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Diffusion tensor magnetic resonance imaging (DT-MRI) is a technique used to quantify the microstruc-
tural organization of biological tissues. Multiple images are necessary to reconstruct the tensor data
and each acquisition is subject to complex thermal noise. As such, measures of tensor invariants, which
characterize components of tensor shape, derived from the tensor data will be biased from their true val-
ues. Previous work has examined this bias, but over a narrow range of tensor shape. Herein, we define the
mathematics for constructing a tensor from tensor invariants, which permits an intuitive and principled
means for building tensors with a complete range of tensor shape and salient microstructural properties.
Thereafter, we use this development to evaluate by simulation the effects of noise on characterizing ten-
sor shape over the complete space of tensor shape for three encoding schemes with different SNR and
gradient directions. We also define a new framework for determining the distribution of the true values
of tensor invariants given their measures, which provides guidance about the confidence the observer
should have in the measures. Finally, we present the statistics of tensor invariant estimates over the com-
plete space of tensor shape to demonstrate how the noise sensitivity of tensor invariants varies across the
space of tensor shape as well as how the imaging protocol impacts measures of tensor invariants.

� 2013 Elsevier B.V. All rights reserved.
1. Background

Tensors increasingly arise in a variety of medical imaging and
image processing contexts. Tensors are useful quantities because
they inform us about how vectors in one space are transformed
to vectors in another space. Diffusion tensor magnetic resonance
imaging (DT-MRI) (Basser et al., 1994a; Basser et al., 1994b), for
example, is used to map the microstructural shape and orientation
of the self-diffusion of water within the brain (Basser and Pierpaoli,
1996), heart (Scollan et al., 1998; Hsu et al., 1998; Kung et al.,
2011), and other organs.

Tensors, in general, can be decomposed into shape and orienta-
tion components. The shape components describe the overall size
and relative sizes of the principle axes. The orientation compo-
nents describe the relationship between the principle axes and a
local coordinate system. Most commonly, the shape components
are characterized by the eigenvalues (ki, sorted in descending or-
der) and the orientation components are described by the eigen-
vectors ðeiÞ. While there are essentially a few ways to describe
tensor orientation, there are numerous ways to characterize the
degrees of freedom in tensor shape. For example, tensor shape
can be described by the eigenvalues, statistical moments of the
eigenvalues, and tensor invariants (Ennis and Kindlmann, 2006).

In the field of DT-MRI tensor invariants are the preferred means
for characterizing tensor shape and are considered to report sali-
ent, if not intuitive, properties of the underlying diffusive process
(magnitude of isotropy, magnitude of anisotropy, kind of anisot-
ropy)(Basser et al., 1994b; Ennis and Kindlmann, 2006). In fact,
our understanding of, for example, fractional anisotropy (FA) has
become so essential to the interpretation of DT-MRI data that the
field must examine how the imaging protocol (b-value, number
of gradient directions, k-space encoding scheme, etc.) and the im-
age signal-to-noise ratio (SNR) impact measures of FA. This has, of
course, been performed but under a relatively narrow and con-
strained range of tensor shape, wherein an assumption of cylindri-
cally symmetric anisotropy was used (Pierpaoli and Basser, 1996;
Jones, 2004). This assumption, though convenient, is not necessary
and limits the range of tensor shape that has been investigated.
Previous studies have evaluated the impact of noise on specific
asymmetric tensors (Basser and Pajevic, 2000) and specific diffu-
sion tensors representative of the brain (Chang et al., 2007), but
the effects of noise over a wide range of tensor shapes has not pre-
viously been considered.

Furthermore, previous analyses of the impact of noise on diffu-
sion tensor invariants have only considered how the invariants

http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2013.10.009&domain=pdf
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become statistically distributed in the presence of complex noise
added to the image domain – a framework that we term the
‘‘Forward Problem’’. This stands in distinction to the situation we
encounter experimentally wherein we are presented with a mea-
sured tensor invariant and we are concerned with the true value
of the tensor invariant given that we know it is corrupted by a level
of noise that is measurable in the non-diffusion weighted image(s).
We term this framework the ‘‘Inverse Problem’’.

Two key developments permit this analysis. First, the three de-
grees of freedom that fully characterize tensor shape and include
the most commonly reported tensor invariants (tensor trace and
FA) have been completely described as orthogonal tensor invariant
sets (Ennis and Kindlmann, 2006). Secondly, in this paper we de-
velop the mathematics needed for reconstructing tensors from sets
of invariants. These expressions are useful for freely constructing
tensors with known shape and orientation components. This
means we can control tensor shape using intuitive and salient fea-
tures of tensor shape (tensor trace and FA) that describe tensors
over the complete space of tensor shape and we need not use the
eigenvalues themselves, which have a complicated relationship
to the preferred descriptions of tensor shape (tensor trace and
FA) (Ennis and Kindlmann, 2006). Herein, we use these develop-
ments to assess the noise sensitivity of each invariant over the
complete space of tensor shape, without the need to make any
assumptions about the tensor’s properties.

2. Theory

2.1. Orthogonal tensor invariant sets

The two sets of orthogonal tensor invariants have been de-
scribed previously by Ennis and Kindlmann (2006). The term
‘‘orthogonal tensor invariant’’ indicates that the all permutations
of tensorial contraction of the gradients of each invariant within
a set are zero. Each orthogonal tensor invariant includes a measure
characterizing one of the three degrees of freedom of tensor shape,
namely the magnitude of isotropy (K1 or R1), the magnitude of
anisotropy (K2 or R2), and the mode of anisotropy (K3 ¼ R3). The
Ki set of orthogonal tensor invariant includes the tensor trace
ðK1Þ and are defined for a tensor A as follows:

K1 ¼ trA ð1aÞ
K2 ¼ normeA ð1bÞ

K3 ¼modeeA ¼ 3
ffiffiffi
6
p

det eA
normeA� �3 ; ð1cÞ

where tr is the tensor trace, norm is the tensor Frobenius norm, det
is the tensor determinant, and eA ¼ A� 1

3 ðtrAÞI.
The Ri set of orthogonal tensor invariant includes the FA ðR2Þ

and are defined as follows:

R1 ¼ normA ð2aÞ

R2 ¼
ffiffiffi
3
2

r
normeA
normA

ð2bÞ

R3 ¼modeeA ¼ 3
ffiffiffi
6
p

det eA
normeA� �3 : ð2cÞ

One advantage of orthogonal tensor invariants is that they char-
acterize independent components of tensor shape. Two invariants
are mutually orthogonal if-and-only-if the inner product between
the gradients of the invariant functions with respect to a tensor
is zero (proofs are given in Ennis and Kindlmann (2006)). Orthog-
onality eliminates the mathematical correlation between the
invariants, which implies the statistical independence.
The following analytic relationships between the Ki and Ri

invariants are defined for the first time in Appendices A.1 and
A.2 and allow for converting between the two sets.

