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A fast and efficient method for quantifying photoreceptor density in images obtained with an en-face flood-
illuminated adaptive optics (AO) imaging system is described. To improve accuracy of cone counting, en-face
images are analyzed over extended areas. This is achieved with two separate semiautomated algorithms: (1) a
montaging algorithm that joins retinal images with overlapping common features without edge effects and (2)
a cone density measurement algorithm that counts the individual cones in the montaged image. The accuracy
of the cone density measurement algorithm is high, with �97% agreement for a simulated retinal image (of
known density, with low contrast) and for AO images from normal eyes when compared with previously re-
ported histological data. Our algorithms do not require spatial regularity in cone packing and are, therefore,
useful for counting cones in diseased retinas, as demonstrated for eyes with Stargardt’s macular dystrophy and
retinitis pigmentosa. © 2007 Optical Society of America

OCIS codes: 100.2000, 100.2960, 010.1080, 330.5310.
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. INTRODUCTION
he past ten years have seen the increasing application of
daptive optics (AO) to overcome the resolution limits im-
osed by the ocular aberrations in the human eye. First
pplied to a conventional fundus camera by Liang et al.,1

O has been subsequently applied to confocal laser scan-
ing ophthalmoscopes2–4 and most recently to optical co-
erence tomography.5–7

Such systems have enabled cone classing of individual
hotoreceptors,8,9 measurement of the directionality of in-
ividual cones,10 the temporal11,12 and wavelength
roperties13 of cone reflectance, and the characterization
f the cone mosaics in forms of sex linked dichromacy.14

ecently, Choi et al.15 and Wolfing et al.16 have shown
one loss in retinal dystrophies and correlations with reti-
al function. Martin and Roorda17 demonstrated the use
f an AO–scanning laser ophthalmoscope (AO-SLO) for in
ivo measurement of single leukocyte cell velocities.

The ability to image single cells in vivo has significant
dvantages over histological studies that are limited by
rtifacts during preparation of the tissue and allow only
athogenesis of various retinal diseases to be studied at
ne point, not at different stages. However, despite the
ajor achievements in hardware and system integration,

here has been relatively little development of software to
1084-7529/07/051364-9/$15.00 © 2
oth postprocess and automate the analysis of AO retinal
mages.

This paper attempts to address two of the image pro-
essing challenges associated with high-resolution retinal
maging. First, the field of view can be as small as a few
egrees or less owing to the limited isoplanatic patch size
f the eye,18,19 hence, many images must be montaged to-
ether to obtain a better overall perspective. Second, cone
ensities20 can be as high as 324,000 cones/mm2, so there
s a need for automated photoreceptor counting for both
esearch and clinical applications.

Several authors have generated composite retinal
mages14,16,17,21 and reported cone density

easurements14–16,22 from AO images using flood fundus
ameras and AO-SLOs, respectively. Many of these re-
ults rely on manual counting and commercial graphics
ackages such as Photoshop (Adobe Systems, Mountain
iew, California) and ImageJ (National Institutes of
ealth, Bethesda, Maryland) for image montaging14,16

nd cone density measurements,14,16,22 respectively. This
s both highly labor intensive and time consuming to
chieve acceptable statistical accuracy and is further
omplicated by low image contrast, noise, and the fact
hat results may differ among counting personnel.

Several cone counting methods23,24 (e.g., Hough-
007 Optical Society of America
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ransform-based edge detection) have been applied gener-
lly to cell counting23 but not specifically to the retina.
ther more sophisticated algorithms based on Euclidian
istance map erosion followed by watershed
egmentation25,26 have also been tried, but these tend to
e computationally intensive and would give rise to mul-
iple counts when presented with low-contrast cones.

This paper describes a computer-based system that al-
ows accurate and semiautomatic montaging and count-
ng of cones in AO retinal images written in MATLAB 7.0
rogramming language (The Mathworks, Inc., Natick,
assachusetts). It utilizes histogram-based cone counting

hat is implemented after retinal image preprocessing
nd montaging. These are required to enhance image
uality and to make the counting more statistically accu-
ate (a larger image area may be sampled in the mon-
age). Experimental results on synthetic, normal, and dis-
ased retinas demonstrate the efficiency of this computer-
ased system.

