ROCK1 knockdown cells compared to control and CDH1 knockdown cells 
(p<0.05, n = 36, 65, 72 force points for Control, ROCK1 KD, and CDH1 KD, respectively, area under 
curve = 1). 
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Figure 2.3: Protein knockdown time course for ROCK1 and CDH1. (A) Western blot reflecting KD time 
course of ROCK1 and CDH1 over 6 days. (B) Western blot of ROCK1 and CDH1 protein levels in KD cells. 
(C) Densitometry quantification of CDH1 and ROCK1 protein levels in both the ROCK KD cells and the 
CDH1 KD cells. CDH1 was only significantly different in cells where CDH1 was KD. ROCK1 protein levels 
exhibited a significant decrease in both CDH1 and ROCK1 (p<0.01). 

 

 

Figure 2.4: Morphology of ROCK1 knockdown human iPSCs. Morphology of ROCK1 KD cells 
compared to WT cells treated with small molecule inhibitor of ROCK1, Y-27632. The ROCK1 KD and the 
Y-27632 treated cells displayed cell protrusions (white arrowheads) at the borders of colonies when 
compared to uninhibited WT cells. 
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Figure 2.5: Maintenance of tight junctions 
in knockdown human iPSCs.  

(A) Immunostaining of zona occludens 1 (ZO-
1) in pure populations of human iPSCs after 6 
days of induced KD of ROCK1 or CDH1. (B) 
Population distribution of contact angles 
before and after DOX treatment measured at 
ZO-1 junctions. The contact angles of KD cells 
did not differ significantly compared to the off-
target CRISPRi guide control. Dotted lines 
delineate quartiles. (p<0.05; n = 15 colonies, 
50 angles per colony). 

 
 
 

 

 

 

 

 

 

2.3.2 Mosaic CRISPRi silencing results in multicellular organization 

To examine whether mosaic KD of a single molecule impacted human iPSC organization, 

ROCK1 or CDH1 CRISPRi populations were pretreated with DOX for 5 days and mixed with 

isogenic wildtype human iPSCs that constitutively expressed GFP (WT-GFP) at a 1:3 ratio. 

Forced aggregation of ROCK1 KD: WT-GFP iPSCs or CDH1 KD: WT-GFP iPSCs and 

subsequent re-plating were used to create individual colonies of randomly mixed ROCK1 KD 

iPSCs or CDH1 KD iPSCs with the WT-GFP cells (Figure 2.6A). After 5 days in mixed culture, 

ROCK1 KD cells sorted radially from the WT-GFP cells, clustering primarily at the edges of the 

colonies (Figure 2.6B-D). However, separation of the ROCK1 KD cells did not result in distinct 

smooth borders between the WT-GFP and ROCK1 KD human iPSC populations. In contrast, 
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CDH1 KD cells robustly separated from the GFP-WT population, forming sharp boundaries 

between populations irrespective of their spatial location within the colony (Figure 2.6B-D).  

To determine whether pattern emergence was impacted by the relative proportion of 

mosaic KD within a colony, KD cells were mixed with control CRISPRi iPSCs lacking any gRNA 

or fluorescent protein at varying cell ratios of 1:1, 1:3, and 3:1. Clustering of ROCK1 KD cells was 

less apparent as the proportion of ROCK1 KD cells within a colony increased. In fact, increasing 

ROCK1 KD iPSCs to 75% of the colony resulted in the entire colony morphology displaying 

characteristics of a pure ROCK1 KD colony (Figure 2.7). On the other hand, the CDH1 CRISPRi 

cells separated from the colorless CRISPRi population, irrespective of cell ratio, indicating that 

the spatial organization occurred regardless of relative population size within an iPSC colony. The 

ability of both the ROCK1 and CDH1 CRISPRi KD populations to physically partition from 

otherwise identical CRISPRi-engineered iPSCs that lacked a gRNA confirms that the production 

of dCas9-KRAB is not responsible for the previously observed pattern formation when CRISPRi 

KD iPSCs were mixed with the WT-GFP cells, but rather that the segregation is a direct result of 

KD of the target gene (Figure 2.7). 

Based on the sorting behaviors of ROCK1 KD: WT-GFP and CDH1 KD: WT-GFP colonies 

when the KD of ROCK1 or CDH1 was present at the time of mixing, we next examined whether 

induction of mosaic KD after mixing resulted in similar sorting patterns as previously observed. 

This scenario more accurately models the onset of initial symmetry-breaking events among 

homogeneous pluripotent cells during embryonic development. Non-induced CRISPRi 

populations were mixed with WT-GFP iPSCs (1:3 ratio), re-plated, and then treated with DOX to 

induce KD (Figure 2.6E). ROCK1 KD post-mixing within mosaic colonies did not result in 

noticeable radial segregation of ROCK1 KD human iPSCs from WT-GFP iPSCs (Figure 2.6F-H), 

as observed for pre-mixed colonies. Instead, the post-mixing ROCK1 mosaic KD colonies 

exhibited greater vertical stacking of ROCK1 KD cells and WT-GFP cells in the z-plane of the 

mixed colonies (Figure 2.6G), whereas the pre-induced mixed colonies remained segregated 
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Figure 2.6: Cell-autonomous pattern emergence in mixed population colonies.(A) Schematic of 
experimental timeline. WT-GFP and ROCK1- or CDH1- CRISPRi human iPSCs were pretreated with 
doxycycline for 6 days before aggregation in pyramidal microwells and re-plating as mixed colonies. (B) 
Live cell imaging of pattern emergence over time from mixing colonies. Control populations remain mixed, 
ROCK1 KD human iPSCs cluster radially at borders of colonies, and CDH1 KD populations sort themselves 
from WT-GFP human iPSCs regardless of location within colony. (C) Confocal microscopy of patterned 
colonies of human iPSCs with KD induction prior to mixing. (D) Quantification of the radial distribution of 
KD cells in pre-induced mixed colonies. The ratio of inner cell area to outer cell area normalized to total cell 
area is displayed (n = 25,* and # indicate significance, p<0.05). (E) Schematic of experimental timeline for 
WT-GFP and ROCK1- or CDH1-CRISPRi human iPSCs treated with doxycycline upon re-plating as mixed 
colonies. (F) Live cell imaging of pattern emergence in post-mixing induction colonies, where CRISPRi KD 
is induced after cell population mixing. (G) Confocal microscopy of patterned human iPSC colonies with KD 
induction upon mixing populations, where ROCK KD cells stack vertically with WT-GFP human iPSCs. (H) 
Quantification of the radial distribution of KD cells in post-induced mixed colonies. The ratio of inner cell 
area to outer cell area normalized to total cell area is displayed (n = 20). 
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Figure 2.7: Pattern emergence of variable ratios of mixed populations. Live imaging on mixed colonies 
of CRISPRi KD human iPSCs with WT human iPSCs, where a picture was taken every 30 min for 12 hr, 4 
days after the start of KD and mixing of two populations (no color = no guide, red = KD population). The 
displayed images were taken at the start of day four. The ratio of CRISPRi KD cells was varied at 25%, 
50%, and 75% of the overall population. 

 
primarily in a 2D planar manner (Figure 2.6C). In contrast, the mosaic silencing of CDH1 post-

mixing maintained robust segregation of the CDH1 KD cells from the WT-GFP iPSCs, although 

the borders between cell populations lacking CDH1 contacts and neighboring WT-GFP cells were 

somewhat less distinct than the pre-induced CDH1 KD: WT-GFP mixed colonies. Overall, the 

inducible CRISPRi mixed colonies displayed the ability to mimic several different patterns of 

intrinsic symmetry-breaking events that resulted in distinct cell sorting and multicellular pattern 

formation.  

In addition to the changes in organization within colonies, there were significant changes 

in the ratio of cells within the colonies from the original seeding density of 3:1 WT to CRISPRi. 

There was an increase in the CRISPRi proportion in the mixed colonies over time (Figure 2.8A). 
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To determine if this was in response to mixing with a WT population, EDU incorporation studies 

were performed on pure CRISPRi and WT populations. When EDU incorporation was examined 

over a period of DOX treatment for 5 days, the WT-GFP cells displayed a reduced replication rate 

compared to the CRISPRi lines (Figure 2.8B), however cell replication rate did not account for 

pattern formation as the CRISPRi control mixed colonies did not display a distinguishable pattern. 

 

 

Figure 2.8: Cell population change over time. (A) Percent of CRISPRi KD cells after 5 days in mixed 
culture measured by flow cytometry. (n = 10,000 events, three biological reps; * indicated significance 
between pre and post mixed and # indicates significance from other KDs; p<0.05) (B) EdU incorporation 
overtime in pure populations as KD is induced by DOX treatment (n = 10,000 events). 
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2.3.3 Mosaic human iPSC colonies retain a pluripotent phenotype 

Colony morphology and expression of epithelial markers, such as epithelial cell adhesion 

molecule (EpCAM), were examined to determine if the cells that lost CDH1 expression 

segregated from their WT-GFP neighbors due to delamination, or loss of the epithelial phenotype 

characteristic of iPSCs. ROCK1 KD: WT-GFP and CDH1 KD: WT-GFP colonies maintained an 

epithelial morphology throughout 6 days of CRISPRi silencing (Figure 2.9A) with no observed 

migration by CRISPRi-modulated cells away from the colonies. Both ROCK1 KD and CDH1 KD 

iPSCs within mixed colonies expressed EpCAM at cell-cell boundaries after 6 days of CRISPRi 

induction despite changes in cortical tension or intercellular adhesion due to loss of ROCK1 or 

CDH1, respectively (Figure 2.9A). Furthermore, ROCK1/CDH1 KD iPSCs displayed cell junction-

localized β-catenin in pure colonies after 6 days of CRISPRi induction, suggesting maintenance 

of adherens junctions and epithelial colonies (Figure 2.10). 

 Since the decrease of CDH1 is commonly associated with loss of pluripotency in PSCs, 

the expression and localization of the common pluripotency transcription factors, OCT3/4 and 

SOX2, were examined. Both proteins maintained strong nuclear expression in pure ROCK1 KD 

or CDH1 KD colonies after 6 days of KD induction (Figure 2.11A). Moreover, despite the physical 

segregation of cells induced by KD in mixed populations, no pattern could be observed based on 

pluripotency marker expression (Figure 2.9B). Furthermore, the abundance of OCT3/4 and SOX2 

transcripts was unchanged in pure colonies of CDH1 KD cells and though variable in pure colonies 

of ROCK1 KD iPSCs, was not significantly different (Figure 2.11B). However, because the 

transcription factors SOX2 and OCT4 were retained by cells for a period of time during the process 

of differentiation, genes associated with the primitive streak (Brachyury (BRA)) and the neural 

crest (SOX9) were interrogated in either ROCK1 or CDH1 KD cells over 6 days (Figure 2.11C). 

Both BRA and SOX9 were significantly increased on day 3 of KD in ROCK1 KD cells, however at 

day 6 the gene expression returned to levels comparable to day 0 before ROCK1 KD. Although 

the CDH1 KD cells did not display any significant trends, it is noteworthy that the samples had a 
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large variation with a standard deviation often 3 times higher than that of the ROCK1 KD cells. 

This high variation between biological replicates potentially indicates that the KD of CDH1 created 

a large variability in the gene regulation of these two lineage specific genes. The large variation 

in gene expression observed in both ROCK1 KD and CDH1 KD cells could indicate that the cells 

are in a transition state from pluripotency. However, these results indicate that the loss of ROCK1 

or CDH1 is not sufficient to disrupt the pluripotent gene regulatory network and induce an exit 

from the pluripotent state. 

 

 

Figure 2.9: Maintenance of nuclear pluripotency markers and epithelial phenotype.(A) 
Immunostaining of EpCAM for mixed colonies displayed relatively uniform expression regardless of KD. (B) 
Immunostaining for E-cadherin (CDH1) and OCT3/4 in patterned human iPSC colonies demonstrating 
nuclear localized OCT3/4 throughout the mixed populations. 
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Figure 2.10: Maintenance of cell junction localized β-catenin in knockdown cells. Immunostaining of 
β-catenin pure human iPSC colonies on day six of KD. β-catenin remains localized to the cell junctions in 
human iPSCs before and after DOX treatment to induce KD of ROCK1 and CDH1, respectively. 

 

2.3.4 Mixed populations of KD cells display transient gene expression changes in 

coordination with emergence of patterns 

Since pluripotency markers appeared to be maintained irrespective of mosaic patterning, 

gene expression changes in pluripotency markers (SOX2, NANOG), mesendoderm markers 

(SOX17, BRA) and ectoderm markers (PAX6, SOX9) were examined with the induction of mosaic 

patterning at days 1, 3 and 6 after KD induction (Figure 2.12A). To take into account potential 

gene expression changes that result from mixing iPSC lines, un-induced mixed populations and 

un-induced pure populations were included as controls. BRA did not have any significant changes 

with induction of ROCK1 KD or CDH1 KD in a mixed population, however SOX9 increased  in 

both ROCK1 KD and CDH1 KD cells (Figure 2.12C,D). Interestingly, similar to pure populations 

there was large amount of variance, often displaying over a fold change difference in gene 

expression between biological replicates in mixed colonies.  
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Figure 2.11: Pluripotent and early germ layer gene expression in knockdown cells.(A) 
Immunostaining of OCT3/4 and SOX2 in mixed colonies on day six of KD, where borders between cell 
populations are denoted by dotted lines. (B) Gene expression of OCT3/4 and SOX2 in ROCK1 KD and 
CDH1 KD human iPSCs quantified by mRNA fold change (n = 3). (C) Gene expression of markers of the 
primitive streak (Brachyury) and neural crest (SOX9) in pure populations of ROCK1 KD or CDH1 KD human 
iPSCs quantified by mRNA fold change (n = 3, * indicates significance; p<0.05). 
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Because there were gene expression changes unique to the mixed population mosaic 

KDs, whether these gene changes were due to just the mixing of two cell populations, or whether 

they were specific to the induction of a symmetry breaking event by mosaic KD of either ROCK1 

or CDH1 was interrogated. A select set of genes involved in pluripotent stem cell signaling, early 

lineage fate transitions, and regulation of physical cell properties (Table 2.2) was examined in 

both pure KD populations and mixed KD populations. An ANOVA analysis was used to examine 

gene expression changes that can be attributed to mixing two different cell types (mixed 

populations without KD), to KD of ROCK1 or CDH1 in a pure population, and to mosaic KD or KD 

in the presence of a WT neighbor (Figure 2.12E,F).  Overall, few changes in gene expression 

resulted from mixing un-induced CRISPRi populations with WT-GFP (Figure 2.13A), and 

therefore subsequent data was normalized to pure un-induced populations and then to mixed un-

induced populations to minimize false positives that resulted from mixing of cell lines without 

induction of KD. 

In ROCK1 KD cells mixed with WT, on day 1 the gene expression changes that could be 

attributed to solely to gene KD (Figure 2.12E, left column) were associated with primitive streak 

formation (Snail (SNAI1), SMAD1). On day 3, we observed an upregulation of adhesion molecules 

(EPHA4, ITGA4), as well as NANOG, Nestin (NES), and TGFβ upregulation and FGFR2 

downregulation. Interestingly, there were a large amount of changes in gene expression that were 

specific to the mosaic induction of ROCK1 KD in addition to those that were a direct response to 

ROCK1 KD (Figure 2.12E, right column). For example, the down regulation of both cell-cell 

adhesions as well as cell-ECM adhesions. Additionally, genes that were upregulated in the pure 

KD context were down regulated in the mosaic KD context, such as SNAI1, NES and NANOG. 

However, at day 6 of mosaic KD we did not observe any persistent significant changes in the 

examined genes (Figure 2.12E). CDH1 KD caused an upregulation in genes associated with cell-

cell adhesion on day 1 that is exacerbated in a mosaic CDH1 KD (Figure 2.12F). Interestingly, 

both Wnt3 and downstream Wnt targets such as SNAI1 and SNAI2 are significantly upregulated  
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Figure 2.12: Transient gene expression changes in mixed populations.(A) Schematic of experimental 
timeline; WT-GFP and ROCK1- or CDH1-CRISPRi human iPSCs were mixed and re-plated prior to KD 
induction. Different cell populations were isolated by FACS for mRNA extraction on days 1, 3, and 6 after 
KD induction. (n = 3 per condition). (B) Representative scatter plot of a FACS-sorted population of 
mCherry +cells (indicating KD induction) with >98% purity. (C,D) Plots of specific mRNA expression 
changes at days 1, 3, and 6 in KD cell populations that have been mixed with WT. (* and # indicate 
significance, p<0.05). (E,F) Heat maps display fold change expression of genes found to display significant 
changes in ROCK1 or CDH1 KD cells mixed with WT-GFP human iPSCs when compared to time-matched, 
off-target control human iPSCs. Grey color indicates non-significance. Significance (p<0.05, n = 3) was 
determined using a one-way analysis of variance (ANOVA) followed by post-hoc pairwise comparisons by 
Tukey’s tests to determine the effect of mixing populations, the effect of solely KD, and the effect of KD 
within a mixed population. 
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Figure 2.13: Gene expression changes in WT-GFP cells mixed with CRISPRi cells.(A) Heat map 
showing gene expression changes due to mixing two populations together without induction of CRISPRi in 
sub population where grey indicates non-significance. (B) Example panel of FACS-sorted population of 
GFP+ (i.e. WT) cells with >99% purity. (C) Heat map of significant gene expression fold changes in WT-
GFP cells mixed for 6 days with OTG control, ROCK1 KD, or CDH1 KD human iPSCs when compared to 
time-matched, pure WT-GFP populations. Grey color indicates non-significance. Significance (p<0.05, 
n = 3) was determined using an ANOVA taking into account the independent effects of mixing populations, 
KD alone, and KD within a mixed population. 
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specifically in a mosaic KD on day 1 of KD. Similar to the transient wave of gene expression 

changes observed in ROCK1 KD cells, mosaic CDH1 KD did not have any observed significant 

changes on day 6 of KD except for CDH1 (Figure 2.12F). This was consistent with our previous 

observation of the maintenance of pluripotency in the ROCK1 KD: WT-GFP and CDH1 KD: WT-

GFP colonies (Figure 2.9). Furthermore, the recovery of homeostatic gene expression profiles 

closely followed the dynamics of distinct pattern establishment in the mixed populations. 

In addition to examining the KD cells, we examined the gene expression profiles of the 

neighboring WT cells that constituted the majority of cells in each colony. On day six of KD 

induction, the WT-GFP cells that were mixed with CDH1 KD human iPSCs had gene expression 

patterns that resembled the WT-GFP cells mixed with the control CRISPRi populations, whereas 

the WT-GFP cells mixed with ROCK1 KD iPSCs exhibited a different expression profile. 

Interestingly, the WT-GFP cells mixed with ROCK1 CRISPRi iPSCs demonstrated changes in 

genes associated with cell sorting and movement, such as ephrins and integrins, and up-

regulation in myosin proteins (MYH9, MYH10) (Figure 2.13B,C). Overall, the changes in the WT-

GFP iPSC gene expression suggests that targeted manipulation of gene expression in an 

emerging sub-population can exert non-cell autonomous effects on the opposing population and 

may be influenced by the respective multicellular organization of the two populations. 

 

2.3.5 Mixed populations allow for restricted germ lineage emergence 

 A great advantage in the controllable induction of two separate populations in pluripotent 

stem cells is potential co-emergence of multiple differentiated cell populations with predictable 

spatial organization. To examine how pre-patterning pluripotent stem cells could contribute to co-

emergence of populations, two variations of germ lineage differentiations were utilized to direct 

the human iPSCs to either an ectodermal or mesendodermal fate (Figure 2.14A). Then the 

proportion of either PAX6+ cells indicating neuro-ectoderm lineage or Eomesodermin (EOMES)+ 

cells indicating a mesendoderm lineage in the WT and CRISPRi mixed populations was 



 74 

examined. Interestingly, the ROCK1 KD population did not display a significant difference in 

PAX6+ or EOMES+ cells compared to the WT cells (Figure 2.14B,D). However, the CDH1 KD 

population displayed decreased PAX6+ cells in the ectoderm directed differentiation and 

increased EOMES+ cells in the mesendoderm directed differentiation (Figure 2.14C,D). Overall, 

these studies demonstrate the ability to control both patterning of stem cells as well as subsequent 

differentiation potential. 

 

2.4 Discussion 

In this study we examined the effect of inducing specific genetic KD in subpopulations of 

human iPSCs within an otherwise homogeneous population of pluripotent cells. Historically, 

small-molecule chemical inhibitors, antibodies, and homogeneous genetic knockouts are often 

used to interrogate the molecular mechanisms involved in morphogenesis (Lecuit & Lenne, 2007; 

McBeath, Pirone, Nelson, Bhadriraju, & Chen, 2004; Salbreux, Charras, & Paluch, 2012). 

However, these methods can’t selectively discriminate between different cells, or they fail to 

address how the emergence of heterotypic interactions affects cell-cell organization. Here, we 

report that silencing of target genes by CRISPRi within only subpopulations provides multiple 

avenues to genetically control the emergence of asymmetric cell phenotypes and development of 

multicellular patterns. Specifically, we demonstrate that mosaic KD of target genes ROCK1 or 

CDH1 result in distinct patterning events wherein cell-driven segregation dictates colony 

organization without loss of pluripotency (Figure 2.15). 

ROCK1 regulates actin-myosin contraction (McBeath et al., 2004) and facilitates 

expansion of PSCs (Ohgushi, Minaguchi, & Sasai, 2015; Park et al., 2015), and its acute inhibition 

by small molecules leads to a “relaxed” cell phenotype with decreased stiffness (Kinney, Saeed, 

& McDevitt, 2014; Lee et al., 2006). However, we found that prolonged silencing of ROCK1 in 

human iPSCs (6 days) resulted in cells that were actually two-fold stiffer than either the CDH1 KD 
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Figure 2.14: Germ lineage differentiations of mixed colonies. (A) Schematic of a 6 day ectoderm 
directed differentiation using dual SMAD inhibition or a complementary mesendoderm directed 
differentiation using CHIR treatment. (B) Quantification of PAX6 protein presence by immunofluorescence 
in WT and KD cells of mixed colonies after dual SMAD inhibition treatment. (n = 4 biological replicates with 
25 images per biological replicate; * indicates significance; p<0.05) (C) Quantification of EOMES protein 
presence by immunofluorescence in WT and KD cells of mixed colonies after CHIR treatment. (D) 
Representative images of mixed colony differentiations with either dual SMAD inhibition or CHIR treatment 
stained for PAX6 and EOMES, respectively. 
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Figure 2.15: Inducible pattern emergence through the KD of molecules that affect human iPSC 
physical properties.(A) Schematic of working model of sub-population manipulation where controlled 
changes in cellular stiffness or cellular adhesion result in specific colony pattern formation. With mosaic 
KD, ROCK1 produces continuous radial separation of KD cells from WT, whereas CDH1 displays discrete 
islands of KD cells within the WT population. 
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cells or the control CRISPRi cells. The increased cortical stiffness of ROCK1 KD iPSCs could be 

due to the difference between the inhibition of an existing protein and KD of the gene. A small 

molecule inhibitor prevents the function of already existing proteins so that a small amount of 

functioning protein may escape the inhibitor’s influence. In contrast, CRISPRi only needs to target 

the ROCK1 gene loci at two alleles to completely abolish protein translation, thus highlighting the 

strength of genetic perturbation. Additionally, ROCK inhibition is often used as a transient 

perturbation (24h), whereas long-term KD of ROCK1 (6 days) may induce compensatory effects 

within the cells that are responsible for the somewhat surprising results. Long-term ROCK1 KD 

compensation is a likely partial explanation why KD of ROCK1 prior to mixing resulted in radially 

partitioned populations, but post-mixing KD resulted in less segregated populations. The 

increased stacking of the ROCK1KD population with induction of knockdown after mixing with WT 

cells could also be a reflection of the difference between short term and long term ROCK1 KD 

and potential compensation effects. The observed 3D stacking may be caused by a compensatory 

contraction of WT cells as the ROCK1 KD cells lose the ability to control cytoskeletal contraction, 

causing 3D colony rounding. This effect would then be abrogated with prolonged ROCK1 KD as 

compensatory mechanisms within the ROCK1 KD cells take effect. 

The emergence of autonomous patterning events and separate cell populations is often 

associated with differentiation, and in particular, CDH1 is involved in the control of morphogenesis 

in a range of species (C.A. Burdsal, C.H. Damsky, & R.A. Pedersen, 1993; D. Li et al., 2010). 