K1 ¼ R1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 2R2

2

q
ð3aÞ

K2 ¼
ffiffiffi
2
3

r
R1R2; ð3bÞ

R1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3

K2
1 þ K2

2

r
ð4aÞ

R2 ¼
3K2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2K2
1 þ 6K2

2

q : ð4bÞ
2.2. Non-orthogonal tensor invariant set

Despite the advantage of using sets of orthogonal invariants (Ki

or Ri), there is a tremendous volume of literature that analyzes DT-
MRI data by evaluating the tensor trace ðK1Þ and FA ðR2Þ, which has
given rise to a body of knowledge and expectation about the values
of these invariants and how they are altered by disease (Sotak,
2002; Thomalla et al., 2004; Jolapara et al., 2009). Note that K1 is
not orthogonal to R2 (see Ennis and Kindlmann (2006)). Neverthe-
less, given the prevalence of the combined use of tensor trace and
FA it is prudent to derive the mathematics that permit defining
tensor shape from these measures, noting that these two degrees
of freedom are not sufficient to completely describe tensor shape
and therefore K3 ¼ R3 is also needed. The derivations are provided
in Appendix A.3. With the following result one can complete the Ri

invariant set from known values for K1 (tensor trace), R2 (FA), and
R3 ¼ K3 (tensor mode):

R1 ¼
K1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3� 2R2
2

q : ð5Þ

Alternately, with the following result one can complete the Ki

invariant set from known values for K1 (tensor trace), R2 (FA),
and K3 ¼ R3 (tensor mode):

K2 ¼
ffiffiffi
2
p

K1R2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9� 6R2

2

q : ð6Þ

Therefore, given values for K1 (tensor trace), R2 (FA), and
K3 ¼ R3 (tensor mode) either the Ki or the Ri orthogonal tensor
invariant set can be completed. What remains, however, is to de-
fine the mathematics of constituting tensor shape from a set of
orthogonal or non-orthogonal invariants. To do so we first outline
how to define a tensor from the eigenvalues ðkiÞ and eigenvectors
ðeiÞ (see Section 2.3), then define the relationship between ki and
the tensor’s characteristic polynomial (see Section 2.4), and finally
use the transitive property to define ki from either Ki or Ri through
the roots of the characteristic polynomial (see Section 2.5).

2.3. Tensor shape from eigenvalues

A tensor can be recapitulated from its shape and orientation
components. In particular, if the eigenvalues ðkiÞ and column
eigenvectors ðeiÞ are known, then the matrix expression for tensor
A in the laboratory coordinate frame ð½A�LÞ can be obtained as
follows:

½A�L ¼ RKRT; ð7Þ

where

R ¼ ½e1�L ½e2�L ½e3�L½ �; ð8Þ



Fig. 1. The eigenwheel depicts the roots (eigenvalues, ki) of a three-dimensional
rank-2 tensor’s characteristic polynomial (gray curve). The roots of the character-
istic polynomial are analytically defined by Eq. (13), which depends upon Eq. (14),
which in turn depend upon the characteristic polynomial’s coefficients (Eq. (12)).
Herein, we define a set of analytic expressions that define the eigenvalues as
functions of the invariants (Eqs. (16) and (17)), which provide a more intuitive
method for defining tensor shape.

A

B

C

Fig. 2. Visualization of the three degrees of freedom of tensor shape using the
eigenwheel (top) and superquadric glyphs (bottom). (A) depicts an increase
(rightward shift) in the mean eigenvalue (a=3 ¼ K1=3) with Q and H fixed, which
increases the magnitude of isotropy (Eqs. (12a) and (15)). (B) depicts an increase in
the eigenwheel radius (2

ffiffiffiffi
Q
p

) with a and H fixed, which strongly couples to changes
in tensor anisotropy (Eq. (A.29)). (C) depicts changes in angle of the eigenwheel
spokes (H=3) with a and 2

ffiffiffiffi
Q
p

fixed, which couples directly to the mode of tensor
anisotropy (Eq. (A.31)). One distinct advantage of the orthogonal tensor invariant
sets (Ki or Ri) is that they eliminate this coupling and thereby more intuitively
relate to salient tensor shape attributes.
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K ¼
k1 0 0
0 k2 0
0 0 k3

264
375: ð9Þ

In order to recapitulate the tensor shape from the tensor invari-
ants and orientation information a transformation between the
tensor invariants and the eigenvalues must be formulated. This is
the focus of Section 2.5. Subsequently, with a coordinate frame de-
fined, Eq. (7) is used to derive the matrix expression for the tensor
in the laboratory frame, which permits subsequent computational
utilization.

2.4. Tensor shape and the characteristic polynomial

The eigenvalues of tensor A are found by solving the character-
istic equation:

detðA� kIÞ ¼ 0: ð10Þ

Eq. (10) can be expanded to the following characteristic cubic poly-
nomial, if A is a three-dimensional rank-2 tensor:

k3 þ ak2 þ bkþ c ¼ 0: ð11Þ

Eq. (11) is a simple cubic polynomial and solutions for the roots can
take on many forms. In general, the coefficients of Eq. (11) can be
expressed in terms of the eigenvalues ðkiÞ of A or the tensor
invariants:

a ¼ k1 þ k2 þ k3 ¼ trA ð12aÞ

b ¼ k1k2 þ k2k3 þ k3k1 ¼
1
2

trAð Þ2 � trA2
h i

ð12bÞ

c ¼ k1k2k3 ¼ det A: ð12cÞ

A closed-form solution for the roots (eigenvalues) of Eq. (11) can be
formulated (Press, 2002):

k1 ¼
a
3
þ 2

ffiffiffiffi
Q

p
cos

H
3

� �
ð13aÞ

k2 ¼
a
3
þ 2

ffiffiffiffi
Q

p
cos

H� 2p
3

� �
ð13bÞ

k3 ¼
a
3
þ 2

ffiffiffiffi
Q

p
cos

Hþ 2p
3

� �
; ð13cÞ

where

P ¼ 2a3 � 9abþ 27c
54

ð14aÞ

Q ¼ a2 � 3b
9

ð14bÞ

H ¼ arccos
Pffiffiffiffiffiffi
Q 3

q
0B@

1CA: ð14cÞ

This analytic form of the solution can be easily understood in the
context of the eigenwheel (Fig. 1). In this context, the eigenvalues
are intuitively related to the roots of the cubic characteristic poly-
nomial. In particular, a=3 ¼ K1=3 (i.e. mean eigenvalue) controls
the left–right position of the eigenwheel, which is related to the
magnitude of isotropy; Q controls the radius, which is related to
the magnitude of anisotropy and couples through Eqs. (14b) and
(14c) to the angle (H) of the eigenwheel spokes, which is related
to the mode of anisotropy.

In Fig. 2 the effect of variations in a;Q , and H on the character-
istic polynomial roots (eigenvalues, ki) are depicted. From this fig-
ure it becomes more clear that a controls the eigenvalue mean and
thereby overall tensor size (magnitude of isotropy), but the roles
that Q and H play are more difficult to relate to general and salient
eigenvalue characteristics. It will become obvious when invariant
expressions for Q and H derived (see Appendix A.5) that Q
modulates the magnitude of tensor anisotropy and also
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contributes, via the definition of H (Eq. (14c)), to the tensor mode
(kind of anisotropy). Furthermore, H controls the tensor mode, but
is clearly coupled to Q (Eq. (14c)). One distinct advantage of the
orthogonal tensor invariant sets (Ki or Ri) is that they eliminate this
coupling and thereby more intuitively relate to salient tensor
shape attributes.

Outside of this context, however, it is difficult to appreciate the
roles that a; P;Q , and H play and transmute them to salient charac-
teristics of tensor shape. The coupling between Q and H further con-
founds the understanding. For example, it is not obvious how to
choose a; P;Q , and H so as to achieve a particular FA. It is useful,
therefore, to express a; P;Q , and H as functions of other familiar ten-
sor shape components. Why? Because a connection between a; P;Q ,
and H and the tensor invariants provides a means to construct the
eigenvalues and thereby the tensor once a set of basis vectors is cho-
sen. Therefore, in Appendices A.4 and A.5 we derive expressions that
relate {a; b; c} and {P;Q ;H} to the orthogonal tensor invariant sets
(Ki and Ri). This permits deriving expressions for the eigenvalues
from either the Ki;Ri, or {K1;R2;R3} sets of invariants.