. METHODS
o develop the algorithms and test their applicability, a
ynthetic cone mosaic was first generated. Once the algo-
ithms were optimized, the routines were applied to AO
mages acquired with the University of California Davis
O flood-illumination fundus camera. For a detailed de-
cription of this system refer to Choi et al.15

AO images were obtained on three normal subjects (N1,
2, N3), one subject with Stargardt’s macular dystrophy

ST1), and one subject with retinitis pigmentosa (RP1).
ll the subjects were examined by a retinal specialist, and

heir details are summarized in Table 1. All subjects were
ilated with a drop of 1% tropicamide and 2.5% phenyle-
hrine, and the head was stabilized via the use of a
ental-impression bite bar. During imaging, subjects were

Table 1. Summary o

ubject Age Gender Eye Tested Re

N1 22 M Left
N2 32 M Right
N3 20 M Left
ST1 29 F Left −9
RP1 12 M Right −8

ig. 1. AO retinal images using a 550 nm imaging wavelength
b) 4° temporal retina, (c) 7° nasal retina. Scale bar corresponds
nstructed to fixate on a target consisting of concentric
ircles, the radii of which corresponded to different retinal
ccentricities. Images were then acquired at various reti-
al locations using an arc lamp with interference filters
entered at 550±40 and 650±40 nm with an exposure
ime of 10 ms. The size of each retinal image was 1° in di-
meter owing to the current design of the AO system.15

he imaging camera (VersArray XP, Princeton Scientific
nstruments, Monmouth Junction, New Jersey) was
ranslated until the clearest focus was achieved at the
hotoreceptor layer. Trial lenses were used to correct the
ow-order aberrations, if required. Figure 1 shows AO im-
ges acquired with a 550 nm imaging wavelength over a
.5 mm exit pupil from one of the normal subjects at three
etinal locations: 2°, 4° temporal retina, and 7° nasal
etina.

. Synthetic Cone Mosaic Generation
o demonstrate the accuracy of our cone density algo-
ithm, a 512�512 pixel image representative of the cone
osaic at a 5° eccentricity was created. Each cone was

ampled by approximately 15 pixels. The peak intensity
reflectance) of each cone was adjusted to a normally dis-
ributed random number between 0.5 and 1, the variance
f which was measured from our normal retinal images
ith AO correction (and in agreement with a previous

eport11) as shown in Fig. 2(a). The image contrast was
rst decreased to 0.45 based on the scattering effect from
he retina reported by Choi et al.13 After convolving every
one with a Gaussian function (FWHM of 4 �m indicative
f cone photoreceptors from a deconvolved13 image at 5°
etinal eccentricity) to simulate their waveguide nature,
he image contrast was further reduced to 0.37 as shown
n Fig. 2(b). The point-spread function (PSF) before AO
orrection [Strehl ratio of 0.018, root mean square (RMS)
f 2.3 �m] was reconstructed by using Zernike coefficients

ject Eye Conditions

e Error Visual Acuity

Wavefront RMS
Error after AO Correction

��m�

DS 20/20 0.06
DS 20/15 0.06
DS 20/15 0.05

.25�58 20/150+ 0.06

.00�95 20/50 0.06

e locations from one normal subject, N1: (a) 2° temporal retina,
m.
f Sub

fractiv

−2.50
−2.75
+0.50

.00/ +2

.00/ +3
at thre
to 10 �
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easured from a typical subject (7 mm exit pupil, 650 nm
ight) as shown in Fig. 2(c). After convolving the image
ith the PSF and adding simulated photon, read, and
ark noise27 typical of the imaging camera (VersArray
024, Princeton Scientific Instruments, Monmouth Junc-
ion, New Jersey), the contrast of the final retinal image
as further reduced to 0.18 as shown in Fig. 2(d). Our

etinal images typically have higher contrast (i.e., greater
han 0.28) owing to the AO correction.

