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Taking stock of value in the orbitofrontal cortex
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2Department of Psychology and Helen Wills Neuroscience Institute, University of California 
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Abstract

People with damage to the orbitofrontal cortex (OFC) have specific problems making decisions, 

whereas their other cognitive functions are spared. Neurophysiological studies have shown that 

OFC neurons fire in proportion to the value of anticipated outcomes. Thus, a central role of the 

OFC is to guide optimal decision-making by signalling values associated with different choices. 

Until recently, this view of OFC function dominated the field. New data, however, suggest that the 

OFC may have a much broader role in cognition by representing cognitive maps that can be used 

to guide behaviour and that value is just one of many variables that are important for behavioural 

control. In this Review, we critically evaluate these two alternative accounts of OFC function and 

examine how they might be reconciled.

In the 1990s, Damasio brought attention to the fascinating deficits exhibited by people with 

damage to the orbitofrontal cortex (OFC)1. These individuals would make terrible choices 

and their everyday lives lurched from one catastrophic decision to another, yet they would 

perform normally on standard laboratory tests of cognition2. Damasio developed new tests 

based on real-world decision-making3. Participants were given play money and had to make 

choices across a series of gambles based on reward history. People with OFC damage 

performed poorly, quickly losing all their money as they failed to learn from the outcomes 

associated with each gamble. These impairments had gone unnoticed for years, simply 

because no one thought to assess individuals’ decision-making in a neuropsychological 

exam. Inspired by Damasio’s findings, many labs started to record OFC neurons in non-

human primates during decision-making tasks. In a seminal study, Padoa-Schioppa and 

Assad presented monkeys with choices between different amounts of various juices4. OFC 

neurons encoded the amount of juice, weighted by how much the monkey liked it, consistent 

with how valuable the option was to the animal. This made a neat and compelling story: 

individuals with OFC damage made poor decisions because they were missing the neurons 

that would signal the value of each option.
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Until recently, this value hypothesis remained the dominant view of OFC function. However, 

a major gap in this theory is how the values of options are learned in the first place. Studies 

that have examined such learning have come to a radically different view of OFC function, 

arguing that the OFC is responsible for representing a ‘cognitive map’. This term was first 

introduced by Tolman5, who studied rats learning to navigate mazes. Tolman observed that 

animals were not just learning simple responses but rather were constantly constructing a 

mental map of the maze, which he referred to as a ‘cognitive map’. More recently, the 

concept of a cognitive map has been expanded to describe any network of associations that 

specifies the relationships that underpin a task6. The neuronal instantiation of the cognitive 

map was originally ascribed to the hippocampus7, but recent neuroimaging studies have 

found that the OFC is the only cortical region to be activated when participants use cognitive 

maps8, suggesting that it may play an important role.

Thus, the OFC field currently finds itself at a crossroads in which two competing 

hypotheses — the value hypothesis and the cognitive map hypothesis — potentially provide 

explanations of OFC function. This Review critically evaluates each of these hypotheses and 

examines how they might be related. In addition, the cognitive map hypothesis raises an 

additional question: how do the OFC and hippocampus interact in terms of implementing the 

cognitive map?

The value hypothesis

There are several features of OFC neurons — observed through recordings of such neurons 

in non-human primates — on which nearly everyone agrees. First, OFC neurons respond 

to a large range of ways by which the desirability of an option varies. For example, OFC 

neurons encode the probability of receiving a reward9, the amount of effort needed to earn 

a reward10, the delay until reward delivery10,11, the amount of secondary reinforcer12, and 

whether an outcome is anticipated to be appetitive or aversive13-15. Thus, to at least some 

extent, the OFC value signal is abstract. Second, more neurons encode the value of the 

option that will be chosen than the option that will not be chosen4,9,16. This suggests that 

the OFC is involved in selecting which option will be chosen. Third, there is a relative lack 

of motor signals in the OFC, at least compared with other frontal areas4,9. This is consistent 

with its anatomy: it has stronger connections to areas involved in autonomic control than to 

those involved in musculoskeletal control17-19. Thus, OFC decisions take place in what has 

been dubbed a ‘goods space’, facilitating decisions independently of the actions necessary to 

obtain the outcome20.

In addition to neurophysiology, there is a good deal of convergent evidence to support 

the role of the OFC in decision-making. Neuroimaging studies in humans have observed 

OFC activation in various decision-making tasks, including choices between different 

food items21-23, erotica24,25 and monetary gambles26. Individuals with OFC damage show 

decision-making deficits across a broad range of domains, including choosing between 

colours27, apartments28 and political candidates29. Perhaps the gold standard for assessing 

such deficits involves presenting participants with choices in which the outcomes vary along 

more than one dimension (for example, the type and amount of juice), thereby requiring 

participants to integrate across these dimensions to calculate the value of the option. 
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Impairments on such tasks occur following OFC damage in humans30, during electrical 

microstimulation of the OFC in monkeys31 and during optogenetic inactivation of the OFC 

in rodents32.

