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Abstract

This paper makes two contributions in the context of seller-buyer
relationships with bilateral relationship-specific investment. Firstly,
we demonstrate how ex-post negotiations via double auctions can be
used to alleviate and often resolve the hold-up problem. Secondly, we
show that ex-post participation constraints make the hold-up problem
unavoidable in environments where (i) production costs are relatively
high compared to valuations and (ii) the trade price is independent of
the investment levels.
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1 Introduction

Over the last 25 years, the hold-up problem in long-term trading relation-
ships has attracted considerable theoretical interest (see e.g., Klein et. al.,
1978, Williamson, 1985, Hart, 1995, Tirole, 2000, Segal, 1999). In a nut-
shell, the problem is that trading partners may hesitate to make desirable
relationship-specific investments prior to trading (“ex ante”) because each
firm risks to be “held up” by the partner once the investments are sunk (”ex
post”).

In this paper, we firstly demonstrate how the hold-up problem can be
alleviated or even resolved if the trade price is negotiated ex post via a
double auction. Double auctions are widely used trading mechanisms. It
is well-known that double auctions have good ex-post efficiency properties,
in particular when the number of traders is large and traders have private
information about their costs and valuations (Wilson, 1985, Satterthwaite
and Williams, 2002). Our results provide a new rationale for the use of
double auctions when there is just one buyer and one seller without private
information about cost and valuation. In this case, the trading partners
may select among the auction’s multiple equilibria in order to create prior
investment incentives for themselves, and thereby promote ex-ante efficiency.

Secondly, our results show that in some environments, the presence of
ex-post participation constraints (i.e., the requirement that both firms have
non-negative ex-post continuation payoffs) makes the hold-up problem un-
avoidable. In these situations, none of the contractual solutions to the hold-
up problem that have been proposed in the literature will work. The hold-up
problem can then not be resolved. The environments where this occurs are
quite simple. In particular, our results are very different from Segal’s (1999)
and Hart and Moore’s (1999), who show—without imposing ex-post par-
ticipation constraints—that the hold-up problem in unavoidable in certain
complex environments.

Our model is based on the set-up of Hart and Moore (1988) which un-
derlies most of the literature on the hold-up problem. Going back to this
classical set-up is crucial if one wants to understand the role of double auc-
tions and ex-post participation constraints relative to other approaches to
the hold-up problem.1 In Hart and Moore’s set-up, each of two risk-neutral
firms, a seller and a buyer, simultaneously decide upon the costs spent on

1Several authors have recently pointed out the potential role of bargaining with multiple
equilibria for resolving the hold-up problem (Ellingsen and Johannesson, 2000, Carmichael
and MacLeod, 2000, Tröger, 2002, Ellingsen and Robles, 2002). However, these contribu-
tions do not refer to Hart and Moore’s (1988) classical set-up.
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investment in their trading relationship. Ex post, when investment costs
are sunk, a single unit of a good may be produced and traded between
the firms; trade with outsiders is not possible. Both the seller’s produc-
tion cost and the buyer’s valuation for the good depend stochastically on
the firms’ investment levels. Formally, a cost-valuation pair (called state) is
realized according to a probability distribution which depends on the pair
of investment levels. The state is observed by both firms before the trade
negotiations begin.

Now suppose that the trade price is negotiated via a double auction
where the seller submits an ask price and, simultaneously, the buyer submits
a bid price. If the bid is greater than or equal to the ask then the good is
traded at an intermediate price; otherwise no trade occurs. Because the state
is observed by both firms, there exist ex-post efficient equilibria. In fact, any
trade price that is not smaller than production costs and does not exceed the
valuation is an equilibrium price. In other words, via coordination on ex-
post efficient equilibria in the double auction, the trade price may be chosen
to be any function of the state—and possibly of the investment levels—that
satisfies the ex-post participation constraints.

The double-auction approach contrasts typical contractual solutions to
the hold-up problem, like Rogerson’s (1992) mechanism-design contracts,
Chung’s (1991) and Aghion et al.’s (1994) specific-performance contracts,
or Nöldeke and Schmidt’s (1995) option contracts. These contracts must be
specifically tailored to the parameters of the trading relationship in order to
be effective. With a double auction in place, however, only the selection of
equilibria is specific,2 while the trading mechanism itself is generic.

It is easy to see that the double auction fully resolves the hold-up problem
if investment levels are mutually observed. In this case, the trade price is
a function of the state and the investment levels. In particular, if both
firms choose the efficient investment level then prices may be chosen such
that in all states the trading surplus is split in the same fixed proportion.
Let this proportion be such that both firm’s ex-ante expected profits (i.e.,
net of investment costs) are positive. Furthermore, if only one firm chooses
the efficient investment level then prices may be chosen such that this firm
appropriates the entire trading surplus in all states. According to this price
scheme, any deviation from the efficient investment level leads to a non-
positive profit and thus is not profitable. Both firms will choose the efficient

2Laboratory evidence by Binmore et al. (1998), Gantner et al. (1999), and Ellingsen
and Johannesson (2000) also provides some support for the selection of equilibria that we
are going to propose.
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investment level.
The main part of the paper treats the case where investment levels are

private. Here, results are more ambiguous. Firstly, we present an underin-
vestment condition which identifies parameter constellations such that un-
derinvestment cannot be avoided if a double auction is in place. Secondly,
we identify other parameter constellations such that double auctions may
be used to provide efficient investment incentives (this includes parameter
constellations such that the firms cannot be made residual claimants for the
trading surplus). The underinvestment condition is satisfied for parame-
ter constellations where, roughly speaking, production costs are relatively
high compared to valuations, while efficient investment is obtained when
production costs are relatively low.

As a core tool for our analysis, we define an investment-independent (II)
price scheme as a function that assigns trade prices to states. An II price
scheme is called individually rational (IR) if it satisfies the firms’ ex-post
participation constraints. Via coordination on ex-post efficient equilibria in
the double auction, the firms can select any II IR price scheme. Conse-
quently, the underinvestment condition implies that all II IR price schemes
induce underinvestment. More generally, the question whether a double auc-
tion can be used to resolve the hold-up problem is equivalent to the question
whether an II IR price scheme exists which induces efficient investment.

Ex-post participation constraints are, therefore, not just an implication
of ex-post negotiations via a double auction. Rather, our results can be
formulated in terms of ex-post participation constraints alone, without any
reference to the ex-post interaction. In particular, for parameter constella-
tions which satisfy the underinvestment condition, any ex-ante contract or
arrangement of any form that resolves the hold-up problem by implementing
an II price scheme necessarily violates an ex-post participation constraint
(i.e., the implemented price scheme is not IR). This conclusion applies to
virtually all the contracts suggested in the literature. Mechanism-design
contracts, specific-performance contracts, and option contracts all imple-
ment II price schemes. In trading relationships where ex-post participation
constraints exist, none of these solutions to the hold-up problem will work
if the underinvestment condition is satisfied.

Finally, we show that second-best II IR price schemes are typically not
nondecreasing in production cost and valuation. Therefore, double auctions
alleviate the hold-up problem more than any contract that implements a
nondecreasing II IR price scheme. In particular, double auctions are more
ex-ante efficient than the renegotiated contracts analyzed in Hart and Moore
(1988) and the renegotiation-proof implementation contracts proposed by

4



Rubinstein and Wolinsky (1992). These comparisons further emphasize our
conclusion that double auctions are a powerful, yet simple, means to alleviate
the hold-up problem.

Section 2 contains the description of Hart and Moore’s classical set-up of
the hold-up problem and introduces key definitions. Section 3 discusses the
environment with mutually observable investment (i.e., where all IR price
schemes are feasible). Section 4 tackles the private investment case (i.e.,
where only II IR price schemes are feasible). We begin by recalling some
standard results about price schemes which induce fixed-percentage shares
of the trading surplus, and about constant price schemes. We also explain
the comparative statics on which our main results are based. Subsection
4.1 introduces two lemmata which provide core tools and intuition for the
subsequent analysis. The following two subsections contain the main results.
In subsection 4.2, we formulate and analyze the underinvestment condition,
while subsection 4.3 is devoted to a condition for efficient investment and
to comparative statics. In subsection 4.4 we show that second-best II IR
price schemes are typically not nondecreasing. In subsection 4.5 we present
a simple class of parameter constellations which satisfies all our technical
assumptions. Section 5 concludes, and section 6 contains proofs.

2 The Seller-Buyer Bilateral Investment Set-Up

Following Hart and Moore (1988) and the subsequent literature, we consider
a risk-neutral seller firm, s, and a risk-neutral buyer firm, b, who are plan-
ning to trade one unit of a good at some future date. The buyer’s future
valuation of the good, v, and the seller’s future production cost, c, are ini-
tially uncertain. We assume that v ∈ V and c ∈ C, where C and V are finite
sets. One may think of C and V as large sets (e.g., fine grids).3 Each pair
(c, v) ∈ C×V is called a state. The probability of any state (c, v) is denoted
f(c, v|β, σ) > 0, We assume that f is twice continuously differentiable with
respect to (β, σ). Any triple (C, V, f) is called a parameter constellation.