The accurate cone number, which is 706 in Fig. 2(a),
as obtained by applying the two-dimensional connected

omponents labeling algorithm. This technique scans the
mage pixel by pixel and allows those adjacent (connected)
ixels sharing the same or similar intensities to be
rouped together.28 Each pixel in each group was labeled
ith the same color, whereas different groups were as-

igned different colors for easier illustration as shown in
ig. 2(e). The cone counting result shown in Fig. 2(f) is
resented in Subsection 3.B.1.

. Adaptive Optics Retinal Image Preprocessing
one images from the five subjects were compressed by
ymlet wavelets,29 a process that enhances the algorithm
peed by a factor of more than 4 and also has proved to be
ighly efficient for feature extraction29 in that it retains
9.96% of the information that exists in the original reti-
al image. Seven to ten 512�512 pixel images from the

ig. 2. (Color online) Cone density measurement on a simulated
ach cone, 0.5–1). (b) Image (a) after adding background and G
atio=0.018; RMS=2.3 �m; 650 nm wavelength; 7 mm pupil) befo
ated noise �contrast=0.18�. (e) Calculated cone mosaic by the con
mage (d).
ame retinal position were semiautomatically selected
ased on image contrast and retinal overlap using cross
orrelation.30 An image contrast threshold of 0.28 was
sed in most cases to ensure that at least 60% of all the

mages were selected. However, for poor quality images, a
ower contrast threshold of 0.22 was used. After software
election, the images are manually inspected to make
ure that all the images are selected correctly. This is be-
ause eye movements during imaging may distort the im-
ge but not necessarily impair the contrast used in the se-
ection algorithm. Cross correlation was calculated for all
he selected images, with the position of the correlation
eak providing a motion vector between two considered
mages. The magnitude of motion threshold, which is
0 pixels, was set to guarantee that all the images for reg-
stration are from the same retinal location and the over-
apping area between images is at least 352�352 pixels,
hich is 50% of the original image area �512
512 pixels�. The threshold for the magnitude of the un-

ormalized cross correlation of 4�105 was calculated
ased on an 80 pixel displacement of the worst scenario to
nsure all the good images are included. By setting em-
irical thresholds for the magnitude of the cross correla-
ion and the eye motion, all the well-correlated images
rom the same retinal location were selected and aver-
ged to optimize the contrast and improve the signal-to-
oise ratio of the image. In most cases, correction for eye

mosaic image. (a) Artificial cone mosaic image (peak intensity of
n filtering �contrast=0.37�. (c) PSF of a typical subject (Strehl
correction. (d) Image (b) after PSF filtering and addition of simu-
component labeling algorithm. (f) Cone density measurement for
cone
aussia
re AO

nected
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otation was unnecessary. However, when the cones ap-
eared streaky and rotated, especially at the edge of an
mage, a program based on cross correlation calculated
he amount of angle rotation for a single image with re-
pect to the reference image, and then nearest-neighbor
nterpolation was performed. The preprocessing time for
wo hundred 512�512 images was approximately 10 min
n a 1.4 GHz Pentium 4 CPU and 768 Mbyte RAM per-
onal computer, excluding the user operating time, which
s about 15 min. The user operating time consisted of re-
iewing the images selected by the program, deleting
hose images that are blurred by the subject’s eye move-
ent, and operating the software.

