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ON PEARSON-VERIFICATION AND THE CHI-SQUARE TEST

JOAKIM EKSTRÖM

Abstract. Karl Pearson’s seminal article On the criterion is reviewed, formalized in

modern notation and its method is extended beyond the normal distributions using the

Mahalanobis distance as a vehicle. The extension yields a simple method, firmly rooted

in history, for computing exact p-values and acceptance regions for hypotheses under a

large class of probability distributions and of arbitrary dimension. As a by-product it is

for example shown that the so-called method of acceptance intervals by percentiles is a

univariate special case of Pearson’s method. The article’s content is discussed in context

of other sources, in particular Pearson’s The Grammar of Science, yielding a holistic

approach to verification/falisfication of hypotheses through empirical observation.
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1. Introduction

Karl Pearson was a man who took on a mission to rectify science, and particularly the

way in which scientists argued using empirical evidence. Based on his writings it seems

as Pearson was driven by the frustration he evidently felt with the lack of standards with

respect to the use and valuation of empirical evidence. Pearson’s feeling of disappointment

with the haphazard and ad hoc manner in which some of his contemporaries argued for

their hypotheses is prominently expressed in the storied “statistics on the table, please”

quote (see, e.g., Stigler, 1999).

Channeling his frustration into action, though, On the criterion (Pearson, 1900) pro-

poses a standard for valuation of empirical evidence which nowadays is referred to as

statistical hypothesis testing. The method, consisting of Pearson’s distance criterion, the

chi-square statistic and the p-value, is at present one of the most used methods in science

for verification/falsification, i.e. testing, of hypotheses based on empirical observations,

and is the standard employed by the United States Food and Drug Administration and its

international counterparts, for example.

Though, according to English statistician and historian Plackett (1983) the article (i.e.

Pearson, 1900) has not been well understood within the statistical community. The lack

of perfect clarity about what is arguably the present de facto standard for valuation of

empirical evidence has likely in various ways effected the scientific community negatively.

Karl Pearson would in retrospect likely not have regretted presenting his criterion in a

pedagogically more elaborate manner.

The present article discusses Pearson (1900) in context of other sources, such as The

Grammar (Pearson, 1911), and puts the content into a formalized framework using modern

notation. Furthermore, the concepts are naturally extended beyond the normal distribu-

tions using the Mahalanobis distance as a vehicle.

2. Pearson’s philosophical basis

The Grammar of Science is a good source for context toOn the criterion (Pearson, 1900).

In it, Pearson distinguishes between what he refers to as the World of Conceptions and

the World of Perceptions, a viewpoint that bears many similarities with Plato’s worlds of

forms and senses. Pearson argues that deductive reasoning, cause and effect applies to the

world of conceptions only, and that to our world applies only routine in perceptions. The

measure of the degree of routine is probability, by Pearson seemingly used synonymously

with relative frequency. Pearson’s reasoning leads to the concise statement: Proof in the

field of perceptions is the demonstration of overwhelming probability . The statement is

formalized, slightly paraphrased, below.

Postulate (Pearson’s verification postulate). Verification by means of empirical evidence

is the demonstration of overwhelming probability.
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As an example, consider the statement A implies B. Proving the statement using logical

deduction amounts to showing that the combination (A,¬B) yields contradictions between

fundamental axioms and/or assumptions, such as a ̸= a. Verification of the statement in

Pearson’s sense is something completely different. Pearson-verification of A implies B

amounts to demonstrating that the combination (A,¬B) is overwhelmingly improbable, or

equivalently: given A; B is overwhelmingly probable. For clarity, the following terminology

is formally defined. Note that in the present article the terms hypothesis, statement,

proposition and conjecture are used synonymously, meaning a claim which has yet to be

verified/falsified, i.e. tested.

Definition 1. A proposition is Pearson-verified if it is overwhelmingly probable. A propo-

sition is Pearson-falsified if its negation is Pearson-verified.