2.5. Tensor shape from invariant sets

From the definitions of a; P;Q , and H derived in Appendices A.4
and A.5 (Eqs. (A.15b), (A.29a) and (A.31)) we can reformulate Eq.
(13) in terms of the Ki invariants:

k1 ¼
1
3

K1 þ
ffiffiffi
2
3

r
K2 cos

arccosðK3Þ
3

� �
ð15aÞ

k2 ¼
1
3

K1 þ
ffiffiffi
2
3

r
K2 cos

arccosðK3Þ � 2p
3

� �
ð15bÞ

k3 ¼
1
3

K1 þ
ffiffiffi
2
3

r
K2 cos

arccosðK3Þ þ 2p
3

� �
: ð15cÞ

A similar result was first shown by Criscione et al. (2000) and Hasan
et al. (2001).

Alternately, substitution of either Eqs. (15c), (A.29b) and (A.31)
into Eq. (13), or of Eqs. (3a) and (3b) into Eq. (15) produces the
following:

k1 ¼
1
3

R1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 2R2

2

q
þ 2

3
R1R2 cos

arccos R3ð Þ
3

� �
ð16aÞ

k2 ¼
1
3

R1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 2R2

2

q
þ 2

3
R1R2 cos

arccos R3ð Þ � 2p
3

� �
ð16bÞ

k3 ¼
1
3

R1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 2R2

2

q
þ 2

3
R1R2 cos

arccos R3ð Þ þ 2p
3

� �
: ð16cÞ

Finally, substitution of Eq. (6) into Eq. (15), or Eq. (5) into Eq.
(16) produces the following:

k1 ¼
1
3

K1 þ
2K1R2

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 2R2

2

q cos
arccos K3ð Þ

3

� �
ð17aÞ

k2 ¼
1
3

K1 þ
2K1R2

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 2R2

2

q cos
arccos K3ð Þ � 2p

3

� �
ð17bÞ

k3 ¼
1
3

K1 þ
2K1R2

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 2R2

2

q cos
arccos K3ð Þ þ 2p

3

� �
: ð17cÞ

Therefore, the tensor shape can be completely and uniquely defined
from K1 (tensor trace), R2 (FA), and K3 ¼ R3 (tensor mode).

2.6. Limits of tensor shape from invariant sets

The diffusion tensor is symmetric positive definite (SPD) in the
absence of noise, therefore all the eigenvalues in Eqs. (15), (16) and
(17) are positive. In addition, only certain combinations of K2 and
K3 or R2 and R3 permit the defining of an SPD tensor, regardless
of the value for K1 or R1. For example, if R2 ¼ 1 and R3 ¼ �1, then
k3 < 0. We can derive the constraints on Ki and Ri to satisfy the SPD
requirement by solving the inequality of the smallest eigenvalue
k3 > 0.

For the Ri and fK1;R2;R3g invariant sets Eqs. (16c) and (17c) can
be used to establish the inequality for k3 > 0, which requires:

cos
arccos R3ð Þ þ 2p

3

� �
> �C; ð18Þ

where

C ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 2R2

2

q
2R2

: ð19Þ

If R2 6
ffiffiffi
2
p

=2, then there is no constraint on R3. However, if
R2 >

ffiffiffi
2
p

=2, then Eq. (18) becomes

arccosðR3Þ < p� 3 arccosðCÞ; ð20Þ

thus limiting the range of R3 to the following constraint,

�4C3 þ 3C < R3 < 1: ð21Þ

For the Ki invariant set Eq. (15c) can be used to derive the con-
straints on Ki by solving the inequality of the smallest eigenvalue
k3 > 0. If

0 < K1 6

ffiffiffi
6
p

2
K2; ð22Þ

then the value of K3 cannot be defined. Ifffiffiffi
6
p

2
K2 < K1 <

ffiffiffi
6
p

K2; ð23Þ

then K3 must satisfy,

�
ffiffiffi
6
p

9
K1

K2

� �3

þ
ffiffiffi
6
p

2
K1

K2
< K3 < 1: ð24Þ

Otherwise, the full range of K3 is possible.

3. Methods

3.1. DT-MRI noise simulations

DT-MRI noise simulations similar to those described by Pierpa-
oli and Basser (1996), Jones (2004), and Chang et al. (2007) were
performed to evaluate the effects of noise on tensor shape over
the complete space of diffusion tensor shape. Because of the prev-
alence in the literature that reports tensor trace and FA, we first
constructed a single diffusion tensor D from a non-orthogonal ten-
sor invariant set fK1;R2;R3g using Eq. (17) over the complete range
of K1;R2, and R3 (see Sections 3.3 and 3.4). The coordinate system
of the diffusion tensor was assumed to coincide with the labora-
tory coordinate system for simplicity (R ¼ I in Eq. (7)). This initial,
noise-free tensor is termed the ‘‘truth’’ tensor (DT) because it
serves as ground truth for quantifying variability subject to the
addition of noise.

Next we generated the noise-free diffusion weighted (DW) sig-
nal intensities (Sj) through the Stejskal–Tanner equation (Stejskal
and Tanner, 1965):

Sj ¼ S0e�bjgj �Dgj ; ð25Þ

where Sj is the jth measured real-valued signal with diffusion
weighting, S0 is the non-diffusion weighted real-valued signal
(chosen as a constant for all simulations), bj is the b-value, and gj

is the gradient sampling direction unit vector. We used the Jones
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6-direction (NDir=6) scheme plus one null (NNull=1), and the Jones
30-direction (NDir=30) scheme plus five nulls (NNull=5) with b-va-
lue = [0,1000] s=mm2 (Jones et al., 1999; Skare et al., 2000). The dif-
fusion encoding gradient directions were not repeated.

To simulate noisy Sj we added a complex random number
whose real and imaginary parts were independent and Gaussian
distributed with mean zero and standard deviation r (Henkelman,
1985):

r ¼ S0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SNR2 � 1

p : ð26Þ

The magnitude of the noisy signals was then used to reconstruct
noisy diffusion tensor estimates DN using linear least squares
regression from Eq. (25).

Simulations were performed with SNR = 10 and SNR = 25. We
refer to each experimental combination as an SNR–NDir+NNull encod-
ing scheme (e.g. 10–30 + 5 for SNR = 10, NDir ¼ 30, and NNull ¼ 5).
Simulations were performed for three encoding schemes: 10–
30 + 5, 25–30 + 5, and 25–6 + 1.

3.2. Data representation

The multivariate nature of the simulation (SNR, encoding
schemes, and invariant ranges) necessitates a careful reduction of
−1.0

A

B

C

trD=λ  +λ  +λ  =c1 barycentric space

λ1
λ2

2        3

λ3

−1.0

D

Fig. 3. (A) Triangular isosurface (light gray) of constant (c) tensor trace over the three-d
frame. The eigenvalues form a barycentric space (dark triangle). (B and C) Barycentri
propagation of noise Ni from a truth tensor DT producing the noise-corrupted tensor DN;i .
noise-free tensor DT;i .
this space to salient representations. Note that the three-dimen-
sional space of symmetric positive definite tensors in the principle
coordinate frame span a planar isosurface when trD is constant
(Fig. 3A). Furthermore, the sorted eigenvalues (k1 P k2 P k3) form
a barycentric space that occupies 1/6th of this space. We use this
eigenvalue subspace to depict the results of the noise perturbation
simulations at intersections of the iso-R2 arcs and iso-R3 rays
(Figs. 3B and 3C). These values were chosen because they represent
uniform steps in the eigenvalue coordinates, but note that the R2

and R3 steps are non-uniform. The exact range of R2 and R3 for
SPD tensors was computed using Eq. (21).

