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BASIC THEORY AND APPLICATION OF REGGE POLES 

C. Edward Jones and John A. Poirier 

Lawrence Radiation Laboratory 
University of California 

Berkeley, California 

February 8, 1963 

ABSTRACT 

This paper gives a development of the basic theory of Regge poles. 
The goal has been to give a self-contained discussion which can be easily 
read without prior background knowledge of the subject. Emphasis is on 
physical ideas and experimental consequences rather than on rigor. The 
attempt has been made to state explicitly the underlying assumptions behind 
the Regge pole hypothesis . 
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BASIC THEORY AND APPLICATION OF REGGE POLES>:< t 

; .· 
C. Edward Jones and J,ohn.A. Poirier 

Lawrence Radiation Laboratory 
University of California 

Berkeley, California 

February 8, 1963 

I. INTRODUCTION 

<> 

In recent months, a new insight has been gained into elementary-
particle-scattering problems, as a result of the work of Regge. 1, 2 Regge 
studied the scattering of particles in ordinary quantum mechanics with a 
potential and found (a) that the partial-wave amplitudes which express the 
scattering in states of well-defined angular momentum could be defined for 
all values of the angular-momentum variable £ in the. complex plane, in
stead of just for positive integers; and (b) that, considered as analytic func
tions of the variable £, these same amplitudes have simple poles locatedr._in 
the complex £ plane. Attempts have since been made to generalize the re
sults of Regge and to assume that such angular-momentum poles also exist 
in relativistic scattering. 3, 4 The purpose of this paper is to describe in a 
simple way the essenti.al features of these latter attempts, developing the 
subject from the beginning. 

The point of view that we shall take in what follows is to assume the 
existence of Regge poles in relativistic scattering and then to explore the 
physical consequences of this assumption. We shall emphasize how the 
Regge pole hypothesis leads to observable predictions. The reader is re
ferred to the work of Regge, 1' 2 for rigorous proofs of the existence of Regge 
poles in potential scattering. In the relativistic case, the rigorous analyt
icity pr.-operties of the scattering amplitudes in the variable £ are still under 
investigation. 

According to recent studies, there may be branch c~ts in the angular-
momentum plane; that is, branch points in the variable £. We have ignored 
this possibility here and have considered only simple poles in£. It should 
be borne in mind that the existence of such cuts could, depending upon their 
locations and movements, complicate considerably the picture given here. 

It is hoped that the discussion of Regge poles presented herein will 
provide the background for easy access to the current literature on this sub
ject. 

Work done under the auspices of the U. S. Atomic Energy Commission. 

t this paper is ~n outgrowth of a series of informal talks given by one 
(C. E. J .) J~:> Jhe Moyer ·.Group at the Lawrence Radiation Laboratory, 
Berkeley. · ' 

of us 
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II. BACKGROUND 

Let us first write down the differential cross section in the center-of
mass (c. m.) system for the elastic scattering of two particles: 

-= ( 1) dcr 

where E is the total energy in the c. m. and e is the c. m. scattering angle. 

Fig. 1. Scattering of n + p-+ n + p. 

Let us take as a concrete example np (neutron-proton) scattering 
(Fig. 1), where ql, q2 are the initial and final four -momenta for the neutron 

. and p 1, p 2 are the corresponding quantities for the proton. We define two 
new variables s and t: 

2 
s = (ql + Pi) ' (2) 

(3) 

Since these variables are squares of four-vector quantities, they are Lorentz
invariant. 

We now evaluate the variables s and t in terms of E and e. In 
the c. m. frame for neutron-proton. scattering ql =-p1 , where -+denotes the 
ordinary three-momentum vector. For the case of equal masses, 
-+ 2 -+2 -+2 -+2 -+2 
q 1 = q 2 =Pi = p 2 , which we denote simply by q . Therefore we can write 

2 2 2 2 -+2 2 2 
s = (ql +pl) =(q2+p2) =ql +pl + 2q1·pl = 4 (q +M) = E' 

( 4) 

.. 
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The range of physical values for the variables s and t i.s . 

:..o;z . 
-4q < t < 0-

Region I. ( 5) 

where 

When the variables s and t are in this range, we shall say that we are in 
Region I, or the physical region for the np channel. The process n+p-+n+p 
is called the 11 s -channel" of the diagram in Fig. 1, s being the square of the 
total c. m. energy for this process. It is customary to define a Lorentz-in
variant funct~on A(s, t), which is called the invariant scattering amplitude and 
is defined by · · · · 

~ 
A(s,t) =-zf(E,8). (6) 

HereA(s,t) is assumed to be an analytic function of the variables s and t 
except for specified poles and branch point singularities. Being an analytic 
function, A(s, t) is well-defined by analytic continuation outside of Region I. 

For instance, we can consider Region II defined by 

4M
2

< t r 
-4q2< s< 0 

} 
Region II. (7) 

t 

where 
-+2 t M2 q =- -

t 4 

The principle of crossing symmetry
6 

tells us that A.(s, t) with the variables 
in the range defined by Region II represents the invariant scattering amplitude 
in the c. m. frame for the process n + n-+ p + p. This is the "t-channel" for -+ 
the diagram in Fig. 1, and q t is the c. m. three -momentum. It can be noted 
that we have simply viewed the diagram in Fig. 1 from the side and changed 
particle to antiparticle whenever we have gone against an arrow. Further, 
.t is now the total c. m. energy squared for the nn system and s is related 
to the angle, et' between incident ri and final p by 

The four -momentum of the incident n is -q
2

, and for the final state p is 
-p

1 
(see Fig. 2). 