In many situations, it is for various reasons simpler to demonstrate that the negation of

a proposition is overwhelmingly improbable, i.e. Pearson-falsify the negated proposition,

than to Pearson-verify the proposition. By elementary probability theory, if a proposition

has probability p, its negation, the logical complement, has probability 1−p and hence the

duality between the probability of a proposition and the improbability of its negation. Note

also that a third case exists in which it can neither be demonstrated that a proposition is

overwhelmingly probable nor overwhelmingly improbable. In that third case, consequently,

the proposition is neither Pearson-verified nor Pearson-falsified and the empirical evidence

must consequently deemed inconclusive.

A natural question of practical importance is, of course, at which point a probability

should be deemed overwhelming. Pearson (1900) argued explicitly against any preset

threshold value, favoring that the determination should be “based on the general order of

magnitude of the probability, and not on slight differences in its value.” However, Fisher

(1925) and Neyman & Pearson (1933) discussed using fixed values for the determination of

what is overwhelmingly probable, and the use of preset threshold values has since become

the norm. The use of so-called statistical significance levels is formalized in the following

definition.

Definition 2. A proposition is Pearson-verified at statistical significance level α, for some

given real number α, if it is as or more probable than 1 − α. A proposition is Pearson-

falsified at statistical significance level α if its negation is Pearson-verified at statistical

significance level α.

Fisher (1925) and Neyman & Pearson (1933) used statistical significance levels .05 and

.01 in examples. The statistical significance level .001 has also become a conventional

choice. With respect to Definition 1, whether a probability of .95 should be deemed over-

whelming is perhaps arguable.

While the present article does not aim to give an exhaustive account of the history

of inductive philosophy, it is noteworthy that Jakob Bernoulli in Ars Conjectandi (1713)



4 JOAKIM EKSTRÖM

defined concepts that are nearly identical to those discussed so far. A proposition is morally

certain, Bernoulli explains, if “its probability comes so close to complete certainty that the

difference cannot be perceived”. A completely certain proposition is one that is proved

by means of logical deduction and its probability is then represented by one. Bernoulli

proposes statistical significance levels .01 and .001. As an interesting trivia, Bernoulli

proposes that the statistical significance level should be set by the state: “It would be

useful, accordingly, if definite limits for moral certainty were established by the authority

of magistracy. For instance, it might be determined whether 99% of certainty suffices of

whether 99.9% is required.” Bernoulli further argues that relevant probabilities can be

empirically determined by repeated observation and for the sake of the argument Bernoulli

states the theorem of his which is nowadays referred to as the law of large numbers.

However, Bernoulli’s hypothesis testing theory seems to have been overlooked by his peers

and by history. Hald (1990) speculates that it might be because Bernoulli failed to provide

any convincing example. Fisher (1925) credits the invention of the hypothesis test to

Pearson (1900), which supports the proposition that Bernoulli’s concepts at that time had

been lost in history. This about Jakob Bernoulli and Ars Conjectandi.

Pearson (1911) exemplifies an application of Definition 1 as follows, slightly paraphrased.

If men’s past experience has shown that a certain set of causes A are on repetition followed

by the same effect B a million times to one, say, the implication A =⇒ B is Pearson-

verified. Using Definition 2, the implication is Pearson-verified at statistical significance

level .001, the highest conventional statistical significance level. Colloquially, one could say

that the concept of Pearson-verification is constructed so that the exception to the rule is

automatically discounted as an erroneous observation or a so-called outlier.

However, in many situations direct application of Definition 2 is not possible. A notable

example is when continuous probability distributions apply. This led Pearson to propose

his distance criterion and develop what has subsequently become known as the chi-square

test.

3. Pearson’s chi-distance criterion

Pearson (1900) proposes a criterion for whether a value can be reasonably supposed to

have arisen from random sampling, using his exact wording. The criterion is based on

distance, and from it flow the chi-square statistic, p-value and acceptance region. The

present section reviews On the criterion (Pearson, 1900), and the subsequent Section 4 is

a more formalized extension of Pearson’s method beyond normal distributions.