The firms’ interaction is as follows. First (“ex ante”), the firms simul-
taneously choose their investment levels, β and σ. We will consider two
different cases: “mutually observable investment,” where each firm learns
the investment choice of the other firm, and “private investment” where the
investment levels remain private. Second (“ex post”), a state (c, v) is drawn

3It is possible to reformulate many of our results for the case where C and V are
compact intervals. Such a reformulation brings hardly new insights while it is technically
more demanding (cf. Tröger, 1997).
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according to f , and is observed by both parties. Third, trade negotiations
take place. This results in trade (q = 1) or no trade (q = 0), and a side
payment p. Consequently, the realized payoffs are

ub = qv − p− β, us = p− qc− σ.

Any function
P : [0, β]× [0, σ]× C × V → IR

is called a price scheme. The outcome of the trading relationship can be sum-
marized by (β, σ, P,Q), where P is a price scheme such that p = P (β, σ, c, v)
denotes the payment following the path (β, σ, c, v) and, similarly,

Q : [0, β]× [0, σ]× C × V → {0, 1}

is a function such that q = Q(β, σ, c, v) indicates trade (q = 1) or no trade
(q = 0). An outcome (β, σ, P,Q) is called ex-post efficient if Q = Q∗, where4

Q∗(β, σ, c, v) = 1 if v > c,

Q∗(β, σ, c, v) = 0 if v ≤ c.

Throughout the paper, we will focus on equilibria with ex-post efficient
outcomes.5 The trading surplus in state (c, v) is given by max{v − c, 0}.
Given an ex-post efficient outcome (β, σ, P,Q∗), the seller’s share of the
trading surplus equals P (β, σ, c, v) − c if v > c, and equals P (β, σ, c, v) if
v ≤ c, while the buyer’s share equals v − P (β, σ, c, v) if v > c, and equals
−P (β, σ, c, v) if v ≤ c. A price scheme P is called individually rational (IR)
if both parties get nonnegative shares of the trading surplus in all states,
i.e., if

c ≤ P (β, σ, c, v) ≤ v if v > c,

P (β, σ, c, v) = 0 if v ≤ c.

The set of IR price schemes is denoted IR. A price scheme P is called
independent of the investment levels (II) if P (β, σ, c, v) = P (β′, σ′, c, v) for
all (c, v), β, σ, β′, σ′. The set of II price schemes is denoted II. Through-
out the paper, II price schemes will be written as functions of the state,
P (β, σ, c, v) = P (c, v).

4Labeling trade ex-post inefficient if c = v simplifies our presentation.
5This simplification is standard (e.g., Hart, 1995, p. 38), but not strictly necessary for

our results (cf. footnote 11).
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Double auctions

Now suppose that the trade negotiations take the form of a double auction
where the firms make simultaneous trade price offers, pb and ps; if pb ≥ ps

then the good is traded (q = 1) at price p = (pb + ps)/2, but if pb < ps then
the good is not traded (q = 0), and no side payment is made (p = 0).6

We say that a price scheme P is feasible via a double auction if there ex-
ists a pure-strategy perfect Bayesian equilibrium with outcome (β, σ, P,Q∗)
for some β ∈ [0, β], σ ∈ [0, σ]. We say that a price scheme P is selected
if the respective equilibrium is played. As a first step of the analysis, we
characterize the set of feasible price schemes.

Proposition 1. If investments are mutually observable then the set of fea-
sible price schemes equals IR. If investments are private then the set of
feasible price schemes equals IR ∩ II.

Proof. The first statement follows from well-known properties of the
double auction. As for the second statement, consider any equilibrium path
(β, σ, P,Q∗). A buyer deviation to some β′ = β will not be detected by the
seller. Thus, for all states (c, v) with c < v, the seller will continue to offer
the price P (β, σ, c, v), and thus the buyer will also continue to offer the price
P (β, σ, c, v) (due to ex-post efficiency, this is true even if P (β, σ, c, v) = v).
This implies P (β′, σ′, c, v) = P (β, σ, c, v) for all states (c, v) with c < v, all
β′ and all σ′. From this one easily sees that only price schemes in IR ∩ II
can be feasible. On the other hand, well-known properties of the double
auction show that in fact all price schemes in IR ∩ II are feasible. ✷

With Proposition 1 in mind, we do not have to refer to double auctions
anywhere in the following formal analysis. Rather, we can take a set of
feasible price schemes P as a primitive. By assuming P = IR, we then im-
plicitly analyze trading relationships where the ex-post interaction takes the
form of a double auction and investments are mutually observable; similarly,
P = IR ∩ II refers to the case of private investment.

6 One might object against the double auction that it is not renegotiation-proof in the
sense of contract theory (see, e.g., Hart, 1995) because some non-equilibrium outcomes are
inefficient. A renegotiation-proof variant of the double auction is, however, easily obtained.
In the spirit of Rubinstein and Wolinsky (1992), suppose that following any inefficient
outcome the firms start another round of simultaneous offers (instead of implementing
the inefficient outcome), and this is repeated forever or else until ex-post efficient trade
is implemented. With respect to ex-post efficient equilibrium outcomes, such an iterated
double auction is identical to the one-shot version that we assume. In this sense, our
results are not disrupted by issues of renegotiation-proofness.
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Ex-post participation constraints

The firms’ ex-post participation constraints are defined as the requirement
that the firms’ ex-post continuation payoffs are non-negative. The role
of ex-post participation constraints for the hold-up problem can be ana-
lyzed without reference to double auctions. Rather, one may consider any
(possibly ex-ante) contractual or other arrangement of the firms which in
equilibrium—possibly after renegotiations—leads to the implementation of
an arbitrary price scheme and to ex-post efficient trade. In this framework,
the firms’ ex-post participation constraints are equivalent to the require-
ment that the implemented price scheme is IR. By assuming that the set of
feasible price schemes equals P = IR ∩ II, we can ask without reference
to any specific model of contracting and/or renegotiations whether resolv-
ing the hold-up problem with investment-independent trade prices requires
violating an ex-post participation constraint.

Given a (nonempty) set of feasible price schemes P, the trading relation-
ship can be analyzed as follows. Suppose the price scheme P ∈ P is selected.
Then, the ex-ante expected returns (gross of investment costs) are

Rb(β, σ, P ) =
∑
v>c

vf(c, v|β, σ) −
∑
c,v

P (β, σ, c, v)f(c, v|β, σ),

Rs(β, σ, P ) = −
∑
v>c

cf(c, v|β, σ) +
∑
c,v

P (β, σ, c, v)f(c, v|β, σ).

We say that P induces (β, σ), or (β, σ) is an investment equilibrium for P if

β ∈ argmax
β̃

Rb(β̃, σ, P ) − β̃, σ ∈ argmax
σ̃

Rs(β, σ̃, P ) − σ̃. (1)

Throughout the paper, we will confine ourselfs to parameter constellations
such that investment equilibria exist for all relevant price schemes. The sum
of the firms’ ex-ante expected payoffs is

S(β, σ) =
∑
v>c

(v − c)f(c, v|β, σ) − β − σ.

We call S(β, σ) the ex-ante expected surplus. We assume that S has a unique
maximizer (β∗, σ∗) with (β∗, σ∗) ∈ (0, β) × (0, σ) which we call the pair of
efficient investments. Note that this implies maxV > minC because other-
wise (β∗, σ∗) = (0, 0). Ex ante, no firm has private information. Therefore,
it is the firms’ common interest to maximize the ex-ante expected surplus
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over all investment pairs which are induced by a feasible price scheme; i.e.,
to solve problem P:

max
(β,σ,P )

S(β, σ) s.t. P ∈ P, (1).

Implicit in this formulation is the assumption that for any given price
scheme, the firms will coordinate on the most favorable investment equi-
librium. If (β, σ, P ) is a solution of problem P then P is called a second-best
price scheme (in P). The first-best ex-ante expected surplus, S(β∗, σ∗), is
attainable if and only if efficient investment is induced by some feasible price
scheme; i.e., if and only if there exists P ∈ P such that (β∗, σ∗, P ) solves
problem P. If this is not the case, we say that the hold-up problem occurs.

Most of our results assume the “self-investment” condition which requires
that the buyer’s investment has no impact on the production cost and, vice
versa, the seller’s investment has no impact on the valuation.7 Formally, a
parameter constellation (C, V, f) has the self-investment property if for all
c ∈ C and σ ∈ [0, σ] there exists a number fs(c|σ) ≥ 0, and for all v ∈ V
and β ∈ [0, β] there exists a number f b(v|β) ≥ 0 such that∑

c′∈C

fs(c′|σ) = 1,
∑
v′∈V

f b(v′|β) = 1, f(c, v|β, σ) = fs(c|σ)f b(v|β).

Self-investment implies that fs(c|σ) is the probability of production cost c if
the seller invests σ, and, similarly, f b(v|β) is the probability of valuation v if
the buyer invests β. Note that self-investment implies that |V | ≥ 2 because
otherwise β∗ = 0; similarly, we have |C| ≥ 2.

