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A fast and efficient method for quantifying photoreceptor density in images obtained with an en-face flood-
illuminated adaptive optics (AO) imaging system is described. To improve accuracy of cone counting, en-face
images are analyzed over extended areas. This is achieved with two separate semiautomated algorithms: (1) a
montaging algorithm that joins retinal images with overlapping common features without edge effects and (2)
a cone density measurement algorithm that counts the individual cones in the montaged image. The accuracy
of the cone density measurement algorithm is high, with >97% agreement for a simulated retinal image (of
known density, with low contrast) and for AO images from normal eyes when compared with previously re-
ported histological data. Our algorithms do not require spatial regularity in cone packing and are, therefore,
useful for counting cones in diseased retinas, as demonstrated for eyes with Stargardt’s macular dystrophy and

retinitis pigmentosa. © 2007 Optical Society of America
OCIS codes: 100.2000, 100.2960, 010.1080, 330.5310.

1. INTRODUCTION

The past ten years have seen the increasing application of
adaptive optics (AO) to overcome the resolution limits im-
posed by the ocular aberrations in the human eye. First
applied to a conventional fundus camera by Liang et al.,!
AO has been subsequently applied to confocal laser scan-
ning ophthalmoscopesp1 and most recently to optical co-
herence t:omog,rraphy.f’_7

Such systems have enabled cone classing of individual
photoreceptors,g’9 measurement of the directionality of in-
dividual cones,'® the temporaln’12 and wavelength
proper‘cies13 of cone reflectance, and the characterization
of the cone mosaics in forms of sex linked dichromacy.'*
Recently, Choi et al.® and Wolfing et al. 6 have shown
cone loss in retinal dystrophies and correlations with reti-
nal function. Martin and Roorda'” demonstrated the use
of an AO—scanning laser ophthalmoscope (AO-SLO) for in
vivo measurement of single leukocyte cell velocities.

The ability to image single cells in vivo has significant
advantages over histological studies that are limited by
artifacts during preparation of the tissue and allow only
pathogenesis of various retinal diseases to be studied at
one point, not at different stages. However, despite the
major achievements in hardware and system integration,
there has been relatively little development of software to
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both postprocess and automate the analysis of AO retinal
images.

This paper attempts to address two of the image pro-
cessing challenges associated with high-resolution retinal
imaging. First, the field of view can be as small as a few
degrees or less owing to the limited isoplanatic patch size
of the eye,18’19 hence, many images must be montaged to-
gether to obtain a better overall perspective. Second, cone
densities?® can be as high as 324,000 cones/mm?, so there
is a need for automated photoreceptor counting for both
research and clinical applications.

Several authors have generated composite retinal
im:ﬁlggesléhuil%21 and reported cone density
measurements'* 5?2 from AO images using flood fundus
cameras and AO-SLOs, respectively. Many of these re-
sults rely on manual counting and commercial graphics
packages such as Photoshop (Adobe Systems, Mountain
View, California) and ImageJ (National Institutes of
Health, Bethesda, Maryland) for image montagingl‘i’16
and cone density measurements, 1622 respectively. This
is both highly labor intensive and time consuming to
achieve acceptable statistical accuracy and is further
complicated by low image contrast, noise, and the fact
that results may differ among counting personnel.

Several cone counting methods?>?* (e.g., Hough-
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transform-based edge detection) have been applied gener-
ally to cell counting23 but not specifically to the retina.
Other more sophisticated algorithms based on Euclidian
distance map erosion followed by watershed
s,eg'xrlen‘ca‘cion25’26 have also been tried, but these tend to
be computationally intensive and would give rise to mul-
tiple counts when presented with low-contrast cones.

This paper describes a computer-based system that al-
lows accurate and semiautomatic montaging and count-
ing of cones in AO retinal images written in MATLAB 7.0
programming language (The Mathworks, Inc., Natick,
Massachusetts). It utilizes histogram-based cone counting
that is implemented after retinal image preprocessing
and montaging. These are required to enhance image
quality and to make the counting more statistically accu-
rate (a larger image area may be sampled in the mon-
tage). Experimental results on synthetic, normal, and dis-
eased retinas demonstrate the efficiency of this computer-
based system.