Historically, in vitro studies of mouse embryonic stem cells often describe CDH1 as a marker of 

stem cell pluripotency (L. Li, Bennett, & Wang, 2012; Soncin & Ward, 2011). However, while 

CDH1 is commonly expressed by pluripotent cells and CDH1 can replace OCT3/4 during 

fibroblast reprogramming to pluripotency (Redmer et al., 2011), CDH1 is not essential to maintain 

the pluripotent state (Larue et al., 1996; Soncin et al., 2009; Ying et al., 2008). Our results are 

consistent with the latter observations where CDH1 KD in human iPSCs did not disrupt the 

expression of pluripotency markers nor lead to a loss of epithelial phenotype, indicating that KD 
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of CDH1 alone was not sufficient to induce differentiation, but could result in rearrangement of 

colony structure. Furthermore, the observed maintenance of pluripotency and differentiation 

preferential to mesendoderm is consistent with recent studies revealing that changes in human 

CDH1 adhesions coordinate with in vitro human stem cell lineage decisions rather than 

pluripotency maintenance (Przybyla, Lakins, & Weaver, 2016). Changes in CDH1 influencing 

lineage fate decisions may explain the transient  gene expression changes that we observed with 

the induction of KD in mixed colonies, where the loss of CDH1 potentially primes the cells to 

respond to a signal for differentiation, and without such a signal, the cells return to a ground state 

of pluripotency. Additionally, the large variety in gene regulation between biological replicates may 

be indicative of a transitional state of cells primed to differentiate that mosaic KD incites in the 

examined pluripotent stem cell colonies. Similar priming has been described in the context of cell-

matrix adhesion where differentiation in response to TGFβ signaling is primed by stiffness-

dependent integrin signaling (Allen, Cooke, & Alliston, 2012); a comparable mechanism may 

explain the observed transient gene expression changes without loss of pluripotency in CDH1 KD 

human iPSCs. 

The ability to manipulate distinct cell populations allows for robust modeling of human 

morphogenic events and, thus, an expanded understanding of human biology that can be 

exploited to develop physiologically realistic in vitro human tissue models. Cellular location within 

pluripotent colonies can be thought to parallel the effects seen in early developing blastocysts. A 

cell’s location within the early embryo relays signals that dictate initial symmetry-breaking events, 

such as the decision to become trophectoderm instead of inner cell mass. Cells located within the  

center of an embryo maintain different adhesion contacts (Stephenson, Yamanaka, & Rossant, 

2010) and are subjected to higher tension generated by neighboring cells (Samarage et al., 2015), 

which then feed back into lineage fate decisions. For example, the Hippo pathway is controlled 

by a cell’s position within the early blastocyst, where the outer cell layer has the ability to polarize 

and sequester the signaling molecule angiomotin away from adherens junctions, preventing the 
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phosphorylation and activation that would occur in an internal cell that maintained cell-cell 

contacts on all sides (Hirate et al., 2013). Additionally in vitro micro-patterned PSC colonies have 

been reported to display spatially dependent germ layer patterning upon differentiation (Etoc et 

al., 2016; Tewary et al., 2017; Warmflash, Sorre, Etoc, Siggia, & Brivanlou, 2014). The observed 

patterns in mosaic ROCK1 KD demonstrate that a targeted gene KD can affect the spatial location 

of a cell within a colony without perturbing its differentiation potential, and conversely the mosaic 

CDH1 KD demonstrates control of both lineage potential and spatial organization, offering two 

complementary methods to interrogate multicellular organization and morphogenic processes. 

Therefore, the system described here enables the potential to enhance and expand on these 

previous complementary studies by allowing for the manipulation of local multicellular 

neighborhoods through subpopulation organization and potential priming to certain lineage fates. 

Complementary to changes in multicellular organization as a result of ROCK1 or CDH1 

KD, there were compensatory changes in gene expression that occur in the WT population. In 

particular the WT population displayed significant changes in several genes associated with 

adhesion and lineage fate. For example, GATA4 is down regulated in WT cells in all mixed 

colonies. GATA4 is associated with mesendoderm lineages (Molkentin, Lin, Duncan, & Olson, 

1997, p. 4; Zorn & Wells, 2009) and its down regulation may have effects on the WT cell’s ability 

to properly differentiate to mesendoderm. However, there were no significant difference in 

differentiation potential quantified by EOMES expression when control or ROCK1 KD mixed 

colonies were directed toward a mesendodermal fate (Figure 2.14). This could potentially be due 

to the strength of the small molecule CHIR, a GSK3 inhibitor, in inducing the mesendoderm fate. 

Additionally, differences between the two populations may arise in longer differentiations, where 

the cells are allowed to mature beyond a progenitor stage. However, differences in maturation or 

cell type within a germ lineage may assist in the controlled co-emergence of multiple tissue types 

or even cell populations within a single tissue. 
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Overall, this study capitalized on the ability of CRISPRi to temporally perturb specific 

molecular regulators of physical cell properties, such as adhesion and tension, that resulted in 

differing multicellular patterns. Moreover, CRISPRi additionally offers the flexibility to target any 

gene of interest and timing of KD (Gordon et al., 2016; Mandegar et al., 2016), allowing for the 

creation of dynamic patterns through transient genetic KD that could be used to pre-pattern PSC 

colonies in various types of multicellular geometries before differentiation. Additionally, the ability 

to induce molecular asymmetry can also be applied to co-differentiation, where the temporal 

induction of specific heterotypic interactions, such as the presentation of a ligand or receptor, can 

give rise to the coordinated emergence of two (or more) cell types under the same culture 

conditions. In addition, mosaic induction of KD can be used to examine how signals propagate 

between cells, for example, interrogating how the networks between cells created by either 

mechanical (adhesions) or chemical gradients (gap junctions) affect lineage fate decisions. 

Furthermore, the predictable patterning events and potential for control over co-emergence that 

we establish in this study could aid the eventual control over morphogenic events in organoid 

systems. Organoids require coordinated heterotypic interactions in a 3D environment in order to 

self-organize (Bredenoord, Clevers, & Knoblich, 2017; Sasai, 2013); the ability to precisely predict 

and control the organization of multiple cell types in parallel would significantly improve the 

reproducibility and robustness of in vitro tissue modeling. Ultimately, this study identifies a novel 

strategy to direct the emergence of heterotypic cell populations to control multicellular 

organization in pluripotent stem cells, and subsequently facilitates the creation of robust models 

of morphogenesis necessary for the mechanistic study of human developmental tissue patterning 

and formation. 
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2.5 Conclusion 

In conclusion, this first study provides an example of an in vitro system to interrogate cell-

cell interactions and multicellular organization within human induced pluripotent stem cell 

colonies. We show that CRISPRi can be used to systematically control symmetry breaking events 

by inducing mosaic knockdown effectively providing a transition from homogeneity to 

heterogeneity. Therefore, mosaic patterning enables genetic interrogation of a range of complex 

emergent multicellular properties, which can facilitate better understanding of the molecular 

pathways that regulate symmetry-breaking during morphogenesis. 
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Chapter 3: Automated Design of Pluripotent Stem Cell Self-

Organization 

 

3.1 Introduction 
 

During the early stages of embryonic development, patterned self-assembly of cells is 

essential for the organization of primitive germ layers, multicellular tissues, and complex organ 

systems (Montero and Heisenberg 2004). Similarly, human pluripotent stem cells (hPSCs) 

maintain the ability to self-organize, differentiate to all three germ layers, and generate 3D 

organoids that replicate primitive tissue structure and function (Sasai 2013; Warmflash et al. 2014; 

Bredenoord, Clevers, and Knoblich 2017); hence, hPSCs provide a robust and tractable system 

to observe, quantify, predict, and ultimately control collective cellular behaviors (Pir and Le Novère 

2016). The ability to direct heterotypic cell self-organization and concurrently specify cell fate can 

enable the possibility of directing organogenesis via novel cell-intrinsic routes.  

In this study, we paired CRISPR interference (CRISPRi) driven genetic perturbations of 

human induced pluripotent stem cells (hiPSCs) with computational modeling, machine learning, 

and mathematical optimization to facilitate a “closed loop” cycle of in silico hypothesis generation 

that could be experimentally validated in vitro. To predict multicellular pattern formation, we 

combined a multi-scale Cellular Potts model (Krieg et al. 2008; Ouchi et al. 2003; Graner and 

Glazier 1992; Pir and Le Novère 2016; Marée, Grieneisen, and Hogeweg 2007; Magno, 

Grieneisen, and Marée 2015) of behavior driven cell sorting with an automated machine learning 

and optimization procedure, referred to as “Multicellular Pattern Synthesis” (Briers et al. 2016; 

Bartocci et al. 2016), that consisted of four steps (Figure 3.1). First, we created a computational 

model of observed hiPSC self-organization that quantified collective stem cell dynamics and 

captured how targeted changes in the mechanical profiles of sub-populations of cells affected 

stem cell colony patterning. Second, a supervised machine learning classifier was trained to 
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quantify pattern similarity to the desired pattern using images from our computational model. 

Third, we employed mathematical optimization, specifically Particle Swarm Optimization (PSO), 

to simulate thousands of potential designs and identify specific experimental conditions that 

yielded unique patterns in in silico simulations. Finally, we tested the in silico predicted conditions 

with hiPSCs in vitro and obtained the desired multicellular patterns with similar frequency and 

quantitative characteristics, thereby validating the system. Furthermore, the patterning 

differentially impacted the subsequent cell fate commitment upon exposure to morphogen 

treatment (BMP4).  
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Figure 3.1: Overview of Synthesis of Spatial Patterns. Pattern Synthesis is a computational procedure 
used to predict the in vitro conditions needed to produce target spatial patterns. A) The first input to pattern 
synthesis is a parameterized computational model of mechanically driven spatial patterning in iPSC 
colonies. Five parameters of the computational model map directly to perturbations that can be made by 
experimentalists, and the output of the model was a series of images. B) The second input to pattern 
synthesis in a trained image classifier that produces a numerical score indicating the similarity of an image 
to the desired pattern class. In this scenario our desired pattern was a “Bullseye” pattern. C) Given the 
parameterized model and pattern classifier, Particle Swarm Optimization was used to explore parameter 
combinations, which map directly to in vitro perturbations, in order to identify the optimal conditions to 
produce the desired pattern in silico. D) Given the “recipe” of perturbations suggested by parameter 
optimization, we validate the control strategy is able to produce the desired pattern in vitro. 
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3.2 Materials and Methods 

3.2.1 Cell Lines 

All work with human iPSC lines was approved by the University of California, San 

Francisco Human Gamete, Embryo and Stem Cell Research (GESCR) Committee. Cell lines 

were derived from the parent line WTC (Coriell Cat. # GM25256) where the species of origin was 

confirmed by a LINE assay. All cell lines tested negative for mycoplasma using a MycoAlert 

Mycoplasma Detection Kit (Lonza). All human induced pluripotent stem cells (hiPSCs) were 

cultured at 37∘ C, seeded at a density of 12,000 cells per cm2 in feeder-free media conditions on 

growth factor-reduced matrigel (BD Biosciences), and daily fed MTeSRTM medium (STEMCELL 

Technologies)(Ludwig et al., 2006). When hiPSC confluency reached 75%, cells were dissociated 

and singularized using Accutase (STEMCELL Technologies). Single cells were counted using a 

Invitrogen Countess Automated Cell Counter (Thermofisher Scientific), re-plated at previously 

described density, and in the first 24hrs after passaging, fed with MTeSRTM medium 

supplemented with the small molecule Rho-associated coiled-coil kinase (ROCK) inhibitor Y-

276932 (10μM; Selleckchem) to promote survival (Park, Kim, Jung, & Roh, 2015; Watanabe et 

al., 2007). 

 

3.2.2 Generation of CRISPRi knockdown iPSC lines 

CRISPRi knockdown lines were previously generated as described in (Mandegar et al., 

2016), where 20 base pair guides were designed using the Broad Institute sgRNA design website 

(Doench et al., 2016). 20 base pair sequences were cloned into the gRNA-CNKB vector using 

restriction enzyme BsmBI digestions, followed by ligation with T4 DNA ligase as described in 

(Mandegar et al., 2016). 200,000 cells of the CRISPRi-Gen1C or CRISPRi-Gen2 hiPSC lines 

from the Conklin Lab were nucleofected with individual gRNA vectors using the Human Stem Cell 
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Nucleofector Kit 1 solution with the Amaxa nucleofector 2b device (Lonza). Cells were then plated 

at increasing dilutions into 3 wells of a 6-well plate coated with growth factor-reduced matrigel 

(BD Biosciences) in MTeSRTM supplemented with Y-276932 (10μM) for 2 days. Then the 

nucleofected hiPSCs were treated with blasticidin (10μg/ml) for a selection period of 7 days. 

Surviving colonies for each gRNA were pooled and passaged in MTeSRTM with blasticidin 

(10μg/ml) and Y-27632 (10μM) for a single day then transitioned to MTeSRTM media only. After 

stable polyclonal populations of hiPSCs were established for each gRNA, cells were karyotyped 

by Cell Line Genetics (Libby et al., 2018)(Figure 3.2). Finally, knockdown efficiency was tested 

by the addition of doxycycline (2μM) to the culture media for 6 days and subsequent qPCR of 

mRNA levels of respective genes compared to time matched controls of the same line without 

CRISPRi induction. 

 

 

Figure 3.2: Karyotype of CRISPRi Gen2 CDH1 hiPS Cell line. (A) The Gen2 CDH1 hiPSC line was 
karyotypically normal.  
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3.2.3 Mixed Colony Generation 

Mixed population hiPSC colonies were generated using forced aggregation via PDMS 

microwells in a 24-well tissue culture plate (~975 400X400μm wells per well)(Hookway, Butts, 

Lee, Tang, & McDevitt, 2016; Libby et al., 2018). hiPSCs were dissociated and singularized using 

Accutase (STEMCELL Technologies) and subsequently counted using an Invitrogen Countess 

Automated Cell Counter (Thermofisher Scientific). The proper ratios of cells to create 100 cell 

aggregates were then seeded into PDMS wells in MTeSRTM with Y-27632 (10μM), centrifuged at 

200g for 5 minutes, and allowed to compact overnight (~18h). Aggregates were then washed out 

of the PDMS wells with fresh MTeSRTM and re-plated into a growth factor reduced matrigel (BD 

Biosciences) coated PerkinElmer CellCarrierTM-96 plates at ~10/aggregates/cm2 and fed daily 

with MTeSRTM. 

 

3.2.4 Immunofluorescence Staining and Imaging 

Human iPSCs were fixed for 25 minutes with 4% paraformaldehyde (VWR) and 

subsequently washed 3 times with PBS. Fixed colonies were simultaneously blocked and 

permeablized with a 1X PBS solution with 0.3% Triton X-100 (Sigma Aldrich) and 5% Normal 

Donkey Serum (Jackson Immunoresearch) for 1 hour at room temperature. Samples were then 

incubated with primary antibodies overnight at 4∘C in a 1X PBS solution with 1% Bovine serum 

albumin (Sigma Aldrich) and 0.3% Triton-X. Samples were washed 3 times and then incubated 

for 1 hour at room temperature with secondary antibodies. Primary antibodies used were: anti-

OCT4 (SantaCruz 1:400), anti-SOX2 (AbCAM 1:400), and anti-Ecadherin (AbCAM 1:200). All 

secondary antibodies were used at 1:1000 and purchased from Life Technologies. Images were 

taken in one focal plane on the apical surface of hiPSC colonies. 
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Mixed colonies were imaged using a Ziess Observer.Z1 (Ziess) and an InCell 

Analyzer2000 (GE Healthcare) with a 10X objective, and confocal images were obtained using a 

Zeiss LSM880 Confocal w/ Airyscan (Ziess) microscope with a 10X objective. Images were 

analyzed in ImageJ and in python using the skimage package (Walt et al., 2014). 

 

3.2.5 Protein Quantification 

Protein quantification for CDH1 KD was first quantified by immunofluorescence imaging 

of mixed colonies of WT-GFP hiPSCs and CDH1 KD colonies (Libby et al., 2018). Total 

fluorescence of CDH1 was measured by a python script that compared fluorescence of the CDH1 

channel normalized to the amount of WT cells vs KD cells (determined by GFP fluorescence)(Fig. 

3.3). This data was supplemented by Western blot data from the previously published KD of CDH1 

and ROCK1 in (Libby et al., 2018). 

 

3.2.6 mRNA quantification 

The relative gene expression following CRISPRi knockdown was previously reported in 

(Libby et al., 2018) and used as a reference to establish knockdown timing curves used in our in 

silico simulations. As previously reported (Libby et al., 2018), total mRNA isolation from 

dissociated hiPSCs was performed using a RNeasy Mini Kit (QIAGEN) according to 

manufacturer’s instructions and quantified with a Nanodrop 2000c Spectrometer (ThermoFisher). 

Obtained mRNA was then used to synthesize cDNA using an iScript cDNA Synthesis kit 

(BIORAD). A StepOnePlus Real-Time PCR system (Applied Biosciences) was used to quantify 

and detect gene expression by Fast SYBR Green Master Mix (ThermoFisher Scientific). Relative 

gene expression was determined by normalizing comparative threshold(Ct) values to the house 

keeping gene 18S rRNA. Gene expression was then displayed as a fold change comparison to  
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Figure 3.3: Knockdown of CDH1 quantified by immunofluorescence imaging (A) Mixed populations 
of wildtype (GFP+) and CDH1 KD cells (GFP-) were imaged daily and fluorescence of CDH1 levels was 
normalized to GFP fluorescence (n=10). 
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the day 0 control before the start of gene knockdown. The NCBI Primer-BLAST website was used 

to design the primers. Statistical analysis was conducted using a two-tailed unpaired t-test 

between any two groups (p<0.05, n=3). 

 

3.2.7 Time Lapse Imaging 

Mixed hiPSC colonies were imaged at the basal surface on optically clear PerkinElmer 

CellCarrierTM-96 plates on an inverted AxioObserver Z1 (Ziess) with an ORCA-Flash4.0 digital 

CMOS camera (Hamamatsu) with a 10X objective, where that single plane was used for 

parameter estimations. Using ZenPro software, colony locations were mapped and a single 

colony was imaged every 30 minutes over the course of 12 hours. Time lapse imaging occurred 

from hours 24-36 and from hours 96-108 after mixed colony plate down. The 12 hour series of 

images were then used to compare in silico to in vitro pattern formation and organization of cells. 

Additionally, mixed colonies of wildtype and CRISPRi-Gen1C without knockdown guides were 

imaged for 6 hours every 5 minutes with a 20X objective from hours 60-66 after plate down. These 

6 hour image series were used to generate velocity values as previously described in section 

3.2.13 (Velocity Characterization). 

 

3.2.8 Comparison of in vitro and in silico Spatial Patterns 

We used in vitro and in silico images to calculate the total number of cells in an image, the 

number of clusters, and the circularity of each cluster (Figure 3.4). Our work-flow for comparing 

patterns (Figure 3.5) involved splitting the images into single color RGB channels using the python 

module scikit-image (Walt et al., 2014). 

For in silico images each channel represented a different cell type. After splitting the image 

into color channels we detected the number of islands in a colony. For in silico images, cells were 
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separated by a black border so we sequentially masked out the border, dilated the image, 

removed small objects, then removed small holes in the mask with scikit-image. Contiguous 

regions (8-connected) were considered clusters. We then overlaid a mask of individual cells onto 

each cluster using a logical AND comparison of the image masks to determine if the cell cluster 

met our criteria to be considered an island. Using only the cell clusters we considered islands, we 

then calculated the number of cells per island and the circularity of the islands using the formula 

"#$%&'($#)* = 4- ∗ /$0(/20$#30)0$4. 

In contrast to the work-flow for simulation images, for in vitro images one channel 

represented all cell nuclei and the other channel represented cells stained for the protein CDH1, 

which delineated the CDH1 knockdown cells from the WT or ROCK1 knockdown cells. For the in 

vitro images, the CDH1 channel was thresholded and then dilated to create a CDH1+ cell mask 

followed by removal of small objects and holes to create a smooth segmentation. To generate the  

 

 

Figure 3.4: Characterizing in vitro morphological metrics. Violin Plots of single cell morphology (cell 
area, cell perimeter, cell circularity) for wildtype hPSCs , hPSC with CDH1 knocked down, and hPSC with 
ROCK1 knocked down in relation to the cell’s position in the colony (n = 55 central, 55 edge per cell type). 
Periphery of the colony was defined as within 5 cell lengths from the edge of the colony. Cells have distinct 
distributions for both morphological measurements. The area and perimeter measurements with respect to 
each cell line were used to fit our computational model.  
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Figure 3.5: Segmentation workflow. In silico vs. in vitro image segmentation work flow to quantify and 
compare spatial patterns. 

 

island masks, isolated CDH1 negative clusters were identified using the “label” function on the 

inverse of the CDH1+ mask. Individual cells were localized by detecting local maximum intensity 

in the DAPI channel images then the number of DAPI peaks per island were calculated using the 

logical AND of the island and CDH1 negative masks. Finally, we used the function "regionprops" 

to calculate the cluster area and perimeter for each island, which were then employed to calculate 

the island circularity with the above formula. 
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3.2.9 BMP4 differentiations 

Successfully patterned hiPSC colonies were differentiated for 48h in MTeSRTM cell culture 

medium (STEMCELL Technologies) supplemented with BMP4 (R&D Systems) at a 50 5M/ml 

concentration. The colonies were then fixed with 4% PFA for 25 min and subsequently analyzed. 

 

3.2.10 Cellular Potts Model Environment 

We modeled the mechanical properties of interacting human induced pluripotent stem 

cells (hiPSCs) with an extended Cellular Potts Model (CPM). In the model of mechanically driven 

self-organization in hiPSCs, cell—cell interaction mechanics were explained by four physical 

properties of cells. 1) cell-cell adhesion, 2) cortical tension, 3) conservation of volume, 4) and 

directionally persistent cell migration. Below, we describe how the extended CPM was used to 

recapitulate spatiotemporal patterns and predictively design de novo spatiotemporal behaviors. 

We defined the environment of a CPM simulation 6 on a 2D square lattice domain 6 ∈

ℤ94. Each lattice site, : = (3, =) ∈ 6, represented a coordinate location where 3 ∈ ℤ9 and = ∈ ℤ9 

were the horizontal and vertical coordinates of each lattice site respectively. The spatial resolution 

of each lattice site was 15m4 so that each square region of the grid is equal to 1 square 

micrometer. 

To represent the location of hiPSCs, each lattice site : was assigned a value ?@, 

conventionally called the spin or cell index (cell ID) of a site, from the set of cell indices A ∈ B 

given B = {1, . . . , F())} where F()) was the number of cells in the simulation at time ). Lattice sites 

that represent empty space where there is no hiPSC covering the lattice site were assigned a cell 

index of 0. In the CPM, a cell "H was composed of multiple lattice sites where each lattice cite 

represents a partial region of a cell or the surrounding media. A cell "H was defined as the set of 

lattice sites with the same cell ID "H = {: ∈ 6: ?@ = A}. Since a single cell was composed of 
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multiple lattice sites, the CPM was able to capture fluctuations in a cell’s shape with a granularity 

that is not possible with Type A cellular automaton or center-based models . Each cell was also 

assigned a cell type J to notate the type of genetic perturbation (i.e. knockdown) of that cell which 

determined its intracellular and extracellular behaviors. 

Next, we summarize two common metrics to describe cell morphology in a CPM 

simulation; cell area and cell membrane length. These metrics are important since their values in 

the model were directly measured from microscopy images. For a discussion of these metrics see 

. 

Given that each lattice site had an area of 15m, the area of a cell at time ) in the simulation was 

defined as the number of lattice sites encompassed by a cell:   

(H,K = |: ∈ 6: ?@ = A|,     (S1) 

where | ⋅ | denoted the cardinality of a set. The time varying membrane length of a cell NH,K, 

synonymously called the perimeter or surface length in other studies , was defined as the number 

of lattice interfaces bordering other cells or empty space: 

'H,K = 0.5 × ∑ S(A, ?@)TUKVWXYZV[{@,@\} ,    (S2) 

where :′ represented any of the lattice sites adjacent to :, (3 ± 1, =) ∨ (3, = ± 1) in 2D. The 

Kronecker symbol S was defined by S(&, `) = 1 if & = ` and S(&, `) = 0 if & ≠ `. An interface 

(:, :′) was a shared border between lattice sites. To avoid counting adjacent lattice sites inside a 

cell, the CPM only summed interfaces between lattice sites with different cell ID’s; when 

S(?@, ?@\) = 0. Put simply, we were measuring the perimeter of each stem cell. 
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3.2.11 Cellular Potts Model Dynamics 

The CPM uses a function called the Hamiltonian b to describe the energy (favorable 

behaviors) for any configuration of cells. Cell motility evolved by choosing a random lattice site :, 

a region of a cell-cell interface or a cell-media interface and attempted to copy it to a random 

neighboring lattice site :\. The Hamiltonian was defined as the sum of four constraints that 

represent four physical properties of simulated stem cells: 1) conservation of cell area, 2) locally 

polarized cell migration, 3) cell-cell adhesion, 4) and cell membrane length which commonly 

represents cortical tension. In the CPM, the goal was to minimize the Hamiltonian or minimize 

violations of the desired cellular behaviors. Therefore, each constraint calculated a decrease 

(reward) or increase (penalty) in the configuration energy due the collective properties of cells in 

the simulation. 