Some of our results will also assume a condition which models that the
buyer’s investment “shifts probability” to large valuations while the seller’s
investment shifts probability to small production costs. Formally, a pa-
rameter constellation (C, V, f) with the self-investment property has the
(strict) monotone likelihood ratio property (MLRP) (s. Milgrom, 1981) if8

f b
β(v|β)/f b(v|β) is strictly increasing in v for all v ∈ V and β ∈ (0, β], and
fs

σ(c|σ)/fs(c|σ) is strictly decreasing in c, for all c ∈ C and σ ∈ (0, σ].

3 Mutually Observable Investment

In this short section, we assume that all individually rational price schemes
are feasible and ask whether the hold-up problem can be resolved under

7Most papers on the hold-up problem assume self-investment. For an analysis without
this assumption, see Che and Hausch (1999).

8Throughout the paper, β- and σ-subscripts denote partial derivatives.
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these circumstances. In other words, we analyze problem IR:

max
(β,σ,P )

S(β, σ) s.t. P ∈ IR, (1).

Problem IR applies if investment is mutually observable and the ex-post
interaction takes the form of a double auction (Proposition 1). To solve
problem IR, we define a price scheme P ∗ as follows:

P ∗(c, v, β, σ) =




0, if v ≤ c,
c, if v > c, β = β∗, σ = σ∗,
v, if v > c, β = β∗, σ = σ∗,
c+ λ∗(v − c), otherwise,

where
λ∗ =

S(β∗, σ∗) + 2σ∗

2S(β∗, σ∗) + 2σ∗ + 2β∗ .

If P ∗ is selected then the trading surplus is shared in proportions λ∗ : 1−λ∗

if both firms have invested efficiently or no firm has, and is given to one firm
if it has complied to the efficient investment level while its partner has not.
We have constructed λ∗ such that each firm gets half the first-best ex-ante
expected surplus if both invest efficiently.

Proposition 2. A solution to problem IR is given by (β∗, σ∗, P ∗).

Proof. Observe that P ∗ ∈ IR because λ∗ ∈ [0, 1]. Suppose that P ∗ is
selected. By construction of λ∗, each firm’s ex-ante expected payoff equals
S(β∗, σ∗)/2 > 0 if both invest efficiently. A deviation to the investment
β = β∗ is not profitable for the buyer because it leads to the payoff −β ≤ 0;
a similar argument applies to the seller. ✷

The proposition shows that double auctions are an effective means to re-
solve the hold-up problem if investment levels are mutually observable. The
multiplicity of equilibria in the double auction has a particularly strong effect
here, allowing to punish any deviation from efficient investment although in-
vestment levels are not directly payoff-relevant in the double auction. Note
also that the ability of the double auction to provide efficient investment in-
centives does not rely on any of our specific assumptions about f and even
generalizes to settings with more than two firms. This may be seen as one
reason for the popularity of double auctions as trading procedures.
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4 Private Investment

We now assume that all investment-independent individually rational price
schemes are feasible and ask how much the hold-up problem can be alleviated
if not solved, depending on the underlying parameter constellation. In other
words, we turn to the analysis of problem IR ∩ II:

max
(β,σ,P )

S(β, σ) s.t. P ∈ IR ∩ II, (1).

Due to Proposition 1, problem IR∩ II applies if investment is private and
the ex-post interaction takes the form of a double auction.

First of all, note that the investment-dependent price scheme P ∗ which
solves the hold-up problem in the observable-investment case is not feasi-
ble anymore. Price schemes are restricted to a dependence on the state.
However, because the probability distribution over states depends on the
investment levels it may still be possible to provide efficient investment in-
centives or at least to alleviate the hold-up problem.

Now suppose that any price scheme P ∈ II is selected. The firms’
marginal returns to investment are given by

Rb
β(β, σ, P ) =

∑
v>c

vfβ(c, v|β, σ)−
∑
c,v

P (c, v)fβ(c, v|β, σ),

Rs
σ(β, σ, P ) = −

∑
v>c

cfσ(c, v|β, σ) +
∑
c,v

P (c, v)fσ(c, v|β, σ).

It will be useful to think of the marginal returns at the efficient investment
levels as a point in the plane:

M(P ) = (Rb
β(β

∗, σ∗, P ), Rs
σ(β

∗, σ∗, P )) ∈ IR2.

Note that a necessary condition for a price scheme P to induce efficient
investment is M(P ) = (1, 1).

Fixed-percentage shares

As an illustration and for later reference, let us consider the investment
incentives which are provided by a class of price schemes which, implicitly,
occur frequently in the contracting literature on the hold-up problem at least
since Grout (1984). An II price scheme P is called a fixed-percentage-share
price scheme if there exists λ ∈ IR such that P = P λ, where

P λ(c, v) =
{

0, if v ≤ c,
c+ λ(v − c), if v > c.

11



The price scheme P λ represents the Nash Bargaining Solution when the
firms’ relative bargaining powers are λ : 1 − λ. Two fixed-percentage-share
price schemes of particular importance are P 0 =: P b where the buyer ap-
propriates the entire trading surplus in all states, and P 1 =: P s where the
same is true for the seller. Using these schemes, the first-order conditions
for efficient investment can be written as follows:

(Rb
β(β

∗, σ∗, P b), Rs
σ(β

∗, σ∗, P s)) = (1, 1). (2)

If P λ is selected then the marginal returns to investment are

Rb
β(β, σ, P

λ) = (1 − λ)
∑
v>c

(v − c)fβ(c, v|β, σ),

Rs
σ(β, σ, P

λ) = λ
∑
v>c

(v − c)fσ(c, v|β, σ).

Using (2) we get M(P λ) = (1 − λ, λ) = (1, 1). Thus, no fixed-percentage-
share price scheme can induce efficient investment. Put differently, because
either λ ≤ 1/2 or 1−λ ≤ 1/2, at least one firm internalizes at most half the
social returns to her investment, and this results in inefficient investment.

Constant price schemes

For later reference, let us also recall a result about the investment incentives
which are provided by constant price schemes. We call an II price scheme
P essentially constant if there exists p ∈ IR such that P = P const,p, where

P const,p(c, v) =
{

0, if c ≥ v,
p, if c < v.

If maxC ≤ minV then all essentially constant price schemes with p ∈
[maxC,minV ] are feasible via a double auction. Alternatively, any such
price scheme might be implemented via a ex-ante fixed-price contract which
stipulates that the trade price is p if both firms are willing to trade. The
following well-known remark shows that such price schemes are effective in
solving the hold-up problem if the self-investment condition is satisfied. The
proof is standard (e.g., Hart and Moore, 1988, Proposition 3(1)).

Remark 1. Let (C, V, f) be a parameter constellation with the self-investment
property.

If maxC ≤ minV and p ∈ [maxC,minV ] then (β∗, σ∗, P const,p) solves
problem IR ∩ II.
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Notice the assumption that production costs cannot exceed valuations
(maxC ≤ minV ). This implies that the fixed price p satisfies the ex-post
participation constraints and makes both firms residual claimants for the
trading surplus. Without this assumption, problem IR∩ II becomes more
complicated because in general it will not be possible anymore to make both
firms residual claimants. In particular, the following is true.

Remark 2. Let (C, V, f) be a parameter constellation with the self-invest-
ment property and the MLRP. If maxC > minV then no essentially con-
stant price scheme in IR ∩ II induces efficient investment.

Our main results below refer to the case maxC > minV .

Comparative Statics

Some of our results (Proposition 5 and Proposition 6) present comparative
statics with respect to the relative size of production costs and valuations.
We will consider two parameter constellations, (C, V, f) and (C, V −∆, f∆),
which are identical up to a valuation component ∆ ∈ IR that is independent
of the investment levels. I.e.,

V −∆ = {v −∆|v ∈ V },
f∆(c, v|β, σ) = f(c, v + ∆|β, σ).

Given an initial parameter constellation (C, V, f), if ∆ is large then (C, V −
∆, f∆) represents a parameter constellation where production costs are high
compared to valuations. Vice versa, a small (possibly negative) ∆ represents
comparatively low production costs. At the same time, the constellations
(C, V, f) and (C, V −∆, f∆) are identical with respect to the marginal effect
of investment on production cost and valuation. As an example, suppose
that the buyer firm plans to resell the good on a downstream market and
her investment represents marketing effort. Then her valuation may include
a component that depends on downstream market conditions which are out-
side of her control. A large ∆ would represent bad, a small ∆ good market
conditions.

All our comparative statics could be presented with respect to a produc-
tion cost component rather than a valuation component. Only the relative
size of production costs and valuations is relevant.

13



4.1 The Relative Investment Elasticity, and Two Lemmata
on Marginal Returns To Investment

This subsection contains some novel terminology and auxiliary Lemmata
which describe how price schemes and marginal returns to investment are
related. For any state (c, v) and investment pair (β, σ), we define the b-
elasticity and the s-elasticity by

εb(c, v|β, σ) = fβ(c, v|β, σ) β

f(c, v|β, σ) ,

εs(c, v|β, σ) = fσ(c, v|β, σ) σ

f(c, v|β, σ) .