( 8) 
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P2 

n ./ 
/7 

Fig. 2. Crossed channel for n + p-+ n + p. 

Also one usually defines the u-channel process, which for this case is 
n + p-+ n + ,P; the u-channel will not be used explicitly in this paper. 

We record here for future use 'the Cauchy Residue Theorem for an 
analytic function f(z) with poles located at points z = zi, 

·~ 
.) 
c 

f(z)dz = 2:rri 

i 

residue [f(z.)] , 
1 

where the counterclockwise contour of integration, C, encloses poles of f. 

III. ANALYTIC CONTINUATION IN ANGULAR MOMENTUM 

( 9) 

We now perform a standard partial-wave decomposition in Region I: 

and in Region II 

00 

A(s,t) = L (21 + l) A/(s) p1 (cos e), 

1 =0 

00 

A(s,t) ~·L (21+1) A/(t) P 1 (coset)' 

1 =0 

( l 0) 

( ll) 

where in Region II the roles of s and t are interchanged. In terms of phase
shift notation A/(t) is (for the case of equal masses) 

J 
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exp io p_ ( t) sin 6 p_ ( t). ( 12) 

Of course, A/(t) is defined only for positive integer values of P.. Let us 
suppose a function A(£, t) exists with the following properties: (a) it is an 
analytic function of P. defined for all complex values of P., and (b) 
A(£, t) = Ap_ t(t) whenever P. is a positive integer. Thus A(£, t) coincides 
with the usual partial-wave amplitude when P. is a positive integer but is 
now also defined for all values of P. in the complex plane. (See reference 7.) 

Reg~e showed that in potential scattering (nonrelativistic Schrodinger 
equation) 1 • that it is possible to so define an A(£, t) for complex P.. In the 
Schrodinger equation, the fact that P. is an integer results from boundary 
conditions that are placed on the wave function to obtain physical solutions. 
If these conditions are relinquished, solutions are known to exist for all P. .l • 2 
(It was known previously that P p_ (cos 8) could be defined for noninteger values 
of P. and non-real values of cos 8). Regge further showed that in potential 
theory A(£, t) can be written 

A(£ t) = N(P.' t) 
' D(l,t) 

( 13) 

where N and D are analyhe· functions of P. and t . :for ReP. >- l/2, 
and N has no poles. Therefore the conditions 

D(P. , t) = 0 ( 14) 

gives the location of the poles in A(£, t). Solving Eq. (14) for P. we obtain 

P. = a(t). (15) 

Thus A(£, t) has a pole in the P. plane at P. = a(t). The following important 
points should be noted: (a) The pole in the P. plane specified by Eq. ( 15) 
moves as t changes. (b) If Eq. ( 15) is inverted we can also view the pole 
as occurring in the variable t but moving with P.. (c) The poles given by 
Eq. (15) are the only singularities in P. . Poles in angular momentum which 
move with energy are called Regge poles. 

Now we make a leap from potential theory to relativistic amplitudes 
and assume that they too have these same properties. Much of this leap has 
not been proved but, to the extent that we think of nonrelativistic theory as 
being a limit of the relativistic theory, one might expect that the leap is a 
reasonable thing to try. 
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IV. ELEMENTARY PARTICLES AND RESONANCES 

The Regge poles in A(£, t) have a simple physical meaning. Let us 
expand A(£, t) in a series where the first term gives the pole behavior 

f3i (t) 
A(£, t) = ---+ 

f. -a. ( t) 
l 

Next we expand the real part of a. about a point t , 
1 r 

a(t) = Rea.(t )+Rea'(t )(t-t )+iima(t·). , r r r r 

ThenEq. (16) becomes 

A'(f., t) = f3(t) . 

f. -Re a(t) -Rea' (t) (t-t) -i hn a(t ),, 
r r r r 

( 16) 

(17) 

( 18) 

where we have 'Suppressed the subscript i. Suppose that Re a(t ) is equal :to 
a positive integer 'as shown in Fig. 3. Now look at the partial .Jave 
f. = Re a(tr) = integer. 

.'Jmf. 

0 

I 
I 
I 
I 

I 
I 

1 

/ 
~(t) 

~a(tr) 

2 3 

Fig. 3. Location of the pole in f. as t varies. 

Ref. 
4 



For this case 

A(£, t) = 

-7-

[3 ( t) / - Re a 1 
( t ) 

r 

(t-t ) 
r 

Im a(t ) 
+ i r 

Rea 1 (t) 
r 

UCRL-1 0677 

( 1 9) 

where we have divided the numerator and denominator of Eq. (18) by 
- Re a 1 (t ) . We recognize Eq. ( 19) as a Breit-Wigner resonance formula 
with a rlsonance at t=t (phase shift going through 90 de g), with a width 
r' given by r 

+ Im a(t ) 
r =-----r-

Re a 1 (t ) 
r 

( 20) 

Therefore we see a resonance in the wave when t = t , or alternatively when 
Re a = positive integer. In the example pictured, wl have a p-wave resonance. 
If we assume that a' is not a strong function of t, then the width of the res
onance is proportional to Im a(t ). If Ima(t ) = 0 at an integer P., then r=O 
(or T= oe) and we would interpref this as a sfuble elementary particle or bound 
state. 