When a change in a lattice site was proposed, this affects b. If the proposed change was 

accepted, the change in b was defined as △ b. A proposed change for a cell’s lattice site was 

accepted with the following probability: 

if △ b < −f, 2(? → ?′) = 1    (S3) 

h)ℎ0$j#k0, 2(? → ?′) = 0l(△m9n)/o,   (S4) 

where the yield f = 0.1 and the temperature p = 10. Simply, if the proposed change in local cell 

position resulted in less energy, then the change was accepted. If the proposed update would 

have resulted in greater energy (qb), then the change was only accepted with a very low 

probability. In this way, complex behaviors such as preferential cell-cell adhesions, cortical 

tension, and cell migration, are represented by a score and a weight, where the score represents 

a reward or penalty depending on the divergence of a cell from its target behavior, while the weight 

represents the relative importance of the respective cell behavior. 
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CPM Configuration Energy: The free energy for a configuration of cells was defined as the sum 

of four constraints: local cell-cell/cell-ECM adhesion, cell area conservation, cell membrane 

length, and locally polarized cell migration: 

b = bYrsV[TtU + bYWVY + bvVvwWYUVxVUyKs + bvTyWYKTtU  (S5) 

For a configuration of cells, the free energy due to cell adhesion was 

   bYrsV[TtU = ∑ z{(|}),{(|}~)(1 − S(?@, ?@\))H∈� ,   (S6) 

where z{(|}),{(|}~) represented the cell adhesion strength between lattice sites ?@ and ?@\ that was 

defined by their cell type J(?@\). (1 − S|},|}~) restricted these calculations to interfaces between 

cells instead of all lattice sites and improved the efficiency of the simulation. Although not explicit 

in our notation, the cell adhesion strength was a time-dependent function controlled by protein 

expression to mimic changes in cell behavior with inducible gene knockdown. The energy due to 

cells resisting changes from their resting area was defined as 

bYWVY = ∑ ÄY((H,K − /H,K)4H∈� ,    (S7) 

where /H,K represented the target area of a cell, (H,K represented the current area of a cell, and 

ÄY was the relative strength of area conservation term. 

The cortical tension constraint was defined as: 

bvVvwWYUVxVUyKs = ∑ ÄÅ('H,K − ÇH,K)4H∈� ,   (S8) 

where 'H,K represented the current membrane length of a cell at time ), ÇH,K was the target 

membrane length, and ÄÅ was the strength of the cortical tension constraint. As a proxy for 

increasing or decreasing the cell membrane length, the Equivalent Circular Perimeter (ECP) was 

used to set the membrane length for a cell given its current area. The ECP of a non-circular 2D 

object was defined as the perimeter of a circle with equivalent surface area as the non-circular 

object: 
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     É"2(A) = 2	Ü(H,K-.     

The target membrane length was calculated using a membrane length proportionality constant: 

ÇH,K = $HÉ"2(A),    (S9) 

where $H was the membrane proportionality constant. To find $H the membrane length and area 

of cells were measured and divided by the ECP of the cell. This ratio of membrane length to ECP 

was equal to the membrane proportionality constant $H. The ECP allowed us to calculate the 

membrane length of a cell of any area that would have a comparable shape to empirical 

measurements. 

To capture directionally persistent cell migration, we modeled "polarized cell migration" as 

the tendency of cells to bias their movement in the same direction as their previous direction of 

movement as described in . Cells had a target direction )⃗ based on previous movement where 

CPM updates in this direction were preferred (they decreased the energy in b). For each copy 

attempt : → :′, the cell center was displaced in direction k′àà⃗ . The change in energy due to migration 

in this direction was defined as: 

bvTyWYKTtU = −5(H()⃗ ⋅ k′àà⃗ ),    (S10) 

where 5 was the strength of cell migration, (H,K was the cell area at time ), )⃗ was a unit vector 

giving the target direction, and k⃗ was a unit vector giving the current direction of a stem cell if the 

CPM update (: → :′) was to be accepted. The function was multiplied by -1 since updates in the 

direction of )⃗ have a dot product that approached +1 as the angle between )⃗ and k⃗ approached 

zero. Multiplying by -1 resulted in decreased configuration energy for cells moving in the same 

direction as the target direction vector. 

For every MCS, the target direction at any time ()Kààà⃗ ) was updated continuously given the 

displacement of a cell’s centroid wqâ = äã − äãlå then transformed into a unit vector k⃗ =
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qâ/|qâ|. This target direction included how ’decay-time’ ç of the previous direction and the 

current cell displacements contributed to the current polarity of the cell: 

)Kààà⃗ = (1 − ç))Kléààààààà⃗ + çk⃗.    (S11) 

 

3.2.12 Physical Units and Other Cellular Phenomena of Cellular Potts Model 

Cell division was symmetrical (the parent cell divided into 2 equally sized daughter cells), 

and the timing of cell division was asynchronous. This was achieved by assigning a uniformly 

distributed "division counter" èZ for each cell at ) = 0 between 0 and the division time èK. This 

counter was incremented at each time step of the simulation, and a cell would divide when èZ =

èK. èZ was then reset to 0 for both daughter cells. Cell division was assumed to be asynchronous 

amongst the population, and cell division times specific to each type of knockdown were 

incorporated into the model to provide an accurate depiction of population growth kinetics. Cell 

division times were calculated from in vitro doubling rates and modeled to be 18 hours for CDH1(-

) cells, and 20 hours for all other cells. 

 

3.2.13 Model Fitting to Empirical Data  

In the main text we provide a brief explanation of the characterization experiments to fit 

our computational model. Here we describe the mathematical transformations, mapping 

functions, and model parameters associated with these characterization experiments. The 

parameters fit during this process are summarized in Table 3.1. 

Morphology Characterization: Three types of colonies were characterized; purely wildtype, 

wildtype and CDH1 knockdown in a 1:1 ratio, and wildtype:ROCK1 knockdown in a 1:1 ratio. We 

measured the cell area, perimeter, and ECP at the center and periphery of colonies (Figure 3.4). 

The median cell area was used to set the target cell area (/H,K) in our simulations (Figure 3.4, 
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Table 3.1). The median membrane proportionality constant ($H = perimeter / ECP) was used to 

set the target membrane length ÇH,K in our simulations (Figure 3.4, Table 3.2). 

 
Table 3.1 : List of design parameters that map to experimental perturbations. CL1 and CL2 
are chosen from our library of mechanically tunable cell lines: CDH1-0, CDH1-70, CDH1-75, 
CDH1-90, ROCK1-20, Wildtype. The number following the cell line indicates the relative 
expression of the gene in comparison to WT. The knockdown times of CL1 and CL2 range from 
120 hours before co-culture to 120 hours after co-culture in 24 hour increments. Finally, the 
abundance of CL2 cells in relation to CL1 can be vary from 5% to 95% of the colony in increments 
of 5%. 
 
Design Parameter Parameter Domain 
Cell Line 1 (CL1) {CDH1-0,CDH1-70,CDH1-75,CDH1-90,ROCK1-20, WT} 
Cell Line 2 (CL2) {CDH1-0,CDH1-70,CDH1-75,CDH1-90,ROCK1-20, WT} 
Knockdown Time of CL1 [-120 hours, 120 hours] 
Knockdown Time of CL2 [-120 hours, 120 hours] 
Abundance of CL2 [5%, 95%] 

 
 
 
Table 3.2: Model fitting parameters for the Space vs. Time, Protein Expression vs. Time, 
and the Protein Expression vs. Space characterizations. The partial knockdowns of CDH1 
(Figure 3.6) used a response curve inferred to follow the same trend as the complete CDH1 
knockdown (Figure 3.7F).*= since these knockdowns were different efficiencies of the CDH1 
response curve the adhesion strength and cortical tension was inferred from the complete 
knockdown. 
 
Morphology Characterization Morphological Characterization 
Empirical Measurement Model Parameter Definition 
Median cell area A(k,t) Target area of a cell. 
Median cell membrane length;ratio of cell 
perimeter divided by Equivalent Circular 
Perimeter 

r(k,t) membrane length proportionality 
constant 

Space vs Time (Velocity 
Characterization) 

Velocity Characterization 

Empirical Measurement Model Parameter Definition 
median velocity (0.29 um/minute) MCS monte carlo step size 

Empirical Measurement Model Parameter Definition 
median velocity (0.29 um/minute) J(WT,WT) adhesion strength 
  u strength of self-propulsion 

  lambda_l strength of cortical tension 

  D decay of velocity direction bias 
Protein Expression vs Time (Temporal 
CRISPRi Knockdown Characterization) 

Knockdown Characterization 

Empirical Measurement Model Parameter Definition 
median protein expression after knockdown K_m repression coefficient 
median protein expression after knockdown n hill coefficient 
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Protein Expression vs Space (Spatial 
Pattern Characterization) 

Spatial Pattern Characterization 

Empirical Measurement Model Parameter Definition 
spatial organization from knockdown of 
CDH1 

J(a,a) adhesion energy 

spatial organization from knockdown of 
ROCK1 

lambda_l strength of cortical tension 

 

Morphology Characterization    
Empirical Measurement Interpretation in the CPM 
Median cell area Lattice copy attempts to grow or shrink a cell to its target area are 

favorable 
Median cell membrane length;ratio of cell 
perimeter divided by Equivalent Circular 
Perimeter 

Lattice copy attempts to grow or shrink the cell perimeter to its 
target size are favorable. Decreasing the value r(k,t) decreases 
the cell  membrane length. Since there is less membrane to 
generate cell protrusions, cell migration also decreases. 

Space vs Time (Velocity Characterization)  
Empirical Measurement   
median velocity (0.29 um/minute) Interpretation in the CPM 

Empirical Measurement The time in hours for each lattice site of a membrane interface 
interface to make one copy attempt. This parameter relates to the 
maximum migration velocity 

median velocity (0.29 um/minute) Interpretation in the CPM 
  adhesion energy per unit interface between wildtype stem cells. 

  Weights how favorable cell migration is in comparison to 
maintaining the target cell area, membrane length, or maintaining 
cell adhesion contacts. 

  regulates the ability of the cell membrane make protrusions and 
retraction. This affects the cell migration velocity 

 The decay of the directional cell migration bias 

Protein Expression vs Time (Temporal CRISPRi Knockdown Characterization) 
  
Empirical Measurement Interpretation in the CPM 
median protein expression after 
knockdown 

time (hours) when expression reaches half maximal expression 

median protein expression after 
knockdown 

steepness of Hill Function 

  

Protein Expression vs Space (Spatial Pattern Characterization) 

Empirical Measurement Interpretation in the CPM 

spatial organization from knockdown of 
CDH1 

steady state adhesion energy per unit interface between like stem 
cells after knockdown 

spatial organization from knockdown of 
ROCK1 

regulates the ability of the cell membrane make protrusions and 
retraction. This affects the cell migration velocity 
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Morphology Characterization 
  
Empirical Measurement 
(center/edge) 

Wildtype  ROCK1-
20 

CDH1-0 CDH1-70 CDH1-75 CDH1-90 

Median cell area 137.40/ 
177.17 

169.94/ 
223.42 

121.13/2
23.42 

121.13/ 
223.42 

121.13/ 
223.42 

121.13/ 
223.42 

Median cell membrane 
length;ratio of cell perimeter 
divided by Equivalent Circular 
Perimeter 

1.12/ 
1.32 

1.17/ 
1.41 

1.10/ 
1.23 

1.10/ 
1.23 

1.10/ 
1.23 

1.10/ 
1.23 

Space vs Time (Velocity Characterization) 
  

     

Empirical Measurement             
median velocity (0.29 
um/minute) 

Global Parameter       

Empirical Measurement 0.03      
median velocity (0.29 
um/minute) 

Wildtype  ROCK1-
20 

CDH1-0 CDH1-70 CDH1-75 CDH1-90 

  -100 - - - - - 

  6 6 6 6 6 6 

  0.75 - - - - - 

 0.003 0.003 0.003 0.003 0.003 0.003 

Protein Expression vs Time (Temporal CRISPRi Knockdown Characterization) 
 
Empirical Measurement Wildtype  ROCK1-

20 
CDH1-0 CDH1-70 CDH1-75 CDH1-90 

median protein expression after 
knockdown 

- 46.78 48.28 48.28 48.28 48.28 

median protein expression after 
knockdown 

- 5 5 5 5 5 

       

Protein Expression vs Space (Spatial Pattern Characterization)        

Empirical Measurement Wildtype  ROCK1-
20 

CDH1-0 CDH1-70 CDH1-75 CDH1-90 

spatial organization from 
knockdown of CDH1 

-100 -95 -50 *-90 *-87.5 *-95 

spatial organization from 
knockdown of ROCK1 

0.75 2 0.75 0.75 0.75 0.75 

       

Velocity Characterization (Space vs. Time): We characterized space vs. time by measuring the 

velocity (change in distance over time) of wildtype cells in dense colonies. Mixed aggregates of 

90% WT and 10% CRISPRi cells without a targeting guide were generated. With the addition of 

doxycycline (DOX) to the cell culture media, the CRISPRi no guide population expressed a 

cytoplasmic mCherry marker which allowed individual cells to be distinguished from the untagged 
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WT background (Figure 3.7B). 24 colonies were imaged for 6 hours at 5 minutes/image at 20X 

magnification creating a time series of 73 frames. Each frame was individually normalized and 

thresholded using non-local means. Cell migration tracks were generated by following matching 

contours between frames where matching contours share at least ten pixels overlap. We used 

watershed segmentation to separate adjacent cells. Instantaneous frame to frame velocity was 

calculated as 

`TU[K = [(:Zv,4 − :Zv,é)/q), (*Zv,4 − *Zv,é)/q)],  (S12) 

where :Zv,4 was the center of mass of each segmented cell body at the currently observed frame 

and :Zv,é was the center of mass of each segmented cell body at the previous frame, and q) was 

5 minutes. Taking the average magnitude of the per-cell instantaneous velocity over 24 colonies 

gave a median velocity of 0.29 5m/minute. 

We then ran parameter sweeps to fit model parameters that affect cell migration (Table 3.2): 

• MCS - copy attempts per simulation hour. 

• zío,ío - adhesion energy or reward per micrometer of cell border between wildtype cells. 

• 5 - strength of self-propulsion 

• ÄÅ - strength of cortical tension. 

We chose the parameter combination where the simulation velocity distribution matched the 

empirical velocity distribution and remained a dense colony (0.34 um/minute). It is important to 

note that we chose optimal model parameters using the distribution of cell velocities and not the 

median cell velocity. We ran 24 simulations to mimic the experimental setup of the in vitro 

characterization. Using the Mann Whitney U test, there was no significant difference in the 

distribution of cell velocities; p-value threshold of 0.05 and p-value for 24 in silico colonies was 

0.051. After fitting the model to empirical data of cell morphology and velocity, we could 

recapitulate the cell morphology and collective cell migration of wildtype stem cell colonies without 

genetic modulation. 
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Temporal Knockdown Characterization (Protein Expression vs. Time) - CDH1: We characterized 

the time dependent knockdown of CDH1 expression which was responsible for changes in cell-

cell adhesion (z) . CDH1 was knocked down using CRISPRi, and the relative expression was 

measured for 6 consecutive days. The relative mRNA expression of CDH1 was quantified by 

quantitative PCR (n=3) and protein expression of CDH1 was measured by immuno-fluorescence 

microscopy (n=10), which displayed a 24 hour delay from the mRNA knockdown. The data was 

min-max normalized to a domain of [0,1] using the median expression for each day: 

*()H)′ = (*()H) − *vTU)/(*vY@ − *vTU),  (S13) 

where )H was the time since the knockdown, *()H) was the expression at A hours after knockdown, 

*vY@ was the max expression from all days, and *vTU was the minimum expression over all days. 

It is important to note that )H is the time since knockdown and ) is time since the initiation of co-

culture experiments. Using least squares optimization ( Python scipy.optimize.curve_fit function), 

the Bv (repression coefficient) and = (Hill coefficient) of the Hill Function for repression were fit to 

the normalized median expression to create a response function using least squares optimization: 

ì()) = 1/(1 + (Bv/)H)U),   (S14) 

where Bv was the time half expression occurs, and n was the hill co-efficient. Functions were fit 

to the normalized median expression (per day) to create a time-dependent response function for 

CDH1 knocked down to 90%, 75%,70%, and 2% of the original mRNA expression (Figure 3.7F, 

Figure 3.6). This range of knockdown efficiencies allowed us to computationally model how 

differing levels of CDH1 expression could impact spatial patterning. Given value for the 

parameters Av and = (Table 3.2) we now had a continuous response function for the expression 

of CDH1 given a knockdown time that we could modulate. It is important to note that normalizing 

the relative expression to a domain of [0,1] allows us to stretch the response function to different 

parameter ranges in the spatial pattern characterization experiments. 
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Figure 3.6: CRISPRi cell line mRNA knockdowns (A) Percent knockdown of either CDH1 or ROCK1 
when compared to wildtype control populations on day six of DOX treatment (n=3). 
 
 

Temporal Knockdown Characterization (Protein Expression vs. Time) - ROCK1: Using the same 

approach as the CDH1 knockdown, we created a Hill response function for ROCK1 knocked down 

to 20% mRNA expression. ROCK expression is represented by the strength of cortical tension 

(ÄÅ) parameter in our computational model. We assumed mRNA expression changed 24 hours 

ahead of protein expression, so we shifted the time axis forward by one day to account for the 

delay. The median expression for each day was min-max normalized to a domain of [0,1] 

(Equation S13). The Bv(repression coefficient) and = (Hill coefficient) of the hill function for 

repression were fit to the normalized median expression to create a response function using least 

squares optimization (Equation S14, Figure 3.7,Table 3.2). Due to the delay in protein knockdown 

compared to mRNA levels, the Hill functions were shifted by 24 hours to account for the delay in 

protein loss (Figure 3.7G), allowing us to model the average change in ROCK1 protein expression 

for individual cells over time. 

Spatial Pattern Characterization (Protein Expression vs. Space): Given the previous 

characterization experiments, we were able to model cell proliferation, cell morphology, wildtype 
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cell migration, and temporal changes in the expression of CDH1 and ROCK1. However, the time-

dependent modulation of protein express had to be mapped to changes in multi-cellular self-

organization. To model the time-dependent modulation of cell-cell adhesion via CDH1 and cortical 

tension via ROCK1, fluorescent microscopy images were collected 96 hours after mixing either 

ROCK1 KD or CDH1 KD cells with wildtype hiPSCs. Then in silico parameter sweeps were run 

overlaying a range of parameters controlling the strength of adhesion or membrane stiffness. 

These two parameters rescaled their respective Hill Functions and produced a range of spatial 

patterns due to progressively weaker cell-cell adhesion or progressively stiffer cell membrane 

parameter values. We then conducted double-blind experiments to fix adhesion strength and 

membrane stiffness parameters which most closely matched in vitro spatial patterning for CDH1 

and ROCK1 knockdowns respectively (Figure 3.7H-I). 

ì′()) = *HUtZHrtîU + (*îTÅrKïñV − *HUtZHrtîU) ∗ (1 + (Bv/))U),  (S15) 

where *HUtZHrtîU was the adhesion strength (z) or target membrane length (ÇH, )) of knockdown 

cell lines in the model, and *îTÅrKïñV was the adhesion strength (z) or target membrane length of 

wildtype cells in the model. In Equation 15, we scaled the normalized response function from [0,1] 

to the range of model parameters [*HUtZHrtîU, *îTÅrKïñV]. Given the characterization experiments 

of cell morphology, cell migration velocity, time-dependent modulation of cell mechanics, and the 

resulting spatial organization, the computational model was able to recapitulate the spatial 

patterning due to the CDH1 and ROCK1 knockdowns. 

 

3.2.14 TSSL Scoring and Pattern Optimization 

In order to automatically compare patterns produced by the model from different 

parameterizations and determine optimal parameter values, we needed a measure capable of 
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quantifying how close any given pattern was to the desired one. A very effective algorithm was 

proposed in for this purpose. 

Quad-Tree Representation of an Image: Consider an RGB representation of an 3 × = image as 

the matrix / where the element (Tó = ⟨(Tó
(W), (Tó

(y), (Tó
(w)⟩ is the normalized RGB values for the pixel 

located on the #th row and öth column of the image. Thus, 

0 ≤ (Tó
(Z) ≤ 1 for % ∈ {$, ú, ù}. 

Given a matrix /, /[#[, #V; ö[, öV] was used to denote the submatrix created by selecting 

rows with indices from #[ to #V and columns from ö[ to öV. Following, we represented the matrix / 

as a quad-tree. A quad-tree ü = (†, °) is a quaternary tree representation of matrix / where each 

vertex ` ∈ † represents a submatrix of / and the relation ° ⊂ † × † defines four children for each 

vertex that is not a leaf. 

Figure 3.8Ai-ii demonstrates how a quad-tree is built from a matrix. In this figure, we label 

each edge in the quad-tree with the direction of the sub-matrix represented by the child: north 

west (F£), north east (FÉ), south west (6£), and south east (6É). In Figure 3.8Aii: 

• `§ represents the complete matrix / at quadrant level 1. 

• `é represents the first quadrant of level 2 or /[1, ⌊3/2⌋; 1, ⌊=/2⌋], where 3 is the total number 

of rows and = is the total number of columns in /. 

• `4 represents /[⌊3/2⌋ + 1,3; 1, ⌊=/2⌋]. 

• `ß represents /[⌊3/2⌋ + 1,3; ⌊=/2⌋ + 1, =]. 

• `® represents /[1, ⌊3/2⌋; ⌊=/2⌋ + 1, =]. 

• `© represents represents the first quadrant of level 3 or /[1, ⌊3/4⌋; 1, ⌊=/4⌋], 

• etc. 

We used the procedure described in (Briers et al., 2016) to construct quad-trees, which is 

slightly different from (Bartocci et al., 2016). The assumption was made that / has a size of 
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2H × 2H so that each submatrix could be divided into four equal-sized partitions. Here, we relaxed 

this requirement by allowing non-equal submatrices to be children of a node. Furthermore, defined 

a leaf as a vertex of the quad-tree for which all the elements of a submatrix had the same values. 

While this approach works perfectly for the 32 × 32 network that is studied in that paper, it can be 

problematic for larger images since the number of vertices in a quad-tree grows exponentially as 

more levels are added to it. In this paper, we constructed quad-trees with a fixed depth of 5, 

regardless of the size and other characteristics of /. 

The representation function 5(Z)(`): † → [0, ù] × [0, ù] was defined for sub-matrix /[#[, #V; ö[, öV] 

represented by vertex ` ∈ † of the quad-tree ü = (†, °) as follows : 

5(Z)(`) = (5é
(Z), 54

(Z))

5é
(Z) = é

(T´lT¨9é)(ó´ló¨9é)
∑ (Tó

(Z)
T,ó∈{T¨,⋯,T´}×{ó¨,⋯,ó´} ,

54
(Z) = é

(T´lT¨9é)(ó´ló¨9é)
∑ (T,ó∈{T¨,⋯,T´}×{ó¨,⋯,ó´} (Tó

(Z) − 5é
(Z))4,

  (S16) 

where % ∈ {$, ú, ù} was an RGB color. The function 5(Z) provided the mean value and variance for 

the concentration of RGB colors in a particular region of the space represented by the vertex `. 

Quad-trees can be interpreted as multi resolution representation of images, as the nodes 

that appear in deeper levels provide statistical information for higher resolutions and nodes that 

appear on higher levels correspond to more global characteristics of an image. 