3.3. Forward Problem

The Forward Problem defines the statistical distribution of the
noisy tensor invariants for a ‘‘truth’’ tensor (DT) when complex
Gaussian noise is added to Sj and S0 using the procedure in Sec-
tion 3.1. This results in the forward propagation of noise Ni produc-
ing the noise-corrupted tensor DN;i:

DN;i ¼ DT þ Ni: ð27Þ

1282 noisy tensors were generated for each DT and used to define a
distribution of noisy R2 and R3 invariants using Eq. (2) for one
SNR �NDir þ NNull encoding scheme.
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c space highlighted with iso-FA arcs and iso-mode rays. (B) depicts the forward
(C) depicts the inverse propagation of noise Ni from a noisy tensor DN producing the
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Fig. 3B demonstrates this process for DT with fK1;R2;R3g ¼
f2:1 lm2=ms;0:47;0g and the 10–30 + 5 encoding scheme, where
each instance of the noisy invariants is represented as a dark gray
dot. Three examples of the noisy invariants that generate
DN;i;DN;iþ1 and DN;iþ2 demonstrate the possible effects of the for-
ward propagation of noise on an individual tensor as in Eq. (27).
The curved arrows represent the noise propagation. The bias of
the noisy invariant distribution is represented as a straight arrow
pointing from the invariant coordinates used to generate DT to
the median of the noisy invariant distribution that generates �DN.
Noisy tensors with negative eigenvalues, which can arise, for
example, when noise levels are high relative to the smallest eigen-
value were included to define completely the statistical distribu-
tions of invariants.

This process was repeated to discretely span the complete space
of R2 and R3 by calculating DT from Eq. (17) such that K1 was fixed
at one value in ½0:6;2:1;7:2� lm2=ms, which represents the low
trace of lymphoma (Barajas et al., 2010), nominal trace in the brain
parenchyma (Maier et al., 1998), and the high trace of free water,
respectively. R2 and R3 were chosen to fall at the intersection of
the iso-R2 arcs and iso-R3 rays in Fig. 3B.

Spanning the complete space of tensor shape was sufficiently
achieved by discretely varying K1 between very low, nominal and
very high values. The effects of noise on K1 were less complex
and relatively independent of R2 and R3 (see Sections 4.1.4 and
4.2.4). It is inherently difficult to produce figures that display infor-
mation over more than two degrees-of-freedom. Therefore we pro-
jected them onto a 2D space of constant K1 to elucidate the more
complex effects of noise on R2 and R3 (Fig. 3).

3.4. Inverse Problem

Experimentally we always measure noisy data. Therefore, it is
useful to define the statistical distribution of possible DT that
could have given rise to the measured (i.e. observed) invariants
for a particular and known encoding scheme (SNR �NDir þNNull).
We use the term ‘‘Inverse Problem’’ to describe this scenario.
Stated another way, when observing a particular tensor invariant
value in our measured data the statistical results of the Inverse
Problem provide guidance about the confidence the observer
should have in the data, provided that the SNR �NDir þ NNull is
known.

The Inverse Problem was formulated by generating DT from
Eq. (17) for all combination of densely sampled K1;R2 and R3

values. K1 was densely sampled around each value in
½0:6;2:1;7:2� lm2=ms with the interval of 1=100 lm2=ms, that is,
K1¼½0:1;0:11;.. .;1:1�[½1:6;1:61;... ;2:6�[½6:7;6:71; ... ;9:3�lm2=ms,
and the individual complete ranges of R2 and R3 were then divided
into 400 intervals equally spaced in the eigenvalue coordinates,
resulting in 7:45e7 different DT.

Then, 1024 noisy tensors were generated at each of the 7:45e7
{K1;R2;R3} coordinates using the procedure in Section 3.1. This re-
sulted in the generation of 7:62e10 noisy tensors that densely span
the complete space of K1;R2 and R3 with uniform steps of each
invariant in the eigenvalue coordinates. This procedure avoids
skewing the distribution as may occur with undersampling or
non-uniform sampling. The K1;R2 and R3 invariants were then
computed for the noisy tensors.

Next, we found noisy tensors with K1;R2 and R3 values within a
small rectangular box with dimensions equals to two times the
sampling intervals centered at the intersection of the iso-R2 arcs
and iso-R3 rays and with K1 fixed at one value in
½0:6;2:1;7:2� lm2=ms. This population of the noisy tensors were
grouped to form DN, and inversely mapped to the original ‘‘truth’’
tensors DT. Stated another way, each DN maps to an underlying
tensor DT;i by eliminating the noise Ni:
DT;i ¼ DN � Ni; ð28Þ

which can be done with a look-up table.
Fig. 3C demonstrates this process for DN with fK1;R2;R3g ¼

f2:1 lm2=ms;0:47;0g and the 10–30 + 5 encoding scheme, where
each instance of the truth invariants is represented as a dark gray
dot. Three examples of the truth invariants that generate DT;i;DT;iþ1

and DT;iþ2 demonstrate the possible effects of the inverse propaga-
tion of noise on an individual tensor as in Eq. (28). The bias of the
truth invariant distribution is represented as a straight arrow
pointing from the invariant coordinates used to generate DN to
the median of the truth invariant distribution that generates �DT.

3.5. Confidence interval

In order to evaluate the effects of the forward and inverse prop-
agation of noise on characterizing tensor shape, we statistically
compared: (1) the population of noisy tensor invariants obtained
from DN to the known tensor invariant of the respective DT tensor;
and (2) the population of tensor invariants obtained from DT that
gave rise to the noisy DN tensor. This was done for each of the three
encoding schemes over the complete space of tensor shape. The
statistical analysis compares the bias and 95% confidence interval
(95%-CI) of the population to DT (Forward Problem) or DN (Inverse
Problem).

The resultant distribution of invariants is represented as a bias
and a surrounding 95%-CI contour projected onto an iso-K1 plane.
The bias represents the median offset of the distribution and the
95%-CI represents the band of confidence in the estimate of the
bias. When two 95%-CI contours overlap there is a significant like-
lihood that the two DT (Forward Problem) or DN (Inverse Problem)
tensors cannot be distinguished. The median of the invariant distri-
bution was achieved by computing the median value of each
invariant, converting the median invariants to eigenvalues using
Eq. (17), and projecting them onto a plane of constant K1 equiva-
lent to the barycentric space in Fig. 3.

The noisy R2 and R3 distribution generated in Section 3.3 and
the truth R2 and R3 distribution generated in Section 3.4 are not
bivariate Gaussian, therefore we cannot compute 95%-CI contours
as simple ellipses. Consequently, the R2 and R3 samples were con-
verted to samples of eigenvalues using Eq. (17). These eigenvalues
were projected onto a plane of constant K1 equivalent to the bary-
centric space in Fig. 3. Then, for each of 100 rays in the barycentric
space at uniform angular intervals passing through the median of
the samples, we found all of the samples falling within a narrow
band (±1% of the K1 used for the respective simulation) around
the ray. These values were projected onto the ray and used to cal-
culate the 95%-CI by sorting these 1-D values and truncating the
lowest and highest 2.5th, thereby retaining 95% of the estimates.