The precise mechanisms by which OFC value responses are translated into a decision 

are less clear. Computational models have been proposed in which distinct populations 

of neurons are responsible for representing the value of the options on offer and then 

gradually encode the value of the chosen option33,34. Downstream areas, such as the lateral 

prefrontal cortex (PFC), are then thought to be responsible for translating the decision into 

an action35-37. Empirical data show that option values and the ultimately chosen value are 

encoded by distinct populations of OFC neurons38. However, there is little evidence that 

encoding of option values precedes encoding of the chosen value, with both signals arising 

at approximately the same time38.

An alternative possibility for how OFC activity is used to make decisions has been raised by 

a recent study that focused on the dynamics of ensembles of OFC neurons (FIG. 1). Multiple 

OFC neurons were recorded simultaneously while monkeys were presented with offers 

of specific values39. A decoding algorithm was then trained to classify patterns of OFC 

activity according to the value being represented. Rather than discrete populations encoding 

different properties of the choice, OFC neurons seemed to vacillate between representing 

the value of each option in turn. In addition, more-valuable options were represented more 

frequently and for longer than less-valuable options, with the result that the higher value 

of the chosen option dominated neuronal encoding when averaged across trials. Thus, the 

apparent prevalence of neurons encoding the chosen option was an artefact of averaging 

neuronal activity across trials rather than a real feature of OFC neurons. Nevertheless, the 

vacillation did affect the decision: more vacillation produced longer choice reaction times 

and choices that were more likely to be suboptimal. A downstream area involved in motor 

planning could in principle use OFC vacillation dynamics to select the more valuable option 

by integrating the vacillation.

One challenge to the value hypothesis has been in defining when OFC value signals are 

required to make a decision. Some of the earliest studies showed that monkeys with 

OFC damage were not impaired at learning to choose between novel stimulus–outcome 

associations40, although they were impaired when the task contingencies changed. Monkeys 

with OFC damage also have intact food preferences41-44 but do not update these preferences 

when their motivational state changes41,43. A neuroimaging study in humans used the 

phenomenon of repetition suppression45 to show that the OFC is preferentially involved 

when participants consider novel as opposed to familiar choices22.

Explanations for which tasks will require the OFC have typically focused on how values 

are learned46,47. Reinforcement learning is a computational framework that was developed 

in psychology and artificial intelligence to formalize how agents learn to select actions 

to acquire reward and avoid punishment48. Importantly, there are two main reinforcement 

learning methods49-51. Model-free reinforcement learning is associated with habits and 

skills, and relies on trial-and-error learning, storing, or caching the values of past actions 

and inflexibly repeating actions that have led to higher values. Model-based reinforcement 
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learning is associated with goal-directed actions and involves the generation of predictions 

through a computationally expensive process that depends on an internal model of the 

environment. Importantly, such a model allows rapid updating of choices by a process of 

inference. For example, consider two distinct sequences of responses that lead to either a 

food reward or a liquid reward. If one’s motivational state changed from hungry to thirsty, a 

model-free system would have to experience the devalued food reward and gradually reduce 

the value of those responses relative to that of the responses leading to liquid. By contrast, 

a model-based system could immediately infer which sequence of responses would lead to 

liquid.

Damage to the OFC typically produces deficits on tasks that require model-based inference 

but not on tasks that rely on model-free cached values52,53. The lack of such inference 

helps to explain why animals with OFC damage have difficulty updating their behaviour 

in response to changes in motivational state41,43. This framework does not necessarily 

contradict the notion that OFC is important for economic decisions. Indeed, such decisions 

are thought to be deliberative rather than automatic47,54, and consequently more consistent 

with a model-based system.

Another puzzle is why so much cortical real estate is devoted to representing a single 

scalar quantity. One argument is that value signals must be constructed from decision 

primitives, such as reward magnitude or reward probability20, analogous to the way that 

the visual system constructs a scene from visual primitives such as orientation and colour. 

Indeed, although there are many OFC neurons that encode abstract values that involve 

the integration of multiple decision primitives, there are just as many OFC neurons that 

respond to single decision dimensions9,55. It is also important to differentiate between 

the information that an area stores in its pattern of synaptic weights, and what the 

area represents in its current pattern of activity. For example, we have argued that OFC 

vacillation may arise from competing representations of option values, with options that 

predict higher values having a representational advantage56. In this conceptualization, 

previously experienced stimulus–outcome associations are stored in a distributed network 

in the OFC, with the strength of the synaptic connections proportional to the value of 

the outcome. When the animal faces a choice, these stimulus–outcome associations are 

simultaneously activated and compete for representation, resulting in vacillation. This 

conceptualization is consistent with both neuroimaging57 and neuropsychological results58, 

suggesting that the OFC may contain a representation of reward that is richer than simply 

the value of a reward.

The cognitive map hypothesis

Over the past decade, a radically different view of OFC function has developed. In part, 

this has been driven by increasing interest in how agents, both biological and artificial, 

learn59. In the 1970s, researchers discovered that hippocampal neurons in rats encoded the 

animal’s location in space, consistent with Tolman’s idea that animals formed maps of 

their environment60,61. However, damage to the hippocampus in humans does not simply 

produce problems with spatial navigation but rather produces much more profound deficits, 

preventing the formation of new episodic memories62,63. One way to reconcile the findings 
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in rodents and humans was to argue that the cognitive map was not just a spatial map. 