Tree Spatial Superposition Logic: In, a formal logic, called tree spatial superposition logic (TSSL), 

was introduced. TSSL is capable of formally specifying global patterns in a network of locally 

interacting agents. The authors showed that this logic is sophisticated enough to describe 

complicated patterns such as Turing patterns in biochemical reaction-diffusion systems. In this 

paper, we used this logic to express various patterns that are studied here (Figure 3.9). First, we 

present a brief introduction to TSSL. The reader can refer to  for a thorough explanation of this 

logic, definitions of syntax and semantics, and its properties. 
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A TSSL formula is recursively constructed using the following: 

• Linear predicates over valuations for the representation function (Equation S16). For 

example: 5é
(W) > 0.8 or 5é

(w) < 0.5. 

• Boolean operators, such as ¬±, ±é ∧ ±4, and ±é ∨ ±4. 

• Spatial operators: ∃ ○µ ±, ∀ ○µ ±, where ∑ is a nonempty subset of the set of directions 

{F£,FÉ, 6£, 6É}. 

The spatial operators ∃ ○µ  and ∀ ○µ  are read as there exists in directions ∑ next and for all 

directions ∑ next, respectively. ∃ ○µ ± is interpreted as follows: For at least one of the nodes 

located in the next level of the quad-tree labeled with one of the directions in ∑, ± must be 

satisfied. ∀ ○µ ± specifies that for all such nodes ± must be satisfied. We demonstrate how TSSL 

can be used to express spatial patterns through an example. 

Consider a 4 × 4 pattern as illustrated in Figure 3.8A. This pattern can be expressed as 

the following TSSL formula ∏. A portion of the quad-tree satisfying this formula is shown in Figure 

3.8Aii. 

∏ =
 ∀ ○{∫ª,ºí,ºª} [∀ ○{∫í,ºª} ∏white ∧ ∀ ○{∫ª,ºí} ∏colored]⋀
 ∀ ○∫í [∀ ○∫í ∏white ∧ ∀ ○{∫ª,ºí} ∏blue ∧
     ∀ ○ºª (∀ ○{∫í,ºª} ∏white ∧ ∀ ○{∫ª,ºí} ∏blue)],

  (S17) 

where 

∏white = 5é
(W) = 1 ∧ 5é

(y) = 1 ∧ 5é
(w) = 1,

∏colored = 5é
(W) < 1 ∨ 5é

(y) < 1 ∨ 5é
(w) < 1,

∏blue = 5é
(W) = 0 ∧ 5é

(y) = 0 ∧ 5é
(w) ≥ 0.5.

 

TSSL formulas can be viewed as formal pattern descriptors or pattern classifiers. For instance, 

the formula of Equation S17 accepts a quad-tree derived from a checkerboard pattern and rejects 

any other quad-tree. Although TSSL is capable of describing complicated spatial behaviors in an 

image, it is difficult in general to write a formula that describes a complex pattern. In, the authors 
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proposed to use machine learning techniques in order to find such a formula from a given set of 

positive and negative examples. 

Assume a set of positive images (ø9), illustrating a desirable pattern, and a set of negative 

images (øl), in which the desirable pattern was not present, were available. We created a set ℒ 

from these images as: 

ℒ = {(üï,+) ∣ * ∈ ø9} ∪ {(üï,−) ∣ * ∈ øl}, 

where üï was the quad-tree generated from image *. The set ℒ was separated into a learning 

set ℒx (used to train a classifier) and a testing set ℒo (used to test the classifier obtained from ℒx) 

such that ℒ = ℒx ∪ ℒo. A rules-based learner called RIPPER was used to learn a set of 

classification rules from ℒx. Each of these rules was in the form: 

°T: "T ⇒ Ç(ù0'T, 

where "T was a Boolean formula over linear predicates over the representation values of the 

nodes of a quad-tree and Ç(ù0'T ∈ {+,−}. We used the Weka workbench for implementing 

RIPPER. Each "T was then translated into an equivalent TSSL formula ƒT. Since the classification 

rules were interpreted as nested if-else statements, the TSSL formula equivalent to the entire set 

of classification rules corresponding to the positive class was written as: 

ƒ9 = ⋁ ∆ƒó ∧ ⋀ ¬T«é,⋯,ólé ƒT»ó∈… ,   (S18) 

where °9 was the set of indices of rules labeled positive. 

Quantitative Robustness: A TSSL formula can be created for any desired spatial pattern by 

following the procedure described in the previous section. If this formula is evaluated as true for 

a given image, it means that the image contains the required pattern. On the other hand, a false 

evaluation of the formula means that the pattern does not exist. However, this qualitative 

evaluation of TSSL descriptors does not provide any information about how strongly an image 

demonstrates the required pattern. 
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In order to provide information about how strongly an image satisfies or violates the given 

property, TSSL was also equipped with a recursive quantitative semantics definition which 

assigned a real value to a TSSL formula ± with respect to vertex ` ∈ † of quad-tree ü = (†, °); 

denoted by À(±, `). The TSSL quantitative valuation was derived recursively as follows: 

• À(5T
(Z) ≥ è, `) = 5T

(Z)(`) − è. 

• À(5T
(Z) ≤ è, `) = è − 5T

(Z)(`). 

• À(¬±, `) = −À(±, `). 

• À(±é ∧ ±4, `) = min(À(±é, `), À(±4, `)). 

• À(±é ∨ ±4, `) = max(À(±é, `), À(±4, `)). 

• À(∃ ○µ ±, `) = 0.25max
w∈µ

(À(±, `w)) where `w was the child vertex of ` with label ù. 

• À(∀ ○µ ±, `) = 0.25min
w∈µ

(À(±, `w)) where `w was the child vertex of ` with label ù. 

It was proven in (Bartocci et al., 2016) that TSSL quantitative semantics are sound. In other 

words, a quad-tree ü satisfied a formula ± (ü ⊨ ±) if À(±, `§) > 0 where `§ was the root of ü, and 

ü violated ± (ü ⊨ ±)  if À(±, `§) < 0. Therefore, the problem of checking whether an image 

contains a pattern expressed as a TSSL formula was reduced to computing its quantitative 

valuation À(±, `§). Moreover, the absolute value of À(±, `§) was viewed as a measure of how 

strongly ± was satisfied (or violated) by ü. Hence, the quantitative valuation of a formula with 

respect to a quad-tree was called its robustness. This property is demonstrated in Figure 3.8. 

Particle Swarm Optimization: Consider an agent-based model with a set of parameters N ∈ Õ ⊂

ℝ∫œ, where Õ was the possible set of parameter ranges and Fñ was the total number of 

parameters. For instance, in the model described in Section 3.2.10-13, we had Fñ = 5 parameters 

with ranges specified in Table 3.1. 

The output of the model was a sequence of p images where /[)] was the image 

corresponding to time step ) ∈ {0,1, … , p} and p was the total duration of simulation. Our goal was 
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to determine parameter values that result in emergence of a required pattern in the sequence of 

images derived from the model. Recall that we could specify the pattern using a TSSL formula 

ƒPattern. Moreover, each image /[)] could be translated into a corresponding quad-tree ü[)] with 

root `§[)]. Therefore, for a fixed parameterization N, we could quantify the resulting sequence of 

images with 6(N) using the following equation: 

6(N) = max
§—K—o

À(ƒPattern, `§[)]),    (S19) 

where À was the TSSL robustness as described in the previous section. Note that since the model 

was stochastic in nature, 6(N) was a random variable and would have a different value every time 

a sample simulation was produced using the model with the parameters N. If 6(N) > 0, there exists 

at least one image in that particular sequence for which the TSSL robustness was positive and 

the pattern was present. On the other hand, the pattern had not emerged in the sample simulation 

if 6(N) < 0. We called 6(2) the robustness degree for parametrization N. Now, the problem 

became finding the parameterization N∗ that maximized the score 6(N). Since 6(N) was a random 

variable, we choose to maximize its expected value: 

N∗ = argmax
ñ∈“

”(6(N)),    (S20) 

which means that we were looking for the parameterization N∗ that on average produced patterns 

with highest possible robustness score. If we simulated the model = times from parameters N, the 

expected value could be approximated with the sample mean: 

”(6(N)) ≈ 6’(N) = é
U
∑ 6TU
T«é (N),   (S21) 

where 6T(N) was the robustness score for parameters N in the #th simulation. In general, a large 

sample is needed to achieve an accurate approximation. however, it was shown in that in practice, 

a relatively small = suffices for the purpose of optimization in Equation S20. In this paper, we 

computed the average robustness for three sample simulations in every case (= = 3). 
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Many optimization methods can be used to solve this optimization problem. Inspired by, we 

employed particle swarm optimization (PSO) to solve this problem. PSO is a heuristic solution to 

unconstrained optimization problems that is capable of solving problems with irregular search 

spaces, is easily distributable, and does not require the objective function to be differentiable. 

The PSO algorithm worked as follows: The procedure began by randomly initializing a set 

of ÷ particles with positions ◊T ∈ Õ and velocities ◊′T. The position of a particle was a candidate 

solution to Equation S20, and the velocity was a search direction from the current solution. Next, 

= simulations were produced and = sequences of quad-trees ü[)](◊T) were created for each 

particle and the average robustness degree 6’(◊T) was evaluated for each set of simulations 

represented by particle ◊T. The position of the #th particle that had performed best so far was 

stored in the variable ◊T∗, and the optimal value of ◊T∗ was denoted by ◊∗. After all particles had 

been evaluated, the positions and velocities were updated according to the following relations: 

◊′T ← £◊T + Ÿ($ñ)(◊T∗ − ◊T) + Ÿ($y)(◊∗ − ◊T)
◊T ← ◊T + ◊′T,

    (S22) 

where Ÿ($T) was a random number uniformly distributed over [0, $T] and the parameters £ ∈

ℝ, $ñ, $y are tuned by the user. This iterative process continued until a termination criterion was 

met. 

If 6’(N∗) was positive or negative but sufficiently close to zero, we had found the optimal 

parameterization of the model for the required pattern. This occurred for the Bullseye and Multi-

Islands patterns. The optimal parameterization is shown in Figure 3.8Ci-ii. On the other hand, 

6(N∗) ≪ 0 indicated that even for the best possible parameterization of the model, the required 

pattern did not emerge, meaning that the model was not capable of producing that pattern at all. 

This occurred for the Janus (Left-Right) pattern (Figure 3.8Ciii). 

Figure 3.10A demonstrates two sample simulations, one for the Bullseye pattern and one 

for the Multi-Islands pattern. Figure 3.10B shows how the corresponding TSSL scores evolve over 
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time for each simulation. It is seen in this figure that the scores gradually improve until at some 

points the desired patterns are formed. 

 

3.2.15 Quantification and Statistical Analysis 

Mann-Whitney U-tests were used to compare in vitro and in silico experimental 

populations in Figure 3.7. Unpaired T-tests with Welch’s correction were used to compare in vitro 

and in silico experimental populations in Figure 3.10. Error bars depicted in graphical 

representations signify 1 standard deviation unless otherwise specified in the figure legend. For 

each statistical test the number of replicates is described in the figure legend. Throughout the 

manuscript the symbol * signifies statistical significance at the 0.05 level unless otherwise 

specified. 

 

3.2.16 Software 

The mathematical model was implemented in Morpheus, v1.9.1. Model fitting of single-

cell morphology, cell velocities, temporal knockdown characterizations, and spatial pattern 

characterizations were performed with custom Python code (modules: scipy, numpy, matplotlib, 

pandas, seaborn, scikit-image) (Jones, Oliphant, & Peterson, 2001). Image preprocessing, 

segmentation, and quantification of cell and colony morphology was performed with custom 

Python code (modules: numpy, scipy, scikit-image). Pattern classifications and specification 

mining was performed using the data mining software WEKA. Quantification of pattern similarity 

and pattern optimization were performed with TSSL (MATLAB + Java) which can be accessed 

from: https://github.com/dmarcbriers/Multicellular-Pattern-Synthesis. 
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3.2.17 Data Availability 

All data is available in the main text or supplementary materials. A GitHub repository of 

analysis code can be found at: https://github.com/dmarcbriers/Multicellular-Pattern-Synthesis. 

3.3 Results 

3.3.1 Pattern Synthesis: in silico prediction and automated discovery of spatial behaviors 

To observe multicellular pattern formation, we used a previously established hiPSC line 

with a DOX inducible CRISPRi system, allowing for temporal gene knockdown (KD) wherein 

mixed populations establish KD in only a portion of the colony, creating a symmetry breaking 

event and subsequent pattern formation (Libby et al. 2018; Mandegar et al. 2016). However, the 

generation of new patterns in a predictable manner requires the ability to test large numbers of 

experimental conditions that would require a massive amount of time and manual effort to 

comprehensively test the vast number of experimental parameters possible. For example, to 

experimentally explore the parameter space of a single gene knockdown where the following 

parameters are varied: knockdown timing (3 timing schemes tested), duration of experiment (5 

durations tested), degree of gene knockdown (5 knockdown levels tested), and proportion of 

population that is knocked down (9 percentages tested), one would need to perform 675 total 

experiments. Given the biological variability we observe within our in vitro experiments (Figure 

3.10), a power analysis suggests that a minimum of approximately 13 biological replicates would 

be necessary to detect significant differences between individual experiments (12.85 

observations required, with significance assessed at p < 0.05, 80% probability of accepting the 

alternate hypothesis, corrected for multiple comparisons), yielding approximately 9,000 total 

conditions or roughly ninety four 96-well plates, where one well represents a single condition. 

Alternatively, a machine learning and optimization algorithm, such as “Pattern Synthesis” 

(Bartocci et al. 2016; Briers et al. 2016), can automatically and efficiently discover experimental 
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conditions and robustly predict the de novo self-organization of hiPSCs into desired target 

patterns. 

Pattern Synthesis required two inputs: a model of hiPSC behavior, and images of the 

desired pattern (i.e. “goal”) outcomes. First, we developed a computational model of hiPSC colony 

organization as a result of a single gene KD (Figure 3.1A). Next, we generated images of desired 

and undesired spatial patterns to train a machine learning algorithm that establishes a pattern 

classifier with a quantitative metric of pattern similarity (Figure 3.1B) (Bartocci et al. 2016; 

Haghighi et al. 2015). Given these inputs, we formalized pattern discovery as an optimization 

problem where the objective was to maximize the similarity score of images from our 

computational model to our desired spatial pattern (Figure 3.1C). The variation between different 

simulations was based upon five categories of in vitro perturbations that could be readily created 

in hiPSC colonies (Figure 3.1D). 

 

3.3.2 Data-Driven Computational Model of Human iPSC Self-Organization 

It is challenging to both predict and control spatial patterning in human iPSCs since the 

design of multicellular systems rapidly increases in complexity when considering the dynamics of 

single cell mechanics and cell-cell interactions. These dynamics include, but are not limited to, 

temporal changes in interfacial tension associated proteins, cell type abundance, cell division, 

and cell migration velocities.  

To capture the complex dynamic interactions involved in multicellular patterning, we 

developed a data-driven Cellular Potts Model (CPM) to predict spatial patterning in hiPSCs due 

to the time-dependent modulation of cell-cell adhesion and cortical tension. Using the CPM, we 

modeled an in vitro system consisting of two populations of iPSCs co-cultured for up to 120 hours. 

The model incorporates numerous biological parameters, such as cell area conservation, cell 

proliferation, cell-cell adhesion, intracellular cortical tension, cell migration, and time-dependent 

modulation of properties implicated in cellular organization as a result of mosaic KD. To connect 
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the in silico model to potential genetic targets for in vitro experimental manipulation, we focused 

on using CRISPRi KD, which provides precise temporal control over protein expression, of two 

molecules associated with regulating cellular mechanics and cell-cell interactions: E-cadherin 

(CDH1) and Rho associated coiled-coil containing protein kinase (ROCK1). CDH1 is a classical 

cadherin cell-cell adhesion molecule, whose modulation allows for changes in the adhesive 

interactions between neighboring cells, and ROCK1 is a protein kinase that regulates non-muscle 

myosin activity and indirectly modulates the actinomyosin cytoskeletal tension within and between 

cells. These two molecules contribute to feedback loops that regulate interfacial tension between 

cells within a tissue and facilitate the physical organization of multiple cell types making them 

ideal candidates that when knocked down alter the cellular organization within a pluripotent stem 

cell colony (Libby et al. 2018). 

To fit the in silico model to an in vitro experimental training set, pairwise in vitro 

characterization experiments were performed to determine the relationship between space, time, 

and protein expression (Figure 3.7A) in wildtype (WT), CDH1 KD and ROCK1 KD hiPSCs. These 

relations were established by in vitro measurements of single cell morphological changes (Figure 

3.4), migration velocity magnitudes (Figure 3.7B-D), protein expression changes (Figure 3.7E-G), 

and colony organization (Figure 3.7H-I) before and after mosaic KD of CDH1 and ROCK1 in 

hiPSC colonies. The purpose of these characterization experiments was two-fold: 1) to reduce 

the complex interactions into quantifiable relationships, 2) and to create a closed-loop mapping 

between in vitro perturbations and in silico simulation parameters. 

To characterize cell morphology, brightfield images of wild-type (WT), CDH1(-), and 

ROCK1(-) cells were collected 6 days (144 hours) after gene knockdown. Single cell in vitro cell 

area and membrane length measurements (Figure 3.4) were acquired to set the target cell area 

and target cortical tension in the simulations, respectively (n= 110 per cell type). In the CPM, the 

weight associated with cortical tension constraint regulates how readily a cell can change its cell 

membrane length and relates to cell membrane stiffness. Due to differences in cell crowding in 



 122 

the center versus the edge of colonies, cell morphology measurements were fixed given a cell’s 

mechanical modulation and its radial position in the colony (n=55 central, 55 edge)(Table 3.2, 

Figure 3.4). Cell division was assumed to be asynchronous amongst the population, and cell 

division times specific to each type of knockdown were incorporated into the model to provide an 

accurate depiction of population growth kinetics.  

The relationship between cells in space with respect to time was characterized by 

measuring the in vitro distribution of individual cell velocities, resulting in an empirical median 

velocity magnitude of 0.29 +/- 0.17 µm/minute (Figure 3.7B,D). The distribution of velocity 

magnitude values was then used to model collective cell migration as locally polarized motility 

where the direction of cell migration is influenced by the relative cell adhesion strength of 

neighboring cells (Czirók et al. 2013). Cell-cell adhesion and cortical tension parameters for WT 

cells were selected to mimic the in vitro velocity measurements, producing a comparable 

distribution with a median in silico velocity magnitude of 0.31 +/- 0.12 µm/minute (Figure 3.7C,D). 

Importantly, the in silico generated velocity distributions were not significantly different from the in 

vitro measured velocities (Mann-Whitney U test, p = 0.0502). An additional requirement that 

individual cells remained part of dense epithelial colonies without migrating from the exterior 

borders was also imposed to match the hiPSC phenotype observed in vitro. After fitting the model 

to empirical data of cell morphology and velocity, single cell morphology and collective cell 

migration of human iPSC colonies were accurately recapitulated. 

To examine the relationship between protein expression time, CDH1 and ROCK1 were 

knocked down using CRISPRi, and the relative mRNA and protein expression was assessed for 

6 consecutive days via qPCR, fluorescence microscopy, (Figure 3.7E, Figure 3.3) and Western 

blot analyses (Libby et al. 2018). Due to our previous observation of the phenotypic robustness 

of CDH1 knockdown in promoting cell self-organization(Libby et al. 2018), we designed several 

CRISPRi guide RNAs to target CDH1 producing different levels of transcriptional knockdown at 
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10%, 25%, 30%, and 98% compared to WT expression. A single guide RNA for ROCK1 

knockdown was used to achieve 80% knockdown of WT expression levels (Figure 3.2). The data 

was normalized (min-max [0,1]) and Hill Functions were fit to the normalized median expression 

(per day) using least squares optimization to create a time-dependent response function for CDH1 

knocked down to 90%, 75%,70%, and 2% of the original mRNA expression (Figure 3.7F). This 

range of knockdown efficiency allowed us to computationally model how differing levels of CDH1 

expression could impact spatial patterning. Using the same approach as the CDH1 knockdown, 

we created a Hill response function for ROCK1 knocked down to 20% mRNA expression. 

Because of a delay in protein knockdown compared to mRNA levels, the Hill functions were 

shifted by 24 hours to account for the delay in protein loss (Figure 3.7G), allowing us to model the 

average change in ROCK1 protein expression for individual cells over time.   

Given the previous characterization experiments, we were able to model collective cell 

migration and temporal changes in cell mechanics. To model the spatial patterning due to the 

temporal modulation of cell-cell adhesion via CDH1 or cortical tension via ROCK1, either inducible 

ROCK1 knockdown or inducible CDH1 knockdown iPSCs were co-cultured with WT iPSCs, where 

knockdown of gene expression was induced upon mixing the two cell types. Then, images of the 

mixed populations were collected 96 hours after gene knockdown and co-culture. As previously 

reported (Libby et al. 2018), mixed colonies with a subpopulation of cells that had reduced CDH1 

or ROCK1 expression produced distinct mosaic patterns due to reduced cell-cell adhesion and 

increased membrane stiffness properties respectively (Figure 3.7H-I (left)). In silico, parameter 

sweeps were run over a range of adhesion strength and membrane length values to explore the 

phenotypic space resulting from decreases in cell-cell adhesion and increases in membrane 

stiffness. Computationally varying the adhesion strength produced a variety of spatiotemporal 

patterns due to progressively weaker cell-cell adhesion or progressively stiffer cell membrane 

parameter values. Double-blind analysis of in silico and in vitro generated data sets was then 

conducted to identify parameters that yielded closely matching multicellular patterns (Figure 3.7H-
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I (right)). Given the characterization experiments of cell morphology, cell migration speed, time-

dependent modulation of cell mechanics, and the resulting spatial organization, the computational 

model was able to recapitulate the spatial patterning due to the CDH1 and ROCK1 knockdowns.  

Overall, after incorporating in vitro measurements into our computational model, we 

accurately recapitulated hiPSC spatial patterns with the initial experimentally derived parameters 

in mixed colonies of WT and CDH1 KD cells or WT and ROCK1 KD cells (Libby et al. 2018).  

3.3.3 Formulating Parameters for Design Automation  

Given the success in matching the output of the computational model to experimental 

data, we then introduced five new design parameters to simulate in vitro experimental 

perturbations, allowing us to model exponentially more permutations of experimental design than 

would be feasible in vitro. The five design parameters were: i) the gene knockdown target of cell 

population 1, ii) the knockdown time for cell population 1, iii) the gene knockdown target of cell 

population 2, iv) the knockdown time for cell population 2, and v) the ratio of the distinct cell 

populations (Figure 3.1D, Table 3.1). These additional design parameters allowed us to convert 

trial-and-error based design into a mathematical optimization problem that could be 

computationally solved in silico without time-consuming and costly additional experiments. 

Although computational design frameworks for multicellular spatiotemporal patterning have been 

used in several previous studies (Tewary et al. 2017; Krieg et al. 2008; Marcon et al. 2016), they 

often propose underlying morphogenic mechanisms with limited perturbation potential in vitro. 

Thus, an in silico optimization framework that directly informs subsequent experimental designs 

is critical to survey the high-dimensional landscape of morphogenesis. 
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Figure 3.7: Pairwise experiments to characterize dynamic changes in spatiotemporal behaviors. A) 
We characterize cellular behaviors in a pairwise manner to reduce the complexity of possible interactions. 
Space, time, and protein expression are the minimally necessary properties to characterize and model 
spatiotemporal behaviors. Space-time relationships are captured with velocity characterizations, time-
protein expression is captured characterizing the relative protein expression for several days after 
knockdown, and protein-space relationships are characterized by confocal microscopy imaging of spatial 
behavior due to cell mechanical perturbations. B) We performed paired in vitro and C) in silico experiments 
to match the velocity distributions of iPSCs. D) The grey violin plot represents the distribution of in vitro 
velocities, while the cyan violin plot represents the distribution of in silico velocities. Using the Mann-Whitney 
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U test, there was no statically significant difference in cell velocity (p value < 0.05). E) Representative 
images of DOX inducible modulation of protein expression. F) We used Hill Functions to mathematically 
model CDH1 knockdown over time from quantification of mRNA by qPCR (n=3) and then adding a 24h 
delay to account for protein production depicted by light blue lines. Grey circles represent the normalized 
median expression 0-6 days after CDH1 knockdown. Error bars represent 1 standard deviation from the 
mean. Dark blue line depicts Hill Function models of partial KD of CDH1. G) We use a Hill Function to 
model ROCK1 knocked down over time as previously described for CDH1 knockdown. (n=3) H) Paired in 

vitro and in silico images of spatial patterning 96 hours after CDH1 knockdown in a subpopulation of cells 
(blue). I) Paired in vitro and in silico images of spatial patterning 96 hours after ROCK1 knockdown in a 
subpopulation of cells (red). Given the previous characterizations, the relative strength of cell-cell adhesion 
and cortical tension can be tuned in the in silico simulations to recapitulate the spatiotemporal patterns 
observed in vitro.  