Suppose x1, . . . , xn are real-valued observations of some phenomenon with Gauss-Pearson

decomposition xi = µi+ui, i = 1, . . . , n, where µ1, . . . , µn are the ideal parts of the observed

phenomenon and u1, . . . , un are the random parts. For notational convenience, let the ar-

row accent x⃗ denote the sequence (x1, . . . , xn) and allow sequences to be added through

component-wise addition, i.e. vector addition.
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The problem at hand is to test a hypothesis such as µ⃗ = ν⃗, for some given ν⃗, when

the random parts have a continuous joint probability distribution. The hypothesis yields

the representation x⃗ = ν⃗ + e⃗, where e⃗ is the representation residual. Solving for e⃗ yields

e⃗ = −ν⃗ + x⃗, which under the hypothesis equals −µ⃗+ x⃗ = u⃗. Hence, the hypothesis implies

that the representation residual e⃗ is an observation from the distribution of u⃗, which is

the basis upon which Pearson’s test in constructed. For additional clarity, Pearson uses

the logical reasoning: if A implies B, then ¬B implies ¬A; so if it can be demonstrated

that the proposition e⃗ ∼ L(u⃗) is overwhelmingly improbable, i.e. Pearson-falsified, then it

follows that µ⃗ = ν⃗, the hypothesis, is Pearson-falsified as well. The notation L(u⃗) denotes
the probability distribution (or law) of the random variable u⃗.

Pearson (1900) assumes that the random parts are independent and distributed ui ∼
N(0, σ2

i ), i = 1, . . . , n, and that this is known ex ante. Pearson defines the chi-distance

between e⃗ and 0, where 0 denotes the zero element of Rn. The chi-distance is nowadays

recognized as an obsolete special case of the Mahalanobis distance, so Pearson’s chi-statistic

is denoted η = d(e⃗, 0), where d denotes the Mahalanobis distance under the joint distri-

bution of the random parts. Note that Pearson (1900) uses the Greek common χ for

denotation, though the same symbol is nowadays used for many related concepts such

as the chi-distance, the chi-distribution and even percentiles of the chi-distribution, and

hence, for the purpose of avoiding notational conflicts, the chi-statistic d(e⃗, 0) is in the

present article denoted by η.

Pearson then proposes the following. If the distance d(e⃗, 0) is small, there is little

evidence against the proposition that the residual e⃗ is an observation from the distribution

L(u⃗), and consequently there is little evidence against the hypothesis. On the other hand,

if the distance d(e⃗, 0) is great, then Pearson argues that it is hard to conceive that the

residual e⃗ is an observation from L(u⃗), and consequently that the hypothesis must be

deemed improbable. The distance η = d(e⃗, 0) is, for additional clarification, the criterion

Pearson proposes for the evaluation of whether the residual e⃗ can be reasonably supposed

to have arisen from random sampling from the distribution L(u⃗) of the random part u⃗.

Whether the distance d(e⃗, 0) is great to the extent that the hypothesis must be deemed

overwhelmingly improbable, i.e. Pearson-falsified, is determined via the value P which is

defined as follows. Let Br(m) be the Mahalanobis ball with radius r and center point m,

i.e. Br(m) = {x : d(x,m) < r} where d is the Mahalanobis distance under the distribution

of the random part u⃗. The value P , i.e. the p-value, is defined as the probability measure

of the complement of Bη(0), i.e.

P = P(Bη(0)
c),

where P is the probability measure P(A) =
∫
A fdλ, and where f is the density function

of the random part, u⃗, and λ the Lebesgue measure. Note that since Pearson (1900) was

published before Henri Lebesgue published his dissertation, Pearson expresses the value

P as an iterated integral. The p-value is often interpreted as the probability under the
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hypothesis of an as, or more, extreme residual than e⃗, and equivalently a more extreme

observation than x⃗.

Later, it was discovered that the p-value can be computed more easily through the

observed radius, i.e. η = d(e⃗, 0) (by Pearson denoted χ). In fact, the p-value was computed

via the squared radius η2, the distribution of which has since been named the chi-square

distribution.

Neyman & Pearson (1933) proposed solving for r the equation P(Br(0)
c) = α, for a given

α, yielding for the residual e⃗ an acceptance region Br(0) at statistical significance level α.

A hypothesis is accepted in the Neyman & Pearson sense if it is not Pearson-falsified, i.e.

a hypothesis is Neyman-Pearson accepted if it is either Pearson-verified or if the empirical

evidence is inconclusive. For the purpose of formalism the concept is defined, as follows.

Definition 3. A proposition is Neyman-Pearson accepted (at statistical significance level

α) if it is not Pearson-falsified (at statistical significance level α).