The Regge pole hypothesis for systems of strongly interacting parti
cles can now be simply stated: All particles and resonances, stable or un
stable, lie on Regge trajectories. In some cases more than one observed 
particle and/or resonance may lie on the same trajectory. The trajectories 
are characterized by a complete set of quantum numbers excluding, of course, 
mass and spin, which change along the trajectory. This concept of particles 
and resonances leads one to say that there are no elementary particles, since 
after all they are merely points on a trajectory with no part of the trajectory 
being any more fundamental or elementary than any other. 3, 4 

0 1 2 3 4 5 

Fig. 4. Behavior of the pole in P. in potential theory. 
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Figure 4 is a sketch of the probable behavior of a(t). This shape can be de
rived for the Yukawa potential. 8 The upper part of the curve, which swings 
back, does not produce an observable resonance because the width is too 
broad. 

V. SOMMERFELD-WATSON TRANSFORMATION 

The next step is to express A( s, t) as a contour integral: 

A(s, t) = 1 r d£(2£+l)A(£,t)P_e[-coset] 

jc sin rr £ 
( 21) 

2i 

where the path of the line integral, C, is defined in Fig. 5 below. This will 
be seen to reduce to Eq. ( 11). The contour is drawn so as to exclude all 
singularities in A(£, t) even if they should occur near the horizontal axis. 

Im £ 

Ill a
2 

(t) 

• 0.1 (t) 

/,n3 (t) 

c 

I ) -@--- 411 '0 4)-------(?--------:;;. Re £ e 
0 1 2 3 4 5 6 

Fig .. 5. Contour in the complex £ -plane. 

This particular transformation is known as the Sommerfeld-Watson trans
form. 9 One can see that Eq. (21) yields the same result as Eq. ( 11) by 
noting that (a) all singularities except those in 1/ sin rr £ are excluded by the ~ 
contour; (b) the singularities of 1/sin rr£ have a residue of (-"1)£ /rr at each 
integer value of£; (c) P_e(-cos e)= (-l)£P_e(cos e) for positive integer£; and 
(d) the path of integration in Fig. 5 is clockwise whereas the Cauchy theorem 
[Eq. (9)] is counterclockwise, which introduces an extra minus sign. 
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Suppose the path of the contour is now deformed as shown in Fig. 6.' 

r- > 
I l 

C' 

-1 0 

C" 

1 2 

Fig. 6. Deformed contour. 

It can be shown that A(.f, t) goes to zero strongly enough to make the integral 
along the semicircle, C'', vanish. We are then left with 

A(s, t) = 
1 

2i 

i 

fdJ 
C'' 

( U + 1) A (1 , t) p n ( -l _ S 
X _.z 

sinrr.f 2q 

rr(2u.+l)f3.(t)P 
1 1 a.. 

s 
( -1 - -z 

2q 1 

sin rra.. 
1 

where f3i(t) 1stheresidueofA(l,t) atl=a.i(t). 

( 22) 
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VI. HI.GH-ENERGY SCATTERING 

We shall now use the Regge pole hypothesis to study high-energy scat
tering. We recall that Eq. (22) was derived from Eq. ( ll), which is an ex
pans ion in Region II, or the t- channel (see Fig. l). · We would like now to go 
to the s-channel in Region I [Eqs.(S)]. Using Eq. {22), let us investigate the 
asymptotic behavior of A, a tot, and da /dQ, as s approaches infinity. 

The first term is a contour integral over the vertical line in the com
plex i plane Rei= -1/2. The behavior of·the integral as a function of s 
is determined by the asymptotic behavior of the Legendre polynomiallO 

so that 

1 
as z .,. oo for Re a :;;::. - 'Z ( 23) 

Pp_ (-1- s/2q~.,. {-s/2q~)p_ for s- oo (24) 

The asymptotic behavior in s of the integral f·~;i (2f+:I+A(.£ ~t)Pp_\(-1 -s/2qt
2

) 

taken along the line Rei = -l/2 is seen to be S ( -s/2qt2 ) -l/2, which goes 
to zero as s ...... oo. Therefore only the sum term in Eq. (22) contributes to the 
asymptotic behavior of A(s, t) as s ...... oo. Recall that the ith Regge pole occurs 
at i =ai(t) and has a residue of l3i(t). The Regge poles inEq. (22) correspond 
to resonances in the t-channel. Thus these poles or resonances in the t
channel control the high-energy behavior of the scattering amplitude in the 
s -channel. We are discussing Region I where t <· 0 so that we are below the 
physical threshold for the t-channel. When t is less than threshold it is 
generally believed that Im a{t) = 0. ·It is clear that if a(t) passes through a 
positive integer for t less than threshold, Ima(t) is zero, for this pole must 
correspond to a bound particle (infinite lifetime). That Ima(t) = 0 for all 
values of a(t) when t is less than threshold can be proved in potential scat
tering11 (except fo.r unusual cases) and we shall assume this property here. 
With these comments we now write the asymptotic behavior of Eq. (22): 

i 

-+2 a· 
(-s/2qt) 1 13.(t)rr(2a.+l)/sinrra. fors_,. oo. 

1 '• 1 1 
( 2 5} A( s, t) ...... -

Let us plot the Rea as a function oft (see Fig. 7). 
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t 

Physical region in) -chynel Physical region in t-channel 

Fig. 7. t-channel poles, which contribute to high s-behavior. 