The b-elasticity is the elasticity of a state’s probability with respect to the
buyer’s investment level; similarly, the s-elasticity refers to the seller’s invest-
ment. Whereever a state’s s-elasticity is non-zero, the ratio of b-elasticity
and s-elasticity is defined,

ε(c, v|β, σ) =
fβ(c, v|β, σ)β
fσ(c, v|β, σ)σ .

We call ε(c, v|β, σ) the relative investment elasticity. It can be interpreted
as a measure of the relative importance of buyer versus seller investment for
increasing the probability of (c, v).

If the self-investment condition is satisfied then b-elasticities are inde-
pendent of production cost and the seller’s investment level, and vice versa
for s-elasticities. We can then use the shortcuts

εb(v|β) =
f b

β(v|β)β
f b(v|β) , εs(c|σ) =

fs
σ(c|σ)σ
fs(c|σ) .

Note that the MLRP is satisfied if and only if εb(v|β) is strictly increasing
in v for all v ∈ V and β ∈ (0, β] and εs(c|σ) is strictly decreasing in c for all
c ∈ C and σ ∈ (0, σ]. I.e., the MLRP requires that b-elasticities are strictly
increasing in the valuation level and s-elasticities are strictly decreasing in
the production cost level. In particular, b-elasticities are positive for large
valuations, negative for small valuations, and zero for at most one interme-
diate valuation.

To understand the relevance of Lemma 1 below, recall from the previous
section that no fixed-percentage-share price scheme P λ can induce efficient
investment. The reason is a trade-off between buyer and seller in the provi-
sion of marginal returns to investment: if λ is changed such that the seller’s
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marginal return increases, the buyer’s inevitably decreases. Lemma 1 deals
with the problem how, starting from any II price scheme, prices may be
changed such that both firms’ marginal returns to investment are increased.
This is not difficult as such: decreasing the price in a state with a positive b-
elasticity and a negative s-elasticity obviously increases both firms’ marginal
returns to investment. However, this trick does not work in a state where
both elasticities are positive (or where both are negative). Lemma 1 shows
that it is nevertheless possible to increase both firms’ marginal returns to
investment by changing prices in such states. The trick is a simultaneous
price change in two different states; the only requirement is that the two
states’ relative investment elasticities are not identical.

Lemma 1. Let (β, σ) ∈ (0, β]×(0, σ]. For j = 1, 2, suppose (cj , vj) ∈ C×V ,

εb(cj , vj |β, σ) > 0, εs(cj , vj |β, σ) > 0, (3)

and
ε(c2, v2|β, σ) > ε(c1, v1|β, σ). (4)

Then, for all P ∈ II, there exist η1 > 0 and η2 > 0 such that for all δ > 0
we have

Rb
β(β, σ, Pδ) > Rb

β(β, σ, P ), Rs
σ(β, σ, Pδ) > Rs

σ(β, σ, P ),

where Pδ = P + 1(c1,v1)η1δ − 1(c2,v2)η2δ.9

To get an intuition for this result, note that (4) says that the buyer’s
investment is relatively more important for state 2, whereas the seller’s in-
vestment is relatively more important for state 1. Therefore, the desired
positive effect on marginal returns to investment is obtained by a price in-
crease in state 1 (favoring the seller), and a proportional price decrease in
state 2 (favoring the buyer). The lemma states the existence of a whole ray
of price changes, including arbitrarily small changes.

The following variant of Lemma 1 shows that it is possible to increase
both firms’ marginal returns to investment even under weaker assumptions
than Lemma 1, but then nothing can be said about the signs of the required
price changes.

9The “indicator” function 1(cj ,vj) is defined by 1(cj ,vj)(c, v) = 1 if (c, v) = (cj , vj) and
1(cj ,vj)(c, v) = 0 otherwise.
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Corollary 1. Let (β, σ) ∈ (0, β] × (0, σ]. For j = 1, 2, suppose (cj , vj) ∈
C × V , and

∃j : fσ(cj , vj |β, σ) = 0,
∃j : fβ(cj , vj |β, σ) = 0, (5)
∀α > 0 ∃j : αfσ(cj , vj |β, σ) = fβ(cj , vj |β, σ).

Then, for all P ∈ II, there exist η1 and η2 such that for all δ > 0 we have

Rb
β(β, σ, Pδ) > Rb

β(β, σ, P ), Rs
σ(β, σ, Pδ) > Rs

σ(β, σ, P ),

where Pδ = P + 1(c1,v1)η1δ − 1(c2,v2)η2δ.

Note that (5) is satisfied whenever at (β, σ) the relative investment elas-
ticities of (c1, v1) and (c2, v2) are defined, positive, and unequal.

The next Lemma confirms the intuitive idea that there can never be
a problem of inefficiently high marginal returns to investment: such high
returns can always be eliminated by an appropriate change of the price
scheme. More precisely, the Lemma starts with an II price scheme such
that, at the efficient investment levels, the marginal returns to investment
(weakly) exceed the marginal investment costs (which are 1); we then show
that there exists another II price scheme which equalizes marginal returns
and marginal costs for both firms. Moreover, it is possible to keep the IR
property if one starts with it.10

Lemma 2. If there exists a price scheme P u ∈ II such thatM(P u) ≥ (1, 1),
then there also exists a price scheme Peff ∈ II such that M(P eff) = (1, 1).
Moreover, if P u ∈ IR then we can choose P eff such that P eff ∈ IR.

The proof of Lemma 2 uses the fixed-percentage-share price schemes P b

and P s that have been defined earlier. If P b is selected, the buyer’s marginal
return to investment at the efficient investment levels equals her marginal
investment cost (which is 1), and the seller’s marginal return to investment
is 0; P s provides opposite incentives. If we imagine marginal returns as
points in a plane, P b and P s correspond to the points M(P b) = (1, 0) and
M(P s) = (0, 1), while P u corresponds to a point to the upper right of (1, 1).
The convex hull of these three points includes the point (1, 1). Thus, there
exists a convex combination P eff of P u, P b and P s, such that marginal
returns are “levelled down” to marginal costs, corresponding to the point
(1, 1).

10From now on, we will apply the operators ≤ and � to two-dimensional variables, with
the interpretation (x, y) ≤ (x′, y′) if and only if x ≤ y and x′ ≤ y′, and (x, y) � (x′, y′) if
and only if x < y and x′ < y′.
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4.2 The Underinvestment Condition

In this section, we introduce and discuss a condition on parameter constel-
lations which implies underinvestment. After defining this underinvestment
condition, we first show that it indeed implies underinvestment, and we pro-
vide a partial characterization of second-best II IR price schemes under the
condition (Proposition 3). To get a deeper understanding of its nature, we
then characterize the condition in terms of the restrictions it imposes on
the state space, first under no further assumptions (Remark 3), and then
under the assumptions of self-investment, MLRP, and a concavity property
(Proposition 4).

Underinvestment condition

For all states (c, v) ∈ C ×V with v > c, and all investment pairs
(β, σ) ∈ (0, β]× (0, σ], we have

(r) fβ(c, v|β, σ) > 0 and fσ(c, v|β, σ) > 0,

(rr) fββ(c, v|β, σ) < 0 and fσσ(c, v|β, σ) < 0,

(rrr) fβσ(c, v|β, σ) > 0.

Let us call a state (c, v) a trade state if v > c, and call a state (c, v) regular
if (r), (rr), and (rrr) are satisfied for all positive investment pairs (β, σ). If
a state is regular then its probability is (r) strictly increasing in both in-
vestments (i.e., its s- and b-elasticities are positive) and (rr) strictly concave
in both investments, and (rrr) investments are complements at the margin.
The underinvestment condition requires the regularity of all trade states,
but does not require anything for any other state. I.e., the condition refers
to a subset of the support of the underlying probability distributions only.
Because this is an unusual type of condition, we will spend some time re-
lating it to more common conditions: self-investment and the monotone
likelihood ratio property.

Below is our first main proposition. It states that if the underinvestment
condition is satisfied then all II IR price schemes induce underinvestment and
therefore the hold-up problem occurs. The proposition moreover provides a
partial characterization of second-best II IR price schemes.

Proposition 3. Assume the underinvestment condition is satisfied. If P̃ ∈
IR ∩ II, and (β̃, σ̃) is an investment equilibrium for P̃ then

(β̃, σ̃) � (β∗, σ∗);
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if in addition (β̃, σ̃, P̃ ) solves problem IR ∩ II and (β̃, σ̃) � (0, 0), then

∃ε∗ > 0 ∀(c, v) ∈ C × V, c < v : ε(c, v|β̃, σ̃) > ε∗ =⇒ P̃ (c, v) = c,

ε(c, v|β̃, σ̃) < ε∗ =⇒ P̃ (c, v) = v.

An immediate conclusion from this proposition is that double auctions
cannot generally resolve the hold-up problem if investment is private. This
contrasts the observable-investment case where the hold-up problem is no
problem (Proposition 2). Maybe more importantly, the proposition also
implies that no contract or arrangement of any form that resolves the hold-
up problem by implementing an II price scheme can generally avoid violating
an ex-post participation constraint.