3.3.4 Quantitative Pattern Classification 

The second input to the Pattern Synthesis procedure was a supervised image classifier 

known as Tree Spatial Superposition Logic (TSSL) (Bartocci et al. 2016). TSSL uses a quadtree 

data structure to represent spatial relationships in an image at multiple levels of detail, where the 

highest level captures global aspects of an image, while the lower levels capture local spatial 

relationships. For example examining a checkerboard image with some variation (Fig. 3.8Ai), the 

TSSL would generate a unique quadtree (Fig. 3.8Aii) representing the levels of complexity within 

the image (Bartocci et al. 2016; Finkel and Bentley 1974; Jackins and Tanimoto 1983).  A rule-

based machine learning algorithm (RIPPER) (Cohen 1995) was employed to automatically learn 

a set of rules over the values of quadtree vertices specific to an in silico training set of 3,000 

positive and 13,000 negative manually rendered images of cells precisely organized into target 

patterns, such that a quantitative score of pattern similarity could be assigned to any image from 

the associated quadtrees (Section 3.2.14) (Fig 3A.8iii). The magnitude of the similarity score, 

which can range from -1 to +1, indicates how strongly a simulation image matches (positive 

scores) or violates (negative scores) the target spatial behavior. Use of a TSSL robustness score 

replaces qualitative manual observation of simulation images with a quantitative score of pattern 

similarity.  

Analogous to the checkerboard example, this algorithm can be applied to more complex 

images such as a target organizational pattern within the CPM (Fig. 3.8Aiv-v) where the generated 
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quadtree from the TSSL of each desired pattern is used to recognize and rank pattern similarity 

(Fig. 3.8Av). As a proof-of-principle, we first attempted a concentric ring (i.e. “Bullseye”) pattern, 

defined as one population of 50 or more connected cells completely surrounded by a second 

population (Fig. 3.8Ci). The annular Bullseye pattern was chosen because similar asymmetric cell 

organization occurs multiple times in human development, such as during early embryo 

compaction leading to the formation of the inner cell mass in the human blastocyst (Ziomek and 

Johnson 1980; Ducibella and Anderson 1975; Deglincerti et al. 2016). The second target was a 

Multi-Island pattern, consisting of at least three distinct clusters of 25 or more cells completely 

surrounded by a separate larger population (Fig. 3.8Cii). The Island pattern was chosen to 

demonstrate the reproducibility of previously observed segregation of cell populations in vitro 

(Libby et al. 2018) and to test whether this can be predictably controlled. To first demonstrate that 

the automated classifiers could reliably detect and distinguish between desired and undesired 

spatial patterns, the classifiers were tested using an in silico set of 1,000 positive and 5,000 

negative images. The TSSL classifiers achieved a 98.2% classification accuracy for the Bullseye 

and 96.9% classification accuracy for the Multi-Islands pattern, meaning that the TSSL algorithm 

can properly recognize and score Bullseye or Island patterns nearly 100% of the time. 

By quantifying how well images from an in silico multicellular arrangement matched 

images of our target organization, we enabled the optimization algorithm (described in the next 

section) to incrementally improve and learn a unique combination of design parameters that could 

give rise to a desired goal pattern.  

3.3.5 Automated Discovery of Pattern Producing Conditions 

The CPM allows simulation of more than 40,000 distinct parametric conditions and 

facilitating the study of emerging behaviors of hiPSCs much faster than in vitro experiments. 

Distributing the computation over 12 processors at 2.1 GHz on a server cluster, it only took 

approximately 5 minutes to simulate the evolution of one cell population over 120 hours. To  
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Figure 3.8: Quantitative Pattern Classifier with TSSL. A quadtree is used to represent an image at 
multiple levels of detail.  Ai-ii) Shows a representative quad tree for an example checkerboard image. An 
image Ai) is subdivided into sequential quadrants until each quadrant is one singular color. This is then 
depicted as a tree Aii) where both the values and branches of the tree are specific to each image. Aiii) 
Given a quadtree representation of a target image, TSSL produces a numerical score corresponding to the 
similarity of an image to the desired target image. This score can then be used to rank images by similarity 
to the desired image. Aiv) An example image of a desired pattern generated in the CPM. Av) A pictorial 
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example of how the TSSL would be able to distinguish different CPM images and score them against the 
desired pattern. B) Schematic representation of a particle swarm algorithm depicted in a 3D search space 
where each particle represents an in silico simulation. With each iteration of the algorithm, PSO reduces 
the breadth of exploration in the experimental space and travels towards increasing TSSL scores, indicating 
that the optimization procedure has located in silico experiments that are generating patterns of increasing 
similarity to the goal pattern. C) Schematics of example target patterns given as classifiers in the machine 
learning pattern synthesis process and parameters produced by Pattern Synthesis that predict the creation 
of the desired patterns: Ci) Bullseye, Cii) Island, Ciii) Janus. 
 
 

recapitulate this same experiment in vitro, 13 96-well plates would need to be cultured in parallel 

for 120 hours, demonstrating that in silico experimentation can accelerate parameter exploration 

more than a 1,000-fold. The simulation speed permitted examination of a wide range of different 

experimental conditions in a rapid and inexpensive manner, taking both the labor and reagent 

costs into account. However, due to the tens of thousands of experimental conditions to consider 

and the resulting months of computation for such a large number of simulations, it quickly became 

impractical to enumerate every possible set of conditions to identify parameter combinations that 

yielded the highest robustness score(s). Thus, to automate the discovery of conditions that 

yielded goal spatial patterns, we formulated the selection of experimental conditions as an 

optimization problem.  

Using the TSSL-provided metric of image similarity, a Particle Swarm Optimization 

(Eberhart and Kennedy 1995) was employed to identify regions of the 5-dimensional design 

space, created by the available design parameters, with the highest probability of producing a 

target pattern (Bullseye or Multi-island)(Figure 3.8B). In brief, the Particle Swarm Optimization 

first explores the extremes of the 5-dimensional experimental space, where every extreme 

represents a set of experimental parameters that are run as an in silico experiment using the 

previously described CPM. Then the resulting patterns from this first set of in silico experiments 

are given scores. The algorithm then narrows its focus to the experimental space that produced 

experiments resulting in higher scores, doing this iteratively further selecting for the experimental 

space that is most likely to produce the highest TSSL score and therefore the patterns that most 
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closely resemble the goal pattern. A full explanation of the particle swarm algorithm can be found 

in the STAR Methods.  

For any in silico simulation, where the previously described design parameters are varied 

to represent a different experimental condition, the Patterning Synthesis algorithm determined 

whether the generated pattern was successful (Figure 3.9A), and whether the similarity score 

improved over the simulated period of 120h by at least one order of magnitude, eventually 

reaching a steady state (Figure 3.9B). Analyzing the temporal dynamics of robustness scores 

provided insight into the exact time a pattern emerged in silico, and optimized design parameters 

for target patterns that closely resembled, but still resembled the desired spatial behavior. The 

final output of the particle swarm algorithm is a list of experimental parameters that are predicted 

to generate the desired pattern both in the in silico CPM and the in vitro stem cell culture system 

after 120 hours of mixed culture (Fig. 3.8C). 

In addition to automating the design of de novo spatial patterns, we could also determine 

the feasibility of any spatial pattern given the tunable conditions of the system. Although it is 

impossible to exclude experimentally that a particular pattern can never be generated in vitro (it 

would require testing all possible conditions), in silico certain de novo patterns resulted in negative 

robustness scores (violating the pattern specification), indicating that the cell population, under 

the current perturbations available (knockdowns, mixing ratios, etc.) was unable to perfectly 

recapitulate the desired spatial behavior. For example, the algorithm was able to determine that 

a perfectly symmetrical “Janus” pattern (left-right)(Fig. 3.8Ciii) was not achievable with the primary 

experimental variables (i.e. timing of CDH1/ROCK1 knockdowns and the ratio of cell types co-

cultured in an approximately 2D monolayer), indicating that additional parameters such silencing 

of other genes may be necessary to yield such a pattern.  
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Figure 3.9: TSSL increase with pattern formation. (A) Example evolution of pattern in simulated hiPSC 
colonies. (B) Evolution of the TSSL robustness score over time for the sample simulations illustrated in A; 
producing the Bullseye pattern (left) and Multi-islands pattern (right).  

3.3.6 In Silico Model Accurately Predicts In Vitro Experimental Validation 

The Patterning Synthesis algorithm yielded different sets of instructions to produce either 

a Bullseye pattern or a Multi-Island pattern of hiPSCs. The Pattern Synthesis predicted that a 

mixture of 1:4 ROCK1 KD iPSCs to CDH1 KD iPSCs that were independently pretreated with 

DOX for 6 days prior to mixing and cultured together for 4 days would yield a Bullseye pattern 

(Fig. 3.8Ci) and that a mixture of WT cells with CDH1 KD at a ratio of 1:4 with DOX pretreatment 

of iPSCs for 48h prior to mixing would create the Multi-Island Pattern (Fig. 3.8Cii).  
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Based on these predictions, in vitro experiments were performed using the specified 

conditions, and the incidence of pattern formation was independently analyzed for in silico and in 

vitro results (Figure 3.10A-D). The experiments were performed with unrestricted colony growth 

(i.e. no patterned matrix restriction)(Tewary et al. 2017; Warmflash et al. 2014) to ensure that 

cellular organization within the colony was not driven by imposed boundary conditions. To account 

for colony size differences affecting the resulting patterns, only colony sizes within two standard 

deviations of the mean number of cells per colony were examined for pattern formation. We 

characterized the morphology of in silico and in vitro generated patterns by interrogating 

subpopulation cluster circularity, number of clusters, and cells per cluster within the colony (Figure 

3.11). However, the in vitro experimental results were more variable and yielded a wider range of 

results, which may be due to biological variability in wet lab experimentation or subtle variations 

in cellular behavior that the in silico model does not take into account. Comparing the robustness 

scores generated for both the parallel in silico and in vitro experiments indicated that the optimal 

in vitro bullseye and islands patterns had larger robustness than their respective control images 

(at least an order of magnitude difference). The robustness scores are highly comparable only 

when they are calculated in the same setting also known as a domain; thus, a simulation vs. a 

simulation control is quite comparable whereas an in silico simulation vs. an in vitro experimental 

image will inherently differ to some extent. The in silico model and experimental optimization 

predicted that a Bullseye Pattern would be achieved ~12% of the time, which closely matched the 

in vitro frequency (~16%; Figure 3.10B). Similarly, a Multi-Island Pattern was predicted to occur 

100% of the time by the model and was achieved in ~87% of the in vitro experiments (Figure 

3.10D). Overall, these results demonstrate that in silico modeling accurately classified and 

predicted desired pattern formation achieved by hiPSC self-organization in vitro.  

To determine how robust the predicted parameters were within the in vitro system, the 

proposed mixing ratios of the populations were incrementally varied by 10 percent (n=16 per 

condition) (Figure 3.10E, Figure 3.12). Robustness scores for each of the mixing ratios were 
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calculated (Figure 3.10Ei-ii) to compare how well each condition produced patterns similar to the 

respective target (Bullseye or Island). In Bullseye patterns, a 50 percent change in mixing ratio 

from the predicted parameters (80% CDH1KD : 20% ROCK1 KD) resulted in significant decrease 

in pattern robustness scores (p < 0.05) (Figure 3.10Ei). Despite an increase in the robustness 

scores for the Island patterns in the in silico experiments, there were no significant differences in 

the robustness scores calculated for the parallel in vitro experiments with varying population ratios 

(Figure 3.10Eii). Robustness scores produced by the TSSL algorithm in vitro were uniformly lower 

and had higher variance than the comparable in silico conditions (Figure 3.10Ei-ii), reflecting the 

greater difficulty in classifying natural images over the synthetic images generated by the Cellular 

Potts Model. Due to the domain change from in silico to in vitro images, the TSSL algorithm was 

less able to confidently recognize patterns and explain variability both within and across 

experiments, resulting in reduced discrimination between mixing ratios. Additionally, differences 

could be due to the fact that the CPM used is a 2D model that does not account for possible 

vertical movement within a hiPSC colony. However, since the primary goal of the TSSL was to 

enable in silico Pattern Optimization, the decreased classification power for in vitro images did 

not adversely impact the ability of Pattern Optimization to predict conditions that resulted in the 

desired target patterns. 



 134 

 

Figure 3.10: Computational synthesis of de novo spatial patterns and in vitro validation A-D) 
Comparisons of three simulations of patterns predicted in silico and the resulting patterns seen in vitro 

under the same experimental conditions (scale bars = 200µm). Pluripotent colonies stained for DAPI (blue) 
and CDH1 (red/orange) to distinguish populations by presence or absence of CDH1. TSSL robustness 
scores show how well a simulation matches our specification compared to parallel control in silico or in vitro 
experiment. Scores are only comparable if they are calculated in the same environment (simulation vs 
simulation but not simulation vs experimental image). Image classification in different environments is a 
well-known limitation in machine learning. B,D) Successful pattern creation rates, comparing in silico to in 
vitro results (Bullseye n = 286 colonies, Multi-Island n = 168 colonies). E) Proposed KD populations for the 
Bullseye Pattern and the Island Pattern were varied by 10% in silico and in vitro (n=10). Example target 
patterns (left) from the image set used to train the image classifier to identify and score Island and Bullseye 
patterns. i-ii) Robustness scores for the respective in vitro colonies as KD populations were varied by 10% 
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where an increase in robustness score indicates more similarity to the target pattern. The predicted 
parameters from the in silico optimization are highlighted in grey and the in vitro are in black. Significance 
is indicated by * with p values < 0.05 where n = 16 colonies per condition and error bars indicate standard 
deviations. 
 
 

 
 
Figure 3.11: In silico vs. in vitro comparative metrics of generated target patterns. (A) Distribution of 
islands, where for the Multi-island patterns, an island is defined as a homotypic cluster of 25 or more cells, 
and for the Bullseye patterns, an island is defined as 50 or more cells. Successful Bullseye patterns will 
display one island, successful Multi-island patterns will display 3 or more islands. (Bullseyes n=148 
colonies; Islands n=79) (B) Distribution of in silico and in vitro patterned colonies with regard to total cells 
per colony (Bullseye p = 0.0029, Island p = 0.0215), number of cells per cluster (Bullseye p = 0.9499, Island 
p = 0.9809), and cluster circularity (Bullseye p < 0.0001, Island p < 0.0001). In Bullseye patterns clusters 
consist of ROCK1 knockdown cells. In Multi-island patterns clusters consist of CDH1 knockdown cells. 
Significance is indicated by * (p < 0.05) using two tailed t-tests with Welch’s correction. Error bars label the 
standard deviation of the populations. 
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Figure 3.12: Titration of gene knockdown mixing ratios in vitro and in silico. (A) Example patterns 
generated in silico and in vitro when the mixing ratios of knockdown cell lines were varied by 10 percent 
increments (scale bars = 200µm). 
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3.3.7 Colony Organization Impacts Initial Patterns of iPSC Differentiation 

During human development, cell autonomous pattern formation is intimately coupled with 

cell fate decisions that lead to complex tissue structures. Therefore, we interrogated how the 

experimentally generated multicellular patterns affected subsequent hiPSC differentiation. We 

examined the initial cell fate commitment after treatment with BMP4 for 48 hrs (Figure 3.13A,B) 

with a panel of markers descriptive of different differentiation stages (Figure 3.13C). In brief, 

hiPSCs were marked by high OCT4 and SOX2 expression in the pluripotent state, then as 

differentiation proceeded, the first lineage fate decision was marked by upregulation of markers 

associated with the gastrulating primitive streak (Brachyury (BRA(T)), SNAIL). Cells then 

transitioned through a mesendodermal fate (EOMES) before displaying mesoderm (GATA4) or 

endoderm (SOX17) specific markers. The ectoderm lineage remained SOX2(+). Additionally 

CDX2 was used to mark both extra embryonic lineages and presumptive neural plate cells within 

the neuroectoderm. (Niwa et al. 2005, 2; Tewary et al. 2017; Wang et al. 2012; Warmflash et al. 

2014). WT colonies displayed a radial differentiation pattern with central SOX2(+) OCT4(+) 

SNAIL(+) cells and a ring of EOMES(+) cells around the periphery indicating the beginning of 

mesendodermal specification (Figure 3.13C,D). The lack of robust BRA(T) expression was likely 

due to the transient nature of BRA(T) expression during mesendoderm induction so the time point 

examined (48h) in this experiment may have captured the tail end of expression. WT colonies 

displayed a slight increase in SOX17 at the center of the colonies, while GATA4 and CDX2 

remained low throughout the colonies (Figure 3.13C,D).  A similar radial pattern of cell 

differentiation was maintained in Island patterned colonies, although SOX17 expression was 

reduced and GATA4 and CDX2 expression increased (Figure 3.13C,D). The Bullseye patterned 

colonies displayed a slight increase in BRA(T) expression at the center of the colonies overlapping 

with the central island that defines a bullseye pattern. Additionally, for the Bullseye patterns 

GATA4 expression was increased across the entire colony, the radial ring of EOMES was 

expanded to the entire colony, and high levels of SOX2, OCT4, and SNAIL were displayed in the 
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center of the colony.  These results suggest that the central region of Bullseye colonies underwent 

lineage transitions through the mesendodermal fate to the mesoderm lineage and displayed an 

expansion of the CDX2 positive cells. The Bullseye EOMES expression pattern was distinctly 

different from the control and island patterned colonies that formed a ring of EOMES expression, 

indicating a positional change in fate acquisition dictated by the establishment of the Bullseye 

pattern. Thus, the genetic manipulations used to control multicellular organization of human PSCs 

also influenced the initial differentiated phenotypes of the patterned colonies.  

3.4 Discussion 

Cell-intrinsic patterning of multicellular stem and progenitor populations is a critical feature 

of morphogenic events that occur throughout early development (Montero and Heisenberg 2004; 

Sasai 2013; Ducibella and Anderson 1975; Deglincerti et al. 2016). Thus, systems in which 

multicellular organization can be robustly controlled and perturbed will help to elucidate key 

mechanisms in development and symmetry breaking events. Currently, the study of symmetry 

breaking events often involves the manipulation of cell extrinsic factors, for example, varying 

morphogen gradients (Demers et al. 2016; Geun Chung et al. 2005), changes in substrate 

patterning (Hsiao et al. 2009; Théry et al. 2006) and/or the creation of restrictive boundary 

conditions (Warmflash et al. 2014; Tewary et al. 2017; Théry 2010). In contrast, attempts to 

influence patterning events using synthetic biology approaches often rely on implementation of 

an artificial circuit that uses reaction diffusion gradients to establish multicellular patterns (Greber 

and Fussenegger 2010; Sekine, Shibata, and Ebisuya 2018; Sohka et al. 2009; Toda et al. 2018).  

In this study, we demonstrate the induction of active multicellular organization through 

controlled perturbation of intrinsic cell mechanisms without imposing exogenous boundary 

conditions. We developed a computational model capable of predicting empirically testable 

experimental perturbations (gene KD, mixing rations, etc.) to generate desired multicellular spatial 

patterns in hiPSC colonies. Using agent-based model predictions of spatiotemporal pattern 
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Figure 3.13: Differentiation of Bullseye colonies. A,B) Schematic of two day differentiation of Island and 
Bullseye Patterns induced by addition of BMP4 to cell culture media (n=10 per condition) where the control 
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is a WT cell colony. C) Line graphs denote relative radial fluorescence of lineage markers from the center 
r=0 to the edge of the colony r=1 where all colonies were normalized to depict a radius from 0 to 1. The 
dark line indicates the mean fluorescence across 10 colonies and the matching light color fill represents the 
standard deviation. The four quadrants indicate: i) SNAIL and BRA(T) ii) OCT4 and GATA4 iii) SOX2 and 
EOMES iv) CDX2 and SOX17. D) Tiled fluorescence images of pure population control differentiations 
followed by Island and Bullseye pattern differentiations where the scale is consistent across images (500µm 
for the depicted scale bar in the top-left image of each quadrant). Each quadrant represents a different set 
of lineage staining where the top row of the quadrant depicts the DAPI stain(cyan) and the KD population 
specific to the indicated pattern(red) and the bottom row of the quadrant indicates : i) SNAIL and BRA(T) ii) 
OCT4 and GATA4 iii) SOX2 and EOMES iv) CDX2 and SOX17 depicted in yellow and magenta 
respectively. 
 
 

formation, we were able to predict and achieve new patterns in silico and in vitro without using 

extrinsic patterning methods (i.e. hydrogels, micropatterning). Optimized design parameters 

achieved desired organization of cells within a colony and promoted the expected initial 

mesendoderm or ectoderm lineage fates. Ultimately, these results demonstrate that machine 

learning and mathematical optimization enable predictive and controlled spatial self-organization 

of heterogeneous populations of pluripotent cells, which is a critical initial step for hiPSC self-

assembly prior to lineage commitment and subsequent organoid and tissue formation.  

Previous attempts to pair computational models with experimental morphogenic systems 

have been largely observational and rarely demonstrate the ability to design phenotypes in silico 

that can be recapitulated in vitro. In this study, both the in silico and in vitro aspects can be adapted 

to additional parameters, truly taking advantage of machine learning and optimization to generate 

desired multicellular patterns. With respect to extending in vitro perturbations, CRISPR 

technology can be adapted to repress or activate any accessible genes related to cell patterning 

and organogenesis. As additional biological parameters are considered, we can quantitatively 

characterize the effect on cell patterning, and the in silico model can be refined to take those 

factors into account (Briers et al. 2016; E. White et al. 2015), enabling interrogation beyond cell 

mechanics and into other realms of cell-cell communication such as paracrine signaling gradients 

and gap junction connectivity to allow for more robust pattern formation than that described by 

only manipulating cellular mechanics (White et al. 2013; Glen, McDevitt, and Kemp 2018). 
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Ultimately, the combination of agent-based modeling, machine learning, and directed symmetry 

breaking provides a novel route to engineer complex multicellular tissue structures that go far 

beyond simple observation of pattern formation, and facilitate targeted mechanistic studies that 

address fundamental principles of development and morphogenesis leading to robust practices 

for complex in vitro tissue formation. 

 

3.5 Conclusion 

In conclusion, this second study provides an example of combined genetic engineering 

with computational modeling, machine learning, and mathematical pattern optimization to create 

a data-driven approach to control hPSC self-organization by knockdown of genes previously 

shown to affect stem cell colony organization. These results demonstrate that morphogenic 

dynamics can be accurately predicted through model-driven exploration of hPSC behaviors via 

machine learning, thereby enabling spatial control of multicellular patterning to engineer human 

organoids and tissues.  
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Chapter 4: Loss of E-cadherin promotes extraembryonic fates 

accompanying multilineage differentiation 

 

4.1 Introduction 

 The previous chapters discuss the importance of multicellular pattern formation in early 

embryonic development and how human induced pluripotent stem cells (iPSCs) can be used to 

model symmetry breaking and subsequent organizational events. However, the previous studies 

do not take into account how the additional degrees of freedom resulting from a three dimensional 

space contributes to the morphogenesis and emergence of form within the early embryo. 

Therefore, a three dimensional human iPSC culture system can be used to explore the influence 

of cell-cell adhesions on the multi-dimentional organization and patterning of the human embryo.   

 The human embryo transitions through several key three dimensional organizational 

states. First, the embryo generates cystic cavities and apolar groups of cells in the process of 

compaction forming the trophectoderm and inner cell mass (Campbell et al. 1995; Ziomek and 

Johnson 1980; Fleming 1987). The embryo then undergoes zona pellucida hatching, which 

involves epithelial sheet protrusions and extensions as the early blastocyst degrades a section of 

the surrounding zona pellucida and propels itself out of the now broken encasing. Similarly, 

gastrulation involves the delamination and invasion of the cells that comprise the primitive streak 

into the space between the epiblast and developing yolk sac, creating an invagination (Tada, 

Concha, and Heisenberg 2002; Montero and Heisenberg 2004; Sun and Stathopoulos 2018). 

Therefore, to interrogate how symmetry breaking regulates morphogenic events like compaction 

and gastrulation in a human context, the development of 3D human iPSC platforms that can both 

recapitulate lineage population emergence as well as multicellular organization are essential. 