2. METHODS

To develop the algorithms and test their applicability, a
synthetic cone mosaic was first generated. Once the algo-
rithms were optimized, the routines were applied to AO
images acquired with the University of California Davis
AO flood-illumination fundus camera. For a detailed de-
scription of this system refer to Choi et al.'®

AO images were obtained on three normal subjects (N1,
N2, N3), one subject with Stargardt’s macular dystrophy
(ST1), and one subject with retinitis pigmentosa (RP1).
All the subjects were examined by a retinal specialist, and
their details are summarized in Table 1. All subjects were
dilated with a drop of 1% tropicamide and 2.5% phenyle-
phrine, and the head was stabilized via the use of a
dental-impression bite bar. During imaging, subjects were
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instructed to fixate on a target consisting of concentric
circles, the radii of which corresponded to different retinal
eccentricities. Images were then acquired at various reti-
nal locations using an arc lamp with interference filters
centered at 550+40 and 650+40 nm with an exposure
time of 10 ms. The size of each retinal image was 1° in di-
ameter owing to the current design of the AO system.®
The imaging camera (VersArray XP, Princeton Scientific
Instruments, Monmouth Junction, New Jersey) was
translated until the clearest focus was achieved at the
photoreceptor layer. Trial lenses were used to correct the
low-order aberrations, if required. Figure 1 shows AO im-
ages acquired with a 550 nm imaging wavelength over a
6.5 mm exit pupil from one of the normal subjects at three
retinal locations: 2°, 4° temporal retina, and 7° nasal
retina.

A. Synthetic Cone Mosaic Generation

To demonstrate the accuracy of our cone density algo-
rithm, a 512X 512 pixel image representative of the cone
mosaic at a 5° eccentricity was created. Each cone was
sampled by approximately 15 pixels. The peak intensity
(reflectance) of each cone was adjusted to a normally dis-
tributed random number between 0.5 and 1, the variance
of which was measured from our normal retinal images
with AO correction (and in agreement with a previous
reportll) as shown in Fig. 2(a). The image contrast was
first decreased to 0.45 based on the scattering effect from
the retina reported by Choi et al.'® After convolving every
cone with a Gaussian function (FWHM of 4 um indicative
of cone photoreceptors from a deconvolved'® image at 5°
retinal eccentricity) to simulate their waveguide nature,
the image contrast was further reduced to 0.37 as shown
in Fig. 2(b). The point-spread function (PSF) before AO
correction [Strehl ratio of 0.018, root mean square (RMS)
of 2.3 um] was reconstructed by using Zernike coefficients

Table 1. Summary of Subject Eye Conditions

Wavefront RMS
Error after AO Correction

Subject Age Gender Eye Tested Refractive Error Visual Acuity (um)
N1 22 M Left -2.50 DS 20/20 0.06
N2 32 M Right -2.75 DS 20/15 0.06
N3 20 M Left +0.50 DS 20/15 0.05
ST1 29 F Left -9.00/+2.25 X 58 20/150+ 0.06
RP1 12 M Right —-8.00/+3.00 X 95 20/50 0.06

Fig. 1. AO retinal images using a 550 nm imaging wavelength at three locations from one normal subject, N1: (a) 2° temporal retina,
(b) 4° temporal retina, (c) 7° nasal retina. Scale bar corresponds to 10 um.
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(Color online) Cone density measurement on a simulated cone mosaic image. (a) Artificial cone mosaic image (peak intensity of

each cone, 0.5-1). (b) Image (a) after adding background and Gaussian filtering (contrast=0.37). (c) PSF of a typical subject (Strehl
ratio=0.018; RMS=2.3 um; 650 nm wavelength; 7 mm pupil) before AO correction. (d) Image (b) after PSF filtering and addition of simu-
lated noise (contrast=0.18). (e) Calculated cone mosaic by the connected component labeling algorithm. (f) Cone density measurement for

image (d).