The same map could be used to specify how the different elements of a memory might 

be combined into a single episode, or it could specify how different spatial landmarks are 

combined to form a map of the environment6,64-66.

One problem with this expanded role for the cognitive map is that it can be difficult to 

specify a priori what information the map should and should not contain6. There is a good 

deal of theoretical work that is currently focused on putting the cognitive map on a more 

formal footing. One approach has been to explore how animals can use Bayesian inference 

to infer how the world is structured67,68. Animals attempt to infer whether some evidence is 

consistent with an existing state of the world or implies the existence of a new state. Once 

states have been identified, the animal must then learn how they are related to one another. 

Here, formal models derived from graph theory have proved useful (FIG. 2a). Animals learn 

a graph (akin to a network) where each vertex (node in the graph) is a state of the world and 

the edges (the connections between vertices) specify the transition probabilities from one 

state of the world to another. The state-transition graph can be integrated with the reward 

location to calculate the value of individual states, which can then be used to guide optimal 

choice behaviour. From this point forward, we use ‘state-transition graph’ to refer to this 

network of states and ‘cognitive map’ to refer to the broader concept, which includes the 

integration of reward with the state-transition graph to determine optimal behaviour.

FIGURE 2b illustrates a graph that specifies the states that might describe a restaurant 

experience. Each arrow has a probability associated with it. For example, if we had to 

seat ourselves, we might expect a higher likelihood that we would have to order from 

an app rather than from a server. One advantage of learning these abstract transition 

structures is that the same graph can be applied to many different sensory problems69. 

Although restaurants look very different from one another, the way to navigate the restaurant 

experience can be distilled to the same graph. Note also that specific states are not 

necessarily defined by their sensory properties but by the temporal context or narrative in 

which they occur. At several points in the restaurant experience, you can be sat at an empty 

table but the appropriate response is to either ask the server for a menu or the bill depending 

on where you are in the sequence of states.

A second advantage of learning such state-transition graphs is that knowledge of the causal 

structure of the world is kept separate from value. This allows rapid changes in action 

selection when values change. Suppose that, over our dinner conversation, our dining 

companion inspires us with their healthy lifestyle. Our most valuable option shifts from 

choosing the high-calorie dessert to instead skipping dessert and getting the bill. We do not 

need to learn through trial-and-error which is the more valuable option but rather can use 

the state-transition graph to determine the appropriate response for obtaining the new, more 

valuable goal.

This distinction between trial-and-error learning and knowledge of state transitions has 

previously been described with respect to model-free and model-based reinforcement 

learning49. Model-free reinforcement does not have access to the state-transition graph and 

instead uses trial-and-error learning to estimate a single value, for each state, that reflects 
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the total reward that an agent can expect to earn in the future from that state, with rewards 

temporally closer to the agent weighted more highly than distant rewards. By contrast, 

model-based reinforcement learning iteratively searches through the state-transition graph to 

determine the path with the highest value, given the goal state. Model-free reinforcement 

learning is computationally simple but inflexible, whereas model-based reinforcement 

learning is flexible but computationally expensive — although this simple dichotomy has 

been criticized recently51.

The successor representation is particularly relevant to the blurring of the lines between 

model-free and model-based learning algorithms70-73. Agents that incorporate the successor 

representation will derive advantages of both model-free and model-based learning. 

Parameters are cached during trial-and-error learning reducing computational complexity 

(as in model-free learning) but, rather than caching the value of states, the successor 

representation caches the likelihood of transitions between states, thereby incorporating a 

map-like structure (as in model-based learning). The separation between the learning of state 

transitions and rewards allows the agent to respond rapidly to changes in the value function 

(like model-based learning), although the agent can only learn changes in the state-transition 

graph slowly through trial-and-error (like model-free learning).

How do these ideas relate to the kinds of tasks that are dependent on the OFC? Consider 

a classic test of OFC function: stimulus-outcome reversal. In this task, a participant learns 

that one stimulus is associated with reward, whereas another stimulus is not. Once the 

participant has learned these associations, the experimenter reverses the contingencies. In 

a nice example of cross-species homology, rodents74, monkeys40,75 and humans76 with 

OFC damage have no problem with the initial learning, but show severe impairments 

when the contingencies reverse, continuing to perseverate by choosing the previously 

rewarded outcome. The explanation for this deceptively simple deficit has undergone 

several revisions. Initial explanations were influenced by behaviourist theory. The learning 

process underlying the initial learning was assumed to be the same as the learning process 

following the reversal. As such, animals without OFC damage were proposed to learn the 

initial contingencies by trial-and-error, repeating rewarded choices and avoiding unrewarded 

choices, similar to a model-free learner. Following a reversal, the same process was 

suggested to allow them to learn the changed contingencies. To explain the critical paradox 

as to why the initial learning was intact but reversal learning was impaired in animals with 

OFC damage, vague concepts were invoked that did little more than describe the observed 

behaviour. For example, animals were argued to have a lack of ‘inhibitory control’ that 

prevented them from inhibiting the response to the previously rewarded option40 or they 

were argued to lack the ‘behavioural flexibility’ that would allow them to change their 

choices77.