 In this study, we interrogate symmetry breaking events in 3D culture. Specifically, we 

examine how heterogenous changes in adhesion through mosaic knockdown of the cell-cell 
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adhesion molecule E-cadherin (CDH1) regulate both 3D aggregate organization and emergent 

lineages. We genetically induce mosaic loss of CDH1 by CRISPRi in 50 cell aggregates 

encapsulated in alginate hydrogel, employing hydrogel encapsulation to mimic the physically 

confined environment of the zona pellucida. We show that 50 cell aggregates in suspension 

culture undergo population emergence of the three germ lineages similar to pre-implantation 

embryos. Additionally, we show that the combination of CDH1 knockdown and encapsulation lead 

to specific emergence of extraembryonic populations in aggregates after 5 days of culture, 

highlighting potential regulation of trophoblast development triggered by microenvironment. 

 

4.2 Materials and Methods 

4.2.1 Human Induced Pluripotent Stem Cell Culture 

All work with human induced pluripotent stem cells (iPSCs) was approved by the 

University of California, San Francisco Human Gamete, Embryo, and Stem Cell Research 

(GESCR) Committee. Human iPSC lines were derived from the WTC11 line (Coriell Cat. 

#GM25256), the WTB line (Conklin Lab)(Miyaoka et al. 2014), and the Allen Institute WTC11-

LaminB cell line (AICS-0013 cl.210). All cell lines were karyotyped by Cell Line Genetics and 

reported to be karyotypically normal. Additionally, all cell lines tested negative for mycoplasma 

using a MycoAlert Mycoplasma Detection Kit (Lonza). 

Human iPSCs were cultured on growth factor reduced Matrigel (Corning Life Sciences) 

and fed daily with mTeSRTM-1 medium (STEMCELL Technologies)(Ludwig et al. 2006). Cells 

were passaged by dissociation with Accutase (STEM CELL Technologies) and re-seeded in 

mTeSRTM-1 medium supplemented with the small molecule Rho-associated coiled-coil kinase 

(ROCK) inhibitor Y-276932 (10 μM; Selleckchem)(Park et al. 2015) at a seeding density of 12,000 

cell per cm2. 
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4.2.2 Encapsulated Mixed Aggregate Generation 

Encapsulation was performed using previously reported protocols (Wilson et al. 2014) 

where encapsulated cell aggregates of ~50 cells were created using 400 X 400 μm PDMS 

microwell inserts in 24-well plates (~975 microwells per well) similar to previously published 

protocols (Hookway et al. 2015; Ungrin et al. 2008). Dissociated iPSC cultures were resuspended 

in mTeSRTM-1 supplemented with Y-27632(10μM), mixed at proper ratios and concentration (50 

cells/well), added to microwells, and centrifuged (200 rcf). After 18 hours of formation, 50 cell 

aggregates were transferred into 1.5% ultrapure MVM alginate (Pronova) mixed with Laminin 

from Engelbreth-Holm-Swarm murine sarcoma (6μg/mL; Sigma Aldrich) at a concentration of 

16,000 aggregates/mL alginate. Alginate solution was prepared by mixing the appropriate amount 

of alginate to generate a 1.5%  solution into calcium-free DMEM (Gibco) and sterilized by 

autoclave. Beads encapsulating single aggregates were generated using an electrostatic bead 

generator (Nisco). A 400μm nozzle and syringe pump (flow of 6mL/hour) was used to extrude 

alginate solution with aggregates and dropped into a 100 mM calcium chloride (EMD) bath to 

trigger hardening of the alginate into a gel. Encapsulated aggregates were then washed 3X with 

DPBS containing calcium and magnesium (ThermoFisher Scientific) and once with mTeSRTM-1 

medium (STEMCELL Technologies). Encapsulated aggregates were then allowed to recover for 

24 hours in mTeSRTM-1 medium (STEMCELL Technologies) in rotary suspension. Then 

aggregates were fed daily with mTeSRTM-1 medium supplemented with doxycycline (DOX)(2μM) 

to induce CDH1 knockdown. 

 

4.2.3 Un-encapsulated Mixed Aggregate Generation 

 Unencapsulated 50 cell aggregates were created by dissociation of human iPSCs with 

Accutase (STEM CELL Technologies) and reseeding in mTeSRTM-1 medium (STEMCELL 
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Technologies) supplemented with Y-276932 (10μM; Selleckchem) into 96-well non-adherent 

round bottom plates, where a total of 50 cells were seeded per well. After 18 hours of aggregate 

formation, Y-276932 was removed from the media and DOX(2μM) was supplemented into the 

mTeSRTM-1 medium to induce CDH1 knockdown. Aggregates were then fed daily with mTeSRTM-

1 medium supplemented with DOX (2μM). 

 

4.2.4 Immunofluorescence Staining and Imaging 

Aggregates were unencapsulated by washing 3X with a sodium citrate solution (55mM, 

Sigma), fixed with 4% paraformaldehyde (VWR) for 40 minutes, and then washed three times 

with PBS. Aggregates to be used for histology were embedded in HistoGel Specimen 

Processing Gel (Thermo Fisher) prior to paraffin processing. Paraffin embedded samples 

were sectioned in 5µm sections, baked for 1 hour at 60°C, and subsequently stained for H&E. 

For immunofluorescent staining, epitope retrieval was performed by submersing slides in 

Citrate Buffer pH 6.0 (Vector Laboratories) in a 95ºC water bath for 35min. Samples were 

permeabilized in 0.2% Triton X-100 (Sigma-Aldrich) for 5min, blocked in 1.5% normal donkey 

serum (Jackson Immunoresearch) for 1hour, and probed with primary and secondary 

antibodies against SOX2, PAX6, T, NES, TUBB3, and CDH2 (Table S3). Coverslips were 

mounted with anti-fade mounting medium (ProlongGold, Life Technologies) and samples 

were imaged on a Zeiss Axio Observer Z1 inverted microscope equipped with a Hamamatsu 

ORCA-Flash 4.0 camera. 

 

4.2.5 Whole Mount Lightsheet Imaging 

4% paraformaldehyde-fixed paraffin-embedded samples (see “Histology, 

Immunocytochemistry, and Imaging”) were permeabilized with 0.3% Triton X-100 (Sigma-

Aldrich) for 5min, blocked in 5% normal donkey serum (Jackson Immunoresearch) for 1 hour, 
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and probed with primary and secondary antibodies against PAX6 and T (TableS3) for 2 hours. 

Samples were then embedded in 1.5% low melt agarose (BioReagent) and drawn up into ~1mm 

imaging capillaries and subsequently imaged on the Zeiss Z.1 Light sheet Microscope equipped 

with a PCO.edge SCMOS camera. 

 

4.2.6 Single Cell RNA Sequencing Sample and Library Preparation 

Multiple organoid samples were combined and processed together using the MULTI-Seq 

technology (McGinnis et al. 2019). Organoids were singularized using Accutase (STEMCELL 

Technologies) and washed with cold PBS. Cells were resuspended in PBS with lipid-modified 

Anchor and Barcode oligonucleotides (gift from Zev Gartner) and incubated on ice for 5 min. A 

co-Anchor oligo was then added in order to stabilize membrane retention of the barcodes 

incubated for an additional 5 min on ice. Excess lipid-modified oligos were quenched with 1% 

BSA in PBS, washed with cold 1% BSA solution, and counted using a Countess II FL (Life 

Technologies). Single cell GEMs and subsequent libraries were then prepared using the 10X 

Genomics Single Cell V2 protocol with an additional anchor specific primer during cDNA 

amplification to enrich barcode sequences.(McGinnis et al. 2019) Short barcode sequences 

(approx. 65-100bp determined by Bioanalyzer) were purified from cDNA libraries with two 

sequential SPRI bead cleanups. Barcode library preparation was performed according to the 

KAPA HiFi Hotstart (Kapa Biosystems) protocol to functionalize with the P5 sequencing adapter 

and library-specific RPIX barcode. Purified ~173bp barcode fragments were isolated with another 

SPRI bead cleanup and validation by Bioanalyzer. 

The sample library was sequenced on an Illumina NovaSeq yielding an average of 41,112 

reads per cell and 6,444 cells. The MULTI-Seq barcode library was sequenced on an Illumina 

NextSeq yielding an average of 9,882 reads per barcode and enabling sample assignment for 
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4,681 of 6,124 unique UMIs detected (76.4% recovery), using the demultiplexing code provided 

by the MULTI-Seq protocol (McGinnis et al. 2019). 

 

4.2.9 Genome Annotation, RNA-seq Read Mapping, and Estimation of Gene and Isoform 

Expression 

The sample library was aligned to the human GRCh38 reference genome using Cell 

Ranger v1.2.0 (10x Genomics). Gene expression levels were assessed using the Seurat v3.0.0 

analysis pipeline(Butler et al. 2018). First cells were removed with fewer than 200 detected genes, 

fewer than 1,000 total detected transcripts, or which had greater than 10% mitochondrial gene 

expression. Next, expression levels were log normalized, and the top 2,000 variable genes 

calculated using the VST algorithm. The top 20 principal components were used to group cells 

into 12 clusters using a resolution of 0.4. Finally, top markers were detected for each cluster by 

detecting the top differentially expressed genes between one cluster and the remaining data set, 

where at least 25% of cells in the cluster expressed the gene and the gene was expressed at 

least 0.25 log2 fold-change different from the remaining population. Clusters and gene expression 

were visualized on a two dimensional UMAP projection of the first 20 principal components. 

 

4.2.8 Data Acquisition, Processing, and Merging 

 Human single cell RNA sequencing data sets from previously published papers (Yan et 

al. 2013; Petropoulos et al. 2016; Blakeley et al. 2015) were downloaded from Gene Expression 

Omnibus (GEO66507, GSE36552, E-MTAB-3929). FastQ data sets were aligned to the human 

GRCh38 reference genome using STAR aligner (Dobin et al. 2013) and then a counts matrix was 

generated using the featureCounts software (Liao, Smyth, and Shi 2014). For the entire data set, 

all counts matrices were concatenated into one matrix. Each matrix was then read as a Seurat 

object, which could then be combined with other data sets and analyzed using the Seurat v3.0.0 
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analysis pipeline (Butler et al. 2018). Batch correction was performed using the Harmony 

algorithm (Korsunsky et al. 2018). 

 

4.2.9 Cluster Analysis  

To assign cluster identity, the top markers for each cluster were tested for GO term 

enrichment using the biological process “enrichGO” function in the R package “clusterProfiler” 

v3.12. (Yu et al. 2012) In addition, differentiation and lineage specification in each cluster was 

assessed by examining expression level of panels of pluripotency, mesendoderm, endoderm, 

ectoderm, mesoderm, and trophectoderm markers. Computational trajectory analysis of 

transitions between cell states was performed using Monocle 3 (Trapnell et al. 2014).   

 

4.3 Results 

4.3.1 Loss of CDH1 Promotes Protrusion Morphology when Encapsulated 

 To better mimic the scale and environment of the blastocyst as well as prevent aggregate 

fusion, 50 cell human iPSC aggregates were encapsulated in 1.5% alginate mixed with laminin 

and cultured for 6 days. By combining a physical barrier (unfunctionalized alginate) and a 

basement ECM molecule (laminin), alginate encapsulation served as a proxy for zona pellucida 

encapsulation (Figure 4.1A).  To interrogate population emergence similar to loss of CDH1 during 

gastrulation, CDH1 loss was induced in either 0%, 25% or 100% of the aggregate population. At 

the start of CDH1 knockdown, CDH1(+), CDH1(-), and mixed aggregates displayed polarized 

behavior, creating a single layer of cells surrounding a cystic cavity at the center of each 

aggregate (Figure 4.1B). Over time, a bilayer of cells assembled at the growing aggregate surface 

while maintaining the central cyst, indicating that the polar behavior of human iPSCs in monolayer 

culture is initially maintained in suspension culture at this scale.   
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At day 3 of CDH1 knockdown, all aggregates displayed bilayers around a cystic cavity. 

Mixed aggregates displayed organization similar to those reported in the monolayer culture 

discussed in Chapter 2 where the CDH1(+) and CDH1(-) cells sorted from one another. 

Furthermore, the CDH1(-) cells clustered within the outer layer of the cystic aggregates, 

suggesting preference for edge of the aggregate (Figure 1C). Interestingly, while the CDH1(+) 

aggregates and the mixed aggregates remained spherical in shape, the CDH1(-) aggregates 

began to display protrusions where a group of cells collectively  extended from the aggregate 

main body (Figure 1B,D). These extensions displayed similar morphologies to those present 

during zona pellucida hatching where extensions remained epithelial with no observed single cells 

migrating away from the aggregate into the alginate encapsulation.  

 

4.3.2 Unencapsulated  and encapsulated CDH1(-) aggregates display differing 

morphologies  

 To interrogate whether the observed extensions were a result of CDH1 knockdown or a 

response to encapsulation itself, 50 cell human iPSC aggregates were cultured without 

encapsulation over 5 days (Figure 4.2A,B). Similar to encapsulated aggregates, cystic cavities 

formed in unencapsulated aggregates by day 1 and persisted through culture. By day 3 in mixed 

aggregates, CDH1(+) cells had segregated from CDH1(-) cells, mirroring the behavior seen in 

encapsulated mixed aggregates (Figure 4.2C). At day 5 of knockdown CDH1(-) aggregates 

displayed morphologies where an outer layer of cells peeled off of an inner epithelial core 

displaying a cystic cavity (Figure 4.2D). The entire aggregate lost OCT4 expression while outer 

layer displayed EOMES expression and the inner layer displayed SOX2 expression, indicating a 

loss of pluripotency and subsequent bifurcation of cell populations into the mesendoderm and 

ectoderm lineages (Figure 4.2D). This suggests that the complete loss of CDH1 accelerated 

differentiation of human iPSCs while still allowing for emergence of multiple lineages.  
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Figure 4.1: Encapsulated human iPSC 50 cell aggregate morphologic changes. (A) A schematic of 
the experimental set up of encapsulation (left) and example images of encapsulated 50 cell human iPSC 
aggregates in alginate gel 20 minutes post encapsulation. (B) Optical sections of aggregates demonstrating 
evolution of morphologies on day 1 and day 3. (C) Optical section of mixed aggregates with 25% CDH1 
knockdown. (D) Optical sections of aggregates lacking CDH1. 
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Figure 4.2: Unencapsulated human iPSC 50 cell aggregate morphologies. (A) A schematic of 
the experimental set up. (B) Example images of non-encapsulated 50 cell human iPSC aggregates in 96-
well round bottom plates. (C) Optical sections of mixed aggregates with 25% CDH1 knockdown 
demonstrating maintenance of cysts and segregation of CDH1(-) cells by day 3. (D) Optical sections of 
aggregates lacking CDH1 demonstrating changes in morphology and lineage fate spatial segregation. 
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4.3.3 Emergence of Extraembryonic-like Cell Fates in Encapsulated Aggregates 

With the emergence of multiple morphologies and populations in the aggregates, we 

interrogated the transcriptional expression between encapsulated an unencapsulated aggregates 

by single cell RNA sequencing, which allowed for identification of the diversity of cellular 

populations within the differentiating aggregates.  The transcriptomes of encapsulated and 

unencapsulated aggregates at day 1,3, and 6 after CDH1 knockdown were examined across 

CDH1(+), CDH1(-), and mixed aggregates (Figure 4.3A,B). The resulting data set of single cell 

transcriptomes clustered into 12 clusters representing 8 cell states by lineage markers. At day 1, 

all aggregate types overlapped in a cluster marked by high expression of pluripotency genes 

(OCT4, SOX2, NANOG) (Figure 4.3C). By day 3 and 5 aggregates transitioned through multiple 

lineage states eventually clustering into populations expressing markers of mesendoderm, 

ectoderm, endoderm, and mesoderm (Figure 4.3C). Interestingly, clusters 8 and 11 displayed 

markers of the extraembryonic trophectoderm (CDX2, GATA3, CDH3, HAND1) (Figure 3C). Gene 

Ontology analysis of these two clusters revealed gene networks associated with placental 

development and reproductive system development (Figure 4.3D). Furthermore, these clusters 

were largely populated by CDH1(-) cells that had undergone encapsulation (Figure 4.3E) and high 

in expression of pathways associated with trophectoderm development such as Hippo signaling 

and noncanonical Wnt signaling (Nishioka et al. 2009; Hirate et al. 2013; Gueth-Hallonet and 

Maro 1992; Tada, Concha, and Heisenberg 2002) (Figure 4.3F).  

To computationally investigate whether this extraembryonic-like population was diverging 

from the other three germ lineages early on in the spontaneous aggregate differentiation, cellular 

trajectories indicating transitions between populations were examined. Cellular trajectory 

reconstruction revealed that the differentiating population bifurcated after day 1, with one branch 

transitioning through primitive streak and then mesoderm lineage states, while a separate 

trajectory went toward an extra-embryonic lineage state (Figure 4.4A). The mesendoderm, 

endoderm, and ectoderm germ lineages clustered separately from the lineage trajectories of 
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pluripotency to mesoderm or to extraembryonic (Figure 4.4A), indicating that the transition from 

pluripotency occurred on a faster time scale that was not captured by sampling at day 1,3, and 5, 

preventing computational reconstruction of the complete lineage trajectory from pluripotency. 

Overall, the early emergence of the bifurcation between the germ lineages specific to the epiblast 

(mesoderm, endoderm, ectoderm) and the extraembryonic-like lineage in pseudo-time resembles 

the population emergence at compaction of the embryo (Figure 4.4B), suggesting that this system 

can be used to model early developmental lineage bifurcations. 

 

4.3.4 Human iPSC Aggregates Have Similar Transcriptomes to Pre-implantation Human 

Embryos 

 To interrogate whether the emergence of lineages seen on our encapsulated and 

unencapsulated cell aggregates resembled that of the early human embryo (Figure 4.5A), our in 

vitro data set was clustered with three previously published single cell transcriptome data sets 

from preimplantation embryos (Petropoulos et al. 2016; Yan et al. 2013; Blakeley et al. 2015) 

(Figure 4.5).  The preimplantation blastocysts clusters overlapped with in vitro aggregate cell 

transcriptomes, clustering together in the Yan et al. data set (Figure 4.5B) and in similar 

multidimentional space in the Petropoulos et. al. and Blakeley et al. data sets (Figure 4.5C,D). 

This indicates that although not perfectly replicating the identity of early human embryos, the in 

vitro culture system demonstrates similar transcriptomics. Interestingly, the extraembryonic-like 

cells from the encapsulated aggregates, marked by high CDX2 and HAND1 expression, clustered 

closely to the preimplantation embryos (Figure 4.5B,C,D). Overall, the similarities in transcriptome 

suggest that encapsulation paired with CDH1 knockdown enhances activity of gene regulatory 

networks that mimic processes in preimplantation embryos. 
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Figure 4.3: Single cell sequencing analysis of encapsulated and unencapsulated aggregates. (A,B)  
A schematic of the experimental set up. (C) UMAP demonstrating 12 clusters of cell populations at day 1,3, 
and 6. (D) Gene ontology terms for extraembryonic-like clusters 8 and 10 (p < 0.05). (E) Distribution of 
encapsulated and CDH1 knockdown cells within the UMAP clusters of all samples. (F) Distribution of genes 
associated with trophectoderm.  
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Figure 4.4: Lineage trajectories of 50 cell aggregates. (A) Lineage trajectory reconstruction using 
Monacle demonstrating Mesoderm and Extraembryonic cell fates on separate lineage branches. (B) 
Pseudotime reconstruction of the mesoderm and extraembryonic lineages. 
 

 

4.4 Discussion 

 The emergence and coincident organization of multiple lineages in the developing embryo 

is essential to the functional structure of developmental and reproductive tissues and additionally 

establishes the body plan necessary for proper development. However, precisely how this 

process is robustly regulated with the limited signaling molecules and morphogens available to 

the developing embryo is not fully understood. In this study, we demonstrate that suspension 

culture of hydrogel encapsulated 50 cell human iPSC aggregates both transcriptionally and 

morphologically replicates aspects of early human development and lineage emergence without  
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Figure 4.5: Comparison of in vitro aggregate transcriptome with preimplantation human embryos. 

(A) Schematic of early human embryonic development. (B-C) UMAPs displaying 50 cell encapsulated and 
non-encapsulated aggregate transcriptomes (gray) with three single-cell sequencing data sets (Yan et al., 
Blakeley et al., and Petropoulous et al., respectively) where the extraembryonic-like population is labeled 
with brackets. 
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addition of exogenous morphogens. Additionally, CDH1 knockdown within encapsulated 

aggregates enabled the emergence of a previously unreported extraembryonic-like population 

reminiscent of trophoblasts. These results demonstrate, first that human iPSCs inherently can 

establish signaling networks necessary to trigger symmetry breaking, and second that the 

changes in adhesion in the developing embryo may directly control lineage decisions, rather than 

simply emerging as a result of fate commitment. Furthermore, this study suggests that 

microenvironment plays a role in the coordination of lineage fate decisions, highlighting a possible 

regulatory mechanism employed by the early embryo to robustly control population emergence 

with a limited milieu of signaling molecules.  

Currently the study of symmetry breaking events in vitro often rely on the exogenous 

presence of morphogens to trigger emergence of patterning and multiple cell types in monolayer 

or suspension culture (Lancaster and Knoblich 2014; Beccari et al. 2018; Brink et al. 2014, 3; 

Simunovic et al. 2019; Warmflash et al. 2014; Tewary et al. 2017) where a single morphogen 

regime gives rise to symmetry breaking events that derive multiple cell types. However, the 

emergence of multiple germ lineages in this study suggests that only the transition from 

monolayer culture to suspension culture is sufficient to enable the emergence of multiple lineages. 

As the embryo develops it goes through regimented changes in polarity that dictate 

developmental transitions. For example, compaction relies on the polarization of the trophoblasts 

to allow for cavity formation (Hirate et al. 2013; Gueth-Hallonet and Maro 1992), while gastrulation 

relies on the  loss of polarity as invaginating cells begin their migration across the embryo (Tada, 

Concha, and Heisenberg 2002; Montero and Heisenberg 2004). Therefore, it is possible that the 

forced loss of adhesions in the CDH1 knockdown aggregates are triggering a signaling network 

that regulates polarity dependent lineage transitions.  

Additionally, it has been previously reported that the mechanical micro-environment has 

the potential to regulate lineage fate emergence in pluripotent stems cells suggesting that micro-

environment may contribute to embryonic development as well (Przybyla, Lakins, and Weaver 
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2016; Krieg et al. 2008). The emergence of a trophoblast-like population primarily in encapsulated 

CDH1 knockdown aggregates suggests that the physical micro-environment provided by 

encapsulation provides necessary cues for extraembryonic fate specification. Interestingly, 

trophoblast development is primarily regulated by Hippo signaling, a mechanically responsive 

signaling pathway (Nishioka et al. 2009; Janmey et al. 2013). Thus, it is possible that the 

enhanced emergence of trophoblast-like cells with encapsulation is a result of a mechanically 

triggered upregulation in Hippo signaling. Ultimately, the combination of  suspension culture and 

encapsulation enables better replication of embryonic organization in vitro, highlighting additional 

mechanisms by which embryos maintain precise regulation over their development.  

 

4.5 Conclusion 

 In conclusion, this third study provides an example of how combining bioengineering 

platforms such as encapsulation enables interrogation and discovery of regulators involved in the 

developmental processes underlaying 3D morphogenesis and lineage emergence in the early 

embryo. These results demonstrate the combinatorial effect of adhesion regulation and 

microenvironment impacts lineage emergence and population morphogenesis in human iPSCs, 

potentially reflecting mechanisms within the early human embryo to robustly regulate 

development.  
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Chapter 5: Axial Elongation of Caudalized Human PSC Organoids 

Mimics Neural Tube Development 

 

5.1 Introduction 

During vertebrate embryogenesis post gastrulation, repeated symmetry breaking events 

shape the embryo as more and more complex structures containing a wide variety of cell types. 

In particular a key developmental symmetry breaking event beginning at gastrulation is the 

formation of the anterior-posterior axis and subsequent elongation of the embryo. This patterning 

event segments the main body axis and specifies the tissues that will eventually contribute to the 

spinal cord (Steventon et al. 2016; Wilson, Olivera-Martinez, and Storey 2009; Schiffmann 2006; 

Yamaguchi 2001). The spine is a crucial structure that both enables physical support as well as 

protection of essential neural projections that connect the body to the brain where dysregulation 

of the key processes leading to its formation results in several congenital abnormalities (Kaplan, 

Spivak, and Bendo 2005). Although this process has long been studied in model organisms such 

as chick and amphibians, it is complicated to study the multi-cellular interactions that drive this 

axial extension at high spatio-temporal resolution in mammalian embryos because it occurs post-

implantation (Viebahn 1999; Beddington and Robertson 1999).  