We finally approximated the 95%-CI contour by fitting a peri-
odic b-spline to the 200 (2 points for 100 rays) 95%-CI points with
10 control points. These splines permit smooth approximation of
the 95%-CI contours, and are shown as black closed splines in
Figs. 3B (Forward Problem) and 3C (Inverse Problem).

4. Results

Two important theoretical results arise in this work. First, Eqs.
(15), (16) and (17) provide a principled and analytic method to
establish tensor shape attributes by using the tensor invariants
to define the tensor’s eigenvalues. This development precludes
the need to assume cylindrically symmetric anisotropy as has been
done previously (Pierpaoli and Basser, 1996; Jones, 2004; Chang
et al., 2007), or the use of ad hoc methods to define eigenvalues
that happen to have the desired tensor invariants. Secondly, the
defining of the Inverse Problem and the subsequent result provides
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a new perspective on interpreting measured diffusion tensor
invariant data. The application of these theoretical developments
permits a description of the bias and 95%-CI that noise introduces
in both the Forward and Inverse Problems over the complete space
of tensor shape.

4.1. Effect of noise in the Forward Problem

4.1.1. Effect of SNR
The effect of noise alone in the Forward Problem is demon-

strated in Figs. 4A and 4B. For SNR = 10 (10–30 + 5) the magnitude
of the bias is increased and the 95%-CIs are substantially larger
when compared to SNR = 25 (25–30 + 5). In particular, note that
the bias for SNR = 10 (10–30 + 5) points toward increased FA and
less extreme tensor mode. The bias toward higher FA is highest
for DT with low FA and diminishes in magnitude almost entirely
as the FA of DT increases. Note that the step-size of FA along the
FA-axis decreases in the eigenvalue space, therefore moderate
changes in eigenvalues result in very small increases in FA as
FA! 1. The bias in FA is relatively uniform across the complete
range of mode. The magnitude of the mode bias component, how-
ever, decreases as FA increases. As a function of mode itself the
mode bias component decreases as the mode of DT approaches
the middle of the mode scale (zero). In summary, tensors with
low to intermediate values of FA (<0.70) and high extreme values
of mode (>0.80 or <�0.80) tend to exhibit a bias toward higher
FA values and less extreme mode values.
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Fig. 4. Statistics of FA and tensor mode in the Forward Problem for different encoding sc
range of FA and tensor mode with tensor trace (K1) fixed at 2.1 lm2/ms are shown for
It is important to note that the 95%-CI contours in Fig. 4A
demonstrate substantial overlap. This indicates that there is a
low probability that two overlapping distributions are signifi-
cantly different from one another. Note also, that for low FA
the forward propagation of noise results in nearly any tensor
mode value and even at high FA (=0.70) nearly half the range
of mode is statistically likely. The 95%-CIs are increasingly
elongated along the increasing FA-axis, which indicates a
broader possible range of eigenvalues, but because of the non-
linear scaling to FA this maps to a diminishingly small range
of FA.

Importantly, for the 25–30 + 5 encoding scheme (Fig. 4B) the
biases are quite small and the sampled 95%-CI contours are
non-overlapping across the complete space of FA and mode for
the selected DT. This indicates that for this encoding scheme FA
can be statistically distinguished in the presence of noise in incre-
ments of 0.15. However, it is difficult to distinguish mode at low FA
(=0.17), but mode can be distinguished in increments of 0.3 at
higher FA (=0.70).
4.1.2. Effect of NDIR

The effect of NDir alone in the Forward Problem is demonstrated
in Figs. 4B and 4C. In summary, the effect of decreasing NDir while
keeping SNR = 25 is very similar to the effect of decreasing the SNR,
whilst keeping the NDir constant. This is clear when comparing
Figs. 4A and 4C.
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Fig. 5. Statistics of FA and tensor mode in the Forward Problem for different tensor trace values. The biases and 95% confidence intervals of noisy FA and tensor mode over a
range of FA and tensor mode with tensor trace fixed at one value (A) K1 ¼ 0:6, (B) K1 ¼ 2:1, and (C) K1 ¼ 7:2 lm2=ms are shown for the same 25–30 + 5 encoding scheme.

Table 1
Statistics of tensor trace in the Forward Problem for different encoding schemes. The
means ± two times standard deviations (95% confidence intervals) of noisy tensor
trace over a range of FA and tensor mode with tensor trace ðK1Þ fixed at 2:1 lm2=ms
are shown for different encoding schemes: (A) 10–30 + 5, (B) 25–30 + 5, and (C) 25–
6 + 1.

FA Mode Encoding scheme (K1 ¼ 2:1)

NDir ¼ 30 NDir ¼ 30 NDir ¼ 6
SNR = 10 SNR = 25 SNR = 25

0.17 0.00 2:10� 0:35 2:10� 0:14 2:10� 0:31
0.32 0.00 2:10� 0:36 2:10� 0:14 2:10� 0:32
0.47 0.00 2:10� 0:36 2:10� 0:14 2:10� 0:31
0.70 0.87 2:10� 0:37 2:10� 0:15 2:10� 0:33
0.70 0.00 2:10� 0:37 2:10� 0:14 2:10� 0:33
0.70 �0.87 2:10� 0:37 2:10� 0:15 2:10� 0:33
0.85 0.87 2:09� 0:39 2:10� 0:15 2:10� 0:35

Table 2
Statistics of tensor trace in the Forward Problem for different tensor trace values. The
means ± two times standard deviations (95% confidence intervals) of noisy tensor
trace over a range of FA and tensor mode with tensor trace ðK1Þ fixed at one value in
½0:6;2:1;7:2� lm2=ms are shown for the same 25–30 + 5 encoding scheme.

FA Mode Tensor trace

K1 ¼ 0:6 K1 ¼ 2:1 K1 ¼ 7:2

0.17 0.00 0:60� 0:12 2:10� 0:14 7:14� 0:52
0.32 0.00 0:60� 0:12 2:10� 0:14 7:07� 0:52
0.47 0.00 0:60� 0:12 2:10� 0:14 6:94� 0:51
0.70 0.87 0:60� 0:12 2:10� 0:15 6:50� 0:49
0.70 0.00 0:60� 0:12 2:10� 0:14 6:57� 0:51
0.70 �0.87 0:60� 0:12 2:10� 0:15 6:65� 0:54
0.85 0.87 0:60� 0:12 2:10� 0:15 6:06� 0:48
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4.1.3. Effect of K1

The effect of different tensor trace values while keeping the
25–30 + 5 encoding scheme in the Forward Problem is demon-
strated in Fig. 5. The effect of decreasing tensor trace from 2.1 to
0.6 lm2=ms (Figs. 5A and 5B) is similar to the effect of decreasing
SNR while keeping NDir ¼ 30 (Figs. 4A and 4B), or the effect of
decreasing NDir while keeping SNR = 25 (Figs. 4B and 4C). When
increasing tensor trace from 2.1 to 7.2 lm2/ms (Figs. 5B and 5C),
the magnitude of the bias is significantly increased, especially for
DT with high FA, and the bias at FA points toward much lower FA.

4.1.4. Effect on K1

The effect of SNR, encoding schemes, and FA and mode ranges
on tensor trace alone in the Forward Problem is demonstrated in
Table 1. The biases are quite small and the 95%-CIs are similar
across the complete range of FA and mode for any encoding
scheme. Decreasing SNR while keeping NDir, or reducing NDir while
keeping SNR similarly increases the 95%-CIs.
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The effect of different tensor trace values on tensor trace itself
while keeping the 25–30 + 5 encoding scheme is demonstrated in
Table 2. There are small biases and similar 95%-CIs across the
complete range of FA and mode for a very low tensor trace value.
However, there are significant biases toward lower tensor trace
and larger 95%-CIs for a very high tensor trace value.