The second part of the proposition provides, with the exception of the
extreme cases where one firm does not invest at all, a partial characterization
of second-best II IR price schemes, as follows. Except for “knife edge” states
with ε = ε∗, each state’s trading surplus is fully appropriated by one firm;
which one is determined by the relative investment elasticity of the state in
question. Intuitively, a firm appropriates the trading surplus in those states
where her investment is relatively more important (in terms of elasticities)
than the partner firm’s investment for increasing the state’s probability.

The logic behind Proposition 3 is as follows. Suppose, any II IR price
scheme is selected. Then, firstly, by (rr) each firm’s expected payoff is
concave in her own investment level. Consequently, first order conditions
are sufficient for investment equilibria, and best-response investments are
unique. Secondly, by (rrr) and (rr) each firm’s best-response investment is
a nondecreasing function of the partner firm’s investment (i.e., the invest-
ments are “strategic complements”). Thirdly, by (r) and (rr) lowering the
price in any trade state shifts the buyer’s best-response curve upwards, and
shifts the seller’s best-response curve downwards (vice versa for price in-
creases). This implies that for any II IR price scheme, firm i’s (i = b, s) best
response curve lies below that induced by P i (as defined on p. 12, where i
appropriates the entire trading surplus), and at least one firm’s curve lies
strictly below in the relevant range. Hence, if investment pairs are drawn as
points in a plane, the best-response curves intersect to the lower left of the
efficient investment point — underinvestment occurs.

To understand the characterization of second-best price schemes in Propo-
sition 3, observe that, due to strategic complementarity, any change of prices
of P̃ such that both firms’ marginal returns to investment are increased
would induce higher investments than P̃ (idea: the change of prices in-
creases both firms’ best responses at the intersection point of the best re-
sponse curves, hence there exists a new intersection point to the upper right
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of the original intersection point). Hence, if P̃ is a second-best II IR price
scheme, any such change of prices must violate the IR restriction. This line
of argument can be combined with Lemma 1 (which provides the desired
price changes of P̃ ) to prove the characterization result.11

Because the underinvestment condition is unusual, it is important to get
a deeper understanding of its nature. The condition makes strong require-
ments for all trade states, but none for other states. This suggests that
the condition might be easier to satisfy if only a few states are trade states
than if most states are trade states. In order to make this idea more pre-
cise, we will now characterize the underinvestment condition in terms of the
restrictions it imposes on the state space.

First of all, without any more assumptions on parameter constellations,
the underinvestment condition only implies that not all states are trade
states; i.e., the condition requires ex-ante uncertainty about whether gains
from trade will exist, as shown in the following remark.

Remark 3. Let C × V be any state space. A family of probability distri-
butions f such that the underinvestment condition is satisfied for (C, V, f)
exists if and only if

maxC ≥ minV. (6)

In the following, we will make additional assumptions on parameter con-
stellations. Mainly, we will assume self-investment and the MLRP. It turns
out that under these assumptions, the underinvestment condition implies
something stronger than (6). A precise characterization of what is implied
can be obtained if a certain concavity condition, C1, is satisfied. To prepare
for the definition of C1, note first that for parameter constellations with the
MLRP, the b-elasticity of the smallest valuation level, minV , is non-positive
for some positive investment level. Let v∗ be the largest valuation with this
property,

v∗ = max{v ∈ V |∃β > 0 : f b
β(v|β) ≤ 0}.

Similarly, we define

c∗ = min{c ∈ C|∃σ > 0 : fs
σ(c|σ) ≤ 0}.

11 Proposition 3 continues to hold even if the firms are free to destroy some or all of the
trading surplus. In the second-best solution, no trading surplus will be destroyed. This
also implies that private information about production cost and valuation, as in Myerson
and Satterthwaite (1983), cannot alleviate the hold-up problem.
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The MLRP implies that the probability of any valuation level v > v∗ is
strictly increasing in the buyer’s investment, and the probability of any cost
level c < c∗ is strictly increasing in the seller’s investment. Property C1
adds concavity:

C1 ∀c < c∗, σ > 0 : fs
σσ(c|σ) < 0,

∀v > v∗, β > 0 : f b
ββ(v|β) < 0.

The following result is immediate from the definitions.

Proposition 4. Let (C, V, f) be a parameter constellation such that self-
investment, the MLRP, and C1 are satisfied. Then (C, V, f) satisfies the
underinvestment condition if and only if

v∗ ≤ minC and c∗ ≥ maxV. (7)

First of all, this shows that the underinvestment condition is not totally
inconsistent with self-investment and the MLRP. On the other hand, these
two assumptions, together with the concavity assumption C1, imply that
only certain states can be trade states if the underinvestment condition is
satisfied. Specifically, (7) says that gains from trade can only exist in states
with “large” valuations (v > v∗) and “small” production costs (c < c∗).12

Note that (7) is stronger than condition (6).

4.3 Comparative Statics and the Efficiency Condition

In this section, we present two complementary comparative statics results
which show that underinvestment occurs for parameter constellations where
production costs are relatively high compared to valuations, while efficient
investment can be obtained for parameter constellations with relatively low
production costs.

The proof of the first comparative statics result below is immediate from
Proposition 4.13

12 Using first-order conditions one can show that the hold-up problem still occurs even
if one of the conditions, v∗ ≤ min C or c∗ ≥ max V , is violated. This demonstrates that
the underinvestment condition is not a necessary condition for the hold-up problem.

13Note that, besides the lower bound on ∆ that is established in Proposition 5, there
is also an implicit upper bound. We must have ∆ < max V − min C because otherwise
no trading surplus would exist in constellation (C, V − ∆, f∆) and thus—contrary to our
earlier assumption—the investment pair (0, 0) would be efficient. Hence, the proposition
requires ∆ to be in the interval (max{v∗ − min C, max V − c∗}, max V − min C). This
interval is nonempty under the conditions v∗ < max V and c∗ > min C—weak conditions
if V and C are fine grids.

20



Proposition 5. Let (C, V, f) be a parameter constellation such that self-
investment, the MLRP, and C1 are satisfied. Let ∆ ∈ IR. Moreover, let
∆ = max{v∗ −minC,maxV − c∗}. Then, for all (C, V −∆, f∆) with

∆ ≥ ∆,

underinvestment is obtained in any solution to problem IR ∩ II.
To state the second comparative statics result, another concavity prop-

erty, C2, needs to be introduced. Note that the MLRP implies that the
expected production cost is strictly decreasing in the seller’s investment,
and the expected valuation is strictly increasing in the buyer’s investment,

∀β ∈ [0, β], σ ∈ [0, σ] :
∑
c∈C

cfσ(c|σ) > 0,
∑
v∈V

vf b
β(v|β) < 0.

Concavity property C2 adds convexity of production costs, and concavity of
valuations,

C2 ∀β ∈ [0, β] :
∑
v∈V

vf b
ββ(v|β) < 0,

∀σ ∈ [0, σ] :
∑
c∈C

cfσσ(c|σ) > 0.

Neither follows C2 from C1 nor vice versa. However, there are parameter
constellations such that both C1 and C2 are satisfied (cf. Section 4.5).

We can now state a comparative statics result parallel to Proposition 5.
Note that the assumptions |C| ≥ 3 or |V | ≥ 3 are weak if we think of C and
V as fine grids.

Proposition 6. Let (C, V, f) be a parameter constellation such that self-
investment, the MLRP, and C2 are satisfied, and assume |C| ≥ 3 and |V | ≥
3. Let ∆ ∈ IR. Then there exists ∆ > minV − maxC such that for all
(C, V −∆, f∆) with

∆ < ∆,

efficient investment is obtained in any solution to problem IR ∩ II.
We already know from Remark 1 that the conclusion of this proposi-

tion holds for all ∆ ≤ minV − maxC because an essentially constant price
scheme induces efficient investment. The strength of the proposition is that
even for some ∆ > minV − maxC efficient investment obtains although,
by Remark 2, in these cases no essentially constant price scheme induces
efficient investment.
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The proof of the Proposition is based on the following ideas. Suppose
first that ∆ = minV −maxC and the essentially constant price scheme that
induces efficient investment is selected for (C, V −∆, f∆). Then there exist at
least two different states in which both firms get strictly positive shares of the
trading surplus. One state is given by the second-lowest feasible production
cost level and the highest feasible valuation level, the other state is given
by the lowest production cost level and the second-highest valuation level.
If the trade prices in these states are slightly changed, the price scheme is
still IR. Therefore, we can apply Corollary 1 to obtain an II IR price scheme
with marginal returns that exceed (1, 1) at the efficient investment levels
(note that state 1 has a larger relative investment elasticity than state 2,
due to the MLRP and self-investment). A continuity argument now shows
that even for all sufficiently small ∆ > minV − maxC, marginal returns
exceeding (1, 1) can be provided by some II IR price schemes at the efficient
investment levels. By Lemma 2, we can change this price scheme such that
the first-order conditions for an efficient investment equilibrium are satisfied.
C2 implies that first-order conditions are sufficient if ∆ = minV − maxC;
again, a continuity argument shows sufficiency for all sufficiently small ∆ >
minV −maxC.