In recent years, protocols for human pluripotent stem cell organoids capable of 

recapitulating structures reminiscent of those in developing tissues have been largely developed 

(Bredenoord, Clevers, and Knoblich 2017; Warmflash et al. 2014; Lancaster and Knoblich 2014). 

However, to date, many of the discovered organoid systems are limited to radial or isotropic 

tissues, with the exception being 3D gastruloid cultures (Beccari et al. 2018) where all three germ 

lineages contribute to the signaling and self-organization in mouse embryonic stem cells to 

generate axial extension and now the directed protrusions discussed in Chapter 4. Here we report 

the development of a human induced pluripotent stem cell (hiPSC) organoid model of axial 
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extension in a neuronal directed differentiation that recapitulates many of the anisotropic 

morphologic features and gene expression profiles of in vivo axial elongation, enabling in vitro 

study of the multicellular interactions that pattern the human spinal cord. 

 

5.2 Materials and Methods 

5.2.1 Human Induced Pluripotent Stem Cell Line Generation and Culture 

All work with human induced pluripotent stem cells (iPSCs) was approved by the 

University of California, San Francisco Human Gamete, Embryo, and Stem Cell Research 

(GESCR) Committee. Human iPSC lines were derived from the WTC11 line (Coriell Cat. 

#GM25256), the WTB line (Conklin Lab)(Miyaoka et al. 2014), and the Allen Institute WTC11-

LaminB cell line (AICS-0013 cl.210). All cell lines were karyotyped by Cell Line Genetics and 

reported to be karyotypically normal. Additionally, all cell lines tested negative for mycoplasma 

using a MycoAlert Mycoplasma Detection Kit (Lonza). 

Human iPSCs were cultured on growth factor reduced Matrigel (Corning Life Sciences) 

and fed daily with mTeSRTM-1 medium (STEMCELL Technologies)(Ludwig et al. 2006). Cells 

were passaged by dissociation with Accutase (STEM CELL Technologies) and re-seeded in 

mTeSRTM-1 medium supplemented with the small molecule Rho-associated coiled-coil kinase 

(ROCK) inhibitor Y-276932 (10 μM; Selleckchem)(Park et al. 2015) at a seeding density of 12,000 

cell per cm2. 

The generation of the Chordin and Noggin CRISPRi lines first involved TALEN mediated 

insertion of the CRIPSRi cassette pAAVS1-NDi-CRISPRi (Gen1) (Addgene) to the AAVS1 locus 

of the Allen Institute WTC11-LaminB (AICS-0013 cl.210) cell line. Following antibiotic selection of  

clones that received the CRIPSRi cassette, CRISPRi gRNAs were generated targeting Noggin 

and Chordin (Table 5.1) using the Broad Institute GPP Web Portal and cloned into the gRNA-

CKB (Addgene) following the previously described protocol(Mandegar et al. 2016). Guide RNA 
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vectors were nucleofected into the LaminB CRISPRi iPSC line using a P3 Primary Cell 96-well 

NucleofectorTM Kit (Lonza) and the 4D Nucleofector X Unit (Lonza) following manufacturer 

instructions. Nucleofected cells were allowed to recover in mTeSRTM-1 medium supplemented 

with Y-276932 (10 μM) and then underwent antibiotic selection with blasticidin (ThermoFisher 

Scientific; 10 μg/ml) following the previously published protocol (Libby et al. 2018; Mandegar et 

al. 2016). Knockdown efficiency was evaluated by addition of doxycycline to the daily feeding 

media over the course of 5 days, collection of mRNA, and subsequent quantification of gene 

expression by qPCR. 

 

Table 5.1: CRISPRi guides. 

Gene Target (Symbol) Guide sequence 
Noggin (NOG) CTCCTCTCCCGGGTCTACTG 
Chordin (CHRD) AAGGAGCCGCTGCCCGTTCG 

 

5.2.2 Organoid Differentiation 

Organoid differentiations are a modified protocol of previously a published spinal cord 

interneuron differentiation protocol(Butts et al. 2017). Human iPSCs were seeded at 125000 

cells/cm2 in mTeSRTM-1 medium supplemented with the small molecule Rho-associated coiled-

coil kinase (ROCK) inhibitor Y-276932 (10 μM; Selleckchem) and small molecule GSK inhibitor 

CHIR99021 (2μM, 4μM, or 6μM; Selleckchem). Two days later, cells were singularized with 

Accutase (STEMCELL Technologies), counted using a Countess II FL (Life Technologies), and 

seeded into 800μm X 800μm PDMS microwell inserts in a 24 well plate (~270 

wells/insert)(Hookway et al. 2015). After ~18 hours, condensed aggregates were transferred to 

rotary culture in mTeSRTM-1 medium supplemented with Y-276932 (10 μM; Selleckchem), 

CHIR99021 (2μM, 4μM, or 6μM; Selleckchem), ALK5 small molecule inhibitor SB431542 (10μM, 

Selleckchem), and small molecule BMP inhibitor LDN193189 (0.2μM, Selleckchem). Organoids 

were fed every other day for up to 17 days. Y-276932 was removed from the media at day 3. At 
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day 5 organoids are transferred to Neural Induction Media (DMEM F:12 (Corning), N2 supplement 

(Life Technologies), L-Glutamine (VWR), 2μg/ml heparin (Sigma Aldrich), non-essential amino 

acids (Mediatech INC), penicillin-streptomycin (VWR), supplemented with fresh 0.4μg/ml ascorbic 

acid (Sigma Aldrich) and 10ng/ml brain derived neurotrophin factor (BDNF, R&D Systems)) 

supplemented with CHIR99021 (2μM, 4μM, or 6μM; Selleckchem), SB431542 (10μM, 

Selleckchem), and LDN193189 (0.2μM, Selleckchem). At day 7 organoids were resuspended in 

Neural Induction Media supplemented with retinoic acid (10nM, Sigma Aldrich), purmorphomine 

(300nM, EMD Millipore) and N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester 

(DAPT D5942, 1μM, Sigma-Aldrich). 

 

5.2.3 Organoid Elongation Imaging and Quantification 

Day 5 organoids from a single microwell insert were individually transferred using wide 

bore pipette tips into the center 60 wells of an uncoated ultra-low attachment 96-well plate 

(Corning), seeding exactly one aggregate per well, with the remaining organoids maintained in 

rotary culture through day 7. Using an inverted Axio Observer Z1 (Zeiss) microscope with 

incubation (Zeiss Heating Unit XL S, maintained at 37 °C, 5% CO2), all 60 wells were imaged 

using an AxioCam MRm (Zeiss) digital CMOS camera at 5x magnification (NA 0.16, 2.6 μm x 2.6 

μm per pixel). Each well was imaged in TL Brightfield every 20 minutes for 48 hours giving a total 

of 145 frames. At the end of imaging (day 7), 31 aggregates from the parallel rotary culture were 

imaged at 5x to generate a comparison image set. 

To segment the organoids, all well images were first aligned by fitting a truncated quadratic 

curve to the average image intensity, then solving for the peak of maximum intensity, which was 

assumed to be the well center. Next, the average lighting inhomogeneity was calculated as the 

pixel-wise median of all 60 aligned well images, which was then subtracted from the individual 

aligned frames. After background correction, individual aggregates were isolated by finding 
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objects brighter than 0.83% of maximum intensity, but less than 3.0% of maximum intensity, with 

object size greater than 2,000 pixels, eccentricity greater than 0.1, and solidity greater than 40%. 

A bounding box 2 mm x 2 mm around the center of each of these objects was calculated and all 

frames of the time series cropped to this bounding box to reduce memory usage. To detect the 

region of maximum motion in the time series, the difference image between each pair of 

sequential images was calculated, and then the pixelwise standard deviation was calculated over 

all difference images in a given region. This standard deviation image was then thresholded at 

between 0.01 and 0.03 (AU) depending on the remaining lighting inhomogeneity in the image, 

producing a ring-shaped mask around the periphery of each aggregate. Finally, using the interior 

of the mask as the aggregate seed and the exterior as the background seed for the first frame, 

aggregates were segmented using anisotropic diffusion (Grady 2006), evolving the foreground 

and background seeds using the contour calculated from the previous frame for subsequent 

segmentations. Segmentation, labeling, and metrology were all performed using the python 

package sckit-image.(Walt et al. 2014) 

Segmentations were manually inspected for accuracy, with 45 of 60 determined as having 

no or only minor flaws, with the remaining 15 excluded from automated analysis. Using the high 

quality segmentations only, each aggregate time series was then analyzed to examine geometry 

change over time. For each contour at each time point, we calculated contour area, contour 

perimeter, minimum, maximum and mean distance from contour center of mass to the perimeter. 

As additional non-dimensional measures of shape, we calculated the ratio of maximum to 

minimum radius and aggregate circularity. Aggregates were also manually classified as 

“extending”, “partially extending”, or “non-extending” by examining each video. Aggregates 

assigned to “extending” exhibited at least one, and at most two large protuberances that extended 

at least 100 μm from the main body. Partially extending aggregates exhibited at least one, and 

often many protuberances, all of which failed to extend robustly past the 100 μm demarcation. 
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Non-extending aggregates were any aggregates that failed to generate any extensions over the 

observation period. 

 

5.2.4 Real Time Quantitative Polymerase Chain Reaction 

Total RNA was isolated from human iPSCs using an RNAeasy Mini Kit (QIAGEN) 

according to manufacturer’s instructions. Subsequently, cDNA was generated using an iScript 

cDNA Synthesis kit (BIORAD) and the reaction was run on a SimpliAmp thermal cycler (Life 

Technologies). Quantitiative PCR using Fast SYBR Green Master Mix (ThermoFisher Scientific) 

was run on a StepOnePlus Real-Time PCR system (Applied Biosciences). Relative gene 

expression was determined by normalizing to the housekeeping gene 18S rRNA, using the 

comparative threshold (CT) method. Gene expression was displayed as fold change of each 

sample (Noggin CRISPRi or Chordin CRISPRi) versus the time matched wildtype control with no 

knockdown. The primers were obtained from the Harvard Primer bank or designed using the NCBI 

Primer-BLAST website (Table 5.2).  

 
Table 5.2: qPCR primers. Forward and reverse primers used in quantitative PCR experiments. 
 
Gene Name 
(Symbol) 

Forward Primer Reverse Primer 

RNA, 18S 
Ribosomal 5 
(RNA18S5, 18S) 

CTTCCACAGGAGGCCTACA CTTCGGCCCACACCCTTAAT 

Snail (SNAI1) TAGCGAGTGGTTCTTCTGCG GCCAGTCCAAGTCTTCTCGG 
Brachyury (T) TTTCCAGATGGTGAGAGCCG CCGATGCCTCAACTCTCCAG 
SRY-box 2 (SOX2) TCAGGAGTTGTCAAGGCAGAGAAG GCCGCCGCCGATGATTTGTTATTAT 
NK1 Homeobox 2 
(NKX1.2) 

CCCTCCCACCACAAGATTTCT GACCTCCGCCAAACTTTTCCT 

T-Box 6 (TBX6) CATCCACGAGAATTGTACCCG AGCAATCCAGTTTAGGGGTGT 
RNA Binding Fox-1 
Homolog 3 
(RBFOX3, NEUN) 

ACGATCGTAGAGGGACGGAA AATTCAGGCCCGTAGACTGC 

Paired Box 6 (PAX6) GAGCGAGCGGTGCATTTG TCAGATTCCTATGCTGATTGGTGAT 
Motor Neuron And 
Pancreas Homeobox 
1 (MNX1, HB9) 

TCTCTTAACGGGAAGGGGCA CTAATTCAGGGCGCTCTCGG 

LIM Homeobox 2 
(LHX2) 

AAGTTCAGGCGCAACCTCTT AAGACGGACGTCACAGTTGG 

LIM Homeobox 5 
(LHX5) 

GTGCAAAGACGACTACCTGAG CGGTCCGTACAGGATGACAC 



 176 

Gene Name 
(Symbol) 

Forward Primer Reverse Primer 

Engrailed Homeobox 
1 (EN1) 

CGCCCAGTTTCGTTTTCGTT GCAGAACAGACAGACCGACA 

Visual System 
Homeobox 2 (VSX2, 
CHX10) 

CGGCGACACAGGACAATCTT CCTGTATCCTGTCTTCCGGC 

Oligodendrocyte 
Transcription Factor 
2 (OLIG2) 

CGCATCCAGATTTTCGGGTC AAAAGGTCATCGGGCTCTGG 

Hes Family BHLH 
Transcription Factor 
1 (HES1) 

TCAACACGACACCGGATAAAC GCCGCGAGCTATCTTTCTTCA 

Chordin (CHRD) TATGCCTTGGACGAGACGTG ATGTTCTTGCAGCTGACCCT 
Noggin (NOG) GCTGCGGAGGAAGTTACAGA ACGAGCGCTTACTGAAGCAG 

 
 

5.2.5 Histology, Immunocytochemistry and Imaging 

Aggregates were fixed with 4% paraformaldehyde (VWR) for 40 minutes, washed three 

times with PBS. Aggregates to be used for histology were embedded in HistoGel Specimen 

Processing Gel (Thermo Fisher) prior to paraffin processing. Parafin embedded samples 

were sectioned in 5µm sections, baked for 1 hour at 60°C, and subsequently stained for H&E. 

For immunofluorescent staining, epitope retrieval was performed by submersing slides in 

Citrate Buffer pH 6.0 (Vector Laboratories) in a 95ºC water bath for 35min. Samples were 

permeabilized in 0.2% Triton X-100 (Sigma-Aldrich) for 5min, blocked in 1.5% normal donkey 

serum (Jackson Immunoresearch) for 1hour, and probed with primary and secondary 

antibodies against SOX2, PAX6, T, NES, TUBB3, and CDH2 (Table 5.2). Coverslips were 

mounted with anti-fade mounting medium (ProlongGold, Life Technologies) and samples 

were imaged on a Zeiss Axio Observer Z1 inverted microscope equipped with a Hamamatsu 

ORCA-Flash 4.0 camera. 
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Table 5.3: Antibodies. Antibodies and their dilutions used in experiments. 
 
Gene Target 
(Symbol) 

Species Company (cat. #) Dilution 

SRY-box 2 (SOX2) mouse Abcam (ab79351) 1:200 
Paired Box 6 (PAX6) rabbit ThermoFisher Scientific 

(42-6600) 
1:200 

Brachyury (T) goat ThermoFisher Scientific 
(PA5-46984) 

1:400 

Nestin (NES) mouse Santa Cruz (SC-23927) 1:400 
Hoescht DNA stain NA ThermoFisher Scientific 

(62249) 
1:10000 

Tubulin Beta 3 Class III 
 (TUBB3) 

rabbit Biolegend (802001) 1:600 

N-cadherin (CDH2) rabbit Abcam (ab76057) 1:400 
 
 

5.2.6 Whole Mount Lightsheet Imaging 

4% paraformaldehyde-fixed paraffin-embedded samples (see “Histology, 

Immunocytochemistry, and Imaging”) were permeabilized with 0.3% Triton X-100 (Sigma-

Aldrich) for 5min, blocked in 5% normal donkey serum (Jackson Immunoresearch) for 1 hour, 

and probed with primary and secondary antibodies against PAX6 and T (TableS3) for 2 hours. 

Samples were then embedded in 1.5% low melt agarose (BioReagent) and drawn up into ~1mm 

imaging capillaries and subsequently imaged on the Zeiss Z.1 Light sheet Microscope equipped 

with a PCO.edge SCMOS camera. 

 

5.2.7 Single Cell RNA Sequencing Sample and Library Preparation 

Multiple organoid samples were combined and processed together using the MULTI-Seq 

technology (McGinnis et al. 2019). Organoids were singularized using Accutase (STEMCELL 

Technologies) and washed with cold PBS. Cells were resuspended in PBS with lipid-modified 

Anchor and Barcode oligonucleotides (gift from Zev Gartner) and incubated on ice for 5 min. A 

co-Anchor oligo was then added in order to stabilize membrane retention of the barcodes 

incubated for an additional 5 min on ice. Excess lipid-modified oligos were quenched with 1% 

BSA in PBS, washed with cold 1% BSA solution, and counted using a Countess II FL (Life 
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Technologies). Single cell GEMs and subsequent libraries were then prepared using the 10X 

Genomics Single Cell V2 protocol with an additional anchor specific primer during cDNA 

amplification to enrich barcode sequences.(McGinnis et al. 2019) Short barcode sequences 

(approx. 65-100bp determined by Bioanalyzer) were purified from cDNA libraries with two 

sequential SPRI bead cleanups. Barcode library preparation was performed according to the 

KAPA HiFi Hotstart (Kapa Biosystems) protocol to functionalize with the P5 sequencing adapter 

and library-specific RPIX barcode. Purified ~173bp barcode fragments were isolated with 

another SPRI bead cleanup and validation by Bioanalyzer. 

The sample library was sequenced on an Illumina NovaSeq yielding an average of 

41,112 reads per cell and 6,444 cells. The MULTI-Seq barcode library was sequenced on an 

Illumina NextSeq yielding an average of 9,882 reads per barcode and enabling sample 

assignment for 4,681 of 6,124 unique UMIs detected (76.4% recovery), using the demultiplexing 

code provided by the MULTI-Seq protocol (McGinnis et al. 2019). 

 

5.2.8 Genome Annotation, RNA-seq read mapping, and Estimation of Gene and Isoform 

Expression 

The sample library was aligned to the human GRCh38 reference genome using Cell 

Ranger v1.2.0 (10x Genomics). Gene expression levels were assessed using the Seurat v3.0.0 

analysis pipeline (Butler et al. 2018). First cells were removed with fewer than 200 detected 

genes, fewer than 1,000 total detected transcripts, or which had greater than 10% mitochondrial 

gene expression. Next, expression levels were log normalized, and the top 2,000 variable genes 

calculated using the VST algorithm. The top 20 principal components were used to group cells 

into 6 clusters using a resolution of 0.2. Finally, top markers were detected for each cluster by 

detecting the top differentially expressed genes between one cluster and the remaining data set, 
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where at least 25% of cells in the cluster expressed the gene and the gene was expressed at 

least 0.25 log2 fold-change different from the remaining population. Clusters and gene 

expression were visualized on a two dimensional UMAP projection of the first 20 principal 

components. 

 

5.2.9 Cluster Analysis 

To assign cluster identity, the top markers for each cluster were tested for GO term 

enrichment using the biological process “enrichGO” function in the R package “clusterProfiler” 

v3.12. (Yu et al. 2012) In addition, differentiation maturity in each cluster was assessed by 

examining expression level of panels of early neuroectoderm markers, proliferation markers, 

markers of neuron fate commitment, and markers of cell types present in neural tube formation 

and axial extension. Finally, to assess rostral caudal position of each, panels of HOX genes, as 

well as marker genes of Wnt and FGF signaling were examined to assign rough position of each 

cluster along the head-tail axis (Martin 2016; Carpenter 2002). 

 

5.2.10 RNAScope 

In situ hybridization for HOXB1, HOXC6, HOXB9 (probe information in Table 3.3) was 

performed on sections of 4% paraformaldehyde-fixed paraffin-embedded samples (see 

“Histology, Immunocytochemistry, and Imaging”) using the RNAscope Multiplex Fluorescent 

Reagent Kit v2 (Advanced Cell Diagnostics) and following the protocol outlined in User 

Manual 323100-USM. Sections were imaged on a Zeiss Axio Observer Z1 inverted 

microscope equipped with a Hamamatsu ORCA-Flash 4.0 camera. 

Table 5.4: RNAscope Probes. 

Gene Target (Symbol) channel 
HOXB1 C2 
HOXC6 C1 
HOXB9 C3 
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5.2.12 Statistical Analysis 

Each experiment was performed with at least three biological replicates. Multiple 

comparisons were used to compare multiple groups followed by unpaired T-tests between two 

groups subject to a post-hoc Bonferroni correction. In gene expression analysis, three replicates 

were used for each condition, and all gene expression was normalized to control wildtype 

populations. Significance was specified as P-values< 0.05. P-values are specified in figure 

legends. 

 

5.3 Results 

5.3.1 Emergence of Axial Extensions from Neuronal Organoids 

The benefit studying axial elongation in an organoid model is that it recapitulates 

developing tissues by generating organized structures in 3D. We observed that when a previously 

described neuronal differentiation protocol (Butts et al. 2017) was translated to a 3D orbital shaker 

tissue culture platform (Carpenedo, Sargent, and McDevitt 2007; Hookway et al. 2015), 

anisotropic extensions emerged from the main aggregate body after 5 days in culture (Figure 

5.1A-C). These extensions persisted across aggregates of multiple sizes (500, 3000, 10000 cells 

at seeding). However, variation in the degree of extension was observed, with robustly elongating 

organoids in some wells and nearly spherical organoids in others. To determine if culture density 

was affecting the efficiency of extension, 3000-cell organoids were cultured at densities of 500, 

1000, or 2000 organoids per well in suspension (Figure 5.2E). As organoid density increased, 

extensions became less pronounced, less frequent, and thinner; at the highest densities, 

extensions disappeared by day 15. At low culture densities, aggregate extension was robust. 

Organoids remained elongated through 15 days (Figure 5.1C), suggesting that density-mediated 

signaling, such as paracrine effects or nutrient deprivation, play a role in inducing and maintaining 
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extensions. In extending organoids, histology revealed internal elongated epithelial compartments 

with multiple sections devoid of cells (Figure 5.1E,F), To ensure that elongation did not result from 

the fusion of multiple aggregates, we transferred individual organoids at day 5 into the wells of 

low-adherence 96-well plates and imaged them over the course of 2 days. Extending organoids 

doubled the radio of their longest axis relative to their shortest axis (Figure 5.1E, Figure 5.2A-C), 

demonstrating that elongation occurs through an aggregate-autonomous symmetry-breaking 

process reminiscent of in vivo axial elongation, and not through aggregate fusion. By day 6, 

organoids displayed markers of neural differentiation such as SOX2, PAX6, and Nestin (Figure 

5.1G,H). The extending organoids also contained brachyury- (T) positive cells (Figure 5.1G,H) 

that often co-localized with SOX2 (Figure 5.1G, white arrows). The presence of SOX2+T+ cells 

suggests the emergence of neuro-mesodermal progenitors (NMPs)(Gouti et al. 2014) a 

population which, in vivo, contributes to the closing neural tube and to paraxial mesoderm 

(Henrique et al. 2015). Furthermore, by day 3 of culture, two patterns of T expression emerged: 

radial in spherical organoids versus concentrated in a pocket of cells in extending organoids 

(Figure S1D). Gene expression analysis by qPCR showed that both types of organoids expressed 

high levels of SOX2, T, migratory genes such as SNA1, and the NMP transcription factor NKX1.2 

at day 10 of differentiation (Figure 5.3A). By day 17, expression of these genes had persisted or 

increased in elongated organoids, whereas it had disappeared in spherical organoids (Figure 

5.3A), suggesting that the lack of extension was due to the absence of an NMP population.  
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Figure 5.1: Emergence of axial extensions from neuronal organoids. (A-B) Schematic of 3D culture 
experimental set up and differentiation protocol timeline. (C) Brightfield images of extending and non-
extending aggregates over the course of 15 days. (D) Stereoscope images of extending and non-extending 
aggregates at day 9 of differentiation. (E) (LEFT)Frames from video time-course tracking aggregate 
extensions in a static 96 well plate culture. (RIGHT) The graph depicts radius ratio where the solid lines 
represent the mean radius ratio of extending and non-extending aggregates with 95 percent confidence 
interval depicted by the surrounding light color (n= 24 non-elongating, n= 36 elongating). The dotted lines 
are the two pictured aggregates on the left. (G) Immunofluorescence imaged section of extending 
aggregate at day 6 of differentiation. White arrows indicate SOX2(+)T(+) cells. (H) Immunofluorescence 
optical sections of extending aggregate at day 9 of differentiations displaying both PAX6 staining and 
persistence of T(+) cells. 
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Figure 5.2: Aggregate extension phenotypes. (A) Frames from supplementary movie depicting time-
course of extension from days 5-7 of differentiation. (B) Quantification of organoid extensions by number 
of extension and percent of the entire sample (n = 8 non-extending, n= 16 partial extending, n = 36 
extending organoids). (C) Quantification of length, area, circularity, and radius of extending and non-
extending aggregates. Dark solid line represents the mean value with 95 percent confidence interval 
depicted by the surrounding light color (n= 24 non-elongating, n= 36 elongating). (D) Immunofluorescence 
staining of brachyury (T) on day 3 of the differentiation in extending and non-extending populations as 
compared to corresponding brightfield images. E) Stereoscope images of extending aggregates at day 11 
of differentiation when cultured at different densities in rotary culture. 
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Figure 5.3: Wnt mediated increase in extensions and SOX2(+)T(+) progenitor populations. (A) QPCR 
of mRNA expression from extending and non-extending at day 10 and day 17 of differentiation (n=3). Error 
bars mark standard differentiations of 3 biological replicates. Significance marked by * (p<0.001) and ** 
(p<0.00001). (B) Schematic experimental set up and differentiation protocol timeline with increased CHIR 
dosing. (C) Brightfield images of differentiation time-course conducted in the WTC hiPS cell line. (D) 
Brightfield images of differentiation time-course conducted in the WTB hiPS cell line. (E) 
Immunofluorescence of paraffin sectioned aggregates at day 10 of differentiation at 2µM, 4µM, and 6µM 
CHIR concentration. 
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5.3.2 Wnt Mediated Increase in Extensions and SOX2(+)T(+) Progenitor Populations  

 The caudalization of the spinal cord(Yamaguchi 2001) and the creation of NMPs (Wilson, 

Olivera-Martinez, and Storey 2009; Gouti et al. 2014) depend on Wnt signaling. We therefore 

examined whether increasing Wnt signaling would increase organoid elongation. Providing the 

small-molecule Wnt agonist CHIR99021 (CHIR) in increasing doses (2µM, 4µM, and 6µM; Figure 

5.3B) increased the proportion of extending organoids. Organoids derived from an hiPSC cell line 

(WTB) which had previously failed to elongate at lower CHIR doses showed a similar dose-

dependent increase in elongation (Figure 5.3C,D), though not to the same extent as WTC-derived 

organoids. Hence, inherent differences between hiPSC lines can influence their capacity for axial 

extension. At day 10 of WTC differentiation, a number of extending organoids from the 4µM- and 

6µM-CHIR cultures harbored cells co-expressing SOX2 and T, usually at their centers (Figure 

5.3E). These organoids expressed SOX2 and PAX6 at lower levels than organoids exposed to 

2µM CHIR, despite maintaining comparable expression of the PAX6 target Nestin, indicating a 

loss of progenitor states in the 4µM- and 6µM-CHIR aggregates. Additionally, 4µM and 6µM-CHIR 

organoids displayed high N-cadherin and b3-Tubulin expression, indicating the emergence of 

more mature populations of neurons (Figure 5.3E).  