In this sum over i terms, the whole sum will be dominated at large 
s by the term having the largest value of a .. 

1 

VII. SIGNATURE OF REGGE TRAJECTORIES 

In potential theory when there is an exchange potential there are, in 
effect, two different potentials acting: one for the even partial waves, and 
one for the odd. (See Appendix A. ) 

Thus a Regge pole term R(s, t) enters the amplitude in one of two forms 

P(S)±P(-S) 
R(s, t) = -rr [2a(t) + 1] f3(t) a a ( 26) 

2 sin rra 

where 

. I -2 s = -1 - s 2q 
t 

The plus sign in Eq. (26) corresponds to a Regge trajectory with an even 
signature, the minus sign corresponds to odd signature. Thus depending on 
the signature, a Regge pole term contributes either to odd or even waves, 
not both. It is important to note that if a approaches an odd integer for an 
even-signature Regge pole (that is, one carrying plus sign above), R(s, t) 
does not approach zero since the denominator also vanishes. If a approaches 
an even integer for an even-signature Regge pole then R(s, t) behaves in this 
vicinity as 

rr[2a(t)+ 1] f3(t)P (S) 
R(s, t) ~ a ( 2 7) 

sin rra(t) 

and A(s, t) has a pole. Regge poles in relativistic scattering are also assumed 
to have well-defined signatures,12 and thus the trajectories can define a par
ticle or resonance state only at every other integer value of Re £. 1 3 
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VIII. POMERANCHON 

Now we want to see what would happen if the highest trajectory [and 
hence the one that will dominate the sum in Eq. (27) for large s] has even 
signatur~. We must then take the symmetric combination of Legendre poly
nomials from Eq. (26): 

A( s, t) .- -1T(2a+l)f3(t) (P (-z) +P (+z)), 
2 sjn 1Ta a a 

where we have picked the a. that dominates the sum. 
1 

( 28) 

From Eq. (23) the asymptotic behavior of the last term in Eq. (28) is 

P ( -z) + P (z) .- ( -z)a + za as z -+ oo , 
a a 

which can be rewritten 

Putting this symmetrized version of P into Eq. (25) we get 
a 

I 
...... 2 a 

A(s, t) -> -(112) 
(s 2qt) (1+cos1Ta-i sinTia) f3(t)TI(2a+1) 

sin Tia s ...... 00 

From the optical theorem we relate Im A(s, 0) to the total cross 
section, 

From Eq. (31), 

Im A(s, 0) -= lq I 1"f3 crtoti81T . 

l I ...... 2 a ImA(s,t)-+(-)(s 2qt) f3(t)TI(2a+l), 
s->- oo 2 

\;</hicli we will write as 

a 
Im A(s, t) -+ b(t)s , 

s-+ oo 

( 29) 

(30) 

( 31) 

( 32) 

(33) 

(34) 

where b(t) inc_zrforates the t dependence of Eq. (33) and is independent of s. 
Noting that I q I -+ sl 4 as s ...... oo and setting t = 0, we obtain 

CT tot = 1 6 1T b ( 0) sa ( 0) - 1 ' as s __... oo . (3 5) 

Experimentally it appears that all cross sections involving strong interactions 
approach constants at high energies. For atot in Eq. (35) to be a constant. 
at s = oo, a(OJ must equal 1, with ai(O) ~ 1 for all other trajectories. This 
Regge pole trajectory which passes through Rea= 1 at t = 0 is called the 
Pomeranchuk trajectory.or the Pomeranchon. 3, 4 It is assumed to have the 
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quantum numbers of the vacuum. This is reasonable because this trajectory 
would then control the high-energy limit of all total cross sections and make 
them all tend to constants. It is interesting to note that the strongest forces 
(forces that lead to the most scattering) thus arise from the exchange of 
system(s) which have the quantum numbers of the vacuum. This general 
notion that "the simpler the quantum numbers the stronger the force" seems 
to hold qualitatively throughout all the Regge trajectories. For example the 
p-Regge trajectory appears to contribute the next highest power of the scatter
ing under the Pomeranchon, and its quantum numbers differ from the vacuum 
only in isotopic spin and spatial parity, (see Fig. 8). 

Let us see what would happen if the signature of this highest Regge 
trajectory were odd. Going back to Eq. (28) and rederiving its asymptotic 
behavior we must take the combination [P a. ( -z) -P a. (+z)] . Equation (31) now 
becomes, for odd signature, 

-cos rra. + i sin rra.) f3 (t) rr (2a. + 1) 
A(s, t)- (36) 

s-oc sin rra. 

When a. -""1, Re A:- oo. This would mean that the elastic cross section would 
become infinite. Since this cannot happen, we conclude that the highest 
Regge trajectory must have even signature. 
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Mass (MeV) 

0 500 700 900 1100 1300 1500 1700 1900 

-I 

Fig. 8. Regge trajectories on a Chew-Frautschi plot. 
(We are indebted to A. H. Rosenfeld for this graph.) 