4.4 Properties of Second-best II IR Price Schemes

This section contains results about the shape of second-best II IR price
schemes. The main conclusion is that such price schemes are typically not
nondecreasing. Therefore, the double auction outperforms all contracts or
arrangements which implement nondecreasing II IR price schemes, like the
renegotiated contracts of Hart and Moore (1988) and the renegotiation-proof
implementation contracts of Rubinstein and Wolinsky (1992).

Under the assumptions of Proposition 5 and the underinvestment condi-
tion, the shape of second-best II IR price can be characterized beyond what
we have obtained in Proposition 3, as shown in the following result.14

Remark 4. Let (C, V, f) be a parameter constellation such that self-invest-
ment, the MLRP, and C1 are satisfied. If

v∗ ≤ minC, c∗ ≥ maxV,

and (β̃, σ̃, P̃ ) solves problem IR ∩ II, and (β̃, σ̃) � (0, 0), then then there
14Innes (1990) obtains a similar shape in the context of unilateral investment problems,

Dewatripont-Tirole (1994) in the context of the optimal financial structure of a firm.
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exists a strictly decreasing function t : C → IR such that

∀(c, v) ∈ C × V, c < v : v > t(c) =⇒ P̃ (c, v) = c,

v < t(c) =⇒ P̃ (c, v) = v,

and v = t(c) only if ε(c, v|β̃, σ̃) = ε∗.

The shape of second-best II IR price schemes is intuitive. Due to the
MLRP, the buyer’s investment shifts probability to large valuation levels.
Hence, to alleviate her underinvestment problem, the buyer is rewarded
for valuations v above a threshold t(c) by getting the trading surplus in the
respective state (c, v), but she is punished for valuations below the threshold
by losing the trading surplus to the seller. Note that the threshold t(c) is
strictly decreasing in the production cost c: the smaller the production cost
the less valuation levels qualify for the buyer’s reward. This alleviates the
seller’s underinvestment problem because, due to the MLRP, the seller’s
investment shifts probability to small cost levels.15

The states (c, v) with v = t(c) might be called “knife-edge” states. Due
to the MLRP, there exists at most one knife-edge state for each production
cost level. Therefore, the fraction of trade states which are “knife-edge”
becomes arbitrarily small if C and V are sufficiently fine grids, implying
that P̃ is then almost completely characterized by the function t. On the
other extreme, if there exists only a single trade state, this one will be a
“knife-edge” state unless one firm does not invest al all.

We call an II IR price scheme P nondecreasing if c < c′ < v implies
P (c, v) ≤ P (c′, v), and c < v < v′ implies P (c, v) ≤ P (c, v′). (Note that this
definition refers to the trade states only.) For any V with |V | ≥ 2, denote
the second-largest valuation in V by v2, and for any C with |C| ≥ 2, denote
by c2 the second-smallest production cost level in C. Then we have the
following.16

Remark 5. Under the assumptions of Remark 4, if c2 < v2 then P̃ is not
nondecreasing.

The conclusion of Remark 5 also holds under our sufficient condition
for efficient investment. We only have to exclude the case where production

15This intuition reads as if seller and buyer had asymmetric roles. This is, however, not
the case. We could replace t by a function t−1 : V → IR such that c < t−1(v) implies
P̃ (c, v) = v, and c > t−1(v) implies P̃ (c, v) = c. This would swap the roles of buyer and
seller.

16Note that the assumption c2 < v2 is weak if C and V are fine grids.
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costs cannot exceed the valuation (in this case, the essentially constant price
scheme from Remark 1 is nondecreasing).

Remark 6. Under the assumptions of Proposition 6, second-best II IR price
schemes for parameter constellations (C, V − ∆, f∆) with ∆ ∈ (minV −
maxC,∆) are not nondecreasing.

4.5 An Example

In this section, we report on a class of parameter constellations which satisfy
all our technical assumptions. These constellations have the property that
each state’s probability is bilinear in the investment levels if investment is
measured in appropriate units. Formally, we call a parameter constellation
(C, V, f) rescaled bilinear17 if there exist functions gb(v), hb(v), gs(c), hs(c),
kb(β), and ks(σ), such that

kb
β(β) > 0, kb

ββ(β) < 0, ks
σ(σ) > 0, ks

σσ(σ) < 0,

f(c, v|β, σ) = (gb(v) + hb(v)kb(β))︸ ︷︷ ︸
∈(0,1)

(gs(c) + hs(c)ks(σ))︸ ︷︷ ︸
∈(0,1)

,

hb(v)
gb(v) + hb(v)kb(β)

strictly increasing in v,

hs(c)
gs(c) + hs(c)ks(σ)

strictly decreasing in c.

These formulae imply that if one rescales the investment levels such that
they are measured in units of kb and ks, respectively, then each state’s
probability is bilinear in these rescaled investment levels. In particular, for
any II price scheme, a firms’ marginal return to her rescaled investment is
independent of her investment level. The actual investment costs β and σ
are strictly increasing and convex in kb and ks, respectively. Notice that
rescaled bilinearity is not as strong as to imply that each firm’s expected
payoff is concave in her investment for all II IR price schemes. However, we
have the following:

Remark 7. Any rescaled bilinear parameter constellation has the self-invest-
ment property, the MLRP, and the concavity properties C1 and C2.

17Hart and Moore (1988, Proposition 4) have used this class. Translated to an unilat-
eral investment set-up (β = 0 or σ = 0), such parameter constellations have the linear
distribution function property which is used in the principal-agent literature.
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5 Concluding Remarks

The approach of this paper is conceptually different from most of the liter-
ature on “incomplete contracting” which has formulated conditions for the
occurrence of the hold-up problem in terms of non-verifiability to courts,
freedom to renegotiate earlier contracts, and non-feasibility of certain mech-
anisms (cf. Tirole, 2000). Our contributions are much simpler. We advertise
double auctions as ex-post trading mechanisms which alleviate the hold-up
problem, and we show that ex-post participation constraints make the hold-
up problem unavoidable in some environments. We make no contribution
to the question whether or how ex-post participation constraints can be ex-
plained in terms of incomplete contracting. However, as observed by Innes
(1990), in many applications ex-post participation constraints arise natu-
rally from limited liability of the firms.

Our approach also bears on Segal’s (1999) and Hart and Moore’s (1999)
“complex environment.” In Segal’s and Hart and Moore’s world, each
state consists of many cost-valuation pairs which belong to different goods
(“widgets”). These multidimensional states will generally contain much
more stochastic information about investment levels than our 2-dimensional
states. Thus, in the presence of a double auction, resolving the hold-up prob-
lem is easier in Segal’s and Hart and Moore’s complex environment than in
the simpler classical set-up. This demonstrates the strength of the standard
assumption made by Segal and Hart and Moore that in the absence of an
ex-ante contract the ex-post trading surplus is split in fixed proportions.

6 Proofs

Proof of Remark 2. First of all, note that the MLRP implies f b
β(minV |β∗)

< 0 and f b
β(maxV |β∗) > 0, and there exists v̂ ∈ V such that, for all v ∈ V ,

we have f b
β(v|β∗) < 0 if v < v̂ and f b

β(v|β∗) > 0 if v > v̂. Therefore,18

∀v′ ∈ IR :
∑

v∈V,v≥v′
f b

β(v|β∗) ≥ 0. (8)

and
∀v′ ∈ IR, v′ > minV :

∑
v∈V,v≥v′

f b
β(v|β∗) > 0. (9)

18By convention, empty sums are 0.
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Similarly,
∀c′ ∈ IR :

∑
c∈C,c≤c′

fs
σ(c|σ∗) ≥ 0. (10)

and
∀c′ ∈ IR, c′ < maxC :

∑
c∈C,c≤c′

fs
σ(c|σ∗) > 0. (11)

An indirect proof of the remark follows. Suppose that for some p ∈ IR, the
price scheme P = P const,p induces efficient investment, and P ∈ II ∩ IR.

Define v = min{v ∈ V | v > minC}. First we show

maxC > v. (12)

Suppose not. Subtract one of the first-order conditions for equilibrium,
Rb

β(β
∗, σ∗, P ) = 1, from one of the first-order conditions for efficient invest-

ment, Rb
β(β

∗, σ∗, P b) = 1. This yields

∑
c<v

(P (c, v) − c)f b
β(v|β∗)fs(c|σ∗) = 0,

or ∑
v≥v

f b
β(v|β∗)

∑
c<v

(p− c)fs(c|σ∗) = 0.

Combining this with (8), v ≥ maxC > minV , (9), and p ≥ minC implies
p = minC, which is not possible because σ∗ > 0. This shows (12).

Now subtract the first-order condition Rs
σ(β

∗, σ∗, P ) = 1 from the first-
order condition Rs

σ(β
∗, σ∗, P s) = 1. This yields

∑
c<v

(v − P (c, v))f b(v|β∗)fs
σ(c|σ∗) = 0,

or ∑
v≥v

(v − p)f b(v|β∗)
∑

c∈C such that c<v

fs
σ(c|σ∗) = 0. (13)

Combining this with (11), (12), (10), and p ≤ v implies p = v.
A similar argument shows that p = c = max{c ∈ C | c < maxV }.