measured from a typical subject (7 mm exit pupil, 650 nm
light) as shown in Fig. 2(c). After convolving the image
with the PSF and adding simulated photon, read, and
dark noise?” typical of the imaging camera (VersArray
1024, Princeton Scientific Instruments, Monmouth Junc-
tion, New Jersey), the contrast of the final retinal image
was further reduced to 0.18 as shown in Fig. 2(d). Our
retinal images typically have higher contrast (i.e., greater
than 0.28) owing to the AO correction.

The accurate cone number, which is 706 in Fig. 2(a),
was obtained by applying the two-dimensional connected
components labeling algorithm. This technique scans the
image pixel by pixel and allows those adjacent (connected)
pixels sharing the same or similar intensities to be
grouped together.?® Each pixel in each group was labeled
with the same color, whereas different groups were as-
signed different colors for easier illustration as shown in
Fig. 2(e). The cone counting result shown in Fig. 2(f) is
presented in Subsection 3.B.1.

B. Adaptive Optics Retinal Image Preprocessing

Cone images from the five subjects were compressed by
Symlet wavelets,?® a process that enhances the algorithm
speed by a factor of more than 4 and also has proved to be
highly efficient for feature extraction® in that it retains
99.96% of the information that exists in the original reti-
nal image. Seven to ten 512X 512 pixel images from the

same retinal position were semiautomatically selected
based on image contrast and retinal overlap using cross
correlation.®® An image contrast threshold of 0.28 was
used in most cases to ensure that at least 60% of all the
images were selected. However, for poor quality images, a
lower contrast threshold of 0.22 was used. After software
selection, the images are manually inspected to make
sure that all the images are selected correctly. This is be-
cause eye movements during imaging may distort the im-
age but not necessarily impair the contrast used in the se-
lection algorithm. Cross correlation was calculated for all
the selected images, with the position of the correlation
peak providing a motion vector between two considered
images. The magnitude of motion threshold, which is
80 pixels, was set to guarantee that all the images for reg-
istration are from the same retinal location and the over-
lapping area between images is at least 352 X 352 pixels,
which is 50% of the original image area (512
X 512 pixels). The threshold for the magnitude of the un-
normalized cross correlation of 4X10° was calculated
based on an 80 pixel displacement of the worst scenario to
ensure all the good images are included. By setting em-
pirical thresholds for the magnitude of the cross correla-
tion and the eye motion, all the well-correlated images
from the same retinal location were selected and aver-
aged to optimize the contrast and improve the signal-to-
noise ratio of the image. In most cases, correction for eye
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rotation was unnecessary. However, when the cones ap-
peared streaky and rotated, especially at the edge of an
image, a program based on cross correlation calculated
the amount of angle rotation for a single image with re-
spect to the reference image, and then nearest-neighbor
interpolation was performed. The preprocessing time for
two hundred 512 X 512 images was approximately 10 min
on a 1.4 GHz Pentium 4 CPU and 768 Mbyte RAM per-
sonal computer, excluding the user operating time, which
is about 15 min. The user operating time consisted of re-
viewing the images selected by the program, deleting
those images that are blurred by the subject’s eye move-
ment, and operating the software.