Recent formulations of reversal learning have instead invoked the concept of a state-

transition graph (FIG. 3). Importantly, in this formulation, reversal is not simply the 

unlearning of the original association and the learning of the new contingency. Instead, the 

participant learns that there are two states of the world, one in which stimulus A is rewarded 

and B is not, and one in which stimulus B is rewarded and A is not78. The OFC is argued 

to be crucial for this representation of the task78. This would explain why participants with 
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OFC damage are unimpaired on the original learning problem, which can be solved via 

simple associative learning, and why they are impaired on later reversals once the map of 

the task has been constructed and would speed learning in control participants40. However, 

recent neuropsychological studies in monkeys have suggested that the OFC might not be as 

crucial for reversal learning as originally thought79,80. It is possible that there are multiple 

factors that may contribute to whether the reversal task is learned through a cognitive map 

or through simpler strategies and, therefore, whether it requires the OFC. These include 

the length of training, whether there are concurrent discriminations and whether reward is 

delivered probabilistically81.

To test the cognitive map hypothesis more directly, Schuck et al. devised a complex 

task that involved multiple contingencies to derive the correct answer8. Participants were 

presented with a picture of a house and a face, and they had to judge the age of one of 

the categories. When the age changed (for example, a young face followed by an old face) 

the participants had to switch to judging the other category. The task could be represented 

as a state-transition graph in which each unique combination of past and present category 

and perceptual configuration was defined as a task state (circles), with transitions between 

each state governed by the structure of the task (FIG. 4a). Importantly, the experimental 

conditions were balanced so that each state was equally likely to be correct at some point, 

ensuring that no one state was consistently more valuable than another. The authors trained a 

decoder to classify blood oxygen level-dependent (BOLD) activity based on which of the 16 

task states the participant was currently in. Only a region in the ventromedial PFC (vmPFC), 

a region directly medial to the OFC, represented all the relevant task contingencies that 

would be necessary to specify a cognitive map (FIG. 4b), and the degree to which this 

information could be decoded from the vmPFC predicted participants’ performance (FIG. 

4c). We note that it is difficult to interpret negative neuroimaging results from the OFC since 

there is often a loss of signal due to susceptibility artefacts82,83; therefore, even though a 

signal was observed in the vmPFC, the study does not rule out a role for the OFC. Indeed, 

the authors concluded that a principal function of the OFC was to encode the cognitive map.

The encoding of a cognitive map seems to bear little relationship to value coding in the OFC 

described above. However, the preponderance of observations of value coding in the OFC 

described in the literature may be a self-fulfilling prophecy. Guided by the work in people 

with OFC damage, experimenters have tended to focus on very simple decision-making 

tasks in which the only parameters that were varied were related to value20,84. Under such 

circumstances, it is not surprising that value was the only parameter encoded by OFC 

neurons4,9,38. In fact, when experimenters have used more-complex tasks, OFC encoding 

has proven equally complex, yet these findings have often been ignored because they 

did not fit the dominant theoretical view of OFC function. For example, we showed that 

prefrontal neurons encoded abstract rules and that such activity was equally prevalent in 

the OFC as in other prefrontal areas85. In formal terms, rules specify the state-transition 

graph, consistent with the notion that the OFC encodes not just value, but rather the entire 

cognitive map. Similarly, OFC neurons encoded rules in the Wisconsin card sorting test86, 

stay–shift strategies on a visuomotor conditional task87, matches and mismatches during an 

olfactory-recognition task88, and different blocks on an olfactory-choice task89.
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In addition, the state-transition graph is an important component of model-based learning, 

which, as discussed above, also seems to depend on OFC. The cognitive map might also 

be used to infer hypothetical outcomes. For example, consider a rock–paper–scissors game 

in which your opponent consistently chooses paper. A model-free learning system would 

have to iteratively select each outcome in turn to determine which outcome wins against 

paper. However, if we understand the state-transition graph of the game, we can choose 

the optimal scissors response immediately. Indeed, in monkeys trained on this game, OFC 

neurons encode not just the actual outcome of the animal’s choice but also the hypothetical 

outcomes that would have resulted from making different choices90, indicating that the OFC 

can use the state-transition graph to generate value predictions that have not actually been 

experienced.

Hypothetical outcomes are a key component of counterfactual emotions such as guilt, regret 

and relief. To generate such emotions, an animal must be able to infer what would have 

happened had they made a different choice. Counterfactual emotions can have a powerful 

sway on our decisions. For example, humans often deviate from rational decision theory 

because they try to minimize the likelihood of experiencing regret91. There is evidence that 

these counterfactual emotions depend on the OFC. For example, people with OFC lesions 

do not experience regret92. Rats that have rejected an average reward, only to be presented 

with a worse reward, will look back to the location of the rejected reward while their OFC 

neurons encode the value of the rejected reward93.

In sum, the cognitive map hypothesis has the potential to explain a greater array of 

experimental findings from the OFC than can the value hypothesis. However, recall that 

the cognitive map has historically been associated with the hippocampus — which raises the 

question of what, if anything, is the OFC doing differently from the hippocampus?