 

5.3.3 Regionalized HOX Gene Expression in Extending Aggregates 

To better understand the cell diversity within extending aggregates and the differences between 

aggregates that do and do not extend, we performed single-cell transcriptomics at day 10 of 

differentiation. We found six clusters containing equivalent amounts of cells from extending and 

non-extending aggregates, with the exception of cluster 2, which contained a majority of cells 

from non-extending aggregates (Figure 5.4A, Figure 5.5A). All clusters displayed neural markers 

such as SOX2, N-cadherin, and Nestin (Figure 5.4C, Figure 5.5B,C). Clusters 0 and 1 were high 

in genes associated with early neural progenitors such as SOX2, CDX2, and PAX6, as well as 
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FGF8. They also contained a small number of cells expressing NKX1.2, a marker of NMPs (Figure 

5.4C), which was not detected in clusters 2-5. However, MIXL1 and MEOX1 were both highly 

expressed in clusters 2-4, suggesting that these clusters contain mesodermal cells (Figure 5.4B, 

Figure 5.5B,C). The presence of markers associated with the caudalization of the extending 

neural tube, such as FGF8 and CYP1B1 (Figure 5.5C), prompted us to examine the expression 

profile of HOX genes (Figure 5.4D). Both extending and non-extending aggregates expressed 

genes associated with the hindbrain, and with the brachial and thoracic regions of the neural tube, 

and only a minor increase in HOX gene expression was seen in extending relative to non-

extending aggregates (average 0.4 log2 fold change). To assess positional information, we 

monitored HOX gene transcripts marking the hindbrain (HOXB1), the brachial (HOXC6), and the 

thoracic (HOXB9) regions of the neural tube via RNAscope in day 7 and day 10 aggregates. While 

non-extending aggregates expressed both hindbrain and brachial HOX genes, the expression 

was distributed radially throughout the spherical aggregates. In contrast, the extending 

aggregates displayed regionalized expression of hindbrain, brachial and thoracic HOX genes 

along the extension axis, as seen in the neural tube of developing vertebrates. Specifically, we 

observed a high concentration of cells expressing HOXB1 (hindbrain) in the central mass of the 

aggregate and HOXC6 (brachial) and HOXB9 (thoracic) in the extensions (Figure 5.4F). 

Interestingly, HOXC6 and HOXB9 often overlapped within cells in the extending aggregates at 

day 7 (Figure 5.4F), suggesting that while these regions extend away from the main hindbrain 

aggregate mass, the cells have yet to segregate as specific regions of the spinal cord. At day 10 

the HOX gene expression was reduced in both non-extending and extending aggregates, but in 

extending aggregates, HOXB9 continued to localize to the extending region. Although nearly all 

non-extending aggregates displayed radial HOX gene expression, regionalized HOXB9 

expression was detected in one spherical aggregate (Figure 5.4G), indicating that aggregate 

extension is not a requirement for sub-populations to organize into specific HOX domains. 
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Figure 5.4: Progenitor and HOX gene expression in extending and non-extending aggregates. (A) 
UMAP of single cell RNA sequencing of extending and non-extending aggregates at day 10 of 
differentiation. (B) Gene Ontology terms assigned to RNA sequencing clusters. (C) UMAPs for SOX2, 
PAX6, NKX1.2, MIXL1 expression in extending and non-extending populations. Heatmaps depict a 
normalized increase in log2 foldchange from min expression to max expression of the respective gene. (D) 
Detected HOX gene expression across elongating and non-elongating aggregates. Schematic depicting 
HOX gene regions of the spinal cord. (F-G) RNAscope based immunofluorescence imaging of HOX genes 
in extending and non-extending aggregates at days 7 and 10 of differentiation. 
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Figure 5.5: Gene expression analysis of extending and non-extending aggregates by single cell 
RNA sequencing. A) Proportion of extending and non-extending aggregates in each cluster of the 
generated UMAP. B) Dot plot of genes relevant to axial extension. C) UMAP plots of gene expression for 
a subset of genes involved in axial patterning and extension. 
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5.3.4 Manipulation of Endogenous BMP Signaling by CRISPR Interference 

 Because the extensions mimicked aspects of the developing neural tube, we asked how 

they would respond to disruptions in signaling pathways known to control axial extension and 

patterning. The BMP pathway is critical to establishing and maintaining both the anterior-posterior 

Wnt and FGF gradients that drive axial elongation and the BMP-SHH dorsal-ventral gradients that 

organize the developing spinal cord (Yamaguchi 2001; McMahon et al. 1998; Bel-Vialar, Itasaki, 

and Krumlauf 2002; Corral and Storey 2004). We assessed the role of BMP signaling in our 

organoid system by knocking down its regulators Noggin and Chordin. We introduced RNA guides 

targeting Noggin and Chordin into a Lamin-B labeled hiPSC line (Allen Institute) harboring a 

doxycycline (DOX) inducible CRISPR interference system (CRISPRi) (Libby et al. 2018; 

Mandegar et al. 2016) (Figure 5.6A). Noggin and Chordin gene expression decreased 10 fold 5 

days after the addition of DOX (Figure 5.6B). In mouse development, Noggin is expressed along 

the developing neural tube and inhibits dorsally expressed BMP. Noggin deletion leads to 

increased BMP signaling at the posterior axis, failure of neural tube closure, and elongation of the 

developing tail (McMahon et al. 1998). Chordin is a BMP shuttling molecule that concentrates 

BMP at the ventral side of the neural tube where mouse knock-out models exhibit a shortened 

body axis and underdeveloped anterior spines (Bachiller et al. 2003). Similarly, knocking down 

Noggin led to organoids with long extensions that surpassed the length of the wildtype aggregate 

extensions, while knocking down Chordin led to aggregates with minimal to no extension (Figure 

5.6C). Both the Noggin and Chordin knockdowns increased expression of dorsal neural progenitor 

fates (Figure 5.6E), suggesting that reduction of BMP inhibitors led to increased dorsalization of 

neural progenitors within the organoid, likely through increased endogenous exposure to BMP 

signaling (Figure 5.6D). Overall, modulating BMP signaling in the extending aggregates induced 

phenotypic and cell fate specification events analogous to those occurring in vivo during neural 

tube development.  

 



 190 

 
 
Figure 5.6: Manipulation of endogenous BMP signaling by CRISPR interference. (A) Schematic 
experimental set up and differentiation protocol timeline with knockdown induction. (B) Quantification of 
Noggin and Chordin knockdown efficiency by reduction in mRNA expression levels measured by qPCR. 
(C) Brightfield images of differentiation time course of knockdown hiPSC lines. (D) Schematic depicting 
BMP signaling and progenitor specification within the developing neural tube. (E) Quantification of mRNA 
expression of progenitor specific transcription factors by qPCR at day 17 of differentiation (n=3). Error bars 
depict standard deviations of 3 biological replicates. Significance depicted by * (P<0.05). 
 
 

5.4 Discussion 

 In this study, we demonstrate a novel organoid model of axial extension and neural tube-

like formation. By combining 3D culture with early Wnt modulation of a neuronal differentiation 

protocol allows for the multi-population emergence of caudal spinal cord phenotypes, including 

NMPs, which lead to axial extension of aggregates. Furthermore, these extending aggregates 

maintain the ability to respond to perturbations in the BMP signaling pathway in manners 
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consistent with in vivo vertebrate biology. By recapitulating many of the morphologic and cell fate 

decision events associated with axial elongation, the neural extension organoids provide a 

nuanced multicellular tissue-like model of the neural tube that enables the study of the underlaying 

gene regulatory networks in conjunction with morphological events and structural outcomes that 

enable the development of the human nervous system. 

 

5.5 Conclusion  

 In conclusion, this fourth study provides an example of stem cell engineering paired with 

concepts in developmental biology to generate a unique organoid platform that displays emergent 

lineages and morphologies inherent to the developing neural tube. These results then 

demonstrate that this emergent behavior is dependent on early Wnt signaling to trigger a lineage 

fate decision that generates multipotent neuromesodermal progenitors, enabling future studies 

interrogating mechanisms behind progenitor patterning and differentiation that influence 

morphogenic phenotypes such as axial elongation. 
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Chapter 6: Future Considerations 

 

The studies presented in this dissertation develop methods to interrogate the emergence 

of heterogeneous populations and then use these methods to investigate the roles of cell-cell 

adhesion on lineage fate decisions within human induced pluripotent stem cells (iPSCs). In 

Chapter 2, a mosaic knockdown system was described in human iPSCs. Genes associated with 

cellular mechanics were knocked down in subpopulations of human iPSC colonies where mosaic 

knockdown triggered colonies rearrangements into gene knockdown specific patterns without exit 

of pluripotency. Furthermore, when allowed to differentiate, mixed populations displayed 

preferential differentiation capacity that was only present in mosaic knockdowns, indicating that a 

symmetry breaking event itself influenced subsequent lineage fate decisions. In Chapter 3,  a 

computational model of the mosaic knockdown system in human iPSCs was developed. This 

extended Cellular Potts Model used empirical data from in vitro experiments to derive model 

parameters that recapitulate in vitro behavior. Then, using a pattern classification algorithm 

(TSSL) and a parameter optimization particle swarm algorithm, experimental outcomes for 

desired de novo patterns were tested in silico.  Once the optimized experimental design was 

discovered, it was reciprocally tested in in vitro culture, successfully generating the desired pattern 

at the predicted rates. This study demonstrated a unique example of paired computational 

modeling and machine learning prediction that can applied to a tractable in vitro system, where 

both the model and the biological phenomenon can be directly related and measured. In Chapter 

4, the mosaic knockdown system was translated to a 3D culture platform where 50 cell aggregate 

culture was facilitated by hydrogel encapsulation. Over 7 days of culture, the 50 cell human iPSC 

aggregates displayed the emergence of all three germ lineages and morphologies specific to each 

lineage, effectively enabling a gastruloid model. Interestingly, the transcriptional expression of the 

gastruloids by single cell RNA sequencing clustered with preimplantation human embryos, 
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highlighting the biological relevance of the gastruloid model. Furthermore, the specific micro-

environment of encapsulation facilitated the emergence of extraembryonic lineages outside of the 

classical first three germ layers. In Chapter 5, later stages in development were modeled through 

the generation of neural tube organoids. These neural tube organoids displayed axial anisotropic 

extension in response to Wnt signaling, a pool of neuromesodermal progenitors, and regionalized 

HOX gene expression. Furthermore, the organoids responded to genetic knockdown of BMP 

pathway inhibitors in a similar manner to genetic knockout mice, both in morphology of extensions 

and progenitor lineage fate decisions. Together, these four studies capitalized on principles in 

genome engineering, tissue engineering, and developmental biology to interrogate mechanisms 

that drive the emergence of heterogeneous populations and how symmetry breaking influences 

morphogenesis in multiple types of culture and at multiple stages of human development. While 

these studies were able to establish engineered control over symmetry breaking events and 

multiple organoid systems, they also bring up additional questions that can be further explored in 

future studies. 

 

6.1 CRISPRi Colony Pattern Formation Screens  

The classical study of early development has been focused largely on embryology and 

genetic knockouts that cause congenital mutations, which can be limiting due to the time 

constraints, technical barriers, and resources needed to generate genetically manipulated 

organisms particularly in vertebrate species (Adams et al. 2013). However, the advent of 

pluripotent stem cell culture and complex organoid systems has enabled the study of many 

developmental processes in human specific models that offer a multitude of tangible genetic 

manipulations (Bredenoord, Clevers, and Knoblich 2017; Lancaster and Knoblich 2014). In 

particular, CRISPR interference (CRISPRi) technology offers a wide range of future directions to 

the described projects in this dissertation as the ease of generating guide RNAs for various targets 

facilitates an investigation of a multitude of genes in vitro that have been difficult to interrogate 
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due to embryonic lethality (Clamons and Murray 2017; Boettcher and McManus 2015; Larson et 

al. 2013). Moreover, due to the seemingly unlimited number of experiments that CRISPRi might 

facilitate, it would be beneficial to constrain the number of key gene targets through a systematic 

screen of many genes at once.  

Classically screens look for easily distinguishable read outs, such as cell death or 

expression of a particular gene (Bassik et al. 2013; Kampmann, Bassik, and Weissman 2014), 

that enable high throughput scanning of multiple targets. However, the complicated nature of 

phenotypes and multi-gene interactions involved in developmental morphogenesis as well as the 

time needed to allow morphogenic events to occur has limited the use of screens in 

developmental biology to invertebrates such as drosophila and C.elegans (Ahnn and Fire 1994). 

Therefore, pairing the 2D platform for pattern emergence described in Chapter 2 with pooled 

guide CRISPRi screening technology provides a high throughput manner in which 2D patterning 

events can be characterized as a proxy to the more complicated morphologies seen in the 

embryo. A pooled screen will allow for systematic review of many gene knockdowns and analysis 

of cell segregation would highlight genes necessary for morphogenic organization events.  

Furthermore, this would allow for genetic interrogation of early embryonic patterning in a human 

context. A patterning screen could then be further expanded to encompass lineage fate decisions 

by including live reporters for lineage specific markers, enabling interrogation of how position 

within a 2D tissue influences lineage and subsequent patterning. Overall, the expansion of 

CRISPRi targets in the form of a screen would allow for high throughput interrogation of a 

multitude of genetic regulators of multicellular patterning, enabling the establishment of the main 

regulators of morphogenesis within the embryo. 

 

6.2 Expanding CRISPRi Perturbations in the Cellular Potts Model 

The computational model described in Chapter 3 tested the likelihood of creating three 

desired patterns (Multi-Island, Bullseye, or Janus) within the limited parameter space that was 
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available in the in vitro system. Although the model was able to successfully predict an 

experimental design that yielded the Multi-Island and the Bullseye patterns, it was unable to find 

parameters that would give rise to the Janus pattern. Additionally, the computational model 

predicts the likelihood of achieving the target pattern, which in the case of the Bullseye was only 

12% of the time. Therefore, it would be beneficial to examine how the model could be expanded 

and made more robust, so that the predicted patterns occurred more often and with less limitations 

and a wider diversity of patterns can be achieved. 

Thus, analogous to the expansion of genetic targets in vitro, the in silico model can be 

expanded to incorporate additional parameters corresponding to genetic perturbations. The 

Cellular Potts Model has the advantage of being modular so that as new cellular behaviors are 

observed in vitro, they can be quantified and added as another “cell line” parameter in the 

computational model. This would allow for the expansion of the model to include multiple levels 

of control beyond just the two previously interrogated knockdowns (CDH1 and ROCK1). Including 

other adhesion molecules such as EPCAM or molecules involved in cellular repulsion such as 

ephrins (Taylor et al. 2017; Holmberg, Clarke, and Frisén 2000) may facilitate additional 

phenotypes and boundary formations that would provide the experimental parameters to create 

more robust and tunable patterns. For example, the Janus pattern may be achieved by a repulsive 

signal, the likelihood of obtaining the Bullseye pattern may be increased, or the number of islands 

in the Multi-Island pattern could be more robustly titered. Overall, this allow for mechanistic 

interrogation of the necessary behaviors required for robust generation of developmental 

patterning and allow for expansion of our understanding of physical morphogenic regulation. 

Furthermore, with more parameters to explore, the computational model could be pushed 

to interrogate the creation of more complex patterning events with multiple cellular populations or 

expanded to a 3D Cellular Potts Model (Wu 1982), simulating contexts similar to those present in 

organoid systems. Specifically, the computational model could interrogate the key events needed 
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to generate a primitive streak, or a closing neural tube, specifically focusing on what multi-cellular 

patterning events are required and how might they be replicated given an expanded set of 

parameters in the form of gene knockdown. Overall, the expansion of the computational model 

would enable many follow up studies interrogating key aspects of symmetry breaking, how they 

are robustly controlled, and potentially predict experimental conditions to mimic complex 

morphological events. 

 

6.3 Interrogating Hippo Signaling in Pluripotent Stem Cell Transitions 

In Chapter 4 of this dissertation, a model for early embryonic lineage emergence is 

discussed where the appearance of an extraembryonic-like population is seen with CDH1 

knockdown and hydrogel encapsulation of 50 cell human iPSC aggregates. The development of 

the extraembryonic trophectoderm lineage is dependent on the Hippo signaling pathway and 

downstream TEAD activity to activate CDX2 and GATA3 driving trophoblast determination (Yagi 

et al. 2007; Nishioka et al. 2009; Ralston et al. 2010; Strumpf et al. 2005, 2). Hippo signaling is a 

mechanically sensitive signaling pathway distinguished by translocation of YAP to the nucleus 

where YAP then binds with TAZ and directs TEAD to appropriate downstream targets (Halder 

and Johnson 2011). Interestingly, the early embryo is encapsulated, similar to the experiments in 

Chapter 4, in a layer of ECM called the zona pellucida (Bleil and Wassarman 1980). The results 

in Chapter 4 suggest that encapsulation itself may provide a micro-environment conducive to 

extraembryonic lineage emergence, where encapsulation triggers Hippo signaling, either through 

mechanical restriction or sequestering of excreted signaling molecules. Therefore, an immediate 

follow up experiment for the model system described in Chapter 4 would be to determine whether 

there is increased nuclear YAP in encapsulated aggregates. Nuclear YAP would indicate that the 

Hippo signaling pathway may be responsible for the emergence of a trophoblast like population 

in the encapsulated aggregates. Further experiment could then use small molecule inhibitors to 
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determine whether canonical or non-canonical Hippo pathway is being activated by 

encapsulation. 

 Furthermore, the emergence of an extraembryonic-like cell lineage largely in human 

iPSCs that have lost CDH1 expression leaves additional questions to be addressed. The 

regulation of CDH1 in trophoblast development is often described as a redistribution of cadherins 

junctions in the polar trophoblast cells (Vestweber et al. 1987), helping to create a barrier 

surrounding the cyst of the developing blastocyst. Moreover, this process involves the non-

canonical Wnt signaling pathway to regulate the changes in cell polarity (Ducibella et al. 1975; 

Hirate et al. 2013; Vestweber et al. 1987). It is possible that the knockdown of CDH1 activating 

the Wnt signaling pathway, leading to the emergence of extraembryonic lineages (Stephenson, 

Yamanaka, and Rossant 2010). To interrogate whether CDH1 loss promotes trophectoderm 

emergence by enabling increased Wnt signaling, first nuclear localization of β-catenin and 

phosphorylated ATF2 could be examined, marking canonical and noncanonical Wnt signaling, 

respectively.  Then a combination of follow up experiments using knockdown to target other 

members of both the canonical (TCF4, β-catenin) and non-canonical (AP-1, ATF2) Wnt signaling 

pathway would then illuminate how the pathways might regulate trophoblast emergence. Overall, 

the proposed future experiments would highlight the role of Hippo and Wnt signaling in the 

emergence of the trophectoderm lineage and how it relates to the mirco-environment provided by 

encapsulation, suggesting novel methods by which the embryo regulates population emergence. 

 

6.4 Examining Neuromesodermal Progenitor Fate Regulation 

In Chapter 5, an organoid model for axial extension and neuromesodermal progenitors 

(NMPs) is described to mimic many aspects of early neural tube formation and neuronal 

population emergence. However, a remarkable aspect of NMPs is their ability to contribute to 

tissues across germ lineages to form of the posterior neural tube and neighboring somites 

(Henrique et al. 2015; Martin 2016; Wilson, Olivera-Martinez, and Storey 2009). The formation of 
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the neural tube and surrounding somites are coordinated events in embryonic development where 

disruption to either process often results in malformations in the parallel tissue (Harris and Juriloff 

2007; Vermot et al. 2005). It is proposed that the axial stem cell pool of NMPs coordinates the 

balanced formation of the posterior neural tube and neighboring somites to generate a functional 

spine. However, how this pool of progenitors mechanistically balances production of two paired 

tissues is poorly understood, because of a lack of techniques to either track NMp dynamics and 

cellular organization in vivo, or to define intrinsic genetic regulators of the NMp lineage 

specification, such as through a large-scale in vivo screen. Therefore, the system developed in 

Chapter 5 offers a wealth of potential follow up experiments to interrogate questions about NMP 

regulation that were previously limited due to the difficulties of working in vivo. For example, the 

system lends itself to quickly generated genetic knockdown of desired targets that may affect the 

regulation of NMP differentiation such as but not limited to, HOX genes, Wnt and FGF pathway 

regulators, adhesion molecules, and NOTCH signaling pathway regulators. Overall, this would 

enable mechanistic interrogation of regulatory genes and pathways specific to neural tube 

formation, expanding our insight on what regulates robust formation of the spine. 

Furthermore, organoid culture facilitates larger scale screening technologies both at the 

genetic and small molecule level. Follow up experiments could focus on small molecule inhibitor 

screens  to interrogate the necessary pathways involved in NMP establishment, maintenance, 

and differentiation. Additionally, the extension phenotype could be used as a read out to screen 

for key genetic determinants of morphogenic extension. Overall the axial extension organoid 

system enables many avenues of experimentation interrogating morphogenesis and lineage 

specification of the spinal cord and surrounding tissues that were previously limited due to the 

technical constraints of working with in vivo systems. 
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6.5 Conclusions 

 The results of this dissertation significantly contribute to the fields of developmental 

biology and bioengineering by establishing platforms to interrogate multicellular organization in 

the presence of symmetry breaking events such as pattern formation and multi-lineage 

specification. The development of computational models that inform systematic pattern 

recognition to identify and predict symmetry breaking events enables the interrogation of 

developmental biology concepts in a high throughput, quantitative manner. The establishment of 

multiple organoid systems in which symmetry breaking events can be mechanistically 

interrogated, either in the form aggregate protrusion morphologies or axial extension as a result 

of NMP population emergence, will help to further illuminate concepts in developmental biology. 

Finally, the described studies use these platforms to highlight mechanisms by which 

heterogeneous cell-cell adhesion contributes to lineage fate decisions and demonstrate 

preliminary results on the role of microenvironment in early lineage fates.  
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