-15- UCRL-10677 

IX. RELATIONS BETWEEN TOTAL CROSS SECTIONS 

A prediction of the total cross section for TTTT scattering at high ener
gies is an example of som·e further results that can be obtained from the 
theory. Since b is essentially the residue of a pole in the scattering am
plitude, we write the following: 

n p 

\_p__/ 
1\ 
n p 

2 h b 1 ( O)o:: ()'PNN) where 'Y denotes t e 

coupling between the Pome ranchon and 

a nucleon-antinucleon pair (N dehotes a 

nucleon, P denotes Po me ranchon), 

h l . th t u tot o:: b ( 0) . w ere we rea 1ze a From these relationships we obtain 
that 

tot( ) [ tot( _ )] 2 I tot( ). (J' TTTT = (J' TTp (J' pp (37) 

in the limit of high energies. It might be interesting to put in some experi
mental numbers at this point. 

tot - + 1 u (rrp) = (27.0±0.4) mb or (?5.2±0.4) mb at 10 GeV c (reference 14), 

tot I u (pp) = (39.9±1.5) mb at 28 GeV c (reference 15), 
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where the"-" indicates rr-p scattering and the "+" indicates rr+p scattering. 
That these two cross sections are different indicates that the energy is not 
yet high enough for the Pomeranchuk theorem to hold. This theorem states 
that the cross sections should approach each other and approach a constant. 
If we pick, however, ( 2 5±1) mb for cr tot(rrp) and ( 40±1. 5) mb for cr tot(pp) . 
then from Eq. (37) we obtain 

tot cr (rrrr) =(15.6±1.1) mb. (38) 

The derivation here of the high-energy limit for CY tot(rrrr) is just an example 
of many similar predictions which can be made. Such arguments are all 
based upon the notion that the residues of Regge poles are factorablel6,17 in 
the same way that the residues of elementary-particle poles in field theory 
are factorable. 

X. ANGULAR DISTRIBUTIONS 

Let us now consider angular distributions: 

dCY elas 

dQ 

in the high-energy limit. 

From Eq. (31) we can see that 
so that Eq. (39) can be written 

2A(s, t) 

1

2 

lA 1
2 

behaves like 

( 39) 

2a s as s-+ oo, 

dCY elas 
-----

dO 
g(t) T lab 2a(t) -1 as T lab __. oo ' ( 40) 

with 

( 41) 

where M
1 

and M
2 

are the masses of the incident and target pa~ticles, 
respectively, Tlab is the kinetic energy of the incident particle m the lab 
frarrie, and g(t) consists of constants and functional dependences on t. If 
we approximate a(t) by the linear form 

a ( t) = a ( 0 ) + ta 1 
( 0 ) , ( 42) 

then Eq. (40) becomes 

( 43) 
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Now recall that we are looking at a-process in the s-channel where 

--+-2 
t = -2q (1-cos 13). ( 44) 

The form of Eq. (43) is drawn in Fig. 9 where we note the exponential fall
off of the angular distribution as we go away from zero deg (t becoming more 
negative). 

· d<Jelas 

d!J 

. _______... 
·--------;:::--·---=-------=-:.:~· -~ ~~--·~.t 

Fig. 9.· Elastic-scattering cross section near 0 deg. 

Note, also, that as Tlab increases the exponential falls off even 
faster with negative L This is the logarithmic shrinking of the diffraction 
peak with high ener~l' which ap~ea.rs to.be borne out by ?igh-.energy.experi
ments at CERN12, l • 19, 20 Th1s 1s to be compared w1th ordmary dlffrac
tion scattering where the width, when plotted against t, is constant (see 
Appendix B). 

Equation (40) also gives us a method of determining u(t). Take the 
ratio of cross sections at two different laboratory energies and the same 
value of t. Then the function g(t) cancels arid we obtainl2 

d<relas [T(l\ab] /d!J 

d<Jelas[T (2\ab] /d!J 

( 45) 

We can now solve for u(t) as a function oft. Once u(t) is known 
g(t) can be determined. 
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XI. TOTAL ELASTIC CROSS SECTIONS 

We can integrate Eq. (43) over t to obtain the total elastic cross 
section: 

,-· + 1 -+1 

el 
(} 

d el 
_u_ d(cos e)= I g ( t) s ( 2 a. ( 0 ) - 1 e xp {(.en s ) 2 a.' ( 0 ) f-2 q 2 ( l - z ) )} d z 

dQ ~-1 

-2 
-4q a.' -2 -2 = g(O)s2a.(O)-ls exp(+4q a.' £ns}- exp(-4a.' q £ns) 

-2 -4q a.' .ens 

where we have assumed that g(t) is a slowly varying function. Since 
(2qs)2_.s as s-oc, and assuming that a.'>O, 

( 46) 

uel_. g(O) s2a.(O) -1-sa.' (0) l_... sa.' (O)sl (47 ) 

sa.' .en sj 

Recalling that a.(O) = l, then Eq. (47) reduces to 

el g(O) 
(} ... ( 48) 

a.'£ns 

Thus the elastic cross section goes logarithmically to zero in the limit of 
high energy. This is not surprising since it was shown that the width of the 
elastic angular distribution was shrinking logarithmically in s. This does 
not, however, contradict the fact that the total cross section tends to a con
stant at high energies; it means that total cross sections become pure in
elastic in the limit of high energies. This contrasts with the prediction of 
ordinary diffraction scattering that 

u el = u inel = rrR 2 ( 49) 

in the same limit of high energies, R being the range of the interaction. 
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· XII. ISOLATING REGGE TRAJECTORIES 

We wish now to discuss Regge trajectories other than the Pomeranchon 
and their experimental implications. 21 