The role of the hippocampus

The neural representation of the cognitive map was first associated with the hippocampus 

with the discovery of hippocampal place neurons60, and the concept was later expanded 

to include abstract relational structures, in part to explain the role of the hippocampus 

in episodic memory in humans64-66. As described above, such abstract relationships are 

an important component of the state-transition graph because they enable the same graph 

to be used for very different sensory situations6,69. However, until recently, the empirical 

evidence for such relational encoding was rather weak. Many studies demonstrated that 

hippocampal neurons encoded non-spatial information65,88,94 but they did not show the 

representational structure that would be necessary to demonstrate the existence of a map. 

A more recent study did examine the parametric coding of non-spatial information using 

a task that required rodents to navigate an auditory space95. However, in this case, the 

parametric representation was still that of a sensory stimulus rather than of an abstract 

cognitive parameter. Neuroimaging results have also provided evidence for relational 

coding. For example, when people are required to categorize stimuli that vary along two 

abstract dimensions, the hippocampus responds in a way that reflects the distance between 

the stimuli in this abstract two-dimensional space96,97. However, these results lack the 

resolution to determine what this coding looks like at the single-neuron level.
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Value is one variable that is potentially useful for testing relational coding. It is an 

abstract, cognitive variable, yet it is also salient to animals. We developed a behavioural 

task that required monkeys to track the changing reward values associated with three 

pictures. We then recorded from the hippocampus during the performance of this task98. 

Hippocampal neurons encoded ‘value place fields’ that essentially specified the relationship 

between the values of the three reward-predictive pictures (FIG. 5a,b). Like space, value 

is relational99,100: we determine the value of an outcome relative to other outcomes. For 

example, we can experience a reward as negative if another choice would have led to an 

even larger reward92. Several researchers have noted that the tuning of hippocampal neurons 

seems to be optimized for encoding relationships65,69,101. Thus, it can be used to construct a 

spatial map of the location of objects relative to one another, or it can be used to construct a 

value map of the value of pictures relative to one another.

However, note that, in our experiment, we were using value to explore the relational code 

and, as such, we could not unconfound the state-transition graph from value, a point that 

we return to below. In fact, there is accumulating evidence that the hippocampus could also 

make an important contribution to value-based decision-making. Humans with hippocampal 

damage are impaired at making reward-based decisions102. In rats trained to run around a 

track on which reward was only delivered every four laps, different pools of hippocampal 

neurons would fire on each lap, potentially providing a mechanism to track the individual 

episodes that lead to reward103. Hippocampal replay events, in which place neurons fire in 

an ordered sequence, predict the distance to a reward location during both hippocampal theta 

oscillations104 and during sharp-wave ripples105.

Thus, we have two brain regions that strongly connect with one another17,106 and seem 

to share many of the same functions. In addition, there is now considerable evidence 

that the two areas functionally interact with one another during the performance of many 

behavioural tasks. For example, we observed increased coherence in the theta oscillation 

between the OFC and the hippocampus when animals were adapting their choice behaviour 

in response to changing reward contingencies107. In addition, when human participants 

perform a complex, sequential decision-making task8, hippocampal BOLD responses are 

consistent with the sequential replay of participants’ experience with the task and this, in 

turn, leads to an improved representation of the task in the OFC and better performance108.

Causal manipulations have also revealed the importance of hippocampal input to the OFC. 

A prominent theta oscillation occurs in the OFC when animals learn the significance 

of reward-predictive cues109. To demonstrate the importance of this oscillation, we used 

closed-loop microstimulation107. We recorded the theta oscillation in real-time in monkeys 

and used it to control the application of microstimulation to the OFC. Stimulation 

applied at the peak of theta severely disrupted the oscillation as well as the ability of 

the animal to learn new reward contingencies. Because the theta oscillation probably 

has a hippocampal origin110, we also applied closed-loop theta microstimulation to the 

hippocampus and similarly severely disrupted reward-based learning. Results in rodents 

have also demonstrated the importance of OFC–hippocampal interaction in learning. 

Optogenetic inactivation of the hippocampus impairs the OFC representation of the block 

structure of an olfactory-choice task111.
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However, despite the similarities in OFC and hippocampal functions, it is also clear that 

neuronal coding in the hippocampus is very different from that in the OFC. This is most 

apparent when comparing neuronal responses from the two areas during the performance 

of identical behavioural tasks. For example, we directly compared OFC and hippocampal 

neuronal responses on the reward-learning task described above107. OFC neurons typically 

encode the value of the chosen option in a linear way (FIG. 5c). Consequently, they are 

active at most points along the circular trajectory through value space, rather than at specific 

locations like hippocampal neurons. This results in a sparser representation of value among 

hippocampal neurons than among OFC neurons that can be quantified using information 

theory (FIG. 5d).

Along similar lines, McKenzie et al. trained rats on a task in which different environmental 

contexts predicted which rewards would be paired with which objects. Although all the 

information that was relevant to performing the task was present in both the OFC and 

hippocampus, context dominated neural encoding in the hippocampus112, whereas value 

dominated neural encoding in the OFC113. Similar results have been obtained using other 

tasks. For example, in rodent studies of model-based learning of olfactory discriminations, 

although all the information relevant to performing the task is represented in the OFC, value 

explains by far the most variance in OFC neuronal firing114. Thus, an important outstanding 

issue is what exactly the specific contributions of the two brain areas are; we discuss this 

next.