As a final remark, Pearson (1900) introduced a string of concepts of fundamental impor-

tance, such as his distance criterion, the chi-distance and the p-value, in a few short pages

without any explanatory wordings, and then diverted into a lengthy and technical discus-

sion on computational details. From a pedagogical point of view, Pearson’s text is quite

possibly one of the worst examples in the history of statistics, a proposition circumstan-

tially supported by Plackett (1983) and Lehmann (1993). The difficulty of understanding

the article is compounded by the fact that Pearson included examples with discrete data,

which indeed is asymptotically normally distributed however that is not mentioned in the

article. Pearson’s method was communicated to the scientific community principally via

the textbooks of his colleagues Yule (1911) and Fisher (1925).

4. Extended framework

Since a distance per definition is real-valued it maps pairs of elements of arbitrary spaces

into the reals. The term dimension reduction is sometimes used in statistical settings, and

a distance accomplishes this naturally. Furthermore a distance is zero if and only if the

two elements are equal, and is resultantly often colloquially interpreted: the greater the

distance the less equal the elements. Moreover, the Mahalanobis distance automatically

accounts for probability distribution. In all, Pearson’s approach has many merits and

is well worth extending beyond the normal distribution, something which is easily done

through the definition of the Mahalanobis distance given by Ekström (2011).

One of the premises of Pearson’s hypothesis test is that the observation x has a Gauss-

Pearson decomposition, i.e. that it can be written x = µ+u where µ is the ideal part of the

observed phenomenon, u is the random part, and (X,+) some group. It is also presumed,

importantly, that the distribution L(u) is ex ante known.
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The hypothesis that the ideal part of the observed phenomenon equals some value ν ∈ X,
i.e. µ = ν, then yields a second representation x = ν + e, where e is the representation

residual. Hence there are two expressions for the observation,{
x = µ+ u, (the Gauss-Pearson decomposition)

x = ν + e. (the hypothesis representation)

Since X per assumption is a group, it follows

µ = ν implies e ∼ L(u), and e � L(u) implies µ ̸= ν.

Consequently, the hypothesis can be falsified through falsification of the proposition e ∼
L(u). In general, though, the latter proposition cannot be falsified by means of logical de-

duction, however it can be Pearson-falsified, yielding Pearson-falsification of the hypothesis

µ = ν. For this purpose Pearson proposed his distance criterion, which is formalized as

follows.

Proposition (Pearson’s distance criterion). Suppose z is a value and F a probability

distribution with reference point m, and let d denote the Mahalanobis distance under F . If

the distance d(z,m) is great, then the proposition z ∼ F is deemed improbable.

The Mahalanobis distance under a distribution F is defined

d(x, y) = ||T (x)− T (y)||,

where T is a transformation that maps a random variable with distribution F to a standard

normal random variable and || · || denotes the Euclidean distance. The present definition

extends the conventional definition beyond normal distributions. Conditions for existence

and uniqueness of the Mahalanobis distance, as well as explicit transformations, are dis-

cussed in Ekström (2011).

With respect to the reference point of the distribution, given the interpretation of the

p-value as the probability of a more extreme value than the one observed, the reference

point m must be the least extreme value of the distribution. Under the normal distribution

assumption, Pearson (1900) sets the reference point as the zero element which simultane-

ously equals the mean, the median and the mode of the distribution. In many cases the

median is indeed a both natural and convenient choice of reference point, however if the

observation is a distance (cf. the chi-square distribution) it is reasonable to consider zero

to be the least extreme value. Admittedly, the different possible choices of reference points

cause an ambiguity which is undesired.

If x1, . . . , xn ∈ X is a sample of n observations, then simply let x⃗ ∈ Xn be the sequence

(x1, . . . , xn), and let sequences be added through component-wise addition. Then (Xn,+)

is a group and µ⃗ and u⃗ are the ideal and random parts, respectively, of the Gauss-Pearson

decomposition of x⃗. Thus the arrow accent can be added to all elements, i.e. x⃗, µ⃗, ν⃗, e⃗, m⃗,

et cetera, or equivalently the space can be redefined X̃ = Xn.
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In the extended framework, Pearson’s concepts are defined as follows.