Therefore, maxC ≥ maxV (because otherwise c = maxC > v by (12)).
Hence, (10), (11), (13), and p ≤ v imply p = maxV . This contradicts p = c.
✷
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Proof of Lemma 1. Due to (4), there exists η2 > 0 such that

fβ(c1, v1|β, σ)
fβ(c2, v2|β, σ) < η2 <

fσ(c1, v1|β, σ)
fσ(c2, v2|β, σ) .

Defining η1 = 1, we get

Rb
β(β, σ, Pδ) −Rb

β(β, σ, P )
= −η1δfβ(c1, v1|β, σ) + η2δfβ(c2, v2|β, σ) > 0, (14)

Rs
σ(β, σ, Pδ) −Rs

σ(β, σ, P )
= η1δfσ(c1, v1|β, σ)− η2δfσ(c2, v2|β, σ) > 0. (15)

✷

Proof of Corollary 1. Assumption (5) says that the vectors

xb = (−fβ(c1, v1|β, σ), fβ(c2, v2|β, σ)) = 0,
xs = (fσ(c1, v1|β, σ),−fσ(c2, v2|β, σ)) = 0,

do not point in exactly opposite directions in IR2. Hence, there exists
(η1, η2) ∈ IR2 such that (by standard properties of inner products)

(η1, η2) · xb > 0, (η1, η2) · xs > 0.

Thus, (14) and (15) hold. ✷

Proof of Lemma 2. At the efficient investments (β∗, σ∗), the first-order
conditions Sβ(β∗, σ∗) = 0 and Sσ(β∗, σ∗) = 0 are satisfied. Therefore,
M(P b) = (1, 0) and M(P s) = (0, 1). We define x and y by M(P u) = (x, y).
Because x ≥ 1 and y ≥ 1, we can define

λu =
1

x+ y − 1
, λb =

y − 1
x+ y − 1

, λs =
x− 1

x+ y − 1
,

and P eff = λuP u + λbP b + λsP s. Due to
∑

k λ
k = 1 and the linearity of

M(P ), we have

M(P eff) = λuM(P u) + λbM(P b) + λsM(P s) = (1, 1).

Because λk ≥ 0 (k = u, b, s), P eff is an IR price scheme if P u is. ✷
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Proof of Proposition 3. For all investment pairs (β, σ), we define the
gross surplus

G(β, σ) = S(β, σ) + β + σ.

Regularity condition (rr) implies that G(β, σ) is strictly concave in both
arguments. Moreover, for any fixed σ ∈ [0, σ] and P ∈ II ∩ IR, the
function β �→ Rb(β, σ, P ) is strictly concave or identically 0. Similarly, for
any fixed β, the function σ �→ Rs(β, σ, P ) is strictly concave or identically 0.
Therefore, the following BR-functions are well-defined for all P ∈ II ∩ IR:

BRb(σ, P ) = argmax
β

Rb(β, σ, P ) − β,

BRs(β, P ) = argmax
σ

Rs(β, σ, P ) − σ,

BRb∗(σ) = argmax
β

G(β, σ) − β,

BRs∗(β) = argmax
σ

G(β, σ) − σ.

(In the following, it will be instructive to imagine the graphs of these func-
tions in a coordinate system with β on one axis and σ on the other axis.)
Using (r) to (rrr) from the underinvestment condition, and the fact that

G(β, σ) = Rb(β, σ, P b) = Rs(β, σ, P s),

the following facts can be obtained:

(j) All BR-functions are continuous and nondecreasing in investment.

(jj) Let σ1 < σ2 with BRb∗(σ1) < β and BRb∗(σ2) > 0. Then

BRb∗(σ1) < BRb∗(σ2).

Similarly let β1 < β2 with BRs∗(β1) < σ and BRs∗(β2) > 0. Then

BRs∗(β1) < BRs∗(β2).

(jjj) We have BRb(σ, P ) ≤ BRb∗(σ) for all σ and all P ∈ II ∩ IR. We have
BRs(β, P ) ≤ BRs∗(β) for all β and all P ∈ II ∩ IR.

(jv) If P ∈ II ∩ IR and P = P b, then BRb(σ, P ) < BRb∗(σ) for all σ with
BRb∗(σ) > 0.
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Now let P̃ ∈ IR ∩ II, and let (β̃, σ̃) be induced by P̃ .
The function BRb∗ maps [σ̃, σ] into [β̃, β]. This is because, for all σ ≥ σ̃,

(j) and (jjj) imply

BRb∗(σ) ≥ BRb∗(σ̃) ≥ BRb(σ̃, P̃ ) = β̃.

Similarly, one can show that BRs∗ maps [β̃, β] into [σ̃, σ]. By continuity,
the graphs of BRb∗ and BRs∗ intersect somewhere in [σ̃, σ]× [β̃, β]. In other
words,

(β∗, σ∗) ≥ (β̃, σ̃).

Now suppose β∗ = β̃. This implies

BRb∗(σ∗) = β∗ = β̃ = BRb(σ̃, P̃ ) ≤ BRb∗(σ̃).

Therefore, σ∗ = σ̃ by (jj) and thus

BRb∗(σ∗) = BRb(σ∗, P̃ ).

This implies P̃ = P b by (jv). Hence, σ̃ = 0 = σ∗. Contradiction! Hence,
β∗ > β̃. An analoguous argument shows that σ∗ > σ̃.

To prove the remaining part of the Proposition, it is sufficient to show
the following: for any trade state (c1, v1) with P̃ (c1, v1) < v1 and trade state
(c2, v2) with ε(c2, v2|β̃, σ̃) > ε(c1, v1|β̃, σ̃), we have P̃ (c2, v2) = c2.

Suppose instead P̃ (c2, v2) > c2. Then Lemma 1 and the conditions (rr)
and (rrr) show that there exists a δ > 0 such that Pδ ∈ II ∩ IR, and

BRb(σ̃, Pδ) > BRb(σ̃, P̃ ), BRs(β̃, Pδ) > BRs(β̃, P̃ ).

Therefore, BRb(·, Pδ) maps [σ̃, σ] into ]β̃, β], and BRs(·, Pδ) maps [β̃, β] into
]σ̃, σ]. Hence, Pδ induces an investment equilibrium (β̂, σ̂) such that

(β̃, σ̃) � (β̂, σ̂) � (β∗, σ∗).

Using that Sβ(β, σ) > 0 and Sσ(β, σ) > 0 for all (β, σ) with β < BRb∗(σ)
and σ < BRs∗(β), one now sees that S(β̂, σ̂) > S(β̃, σ̃). Contradiction! ✷

Proof of Remark 3. “If.” Let (c1, v1), . . . , (cn, vn) be the states with
cj ≥ vj , and let (cn+1, vn+1), . . . , (cn+m, vn+m) be the states with cj < vj .
Let

f(cj , vj |β, σ) =
{

1/(2n) − k/n
√

(1 + β)(1 + σ) if j ≤ n,

1/(2m) + k/m
√

(1 + β)(1 + σ) if j > n,
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with a sufficiently small k > 0.
“Only if.” Because the sum of all states’ probabilities is 1, (r) cannot

be satisfied for all states, so not all states can be regular. Hence, the un-
derinvestment condition implies that not all states are trade states; i.e., (6).
✷

Proof of Proposition 6. W.l.o.g., we assume maxC = minV and show
that there exists ∆ > 0 with the desired properties. We adopt the nota-
tional convention that variables with ∆-subscripts belong to the parameter
constellation (C, V −∆, f∆).

We first prove an auxiliary technical result:

ψ(∆) = (β∗
∆, σ

∗
∆) is continuous at ∆ = 0.

By C2 we have for ∆ = 0:

∀(β, σ) ∈ [0, β]× [0, σ] : S∆ββ(β, σ) < 0, S∆σσ(β, σ) < 0. (16)

Because S∆ββ and S∆σσ are continuous in ∆, β, and σ, and the investment
space [0, β]× [0, σ] is compact, (16) holds even for all ∆ in a neighborhood of
0. In this neighborhood, the efficient investments (β∗

∆, σ
∗
∆) are characterized

by the first-order conditions S∆β(β∗
∆, σ

∗
∆) = 0 and S∆σ(β∗

∆, σ
∗
∆) = 0. Hence,

by the implicit functions theorem, ψ(∆) is differentiable at ∆ = 0 and thus
also continuous.

For all ∆ ∈ IR, all II price schemes P on C × (V −∆), and all (β, σ), we
define

M∆(β, σ, P ) = (Rb
∆β(β, σ, P ), Rs

∆σ(β, σ, P )).

For ∆ = 0, Remark 1 implies

M0(β∗
0 , σ

∗
0, P

const,max C) = (1, 1).

Now denote by c2 the second lowest production cost level, and by v2 the
second largest valuation level. Next we show that (5) holds with (c1, v1) :=
(c2,maxV ) and (c2, v2) := (minC, v2) at (β, σ) = (β∗, σ∗) = (β∗

0 , σ
∗
0). The

first line of (5) holds because

fσ(c1, v1|β∗, σ∗)
f(c1, v1|β∗, σ∗)

=
εs(c1|σ∗)

σ∗
MLRP
<

εs(c2|σ∗)
σ∗

fσ(c2, v2|β∗, σ∗)
f(c2, v2|β∗, σ∗)

.