The various Regge poles that can occur in the t-channel depend upon 
the quantum numbers of the t-channel. For example, in pp scattering the 
t-channel is pp scattering. This t-channel state has the quantum numbers 
S = 0, B = 0, and I= 0 or 1, where S is the strangeness quantum number, B 
is baryon number, and I is the isotopic spin quantum number. The Regge 
trajectories that have these quantum numbers and can therefore contribute 
in the intermediate states are the Pomeranchon (P), second Pomeranchon 
G?'), 22,23 w, 1T, p, 11· 

In 1Tp scattering the initial state of the crossed channel (t-channel) is 
a two-pion state which has quantum numbers S = 0, B = 0, I= 0, 1 or A and 
G = +1. (G is the eigenvalue of the G-parity operator; two pions must be in a 
state of even G-parity.) Since I= 2 is not possible for the final state, I"" 0 
or 1 are the possible intermediate states connecting 1T1T to pp. A G of +1 
excludes the 1T and the w so that we are left with the first and second 
Pomeranchon, p, and 11. 

From the optical theorem we note that the total cross section is pro
portional to Im A, whereas the differential cross section da/dst is propor
tional to \A \2 . The fact that the former cross section is linear in the scat
tering amplitude allows one to obtain certain interesting relationships which 
will isolate the contributions of various Regge trajectories. 

The following relationship between isotopic spin states will be useful 
in what follows :24 

·'· 

exp(+iTIJ 2) \r. 13 > = exp [ -i1T (I+ I3)] jr. -13). (50) 

Here I and l3 are the eigenvalues of the total and third component of isotopic 
spin, respectively, and :S 2 is the second component of the isotopic spin 
operator. J 2 will generally be represented as a matrix and exp(+iTI;) 2) is 
to be defined in terms of the power series expansion of the exponential. The 
operator exp(+iTI;) 2) rotates the state 180 deg about the "2" axis in isotopic 
spin space and also produces a phase factor exp[ .:.iir(I+I3).] . 1t should be noted 
that Eq. (50) is equally true for single -particle or many-particle states. In 
the latter case the eigenstates and operators refer tr. ·the total isotopic spin 
of the combined system. We may in this case write 

exp(+iTI;s 2 ) = exp(+iTI ~;s 2j) =IT exp(+i1T~ 2j), 
J j 

(51) 

where j is the particle index. Thus the operator exp(+i1T;) 2 ) operating on 
the combined system may be factored into a sequence of operators which 
operate on the one-particle states. 
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We alsocnbte that ,the charge 0 Qf a system is related to 13 by 

Q = 1
3 

+ ~ ( B + S). 
e 2 

'So m systems where 0-= B = S = 0 it follows that 13 = 0 and Eq. (50) becomes 

exp(+i1Tsz) lr, 0) = exp(-i1Tl) lr. o) = (-1) 1 11, o). (52) 

Now let us consider 1T+ p scattering. The s -channel process is shown 
in Fig. lQ. 

' 
t-channel > c==J lA\ /+1/~- chJnnel 1T ' p 

Fig. 10. Scattering of 1T++p-+1T+ +p. 

Fig. l L + + t-channel of 1T + p -+ 1T + p. 

We now operate on the initial state of Fig. ll (the t-channel,) with 

R
2 

= exp(+i1T~ 
2

) = exp(+i1T'J~) exp(+i1T~ 2+) . (53) 

- + The superscripts(-) and(+) denote 1T and 1T , respectively. We find from 
Eq. (50) that 

exp(+i1T'Jz-) l1r-) = l1r+); exp(+i~ 2+)11T+) = l1r:) (54) 

so from Eq. (53) we obtain 

(55) 
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But we can also, write from Eq. (52) that 

I - +) I I - +) R
2 

n n = ( -l) n n (56) 

This last equation is to be understood in the sense that we have ex
panded the state In-n+ ) in terms of eigenstates of total isotopic spin and 
the operator Rz multiplies each eigenstate by ( -l )I. (Here we have used the 
fact that B = S = Q = I 3 = 0 for the n+n- system.) We combine the last two equa
tions and represent these remarks diagrammatically in Fig. 12. 

p p p p 

= 
\I 

C) 

It\ 
\I 

___., ( -l )I c::=) 

/(\ 
t-channel t-channel 

Fig. 12. Diagrammatical representation of the effect of an isotopic
spin rotation. The ( -l )I term to the right is understood as a 
factor occurring in the isotopic-spin expansion of the n-n+ state. 

In Fig. 13 we look at the process from the point of view of the s -channeL 

-

n\ / 
t- channel ___., c=) 

/i\ 
n- s-channel p 

Fig. 13. Diagrammatical representation of the effect in the 
s-channel (n+p scattering) of an isotopic-spin rotation in 
the t-chani)..eL 

··'· :· 

It follows from what has been said that A ( s, t) +A _ ( s, t) contains only 
n+p n p 

pure I=O in the t-channel and A + (s, t) -A (s, t) contains only pure I=l in 
n p n-p 
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the t-channel. The states in the t-channel must also have B=O, S=O, G=+l. 
From the optical theorem, 

and we have seen that 

CY tot a: Im A(s, 0) 

q ".}--;-
s 

a.(0)-1 
CY tot a: ~ b. ( 0 ) ( s) 1 

s-+- oo i 1 

(57) 

(58) 

[ ] 
. · tot + tot -

See Eq. (35). If we cons1der CY (rr p) + CY (rr p) only I= 0 Regge pole 
terms will be present. When considering eytot(rr+p) -utot(rr-p), only I= l 
Regge pole terms will be present. In the latter case the leading behavior at 
high energy will be 

tot( + ) · tot( - ). 
(J 1T p - (J 1T p .:a: 

s-+- oo 

a (0)-1 
b (O)(s) p , 

p 
(59) 

since the p trajcetory is the highest trajectory with I= l. The combination 
eytot(rr+p) + eytot(rr-p) will be dominated by the Pomeranchon. 