Definition 4. Presuming the observations have Gauss-Pearson decomposition x⃗ = µ⃗+ u⃗,

where the random part u⃗ has ex ante known distribution L(u⃗) such that the Mahalanobis

distance exists, Pearson’s chi-statistic, denoted η, under the hypothesis µ⃗ = ν⃗ is defined

η = d(e⃗, m⃗),

where e⃗ is the residual of the representation x⃗ = ν⃗ + e⃗, m⃗ is the reference point of the

distribution L(u⃗), and d is the Mahalanobis distance under L(u⃗).

Definition 5. In the notation and context of Definition 4, the p-value, P , is defined

P = P(Bη(m⃗)c),

where P : B(Xn) → R is the probability measure under L(u⃗), Bη(m⃗) is the ball with radius

η and center point m⃗, i.e. {z ∈ Xn : d(z, m⃗) < η}, and d is the Mahalanobis distance under

L(u⃗).

The following results can in many cases simplify the computation of the p-value consid-

erably.

Lemma 1. Suppose that z is a random variable of dimension p with a distribution F
such that the Mahalanobis distance exists, and that m is an element in the range of z.

Then, d(z,m)2 has a non-central chi-square distribution with p degrees of freedom and

non-centrality parameter ||T (m)||2, where T is the transformation used for the Mahalanobis

distance d.

Proof. By construction the random variable T (z) is standard normal with dimension p.

It is then immediate from the definition of the non-central chi-square distribution that

||T (z)− T (m)||2 is such distributed with parameters as stated. �

Theorem 2. In the notation of Definition 5 it holds that

P(Br(m⃗)c) = Q([0, r2)c),

where Q : B(R) → R is the probability measure defined Q(A) =
∫
A gdλ, where λ is the

Lebesgue measure and g is the density function of a non-central chi-square distribution with

np degrees of freedom and non-centrality parameter ||T (m⃗)||2 where T is the transformation

used for the Mahalanobis distance.

Proof. Note the tautology z ∈ Br(m) ⇐⇒ d(z,m) < r, of which the latter is equivalent to

d(z,m)2 < r2 since the quadratic function defined on the non-negative reals is a bijection.

The statement then follows by Lemma 1. �
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Remark 1. By Theorem 2, Definition 5 can be expressed in the following way, which is

likely familiar to many,

p-value = 1−Q(η2),

where Q is the distribution function of the distribution specified in Theorem 2.

Pearson’s hypothesis test is then concluded with the following deduction. If the p-value

is small (less than or equal to α), then by Pearson’s distance criterion and Definitions 1 and

2 the proposition e⃗ ∼ L(u⃗) is Pearson-falsified (at statistical significance level α), which,

in turn, implies that the hypothesis µ⃗ = ν⃗ is Pearson-falsified (at statistical significance

level α). The latter is, of course, by definition equivalent to the hypothesis negation µ⃗ ̸= ν⃗

being Pearson-verified (at statistical significance level α).

The remainder of the present section regards acceptance regions.

Definition 6. In the notation and context of Definition 5, the acceptance region at statis-

tical significance level α, A, is defined

A = Br(m⃗),

where r is the solution to the equation P(Br(m⃗)c) = α.

Of course, the equation of Definition 6 can via Theorem 2 be restated along the lines of

Remark 1, from which it follows that

r2 = Q−1(1− α),

which thus yields an explicit expression for the radius r. Moreover, the acceptance region

can be expressed as the preimage of a Euclidean ball.

Theorem 3. Suppose T is the transformation used for the Mahalanobis distance and let

Br(x) denote the Mahalanobis ball and Er(x) the Euclidean ball, then

Br(x) = T−1(Er(T (x))).

Proof. Notice,

Br(x) = {y : ||T (y)− T (x)|| < r} = {y : T (y) ∈ Er(T (x))} = T−1(Er(T (x))),

which shows the statement. �

As a result of Theorem 3, acceptance regions can equivalently be defined as transforma-

tions of Euclidean balls. The transformation, which depends on the distribution, accounts

for the difference between the distribution at hand and the standard normal distribution.

The following corollary applies to the univariate case, i.e. when Xn is a one dimensional

linear space.