. Retinal Image Montaging
retinal image montage combines a number of averaged
O retinal images within a consistent coordinate system.

n comparison with existing methods,31–33 the algorithm
escribed here is automated, seamless (without edge arti-
acts), and covers a wide area. The variable weight mon-
age method33 was combined with point-mapping
egistration,30 which registered every pair of averaged
etinal images to guarantee perfect alignment. Point-
apping registration was used to locate common features

n the reference image that also appear in the data image,
nd spatial mapping was determined based on these
atching feature points. The method allows users to pick

ut feature points (e.g., the center of cones) manually to
uarantee accurate matching between the reference and
he data images. The variable-weight method33 was used
nstead of equal weight in order to reduce edge effects.

hen blending all the images to form a montage, a para-
olic mask was used to put greater weight on pixels closer
o the center of the overlapping area of the montaged im-
ge as described in Eq. (1):

M�x,y� =
�
i=1

N

�di
2�x,y� � Ii�x,y��

�
i=1

N

di
2�x,y�

, �1�

here M�x ,y� and Ii�x ,y� are the pixel intensities of a
oint �x ,y� in the montaged and single images, respec-
ively; N is the number of single images; di is the distance
rom the point �x ,y� to the nearest border of the image Ii if
he point �x ,y� is inside the single image Ii; otherwise, di
s set to 0. The manual point-mapping method allows a
mall overlapping area (e.g., less than 100�100 pixels)
etween image frames, which helps to achieve a seamless
ontage. This blending removes many of the artifacts due

o varying contrast and intensity. A larger area is ob-
ained for cone density calculation, which provides more
tatistically accurate results.

. Cone Density Measurement Algorithm
igure 3(a) shows the initial, averaged image Iorig from
ormal subject, N1 (550 nm imaging wavelength). It was
rst convolved with a Gaussian filter and then subtracted
rom the initial profile to yield the new image, I. The pro-
ess is described by Eq. (2),
I = Iorig − Iorig e−�x2+y2�/2�2
, �2�

here the exponential describes a Gaussian filter of width
(i.e., the standard deviation) and �x ,y� denote the coor-

inates of a pixel.31 For this work, the � value was em-
irically chosen to equal one plus the retinal eccentricity,
.g., 3 for 2°, 5 for 4°, etc. Figures 3(b) and 3(c) show
aussian-filtered and background-subtracted images, re-

pectively. To aid visualization of the filtered images, the
alues of I were linearly scaled to increase brightness.

Cones have a higher intensity than other parts of the
etinal image, and the centers of the waveguide are nor-
ally brightest (peak intensity of cones), so one can iden-

ify them based on this characteristic. By determining the
eak intensities of the dimmest and brightest cones, 16
nd 255, respectively [from Fig. 3(c)], the intensity range
f 16–255 in the image histogram was set. The intensity
ange was then divided into smaller sections in steps of
en to search for the pixels that are located in each sec-
ion. The searching started from the highest intensity sec-
ion to the lowest intensity section until all the sections
ere processed. Figure 3(d) shows the cone counting re-

ults from the highest intensity section corresponding to
he range 246–255. Once a pixel is counted, all the pixels
ithin the square defined by the smallest center-to-center

one spacing are color coded (with an arbitrary intensity)
o that they will not be counted in subsequent processing.
his step ensures that cones are counted only once. The
one counting results from the second highest intensity
ection (236–245) and the last intensity section (16–25)
re shown in Figs. 3(e) and 3(f), respectively. Figure 3(g)
hows the outcome of cone counting with all the cones
ighlighted. It is then a straightforward step to calculate
he cone density. The program takes approximately 90 s
o calculate the cone density for a 293�536 cropped mon-
aged retinal image.

The users input a value for the intensity of the dim-
est cone as a threshold parameter, so it is conceivable

hat counting results may vary between operators. How-
ver, since the image quality is greatly enhanced after
ackground subtraction, users can easily determine
hether the cones are underpicked or overpicked by di-

ect comparison with the original retinal images. The
hreshold can therefore be adjusted accordingly until all
he cones are picked. Hence, the final cone densities from
ifferent operators did not vary significantly.