Reconciling the hypotheses

At this point, we return to considering the state of the value hypothesis and the cognitive 

map hypothesis. One could be forgiven for assuming everything is settled. Researchers were 

like the fabled blind men, each feeling a different part of an elephant and coming to a 

different conclusion as to what it was. Hippocampal researchers typically used the rodent 

model system, in part because the hippocampus is easier to access in the rodent than in the 

primate. Rodents were tested in arenas and mazes and, therefore, space dominated the neural 

representation. By contrast, researchers studying the OFC often used monkeys, who sat, like 

gamblers in a casino, in a single position playing hundreds of trials to win rewards. Little 

wonder that, in this case, value dominated the neural representation. By taking a broader 

view of both areas, we can see that they are both responsible for implementing the cognitive 

map115,116. However, one problem with such a neat reconciliation is that the pendulum may 

have swung too far, with the OFC now being ascribed too broad a role.

An important consideration for any theory is whether it has predictive validity. A prediction 

of the cognitive map hypothesis is that any sufficiently complex task should benefit from 

a cognitive map and therefore require the OFC; however, this is not always the case. For 

example, consider a task designed by Baxter et al.117. Monkeys learned to apply one of two 

choice-response strategies to two sets of stimuli. Pictures in one set of stimuli (persistent) 

had to be chosen four times in a row to earn a reward, whereas choices for pictures in the 

second set (sporadic) were rewarded only after a persistent reward had been earned and were 

not rewarded again until another persistent reward had been earned. The task is conceptually 

like the Schuck et al.8 task shown in FIG. 4a, in that different stimuli instructed different 
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responses but were equally likely to be correct depending on the experimental condition. 

Despite this similarity, animals with OFC lesions who had learned the task prior to the lesion 

could perform it without impairments. This is difficult to reconcile with the idea that the 

OFC is representing a cognitive map to facilitate performance of the task.

A more promising direction has been to focus on a potential division of labour between 

the OFC and hippocampus116. One possibility is that the hippocampus represents the state-

transition graph, whereas the OFC uses knowledge of the reward’s location to calculate 

the value of the vertices in the graph, thereby helping to guide the optimal choice at 

each decision point. A recent study by Basu et al. showed that single-neuron responses in 

the OFC were consistent with this function118. Rats were trained to forage between two 

locations on a linear track. OFC neurons were tuned to the location of the reward, and their 

firing rates gradually increased as the animal approached the rewarded location. The linear 

track can be described via a linear state-transition graph, and the OFC neuronal responses 

are consistent with encoding the value of those states. Furthermore, optogenetic inactivation 

of these neurons impaired the performance of the task.

Another task that is relevant to testing the ‘division of labour’ hypothesis is sensory 

preconditioning. Participants learn that certain states of the world co-occur and then use this 

knowledge to infer predictions about the value of potential outcomes. For example, if I learn 

that cue A and cue B occur together, and then I learn that A predicts reward, I might rightly 

infer that B will also predict reward. There is a growing body of work to support the notion 

that this type of learning is dependent on OFC–hippocampal interactions. For example, 

in rodents, OFC neurons encode cue associations as well as inferred outcomes119, and 

pharmacological inactivation of the OFC specifically impairs learning that is based on the 

inferred outcomes120. Neuroimaging results in humans have shown that the BOLD response 

to paired cues (that is, to A and to B) becomes more similar in both the hippocampus and 

the OFC as the network of associations is learned121. Furthermore, the OFC represented 

the inferred outcome when cue B was presented, and this was accompanied by an increase 

in connectivity between the OFC and the hippocampus. Causal studies have also favoured 

the interpretation that the OFC uses the cognitive map to generate reward predictions. For 

example, transcranial magnetic stimulation of the OFC in humans specifically impairs the 

ability to infer outcomes from cue associations in the sensory preconditioning task122.

Returning to the Baxter et al. task described above117 with the idea that the OFC does not 

represent the cognitive map per se but instead computes the value at different vertices in the 

map, it becomes clearer why the complex task may not require the OFC. The task can be 

specified as a state-transition graph, but the value of each vertex remains fixed throughout 

the performance of the task and, therefore, the OFC is not needed to update the values. Other 

lesion results support this conclusion. Selective lesions of the PFC in macaques performing 

a version of the Wisconsin card sorting test demonstrate a double dissociation. Damage to 

the dorsolateral PFC leads to a problem in holding the state-transition graph in working 

memory, whereas damage to the OFC induces problems with rapidly updating the value of 

the graph nodes based on reward outcomes123.
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We note that we have remained agnostic to the precise nature of the interaction between 

the OFC and the hippocampus. Given the role of the hippocampus in forming new 

memories124-126, we might predict that it would be important for learning the state-transition 

graph, which would then be used by the OFC to determine the value of the graph 

vertices. However, it is also possible that information from the OFC could be used to 

modify the state-transition graph in response to violated reward expectations. For example, 

neuroimaging has shown that OFC learning signals predict changes in the strength of the 

hippocampal representation of state-transition probabilities127.