C. Retinal Image Montaging

A retinal image montage combines a number of averaged
AO retinal images within a consistent coordinate system.
In comparison with existing methods,gl_33 the algorithm
described here is automated, seamless (without edge arti-
facts), and covers a wide area. The variable weight mon-
tage method®® was combined with point-mapping
registration,®® which registered every pair of averaged
retinal images to guarantee perfect alignment. Point-
mapping registration was used to locate common features
in the reference image that also appear in the data image,
and spatial mapping was determined based on these
matching feature points. The method allows users to pick
out feature points (e.g., the center of cones) manually to
guarantee accurate matching between the reference and
the data images. The variable-weight method®® was used
instead of equal weight in order to reduce edge effects.
When blending all the images to form a montage, a para-
bolic mask was used to put greater weight on pixels closer
to the center of the overlapping area of the montaged im-
age as described in Eq. (1):

N
My) = = , (1)
> di(x,y)
i=1

where M(x,y) and I;(x,y) are the pixel intensities of a
point (x,y) in the montaged and single images, respec-
tively; N is the number of single images; d; is the distance
from the point (x,y) to the nearest border of the image I; if
the point (x,y) is inside the single image I;; otherwise, d;
is set to 0. The manual point-mapping method allows a
small overlapping area (e.g., less than 100X 100 pixels)
between image frames, which helps to achieve a seamless
montage. This blending removes many of the artifacts due
to varying contrast and intensity. A larger area is ob-
tained for cone density calculation, which provides more
statistically accurate results.

D. Cone Density Measurement Algorithm

Figure 3(a) shows the initial, averaged image I,,;; from
normal subject, N1 (550 nm imaging wavelength). It was
first convolved with a Gaussian filter and then subtracted
from the initial profile to yield the new image, I. The pro-
cess is described by Eq. (2),
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where the exponential describes a Gaussian filter of width
o (i.e., the standard deviation) and (x,y) denote the coor-
dinates of a pixel.?’1 For this work, the o value was em-
pirically chosen to equal one plus the retinal eccentricity,
e.g.,, 3 for 2°, 5 for 4°, etc. Figures 3(b) and 3(c) show
Gaussian-filtered and background-subtracted images, re-
spectively. To aid visualization of the filtered images, the
values of I were linearly scaled to increase brightness.

Cones have a higher intensity than other parts of the
retinal image, and the centers of the waveguide are nor-
mally brightest (peak intensity of cones), so one can iden-
tify them based on this characteristic. By determining the
peak intensities of the dimmest and brightest cones, 16
and 255, respectively [from Fig. 3(c)], the intensity range
of 16-255 in the image histogram was set. The intensity
range was then divided into smaller sections in steps of
ten to search for the pixels that are located in each sec-
tion. The searching started from the highest intensity sec-
tion to the lowest intensity section until all the sections
were processed. Figure 3(d) shows the cone counting re-
sults from the highest intensity section corresponding to
the range 246-255. Once a pixel is counted, all the pixels
within the square defined by the smallest center-to-center
cone spacing are color coded (with an arbitrary intensity)
so that they will not be counted in subsequent processing.
This step ensures that cones are counted only once. The
cone counting results from the second highest intensity
section (236—245) and the last intensity section (16-25)
are shown in Figs. 3(e) and 3(f), respectively. Figure 3(g)
shows the outcome of cone counting with all the cones
highlighted. It is then a straightforward step to calculate
the cone density. The program takes approximately 90 s
to calculate the cone density for a 293 X 536 cropped mon-
taged retinal image.

The users input a value for the intensity of the dim-
mest cone as a threshold parameter, so it is conceivable
that counting results may vary between operators. How-
ever, since the image quality is greatly enhanced after
background subtraction, users can easily determine
whether the cones are underpicked or overpicked by di-
rect comparison with the original retinal images. The
threshold can therefore be adjusted accordingly until all
the cones are picked. Hence, the final cone densities from
different operators did not vary significantly.