The second line follows from a similar calculation. To check the third
line, suppose there exists α > 0 such that αfσ(c1, v1) = fβ(c1, v1), and
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αfσ(c2, v2) = fβ(c2, v2). Then,

εs(c1|σ∗)
σ∗ =

fσ(c1, v1|β∗, σ∗)
f(c1, v1|β∗, σ∗)

= α
fβ(c1, v1|β∗, σ∗)
f(c1, v1|β∗, σ∗)

= α
εb(v1|β∗)

β∗

MLRP
> α

εb(v2|β∗)
β∗ = α

fβ(c2, v2|β∗, σ∗)
f(c2, v2|β∗, σ∗)

=
fσ(c2, v2|β∗, σ∗)
f(c2, v2|β∗, σ∗)

=
εs(c2|σ∗)

σ∗ ,

which implies c1 < c2 by the MLRP. Contradiction!
Therefore, we can apply Corollary 1 with P = P const,max C to get an II

price scheme P u := Pδ such that

M0(β∗
0 , σ

∗
0, P

u) � (1, 1). (17)

Moreover, because

cj < P const,max C(cj , vj) < vj , (j = 1, 2).

we can choose δ so small that P u ∈ IR.
To make the continuity arguments in the rest of the proof more transpar-

ent, we introduce a new notion. For any ∆ ∈ IR, a (buyer’s) percentage-share
function is a function

b∆ : C × (V −∆) −→ [0, 1].

To any such b∆ we assign an II IR price scheme P (b∆) via

P (b∆)(c, v) =
{

v − b∆(c, v)(v − c) if c < v,
0 otherwise.

Let bo0 be any percentage-share function with P (bo0) = P u. For all ∆, define
a percentage-share function bo∆ on C × (V −∆) by

bo∆(c, v) = bo0(c, v + ∆).

For all ∆ ∈ IR and all (β, σ) we define

Φ(∆, β, σ) = M∆(β, σ, P (bo∆)).

By construction of bo∆, Φ is continuous in ∆. Moreover, Φ is continuous in
(β, σ). Together with the continuity of ψ at ∆ = 0 we can conclude that

∆ �→ M∆(β∗
∆, σ

∗
∆, P (bo∆)) = Φ(ψ(∆),∆)
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is continuous at ∆ = 0. Together with (17) this implies that there exists a
neighborhood N of 0 such that for all ∆ ∈ N :

M∆(β∗
∆, σ

∗
∆, P (bo∆)) � (1, 1).

Now Lemma 2, applied with (C, V, f) = (C, V − ∆, f∆), P = P (bo∆), and
(β, σ) = (β∗

∆, σ
∗
∆), shows that for all ∆ ∈ N an II IR price scheme P eff

∆ on
C × (V −∆) exists such that

M∆(β∗
∆, σ

∗
∆, P

eff
∆ ) = (1, 1). (18)

We can assume that P eff
∆ is constructed as in the proof of Lemma 2. We

denote the coefficients occurring in the proof of Lemma 2 by

λu(∆), λb(∆), λs(∆).

This implies that P eff
∆ = P (beff∆ ), where beff∆ is defined by

beff∆ (c, v) = λu(∆)bo∆(c, v) + λb(∆)max{v − c, 0}.

Because Φ(ψ(∆),∆) is continuous at ∆ = 0, the same is true for λu(∆),
λb(∆), and λs(∆). Therefore, the functions

φb(∆, β, σ) = Rb
∆ββ(β, σ, P (beff∆ )),

φs(∆, β, σ) = Rs
∆σσ(β, σ, P (beff∆ )),

are continuous in ∆ at (0, β, σ), for all (β, σ). By C2, we have for ∆ = 0:

∀(β, σ) ∈ [0, β]× [0, σ] : φb(∆, β, σ) < 0, φs(∆, β, σ) < 0. (19)

Because φb and φs are also continuous in (β, σ), and the investment space
[0, β] × [0, σ] is compact, (19) holds even for all ∆ in a neighborhood of 0.
Therefore, for these ∆ the first-order conditions (18) are sufficient to assure
that (β∗

∆, σ
∗
∆) is an investment equilibrium for P eff

∆ . Thus, (β∗
∆, σ

∗
∆, P

eff
∆ ) is

a solution of IR ∩ II. ✷

Proof of Remark 4. By the MLRP, εb(·|β̃) is a strictly increasing function
on V ; let z : IR → IR be a strictly increasing extension which maps onto IR;
i.e., z(v) = εb(v|β̃) for all v ∈ V , and z(IR) = IR (e.g., z might be piecewise
linear). Now define

t(c) = z−1(ε∗εs(c|σ̃)),
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where ε∗ is from Proposition 3. ✷

Proof of Remark 5. We also use the notation c1 = minC and v1 = maxV .
We have P̃ (c1, v1) > c2 or P̃ (c1, v1) < v2 because otherwise v2 ≤ c2. Now
suppose P̃ is increasing and P̃ (c1, v1) > c2 (the remaining analoguous case
P̃ (c1, v1) < v2 is omitted). Because P̃ (c2, v1) ≥ P̃ (c1, v1) > c2, Remark 4
implies v1 ≤ t(c2). Hence, v1 < t(c1), and thus P̃ (c1, v1) = v1 by Remark 4.
Thus, P̃ (c, v1) = v1 for all trade states (c, v1) because P̃ is nondecreasing.
In other words, even if the lowest cost level arises the buyer appropriates
the trading surplus. Hence, P̃ = P b by Remark 4 which contradicts the
assumption σ̃ > 0. ✷

Proof of Remark 6. Consider a parameter constellation (C, V, f) with the
self-investment property, MLRP, and minV < maxC. By Proposition 6, it
is sufficient to show that there exists no nondecreasing II IR price scheme
which induces (β∗, σ∗).

Now suppose some nondecreasing II IR price scheme P induces (β∗, σ∗).
Subtracting one of the first-order conditions for equilibrium, Rs

σ(β
∗, σ∗, P ) =

1, from one of the first-order conditions for efficient investment, Rs
σ(β

∗, σ∗, P s) =
1, yields ∑

c<v

(v − P (c, v))f b(v|β∗)fs
σ(c|σ∗) = 0. (20)

Let c∗∗ be the largest production cost level c ∈ C with fs
σ(c|σ∗) > 0. Now

fix some v ∈ V , and let

C> = {c ∈ C | c∗∗ < c < v}, C≤ = {c ∈ C | c∗∗ ≥ c < v}.

Next we show that prices are independent of production costs, i.e.,

∀c, c′ ∈ C≤ ∪ C> : P (c, v) = P (c′, v). (21)

If C≤ = ∅ then also C> = ∅ and there is nothing to prove. Now consider
the case C≤ = ∅ and C> = ∅. Using the MLRP we find

∑
c∈C such that c<v

(v − P (c, v))fs
σ(c|σ∗)

≥
∑

c∈C≤
(v − P (maxC≤, v))fs

σ(c|σ∗) +
∑

c∈C>

(v − P (minC>, v)fs
σ(c|σ∗)

≥
∑

c∈C≤
(v − P (minC>, v)fs

σ(c|σ∗) +
∑

c∈C>

(v − P (minC>, v)fs
σ(c|σ∗)
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34

≥
∑

c∈C such that c<v

(v − P (minC>, v)fs
σ(c|σ∗)

≥ 0. (22)

Together with (20), this implies that
∑

c∈C such that c<v

(v − P (c, v))fs
σ(c|σ∗) = 0. (23)

Therefore, all inequalities in (22) are in fact equalities. Hence, P (c, v) =
P (minC>, v) for all c ∈ C≤ ∪ C>, implying (21).

In the remaining case, C≤ = ∅ and C> = ∅, a similar calculation shows
P (c, v) = P (maxC≤, v) for all c ∈ C≤, again implying (21).

Similar reasoning, using the other first-order conditions, shows that
prices are also independent of valuations. Hence, there exists a number
p∗ such that P (c, v) = p∗ for all (c, v) with c < v. But Remark 2 shows that
P does not induce efficient investment. Contradiction! ✷

Proof of Remark 7. Proof of C1. Let v ≥ v∗. By definition of v∗ we get
0 < f b

β(v|β) = kb
β(β)h

b(v), for any β ∈]0, β]. Hence, hb(v) > 0, implying

f b
ββ(v|β) = kb

ββ(β)h
b(v) < 0.

The proof of the seller part of C1 is analog.
Proof of C2. The MLRP implies for all β ∈]0, β] that

0 <
∑

v

vf b
β(v|β) = kb

β(β)
∑

v

vhb(v),

hence 0 <
∑

v vh
b(v), and therefore

∑
v∈V

vf b
ββ(v|β) = kb

ββ(β)
∑

v

vhb(v) < 0.

The proof of the seller part of C2 is analog. ✷
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