Another interesting combinati~n of cross sections is that of pp and np 
(see Fig. 14). 25 The R2 operator operating on the initial state of the t-chan
nel of the pp system gives a relationship between amplitudes analogous to 
Fig. 12. 2 6 

n p p p 

~\ / \ :1 

/ 
t-channel-+ ,"~ 

~J~ 
n p p p 

Fig. 14. Diagrammatical representation of the effect in the 
s -channel (pp scattering) of an isotopic-spin rotation in 
the t-channel. 

Therefore the high-energy limit of the combination u tot(pp) - CY tot(np) is 
controlled by I= l Regge poles. The quantum numbers of this t-channel 
must then be S = 0, B = 0, I= l. The highest Regge trajectory with these 
_quantum numbers is the p, so that thi:s combination of cross sections should 
be domina ted by 

tot tot . a p ( 0) - 1 
CY (pp)-CY (np)a:s as s- oo • ( 60) 
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:Since ap(O) is 1 and'a.Jl other Regge trajectories are below it, then 
ap(O)< 1 and the cro.ss section difference (60) tends to zero. How it tends 
to zero is given by Eq. (60). The combination O"tot{pp) + O"tot(np) 1s pure 
I= 0 exchange. The leading behavior at high energies is given by the 
Pomeranchon and the sum approaches a constant. 

Additional relations can be obtained from the G-parity operator 27 

0 ' 
F~ = c R2 ' ( 61) 

where C is the charge conjugation operator. The eigenvalue of theQ 
operator, G , is either ±1. In analogy with the development leading to Eqs. 
(55) and (56), we write (starting with the t-channel of pp scattering)26 

( 62) 

but also 

( 63) 

where again the interpretation of Eq. ·(63) is that the t-channel pp state is 
expanded irt terms of eigenstates of total isotopic spin and G-parity, and the 
operator ~..$fR2 multiplies the eigenstates in the sum by G( -1 )I. Figure 15 
illustrates this relationship. · 

-

\ I \ 

-p p 

t
. ' 

s -chal nel 

p p 

Fig. 15. Diagrammatical representation of the effect in the 
s-channel (pp scattering) of an isotopic-spin rotation and a 
G-conjugation in the t-channel. 

tot tot - . 
From the above we see that u (pp) - u (pp) contams the effects of 
systems e~hanged in the t-channel with quantum numbers either (a) G = -1 
and I=O or (b) G=+l and I=.l. A possible Regge trajectory which would 
dominate the former state would be the w, whereas the p fits the quantum 
numbers for the latter case. 
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Another possibility is to operate with just }t and to sift out states of 
well-defined G-parity. For example, we can start with np scattering (see 
Fig. 16). 

n 
(\-

\ 

\ 
t-channel ~ c= ) 

//1 
I 

n 
s-channel 

p 

Fig. 16. Scattering of n + p _,. n + p. 

We operate on the t-channel nn state with &: , 

and also 

then we obtain the relationships shown in Fig. 17. 

/-·--\ 
t-channe1 ~ l , 

'-.__/ 

~al\ 
p n p 

Fig. 17. Effect of G-conjugation on the t-channel of np scattering. 

( 64) 

( 65) 
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Thus the difference u tot(np) - u tot(pp) is controlled at high energies by 
Regge poles of negative G-parity, so that either the w or the TT might 
contribute to this difference of .cross sections.28 · 

We summarize the results of this _section in Table I. 

Table I. High-energy behavior of total cross sections. a 

Cross sections 

tot( + ) tot( - ) 
(J TTp-0" 1Tp 

0" tot(pp) + 0" tot(np) 

0" tot(pp) _ 0" tot(np) 

O" tot(pp) + O" tot(pp) 

tot( ) tot( - ) 
O" PP - O" PP 

O"tot(np) + O"tot(pp) 

tot( ) 0" np tot( -) 
(J pp 

Contributing 
Regge poles 

p 

P,P', 
b 

w 

p 

p, w 

P, P', pb 

w 

Expected high-energy behavior 

[ap 1 (0) -1] 
a+ bs 

[a (0)-1] 
cs p 

gs 
[a (0)-1] 

p 

[ap 1 (0) -1] 
d+ es · 

[a (0)-1] [a (0)-1] 
fs w +gs p 

[ap 1 (0)-l] [a (0)-1] 
d+ es -gs. p 

[a (0)-1] 
fs w 

a 
We have not included in our discussion the conjectured P" or ABC particle 

b 

[N. E. Booth, A. Abashian, K. M. Crowe, Phys. Rev. Letters 7, 35 
( 1961)] . If it were included, it would contribute to the same eros s- section 
combinations as P and P'. 

The Y] does not appear in these places for the same reason that the TT 
does not sometimes appear, as explained in reference 28. 