3. RESULTS

A. Retinal Image Montage

Even with good fixation, involuntary eye movements re-
sult in inevitable shifts in single-frame images, from
which the overall montage would be created. Figure 4
shows a montage of retinal images from subject ST1
(taken at 650 nm imaging wavelength) and a correspond-
ing cone density map. The montage is composed of four
cropped 300 X 300 pixel images taken at 4° inferior retina.
The longest side of the montage corresponds to approxi-
mately 450 um on the retina. Although there was varying
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Fig. 3. (Color online) Flowchart of semiautomated cone density measurement procedure. (a) Cropped AO retinal image from subject N1
at 4° temporal retina (imaging wavelength=550 nm). (b) Image (a) after Gaussian filtering. (¢c) Image after background subtraction and
linear scaling. (d) Cone counting result in the first intensity section 246-255. (e) Cone counting result in the second intensity section
236-245. (f) Cone counting result in the last intensity section 16—25. (g) Outcome of cone counting (all the cones are accurately identified

with cone density of 25,164 cells/mm?2).
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Fig. 4. (Color online) Retinal image montage and corresponding
cone density measurement for the subject ST1. (a) Montage of
four retinal images taken at 650 nm. (b) Cone density map of
montaged image in (a) (cone density=5247 cells/mm?). Scale bar
corresponds to 10 um on the retina.

contrast among the constituent images, the montage im-
age has a smooth and seamless appearance. The montage
in Fig. 4 used the 1° field of view frames from the AO sys-
tem; however, the algorithm can be applied in the same
format to larger single frames.

B. Cone Counting

1. Synthetic Image Results

The cone counting algorithm was applied to the synthetic
image shown in Fig. 2(f). All the cones were successfully
chosen (i.e., 690 of 706 cones, or 97.7%) except for the ones
that are partially cropped at the edge of the image. As
noise was added to the image, it blurred the cones at the
edge to the extent that they could not be segregated from
the background. To demonstrate the accuracy of our cone
counting algorithm, two observers performed manual
counting on the same raw simulated image shown in Fig.
2(d). Their results were 662 and 671, which accounts for
93.8% and 95% of the total cone number, respectively.
Those cones with very low contrast were missed by
manual counting but were identified by the automated
method.

Vol. 24, No. 5/May 2007/dJ. Opt. Soc. Am. A 1369

2. Adaptive Optics Image Results

Cone densities were calculated for all five subjects then
compared with the extrapolated values from Curcio’s his-
tology data.Z’ The size of the cropped area (sampling win-
dow) in our image was 846 times larger than Curcio’s
window size, depending on the retinal eccentricity (46
times larger for the areas within 1 mm from the foveal
center and 8 times larger for more peripheral areas). To
examine the cone density variance between Curcio’s and
our sampling windows, the sampling window was divided
into several subsections: Each subsection was the same
size as Curcio’s sampling window for that particular reti-
nal location. The difference in cone density between sub-
sections and our whole sampling window for the normal
images was less than 7%, which lies within one standard
error (4%—8%; see Ref. 20) of Curcio’s mean density.

Normal image results. The retinal image and cone
counting results from the first normal subject, N1, are
shown in Fig. 3. Figure 5 shows the AO retinal images ob-
tained at 650 nm from the two other normal subjects, N2
and N3, and their cone density maps. All the cones in the
retinal images from the three normal subjects are identi-
fied. Table 2 summarizes the cone density measurements
on three normal subjects using the algorithm as com-
pared with Curcio’s histology data. Good agreement (over
98%) was found between the cone density measurements
from our algorithm and Curcio’s histology data.

Diseased retinal image results. Figure 6 shows cone
counting on AO retinal images obtained from RP1 at two
different retinal locations, 4° temporal 4° inferior retina
and 2° temporal 4° superior retina. Figure 4(b) shows
cones identified with the algorithm on montaged, dis-
eased retinal images from ST1 at 4° inferior retina. Table
3 summarizes the cone density measurements by the al-
gorithm and a comparison with the extrapolated values
from Curcio’s histology data.?’ The percentage values pro-
vide an indication of relative cone density at each retinal
location. These numbers provide a good quantitative in-
dex of cone loss in diseased retinas. Although there are
numerous irregular features in these images, the algo-
rithm has identified cones accurately.