Given the proposed distinction between the OFC and the hippocampus proposed above, 

it is worth returning to how well it aligns with the value hypothesis and the cognitive 

map hypothesis. With respect to the value hypothesis, the value framework clearly only 

captures a portion of OFC function. However, many of the problems that are tackled by the 

value hypothesis are also relevant to the cognitive map hypothesis. For example, it remains 

unclear how an animal assigns a value to a specific outcome, and this value is an important 

component of calculating the value of the states in the state-transition graph. Likewise, the 

cognitive map requires animals to choose the optimal motor response based on the value of 

the different resultant states; the neural implementation of this process also remains unclear.

Turning to the cognitive map hypothesis, the ‘hard’ version of this hypothesis, that the 

OFC is responsible for its entire implementation, seems like too broad a role to adequately 

account for the experimental evidence. However, by limiting its role to calculating values 

of states using the state-transition graph, we can preserve the primary role of the OFC of 

encoding value information while also accounting for the role of the OFC in encoding state 

transitions. Although we argue that the hippocampus is primarily responsible for learning 

and modifying the state-transition graph, we also note that many researchers have argued 

that the hippocampus is responsible for initial learning of state-transition graphs but not for 

their long-term storage, which is argued to be the preserve of the cortex124-126. This raises 

the possibility that other cortical regions, such as the lateral PFC, may be responsible for the 

long-term storage of the state transition graph.

Future directions

In this final section, we outline a personal wish list of experimental directions. First, if 

the cognitive map hypothesis of OFC function is to challenge the value hypothesis, it is 

important that we establish the same breadth of experimental evidence to ensure a solid 

foundation on which to build this new idea. Most important is to establish causal evidence, 

particularly in humans. Studies of individuals with OFC damage remain largely focused on 

the value hypothesis. For example, it would be fascinating to know how people with OFC 

damage perform on the same tasks that involve cognitive maps and that drive strong OFC 

BOLD responses8.

Second, it seems reasonable that the computational principles that are currently driving 

theoretical work on the cognitive map will ultimately prove useful for understanding its 

implementation in the brain, including in the OFC. For example, it has been suggested that 

the entorhinal cortex may be responsible for encoding the state-transition graph, whereas the 
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hippocampus then combines this information with specific sensory input, thereby enabling 

different maps to generalize to novel experiences69. Similarly, understanding how animals 

parse knowledge and infer the existence of different states of the world128 will probably 

be extremely useful in interpreting behaviour and, therefore, the neural implementation 

of behaviour. For example, behavioural evidence suggests that bottlenecks in the state-

transition graph can be used to organize knowledge, and this organization is reflected in the 

neural representation in frontal and temporal cortices129 and the hippocampus130.

Third, regarding the value hypothesis, we need to improve the ecological validity of our 

measurements. Real-world decisions often involve unique circumstances and information. 

By their nature they are ‘one-shot’. This makes them challenging to study in the laboratory, 

certainly with neural measurements and even behaviourally. Our measurements are noisy 

and frequently require multiple trials. Fortunately, modern neuroscience methods are 

beginning to provide us with access to the neural mechanisms that underlie one-shot 

cognitive processes. In particular, innovative recording probes open up the possibility of 

recording from thousands of OFC neurons simultaneously131, and decoding algorithms 

provide the methods to measure the neural representation with single-trial resolution56. In 

addition, we clearly need to expand the range of tasks used to investigate OFC function, at 

least beyond the simple binary choice tasks that many of us study.

It is an exciting time to be researching the OFC. After a decade or so of somewhat 

incremental progress, the past few years have seen the emergence of dramatic new ideas 

regarding OFC function. Yet, despite this, it seems premature to completely abandon the 

value hypothesis, which can explain so many OFC findings. Instead, it seems likely that 

the infusion of new theoretical ideas from formal models of the cognitive map will help to 

better align our understanding of OFC value representations to naturalistic behaviour and 

ultimately explain why OFC damage is so catastrophic for everyday decision-making.
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Glossary

Secondary reinforcer
A reward or punishment whose value is learned (for example, money) through its association 

with a primary reinforcer whose value is innate (for example, food).

Repetition suppression
A reduction in the magnitude of the evoked blood oxygen level-dependent response when a 

stimulus is presented repeatedly.

Reinforcement learning
The process by which an agent learns to predict and maximize future reward.

Inference
The process of deriving logical conclusions from known premises.
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Decision primitives
Parameters that are combined to calculate the value of a reward; for example, a food reward 

might include size, probability of occurrence and calories.

Episodic memories
Memories of personal experiences that are tied to specific times and places.

Bayesian inference
A statistical approach that uses Bayes theorem to determine how much to update one’s belief 

given a new piece of evidence.

Graph theory
A branch of mathematics that focuses on understanding networks. A graph consists of 

vertices (also called nodes) that are connected by edges (also called lines).

Successor representation
A map of the environment that estimates the predictive relationships between different states 

of the environment.