. RESULTS
. Retinal Image Montage
ven with good fixation, involuntary eye movements re-
ult in inevitable shifts in single-frame images, from
hich the overall montage would be created. Figure 4

hows a montage of retinal images from subject ST1
taken at 650 nm imaging wavelength) and a correspond-
ng cone density map. The montage is composed of four
ropped 300�300 pixel images taken at 4° inferior retina.
he longest side of the montage corresponds to approxi-
ately 450 �m on the retina. Although there was varying
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ig. 3. (Color online) Flowchart of semiautomated cone density measurement procedure. (a) Cropped AO retinal image from subject N1
t 4° temporal retina (imaging wavelength=550 nm). (b) Image (a) after Gaussian filtering. (c) Image after background subtraction and
inear scaling. (d) Cone counting result in the first intensity section 246–255. (e) Cone counting result in the second intensity section
36–245. (f) Cone counting result in the last intensity section 16–25. (g) Outcome of cone counting (all the cones are accurately identified

2
ith cone density of 25,164 cells/mm ).
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ontrast among the constituent images, the montage im-
ge has a smooth and seamless appearance. The montage
n Fig. 4 used the 1° field of view frames from the AO sys-
em; however, the algorithm can be applied in the same
ormat to larger single frames.

. Cone Counting

. Synthetic Image Results
he cone counting algorithm was applied to the synthetic

mage shown in Fig. 2(f). All the cones were successfully
hosen (i.e., 690 of 706 cones, or 97.7%) except for the ones
hat are partially cropped at the edge of the image. As
oise was added to the image, it blurred the cones at the
dge to the extent that they could not be segregated from
he background. To demonstrate the accuracy of our cone
ounting algorithm, two observers performed manual
ounting on the same raw simulated image shown in Fig.
(d). Their results were 662 and 671, which accounts for
3.8% and 95% of the total cone number, respectively.
hose cones with very low contrast were missed by
anual counting but were identified by the automated
ethod.

ig. 4. (Color online) Retinal image montage and corresponding
one density measurement for the subject ST1. (a) Montage of
our retinal images taken at 650 nm. (b) Cone density map of

ontaged image in (a) (cone density=5247 cells/mm2). Scale bar
orresponds to 10 �m on the retina.
. Adaptive Optics Image Results
one densities were calculated for all five subjects then
ompared with the extrapolated values from Curcio’s his-
ology data.20 The size of the cropped area (sampling win-
ow) in our image was 8–46 times larger than Curcio’s
indow size, depending on the retinal eccentricity (46

imes larger for the areas within 1 mm from the foveal
enter and 8 times larger for more peripheral areas). To
xamine the cone density variance between Curcio’s and
ur sampling windows, the sampling window was divided
nto several subsections: Each subsection was the same
ize as Curcio’s sampling window for that particular reti-
al location. The difference in cone density between sub-
ections and our whole sampling window for the normal
mages was less than 7%, which lies within one standard
rror (4%–8%; see Ref. 20) of Curcio’s mean density.

Normal image results. The retinal image and cone
ounting results from the first normal subject, N1, are
hown in Fig. 3. Figure 5 shows the AO retinal images ob-
ained at 650 nm from the two other normal subjects, N2
nd N3, and their cone density maps. All the cones in the
etinal images from the three normal subjects are identi-
ed. Table 2 summarizes the cone density measurements
n three normal subjects using the algorithm as com-
ared with Curcio’s histology data. Good agreement (over
8%) was found between the cone density measurements
rom our algorithm and Curcio’s histology data.

Diseased retinal image results. Figure 6 shows cone
ounting on AO retinal images obtained from RP1 at two
ifferent retinal locations, 4° temporal 4° inferior retina
nd 2° temporal 4° superior retina. Figure 4(b) shows
ones identified with the algorithm on montaged, dis-
ased retinal images from ST1 at 4° inferior retina. Table
summarizes the cone density measurements by the al-

orithm and a comparison with the extrapolated values
rom Curcio’s histology data.20 The percentage values pro-
ide an indication of relative cone density at each retinal
ocation. These numbers provide a good quantitative in-
ex of cone loss in diseased retinas. Although there are
umerous irregular features in these images, the algo-
ithm has identified cones accurately.