A table of this type was first constructed by Udgoankar. 
21 

We have not ex
hausted the possible predictions and the reader can easily enlarge the table. 
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XIII. BACKWARD AND CHARGE -EXCHANGE SCATTERING 

In the previous section we have seen various methods of obtaining the 
position of the Regge poles at t = 0. The method involved .used the optical 
theorem, which connects the total cross section linearly with the scattering 
amplitude. However, the -theorem is only valid for t = 0. To obtain the value 
for a(t) at t =/ 0 we look at the differential elastic scatterillg cross section. 
From Eqs. (1) and (4) 

dO" = 4\A(s,t) \
2 

s 
( 66) --= 

and, taking the proper symmetric combination of Legendre polyno.mials from 
Eq. (26), we have 

. ' 2 
4\2: -rr(2a.+1)f3.(t)[P (+z)±P (-z)]/2 sinTra.(t)\ 

. 1 1 a. a. 1 
1 1 1 . 

= ----------------------------------------------------

dQ 

s 

a. (t) 2 
1 

2:c.(t)s 
i' 1 

s 
(as s-+ oo) 

(67) 

( 68) 

For t near zero we have seen that (68) is dominated by a peak whose width 
in t shrinks logarithmically with incident laboratory energy, and that this 
behavior for elastic scattering is dominated by the Pomeranchon, [see Eq. 
( 43)] . 

If .we look at scattering near 180 deg, however, the Pomeranchon no 
longer dominates so that we can discover the behavior of :a(t) vs t for 
other trajectories. Of course we must discuss a case which has nonidentical 
particles so that 180 deg can be distinguished from 0 deg. Consider -rr+p 
elastic scattering in the backward direction. To avoid introducing_ the third 
or u-channel, we redraw the s -channel diagram of Fig. 10 in Fig. 18. 

p 

\I 
t-channel -+ C) 

/A\ ' 
d 

-rr+ p 
s-channel 

Fig. 18. 
- + 

Backward Tr p scattering. 
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We see that in the t-channel of this diagram, I can be either 1/2 or 3/2, 
S::: 0, B = 1 so that the possible trajectories that could contribute are the 
nucleon or the 3, 3 resonance. The latter looks as if it is above the nucleon 
resonance so that it should dominate. 

-
A more interesting cross section would be the rr p system which in 

the cross -channel of Fig. 19 

p\ / 
t-channel .- C) 

;,\ 
s-channel p 

Fig. 19. Backward rr- p scattering. 

is a pure I = 3/?- state. The only trajectory that could contribute here is, 
then, the 3, 3 N''' resonance. Its behavior would be given, then, by 

Consider TI-p charge exchange scattering (Fig. 20). 

rr 0 n 

C) 

\ 
p 

Fig. 20. Charge -exchange scattering. 
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The crossed cha.nnel of this reaction is pure I = l, G = +l, S = 0, B = 0, 
which would then be controlled by the p-meson Regge trajectory" 
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-APPENDIX A. EXCHANGE SCATTERING
29 

An exchange potential scatters two particles like an ordinary potential 
and in addition exchanges the positions of the particles. Mathematically we 
can write an exchange potential as PVE (r), which; by operating on the wave 
function, gives 

(A-1) 

where P is an operator which acts on the wave function to change the direc-_,. 
tion of 1J;e relative -position vector r between two particles. If we change 
r to -r we have essentially interchanged the positions of the two particles. 
The most general potential that we can write down in potential theory is 

(A-2) 

where the subscript D stands for the direct potential and E the exchange 
potential. Now how would one solve the Schrodinger equation with this gen
eral potential in it? 

Rewrite Eq. (A-2) as 

V(r) (A-3) 

Let us write a most general wave function l.j;(r) which can always be broken 
~ ~ 

into two parts, one an even function of r and the other an odd function of r: 

~ ~ ~ 

l.j;( r ) = 1.j; ( r ) + l.j; ( r ) 
e o 

(A-4) 

where 

...... _,. 
l.j; (-r) =l.j; (r) 

e e 

(A-5) _,. ~ 

l.j; (-r) = -l.j; (r) 
0 0 

_,. -Since Pl.j;(r) = l.j;( -r) it is seen that 

1 + p _,. ~ 

l.j;(r) = l.j; ( r ) 
2 e 

(A-6) 

and 
1 - p _,. ~ 

l.j;( r ) = l.j; ( r ) 
2 0 

(A-7) 
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These considerations show that one can solve the Schrodinger equation 

Hlj; = i il~ at 
by breaking it into two uncoupled equations, 

and 

where 

aLJ; 
e 

0 t 

aLJ; 
H ·1• = ill ' · 

0 

o'~'o 8t 

2 

He= ~m +(VD+VE)' 

2 

Ho= fm+(VD-VE) 

(A-8) 

(A-9) 

(A-10) 

(A -11) 

(A -12) 

Thus in the presence of an exchange potential the even and odd states scatter 
independently. 

APPENDIX B. ORDINARY DIFFRACTION SCATTERING 

The width of an ordinary diffraction pea:k is proportional to A./R, 
where R is the radius of the black body. Replacing A. by il/ q we have the 
angular width of diffraction scattering as 

t6.8 ex 1/qR. 

For small angles, cos e;::; l- (e 2/2), so the value of t at the minimum of 
the ordinary diffraction peak (which we will call T) is 

-+2 -2 -2 2 e = -2q (1 -cos e);::;- q jq R =constant. 

This behavior of ordinary diffraction scattering is to be contrasted with the 
behavior as predicted by Eq. (43). 
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