4. CONCLUSION AND DISCUSSION

A fast and reliable semiautomated technique is described
for measuring the cone density of AO retinal images in
both healthy and diseased human eyes, as well as combin-
ing single-image frames to create a larger seamless mon-
tage. Utilizing larger areas for counting may prove to be
beneficial for obtaining more statistically accurate cone
densities for an area of interest. Of course, for specific
retinal loci (e.g., the foveal area with high cone density
variance), smaller windows cropped from the montaged
image, covering more uniform cone mosaics, may be de-
sirable. One must be mindful that Curcio’s data are based
on only eight human eyes, and the introduction of un-
known artifacts is possible during histological prepara-
tion. Ideally, a subject’s cone density should be compared
with a larger population of age-matched normal retinas
acquired in an identical manner. Lacking such a data-
base, Curcio’s histological data have been widely used and
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(Color online) Retinal images and cone density maps for two normal subjects, N2 and N3. (a) Cropped retinal image and cone

density measurement for N2 at 2° temporal retina (cone density=42,389 cells/mm?). (b) Cropped retinal image and cone density mea-
surement for N3 at 4° temporal 4° superior retina (cone density=20,151 cells/mm?). Images were taken with a 650 nm imaging wave-

length. Scale bar corresponds to 10 um on the retina.

Table 2. Cone Density Measurements for the Three Normal Subjects, N1, N2, and N3: Comparison between
Cone Counting Algorithm and Histology Data

Cone Density
Measurement, D1

Extrapolation from

Curcio’s Data, D2 Agreement, A“

Subject Retinal Location (cells/mm?) (cells/mm?) (%)
N1 4° TR 95,164 25,000 99
N2 2° TR® 42,389 43,000 929
N3 4° T 4° SR° 20,151 20,000 99

“Agreement percentage, A=100%—

|D1-D2|
D2

TR, temporal retina.

“TSR, temporal superior retina.

agree well with in vivo data obtained from the small num-
ber of normals in the literature.

When a retinal image with a dark edge or background
(within the overlapping area) is included in a montage
(the worst case for our algorithm), it can cause slight edge
effects because of high variation in intensity. If there is an
area where the view of cone photoreceptors is obscured,
owing either to the presence of blood vessels or to other
retinal changes such as a scar or druse, that area is auto-
matically cropped out by setting a threshold in the image
histogram to separate those objects from the whole image

, where D1 is cone density measured by our algorithm and D2 is the cone density from histology data.

or is manually taken out by the user (when the intensities
of these areas are similar to other areas) prior to the cone
density measurement. In most cases, the size of these
retinal structures has been much smaller than the size of
the single AO frame, which is 1° in diameter. If the scar or
the retinal structure is bigger than the size of the image,
the image becomes completely out of focus owing to scat-
tering from these structures. The chance of mistaking
blurred structures for cones is unlikely, as they take on a
completely different appearance.

The results presented here provide a means of quanti-
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Fig. 6. (Color online) AO retinal images at two locations and the corresponding cone density calculations for subject RP1. (a) AO retinal

image and cone density map at 2° temporal 4° superior retina (cone density=4779 cells/mm?2). (b) AO retinal image and cone density map
at 4° temporal 4° inferior retina (cone density=4012 cells/mm?). Images were taken at a 650 nm imaging wavelength. Scale bar corre-
sponds to 10 um on the retina.

Table 3. Cone Density Measurements from the Adaptive Optics Retinal Images for Subjects ST1 and RP1

Cone Density Extrapolation from Relative Cone

Measurement Curcio’s Data Density
Subject Retinal Location (cells/mm?) (cells/mm?) (%)
ST1 4° IR* 5247 25,000 21
RP1 4° T 4° IR? 4779 17,500 27
2° T 4° SR 4012 26,500 15

“Ir, Inferior retina.
"TIR, Temporal inferior retina.

“TSR, Temporal superior retina.

fying changes in in vivo cellular-level retinal images. Al-
though the cone counting algorithms were tested on AO
flood-illumination images, they are also applicable in the
analysis of en-face images acquired by other in vivo reti-
nal imaging modalities such as AO-OCT and AO-SLO.
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