. CONCLUSION AND DISCUSSION
fast and reliable semiautomated technique is described

or measuring the cone density of AO retinal images in
oth healthy and diseased human eyes, as well as combin-
ng single-image frames to create a larger seamless mon-
age. Utilizing larger areas for counting may prove to be
eneficial for obtaining more statistically accurate cone
ensities for an area of interest. Of course, for specific
etinal loci (e.g., the foveal area with high cone density
ariance), smaller windows cropped from the montaged
mage, covering more uniform cone mosaics, may be de-
irable. One must be mindful that Curcio’s data are based
n only eight human eyes, and the introduction of un-
nown artifacts is possible during histological prepara-
ion. Ideally, a subject’s cone density should be compared
ith a larger population of age-matched normal retinas
cquired in an identical manner. Lacking such a data-
ase, Curcio’s histological data have been widely used and
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gree well with in vivo data obtained from the small num-
er of normals in the literature.
When a retinal image with a dark edge or background

within the overlapping area) is included in a montage
the worst case for our algorithm), it can cause slight edge
ffects because of high variation in intensity. If there is an
rea where the view of cone photoreceptors is obscured,
wing either to the presence of blood vessels or to other
etinal changes such as a scar or druse, that area is auto-
atically cropped out by setting a threshold in the image

istogram to separate those objects from the whole image

Table 2. Cone Density Measurements for the Three
Cone Counting Algor

Subject Retinal Location

Cone De
Measureme

�cells/m

N1 4° TRb 25,16
N2 2° TRb 42,38
N3 4° T 4° SRc 20,15

aAgreement percentage, A=100%−
�D1−D2�

D2
, where D1 is cone density measure

bTR, temporal retina.
cTSR, temporal superior retina.

ig. 5. (Color online) Retinal images and cone density maps for
ensity measurement for N2 at 2° temporal retina (cone density
urement for N3 at 4° temporal 4° superior retina (cone density
ength. Scale bar corresponds to 10 �m on the retina.
r is manually taken out by the user (when the intensities
f these areas are similar to other areas) prior to the cone
ensity measurement. In most cases, the size of these
etinal structures has been much smaller than the size of
he single AO frame, which is 1° in diameter. If the scar or
he retinal structure is bigger than the size of the image,
he image becomes completely out of focus owing to scat-
ering from these structures. The chance of mistaking
lurred structures for cones is unlikely, as they take on a
ompletely different appearance.

The results presented here provide a means of quanti-

al Subjects, N1, N2, and N3: Comparison between
and Histology Data

Extrapolation from
Curcio’s Data, D2

�cells/mm2�
Agreement, Aa

(%)

25,000 99
43,000 99
20,000 99

r algorithm and D2 is the cone density from histology data.

ormal subjects, N2 and N3. (a) Cropped retinal image and cone
9 cells/mm2). (b) Cropped retinal image and cone density mea-
1 cells/mm2). Images were taken with a 650 nm imaging wave-
Norm
ithm

nsity
nt, D1
m2�

4
9
1

d by ou
two n
=42,38
=20,15
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Xue et al. Vol. 24, No. 5 /May 2007/J. Opt. Soc. Am. A 1371
ying changes in in vivo cellular-level retinal images. Al-
hough the cone counting algorithms were tested on AO
ood-illumination images, they are also applicable in the
nalysis of en-face images acquired by other in vivo reti-
al imaging modalities such as AO-OCT and AO-SLO.
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Table 3. Cone Density Measurements from the Ada

Subject Retinal Location

Cone De
Measure

�cells/m

ST1 4° IRa 5247
RP1 4° T 4° IRb 4779

2° T 4° SRc 4012

aIr, Inferior retina.
bTIR, Temporal inferior retina.
cTSR, Temporal superior retina.

ig. 6. (Color online) AO retinal images at two locations and the
mage and cone density map at 2° temporal 4° superior retina (con
t 4° temporal 4° inferior retina (cone density=4012 cells/mm2).
ponds to 10 �m on the retina.
Corresponding author Bai Xue can be reached by
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