4.2. Effect of noise in the Inverse Problem

The results of the Inverse Problem are novel and especially
important because they provide guidance for the interpretation
of measured invariants obtained from DT-MRI experiments.

4.2.1. Effect of SNR
The effect of noise alone in the Inverse Problem is demonstrated

in Figs. 6A and 6B. For the 10–30 + 5 encoding scheme, the magni-
tude of the bias is substantially larger than for the 25–30 + 5
encoding scheme. Note that noise in the Inverse Problem results
in a bias toward lower FA independent of FA and mode. Therefore,
when observing noisy data there is a statistical bias that the ob-
served results arose from a DT with a lower FA than the measured
data reports. This bias, however, is essentially negligible for the
25–30 + 5 encoding scheme (Fig. 6B).

The effect of noise on tensor mode at low FA or extreme mode
values near the FA and mode boundaries is very similar to the For-
ward Problem. At non-boundary FA and mode values, however, the
bias points toward more extreme mode independent of FA and
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Fig. 6. Statistics of FA and tensor mode in the Inverse Problem for different encoding sc
range of FA and tensor mode with tensor trace (K1) fixed at 2:1 lm2=ms are shown for
mode. Therefore, there is a statistical bias that the observed noisy
tensor invariants came from a DT with a more extreme mode than
the measured data reports. This bias is negligible for the 25–30 + 5
encoding scheme (Fig. 6B), but the 95%-CIs in mode at low FA
(60.47) are non-negligible and are approximately ±0.5.
4.2.2. Effect of NDIR

The effect of NDir alone in the Inverse Problem is demonstrated
in Figs. 6B and 6C. In summary, the effect of decreasing NDir while
keeping SNR = 25 is very similar to the effect of decreasing the SNR,
whilst keeping the NDir constant. This is clear when comparing
Figs. 6A and 6C.
4.2.3. Effect of K1

The effect of different tensor trace values while keeping the 25–
30 + 5 encoding scheme in the Inverse Problem is demonstrated in
Fig. 7. The effect of decreasing tensor trace from 2.1 to 0.6 lm2/ms
(Figs. 7A and 7B) is similar to the effect of decreasing SNR while
keeping NDir=30 (Figs. 6A and 6B), or the effect of decreasing
NDir while keeping SNR = 25 (Figs. 6B and 6C). When increasing
tensor trace from 2.1 to 7.2 lm2/ms (Figs. 7B and 7C), note that
the magnitude of the bias is significantly increased, and the bias
at FA > 0.32 points toward much higher FA. Therefore, there is a
significant statistical likelihood that true FA will be much higher
than observed FA.
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Table 3
Statistics of tensor trace in the Inverse Problem for different encoding schemes. The
means � two times standard deviations (95% confidence intervals) of true tensor trace
over a range of FA and tensor mode with tensor trace ðK1Þ fixed at 2:1 lm2=ms are
shown for different encoding schemes: (A) 10–30 + 5, (B) 25–30 + 5, and (C) 25–6 + 1.

FA Mode Encoding scheme ðK1 ¼ 2:1Þ

NDir=30 NDir=30 NDir=6
SNR = 10 SNR = 25 SNR = 25

0.17 0.00 2:09� 0:35 2:10� 0:14 2:10� 0:31
0.32 0.00 2:10� 0:35 2:10� 0:14 2:10� 0:31
0.47 0.00 2:10� 0:35 2:10� 0:14 2:11� 0:31
0.70 0.87 2:11� 0:36 2:10� 0:15 2:11� 0:33
0.70 0.00 2:11� 0:36 2:10� 0:15 2:11� 0:33
0.70 �0.87 2:11� 0:36 2:10� 0:15 2:11� 0:32
0.85 0.87 2:11� 0:38 2:10� 0:15 2:12� 0:35

Table 4
Statistics of tensor trace in the Inverse Problem for different tensor trace values. The
means � two times standard deviations (95% confidence intervals) of true tensor trace
over a range of FA and tensor mode with tensor trace (K1) fixed at one value in
½0:6;2:1;7:2� lm2=ms are shown for the same 25–30 + 5 encoding scheme.

FA Mode Tensor trace

K1 ¼ 0:6 K1 ¼ 2:1 K1 ¼ 7:2

0.17 0.00 0:59� 0:12 2:10� 0:14 7:40� 0:66
0.32 0.00 0:60� 0:12 2:10� 0:14 7:66� 1:03
0.47 0.00 0:60� 0:12 2:10� 0:14 8:09� 1:27
0.70 0.87 0:59� 0:12 2:10� 0:15 8:43� 1:25
0.70 0.00 0:60� 0:12 2:10� 0:15 8:41� 1:22
0.70 �0.87 0:59� 0:12 2:10� 0:15 8:52� 1:11
0.85 0.87 0:60� 0:12 2:10� 0:15 8:40� 0:79
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Fig. 7. Statistics of FA and tensor mode in the Inverse Problem for different tensor trace values. The biases and 95% confidence intervals of true FA and tensor mode with
tensor trace fixed at one value (A) K1 ¼ 0:6, (B) K1 ¼ 2:1, and (C) K1 ¼ 7:2 lm2=ms are shown for the same 25–30 + 5 encoding scheme.
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4.2.4. Effect on K1

The effect of SNR, encoding schemes, and FA and mode ranges
on tensor trace alone in the Inverse Problem is demonstrated in
Table 3. The biases are quite small and the 95%-CIs are similar
across the complete range of FA and mode for any encoding
scheme. Decreasing SNR while keeping NDir, or reducing NDir while
keeping SNR similarly increases the 95%-CIs.

The effect of different tensor trace values on tensor trace itself
while keeping the 25–30 + 5 encoding scheme is demonstrated in
Table 4. There are small biases and similar 95%-CIs across the
complete range of FA and mode for a very low tensor trace value.
However, there are significant biases toward higher tensor trace
and large 95%-CIs for a very high tensor trace value.

4.3. Forward Problem versus Inverse Problem

The paired results of the Forward Problem and the Inverse Prob-
lem over the complete space of tensor shape are shown in Figs. 4
and 6, Figs. 5 and 7, Tables 1 and 3, and Tables 2 and 4. The bias
in FA for the two problems has a naturally inverse relationship.
For example, the bias points toward higher FA in Fig. 4A while
the bias points toward lower FA in Fig. 6A.
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The mode bias also has an inverse relationship between the For-
ward and Inverse Problems especially in non-boundary regions of
FA and mode. At FA = 0.47 and mode = �0.50, for example, the bias
points toward higher mode in Fig. 4A while the bias points toward
lower mode in Fig. 6A. However, the bias points toward less ex-
treme mode in boundary regions for both problems.
5. Discussion

This analysis method and the mathematics developed herein
define a useful framework for comparing different DT-MRI encod-
ing schemes. Under the constraint of short exam duration and a
required resolution (Zhan et al., 2013), this framework can be used
to define the encoding scheme that provides the best sensitivity
for measuring a tensor with any tensor shape, not limited to
cylindrically symmetric anisotropic shapes. Furthermore, the
Inverse Problem framework provides direct guidance about the
confidence the observer should have in the observed measures
for the encoding scheme and noise level.