10 JOAKIM EKSTRÖM

Corollary 4. In the notation and context of Definition 6, suppose that the distribution

L(u⃗) is univariate and absolutely continuous, and let F denote the distribution function of

L(u⃗) and Φ the standard normal distribution function. Then it holds that

Br(m⃗) = (F−1 ◦ Φ(m̂− r), F−1 ◦ Φ(m̂+ r)),

where m̂ = Φ−1 ◦ F (m⃗).

Proof. For convenience, let the composition Φ−1 ◦ F temporarily be denoted G. In the

univariate absolutely continuous case the Mahalanobis distance equals |G(x)−G(y)| (see
Ekström, 2011). Since G is continuous and non-decreasing, application of Theorem 3 yields

the stated interval. �

In the univariate case, acceptance regions are often called acceptance intervals. The fol-

lowing notable special cases show that the popular so-called method of acceptance intervals

by percentiles is a special case of the method of the present article. And conversely, that

the method of the present article is a multivariate extension of the percentile method.

Corollary 5. If the point of reference, m, is the median of the univariate distribution

L(u⃗), then the acceptance region at statistical significance level α reduces to

A = (F−1(α/2), F−1(1− α/2)).

If the point of reference is the greatest lower bound (least upper bound) of the support of

the density function of L(u⃗), then the acceptance region at statistical significance level α,

A, reduces to (respectively)

A = [F−1(0), F−1(1− α)),

and

A = (F−1(α), F−1(1)].

Remark 2. Taking a sequence converging to the greatest lower bound and least upper

bound, respectively, and using the continuity of the composition Φ−1 ◦ F shows the latter

two cases.

Interestingly, Corollary 5 gives a straight answer to whether a hypothesis test should

be one-sided or two-sided, in the terminology of the method of acceptance intervals by

percentiles; it depends on the point of reference. Furthermore, it follows that a point of

reference in between the median and one of the extremes yields an acceptance interval

which is asymmetric.
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5. Discussion

Karl Pearson sought to create a standard for the use and valuation of empirical evidence

in science, and the present article reviews and extends his proposal. Pearson’s quest for

a commonly agreed upon standard raises two questions for discussion. First, is there at

all a need for such a standard? Second, is Pearson’s proposed standard, consisting of his

verification postulate, the concept of Pearson-verification, the distance criterion, et cetera,

a good enough standard for the purpose it is supposed to serve?

Answers to the two questions are of course largely normative in nature, and opinions will

likely continue to differ for years to come. As is well known, philosophical discussions have

a tendency to make people take uncompromising positions. However, one approach is to

look at the course of history, and see whether opinions within the scientific community have

tended to converge towards some consensus. And at present, it is likely fair to say that

Pearson’s method has become a de facto standard for valuation of empirical evidence within

the scientific community. P-value, acceptance region and statistical significance level have

become some of the most important function words in the modern grammar of science, not

least in the health and social sciences. Based on the wide usage of Pearson’s method, it

seems as if members of the scientific community are generally comfortable with the idea of

having a commonly agreed upon standard for the valuation of empirical evidence.

Part of the appeal of Pearson’s method is likely that given the Gauss-Pearson decomposi-

tion and the ex ante known joint distribution of the random parts, and a preset statistical

significance level, Pearson’s method is fully automated, a characteristic which, right or

wrong, is generally seen as a contributor to scientific fairness and objectiveness. However,

the objectiveness can of course in practice be undermined for several reasons, for example

if the distribution of the random parts is not ex ante known but merely assumed.

It would be difficult to argue that Pearson’s method is best in some sense, and it is possi-

ble that Pearson’s method eventually will be replaced by some other standard for valuation

of empirical evidence. Although even if there is a future such paradigm shift, the concept

of Pearson-verification will remain relevant at least for historical reasons. Consequently,

the study of the present topic must at least be deemed relevant, however one feels about

the appropriateness of Pearson’s verification postulate, the concept of Pearson-verification

and the distance criterion.

Moreover, the present article extends Pearson’s method beyond normal distributions,

yielding a simple method, firmly rooted in history, for computing exact p-values and ac-

ceptance regions for hypotheses under a large class of probability distributions and of

arbitrary dimension. Also, the chi-square test and the method of acceptance intervals by

percentiles are shown to be one and the same.
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