This paper addresses, for example, the likelihood that a partic-
ular observation (measurement) of FA has come from underlying
tissue with a lower FA. For the best encoding scheme
(25–30 + 5), this FA bias is negligible and FA can be moderately
distinguished, in increments of about 0.15. Therefore, if you want
to detect a 0.15 change in FA, then this framework lets you design
the appropriate experiment (e.g. 25–30 + 5).

If tensor mode is measured in non-boundary regions of FA, then
mode is more likely to have come from underlying tissue with a
more extreme mode. Strict lower and upper boundaries of 1 and
1 for mode do not allow a diffusion tensor to fall out of the bound-
aries even, for example, in the presence of noise. Instead the tensor
is ‘‘mirrored’’ to the same diffusion tensor within the boundaries
by resorting the eigenvalues in descending order. Consequently, a
tensor mode measured near the boundaries is more likely to arise
from a less extreme mode.

For the best encoding scheme (25–30 + 5), this tensor mode bias
is negligible if FA is sufficiently large (>0.17). Tensor mode, how-
ever, is poorly distinguished in increments of about 0.5 at
FA = 0.47. Therefore, we should be careful in interpreting different
observations of tensor mode.

Tensor trace has no bias and a small variance for the best encod-
ing scheme (25–30 + 5), and the errors are uniform across the com-
plete space of FA and tensor mode. For both decreased and
increased tensor trace values, however, the noise sensitivity is rel-
atively higher. We performed all the simulations with the fixed b-
value of 1000 s/mm2, which attenuates the simulated DW signals
by 18%, 50%, and 91%, for example, when using isotropic tensors
with the apparent diffusion coefficient (ADC) values of 0.2, 0.7,
and 2.4 lm2/ms, respectively. Slow diffusion with an ADC value of
0.2 lm2/ms does not significantly attenuate the DW signals, and
therefore hampers accurate estimation of the diffusion coefficients.

The signal for fast diffusion, for example, with an ADC value of
2.4 lm2/ms is excessively attenuated for the b-value of 1000 s/
mm2. Therefore, for an anisotropic tensor when the gradient direc-
tions are closely aligned with the primary direction of the tensor,
the tensor estimation is especially sensitive to noise, which over-
whelms the inherent anisotropy and the bias points towards much
lower FA (Fig. 5C). Similarly, for highly anisotropic structures with
high ADC the diffusion measurements demonstrate a bias towards
decreased ADC, which also arises from an underestimate of the fast
diffusion components due to noise and has a larger impact, for
example, on mode = 0.87 structures than mode = �0.87 structures
at FA = 0.7 (Table 2). Therefore, the optimal b-value, alternately the
optimal b�ADC value, should be carefully chosen according to the
range of ADC values of the target tissues (Jones et al., 1999).
Note that our results can also provide quantitative estimates of
variance. A careful comparison of our results (Figs. 4A and 4B, and
Table 1) to the results of Chang et al. (2007) (Figs. 1a and 1d) dem-
onstrates very good agreement. For example, our estimates of the
standard deviation of tensor trace and the coefficient of variation
of FA for similar tensor shapes are very similar to those reported.
Our results also expand on their work for tensors with mode = 1
by highlighting the different response for tensors with, for exam-
ple, mode = �1. It is clear that the biases and 95%-CIs of trace
and FA are similar for both tensor shapes, but the tensor mode bias
is oppositely directed.

Note that the number of gradient directions is not necessarily
the same as the number of acquisitions. Figs. 4A and 4C, for exam-
ple, compare a large number of gradient directions (NDir ¼ 30) with
moderate SNR = 10 to a low number of gradient directions
(NDir ¼ 6) and high SNR = 25. If the imaging system is fixed, and it
takes 1 min to acquire a single non-diffusion weighted image with
SNR = 10, then it will require 6.25-min per image to achieve
SNR = 25 by averaging. Hence, 30 1-min acquisitions have a roughly
equivalent acquisition time compared to a 37.5 (6 � 6.25)-min
acquisition and we may expect similar impacts on the distribution
of noisy tensors. Also note that while noise is an important source of
variability that impacts tensor estimation, physiologic and patient
motion, eddy currents, B1-inhomogeneity, multi-coil acquisitions
and the partial volume effects of fat should also be considered.

The ability to freely construct tensors with known shape attri-
butes was enabling for both the Inverse and Forward Problems
herein. More recently, we have used this technique to devise novel
tensor interpolation methods that appear to outperform previous
methods including Euclidean and log-Euclidean (Gahm et al.,
2012). Moving forward, the mathematical framework could also
be used to constrain tensor-field reconstruction; for tensor-field
denoising; and for compressed sensing acquisition and reconstruc-
tion of tensor field data.
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Appendix A. Principles and proofs

This appendix outlines the mathematics of defining tensor
shape from sets of tensor invariants. With regards to the order of
operations we adhere to the following standard:

trA2 ¼ tr A2
� �

– trAð Þ2: ðA:1Þ

The following identities will be useful for defining the analytic
relationship between the Ki and Ri invariants:

ðnormAÞ2 ¼ trA2 ðA:2Þ
tr Aþ Bþ . . .ð Þ ¼ trAþ trBþ . . . ðA:3Þ
tr aAð Þ ¼ atrA ðA:4Þ
det aAð Þ ¼ a3 det A: ðA:5Þ

Eq. (A.2) is only true for SPD tensors.

A.1. Defining Ki from Ri

To solve for K2 as a function of Ri, we begin with the product of
R1 and R2:

R1R2 ¼ normA

ffiffiffi
3
2

r
normeA
normA

¼
ffiffiffi
3
2

r
K2: ðA:6Þ
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Rearranging, we arrive at:

K2 ¼
ffiffiffi
2
3

r
R1R2: ðA:7Þ

In order to derive K1 as a function of the Ri invariants we proceed by
squaring K2, substituting Eqs. (A.2) and (A.3), and performing some
algebra:

K2
2 ¼ normeA� �2

¼ norm A� 1
3

K1I
� �2
" #

¼ tr A2 � 2
3

K1Aþ 1
9

K2
1I

� �� �
¼ trA2 � 2

3
K1trAþ 1

3
K2

1

¼ R2
1 �

1
3

K2
1:

ðA:8Þ

Upon substitution of Eq. (A.7) into Eq. (A.8) and solving for K1, we
arrive at:

K1 ¼ R1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 2R2

2

q
: ðA:9Þ
A.2. Defining Ri from Ki

In order to derive R1 as a function of the Ki invariants we simply
proceed by rearranging the end result of Eq. (A.8), we find:

R1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3

K2
1 þ K2

2

r
: ðA:10Þ

In order to derive R2 as a function of the Ki invariants we begin
by squaring Eq. (A.9) and substituting in Eq. (A.12):

K2
1 ¼ R2

1 3� 2R2
2

� �
¼ 1

3
K2

1 þ K2
2

� �
3� 2R2

2

� �
: ðA:11Þ

Solving for R2 we arrive at:

R2 ¼
3K2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2K2
1 þ 6K2

2

q : ðA:12Þ

Other solution methods can be used to arrive at the same result.
With Eqs. (A.7), (A.9), (A.10) and (A.12) we have a set of mappings
between the Ki and Ri invariants.

A.3. Defining invariant sets from K1;R2, and K3/R3

The first goal is to define R1 from given values of K1 (trace) and
R2 (FA). This is easily accomplished from Eq. (3a), which can be
rearranged to show:

R1 ¼
K1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3� 2R2
2

� �r : ðA:13Þ

This result was stated as Eq. (5). Knowing that K3 ¼ R3 subsequently
completes the Ri orthogonal tensor invariant set. Next, we define K2

as a function of K1 and R2 by solving for K2 in Eq. (4b):

K2 ¼
ffiffiffi
2
p

K1R2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9� 6R2

2

q : ðA:14Þ

This result was stated as Eq. (6). Therefore, given values for K1

(trace), R2 (FA), and K3 ¼ R3 either the Ki or Ri orthogonal tensor
invariant set can be completed, which permits defining the tensor’s
eigenvalues from Eq. (15) or (16). Alternately, expressions for the
eigenvalues with an explicit dependence upon fK1;R2;K3=R3g can
be derived (Eq. (17)).

A.4. Defining the characteristic polynomial coefficients as functions of
Ki and Ri

The goal is to define the coefficients of the characteristic poly-
nomial (a; b, and c) that appear in Eq. (11) as functions of Ki and
Ri so that the tensor invariants, which characterize salient and
widely used tensor properties, can be used to define the tensor’s
eigenvalues from Eqs. (13) and (14), or alternately the result in
Eqs. (15), (16) and (17).

Various expressions for a are forthwith derived from Eqs. (1),
(12a) and (A.9):

a ¼ trA ðA:15aÞ

¼ K1 ðA:15bÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

1 3� 2R2
2

� �r
: ðA:15cÞ

Substitution of the identity in Eq. (A.2) into Eq. (12b) leads to an
invariant definition for b and substitution of either Eq. (A.9) or
(A.10) leads to alternate forms:

b ¼ 1
2

trAð Þ2 � trA2
h i

ðA:16aÞ

¼ 1
2

K2
1 � R2

1

h i
ðA:16bÞ

¼ 1
3

K2
1 �

1
2

K2
2 ðA:16cÞ

¼ R2
1 1� R2ð Þ: ðA:16dÞ

An invariant expression for c is evident from Eq. (12c):

c ¼ det A: ðA:17Þ

Expressions for c as a function of the Ki and Ri invariants, however,
are not obvious, but can be derived. To do so we begin with the Cay-
ley–Hamilton theorem, which states that tensor A satisfies its own
characteristic equation (Eq. (10)):

A3 þ aA2 þ bAþ cI ¼ 0: ðA:18Þ

Wherein 0 is the zero tensor.
Eq. (A.18) can be expressed in terms of tensor invariants by sub-

stitution of Eqs. (A.15), (A.16) and (A.17):

A3 � trAð ÞA2 þ 1
2

trAð Þ2 � trA2
h i

Aþ det Að ÞI ¼ 0: ðA:19Þ

If we take the trace of this expression, use Eqs. (A.2), (A.3) and (A.4),
substitute Eqs. (1) and (2), and solve for det A we obtain the
following:

det A ¼ 1
3

tr A3 � trA � A2 þ 1
2

trAð Þ2 � trA2
� �

A
� �

¼ 1
3

trA3 � 1
2

trA � trA2 þ 1
6

trAð Þ3

¼ 1
3

trA3 � 1
2

K1R2
1 þ

1
6

K3
1:

ðA:20Þ

The first term of the last expression in Eq. (A.20) (trA3) needs to be
expressed with respect to the Ki and Ri invariants. To do so we begin
by deriving alternate expressions for treA3. Firstly, from Eq. (A.20)
and the fact that treA ¼ K1ðeAÞ ¼ 0 by definition, we find that:

treA3 ¼ 3 det eA: ðA:21Þ



J.K. Gahm et al. / Medical Image Analysis 18 (2014) 197–210 209
Subsequently we solve for treA3 by substituting Eqs. (1b) and (1c) (or
(1c)) into Eq. (A.21) and using Eq. (A.5), which provides:

treA3 ¼ 1ffiffiffi
6
p K3

2K3: ðA:22Þ

Alternately, we expand the cube of the definition of eA, substitute in
Eqs. 1a and 2a, and use Eqs. (A.1), (A.2), (A.3) and (A.4):

treA3 ¼ tr A� A
� �3

¼ tr A� 1
3

K1I
� �3

¼ tr A3 � K1A2 þ 1
3

K2
1A� 1

27
K3

1I
� �

¼ trA3 � K1trA2 þ 1
3

K2
1trA� 1

27
K3

1trI

¼ trA3 � K1R2
1 þ

6
27

K3
1:

ðA:23Þ

Finally, the different but equivalent expressions for treA3 found
in Eqs. (A.22) and (A.23) provide a means for solving for trA3 as a
function of the invariants:

trA3 ¼ K1R2
1 �

6
27

K3
1 þ

1ffiffiffi
6
p K3

2K3: ðA:24Þ

This is the expression needed to finally express det A as a function
of the Ri and Ki invariant sets, which is obtained from substitution
of Eq. (A.24) into Eq. (A.20):

det A ¼ 1
3

K1R2
1 �

6
27

K3
1 þ

1ffiffiffi
6
p K3

2K3

� �
� 1

2
K1R2

1 þ
1
6

K3
1

¼ 5
54

K3
1 �

1
6

K1R2
1 þ

1
3
ffiffiffi
6
p K3

2K3: ðA:25Þ

This expression, which is mixed in Ki and Ri can, of course, be writ-
ten as a function of only the Ki or Ri invariants. By substitution of Eq.
(A.10) into Eq. (A.25) we obtain:

c ¼ det A ¼ 1
27

K3
1 �

1
6

K1K2
2 þ

1
3
ffiffiffi
6
p K3

2K3: ðA:26Þ

Alternately, by substitution of Eqs. (A.7) and (A.9) into Eq. (A.26) we
obtain:

c ¼ det A ¼ R3
1

54
4R3

2R3 þ 5 3� 2R2
2

� �3
2 � 9 3� 2R2

2

� �1
2

� �
: ðA:27Þ

Eqs. (A.26) and (A.27) complete the definition of c and therefore, all
of the necessary definitions are in place to compute the character-
istic polynomials coefficients (a; b, and c) from the Ri or Ki invariant
sets. These expressions can then be used to define fP;Q ;Hg, which
is the last step to expressing the eigenvalues directly as functions of
the invariants.

A.5. Defining P;Q, and H as functions of Ki and Ri

With the Ki and Ri invariant expressions for a; b, and c we can
form expressions for P;Q , and H as a function of the Ki and Ri

invariants, which is the last step to defining the eigenvalues as
functions of the Ki or Ri invariant sets. The invariant expression
for P is obtained from Eq. (14) and substitution of Eqs. (A.15),
(A.16) and Eq. (A.26) or (A.27):

P ¼ 1
6
ffiffiffi
6
p K3

2K3 ðA:28aÞ

¼ 1
27

R3
1R3

2R3: ðA:28bÞ
The invariant expressions for Q are obtained from Eq. (14) and sub-
stitution of Eq. (A.15) or (A.16):

Q ¼ 1
6

K2
2 ðA:29aÞ

¼ 1
9

R2
1R2

2: ðA:29bÞ

Eqs. (A.29) and (A.28) can be used to show that:

Pffiffiffiffiffiffi
Q3

q ¼ K3 ¼ R3: ðA:30Þ

Therefore, the expression for H as a function of Ri or Ki is:

H ¼ arccosðK3Þ ¼ arccosðR3Þ: ðA:31Þ

Finally, Eqs. (A.29), (A.28) and (A.31) can be substituted into Eq. (13)
to produce either Eq. (15) or (16) and direct expressions for the ten-
sor’s eigenvalues as functions of either Ki or Ri are available.
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