Perseverate
To continue to repeat a previously rewarded action even when it no longer leads to reward.

Behaviourist theory
The theory that psychology can be objectively studied only through observable actions; it 

arose as a reaction to nineteenth-century psychology which focused on introspection.

Susceptibility artefacts
Artefacts that occur during MRI at air–tissue boundaries; they are particularly serious for 

brain areas close to sinuses.

Wisconsin card sorting test
A neuropsychological test in which participants sort cards according to rules such as shape 

or colour. Patients with frontal lobe damage have difficulty switching between rules.

Visuomotor conditional task
A task that requires subjects to follow a conditional ‘if–then’ rule, in which the ‘if’ is a 

visual stimulus and the ‘then’ is a motor response.

Rock–paper–scissors game
Two players simultaneously make one of three hand shapes: rock, paper or scissors. Rock 

beats scissors, scissors beat paper, and paper beats rock.

Place neurons
Hippocampal neurons that fire whenever an animal is in a specific location.

Sharp-wave ripples
Oscillations that are characteristics of electrical activity in the mammalian hippocampus: 

they are of large amplitude and high frequency (100–250 Hz).
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Ecological validity
The degree to which a laboratory test predicts behaviour in real-world settings.
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Fig. 1 ∣. During decision-making, the OFC flip-flops between representing the value of either 
option.
a ∣ Monkeys learn the value of different pictures and then perform a choice task. After 

fixating on a red dot, one (forced choice) or two (free choice) pictures are presented and the 

animal must make its selection. b ∣ Individual orbitofrontal cortex (OFC) neurons typically 

encode the value of the chosen picture9. About half of the value-encoding neurons have 

a positive relationship between firing rate and value (top), whereas the other half have a 

negative relationship (bottom). c ∣ A classifier was trained to recognize patterns of neural 

activity that are elicited by specific picture values on forced-choice trials. In the example, the 

neural ensemble consists of n neurons (r1 … rn) and the firing rate at time t is plotted. Each 

data point indicates a pattern of activity that was elicited on different trials, colour-coded 

according to the value of the outcome of the choice. A hyperplane can successfully separate 

the two groups of trials. d ∣ The trained classifier is then used to decode activity on the free-

choice trial. Each successive dot corresponds to the activity of each neuron at successive 

time steps, t, within a trial. When ensemble activity lies above the hyperplane, the picture’s 

value is decoded as value A (blue dots), whereas below, it is decoded as value B (red dots). e 
∣ Decisions are characterized by OFC neural ensembles ‘flip-flopping’ between representing 

the value of either option in turn39. Panels a and b are adapted with permission from REF.16, 

Springer Nature Ltd.
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Fig. 2 ∣. The relationship between the state-transition graph and value.
a ∣ The state-transition graph (left) specifies the relationship between states and the 

transition probability; for example, state A can directly lead to B or D, but not to the other 

three states of C, E or F. The state-transition graph can be integrated with the reward location 

to calculate the value of individual states (right). b ∣ A potential state-transition graph for 

having a meal in a restaurant. Different states are linked to other states with a specific 

probability of occurrence. The same graph can be used for many different restaurants, and 

the value of states can be rapidly updated in response to changes in goals.
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Fig. 3 ∣. An illustrative example of the flexibility of cognitive maps.
a ∣ Imagine you need to get across town (start: black pin, goal: red pin). This can be done 

simply by following a rote set of directions (for example, take the second left followed 

by the first right). However, this method cannot cope with unexpected events such as 

construction works or an accident. By contrast, a map-like representation allows on-the-fly 

adjustments, providing a much more flexible way to navigate. b ∣ Cognitive maps can also 

be applied to behavioural tasks and provide the same kinds of advantages for high-level 

behaviour that maps provide for spatial navigation. Consider the classic reversal task with 

two reward-predictive cues, A and B. This task can be mapped as two distinct states (S1 

and S2) that describe the likelihood of each cue predicting reward, with some probability 

of transitioning between the two states, T. Without such a map, the task could still be 

completed through trial-and-error learning (bottom, blue trace). However, the map enables 

more-flexible switching between states (bottom, red trace) because the participant can 

inferthe outcomes associated with each cue from a single trial.
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Fig. 4 ∣. Responses in human vmPFC reflect encoding of state information.
a ∣ Map of the task. Participants saw houses and faces and had to judge the age of one 

of the categories. When the age changed, they had to switch to judging the other category. 

Each combination of task contingencies is defined as a state (circles), with transitions 

between each state governed by the structure of the task. b ∣ The researchers trained an 

algorithm to decode which of the 16 states was currently in effect. The only region in 

which this information could be decoded above chance was the ventromedial prefrontal 

cortex (vmPFC). c ∣ The degree to which state information could be extracted from vmPFC 

blood oxygen level-dependent signals (x-axis) predicted the number of incorrect decisions 

participants made (y-axis). Figure adapted with permission from REF.8, Elsevier.
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Fig. 5 ∣. Value place neurons in the primate hippocampus.
Monkeys were trained to choose between pairs of presented pictures98. There were three 

pictures in total and each was associated with a probability of receiving juice that gradually 

changed overtime, requiring the animal to track the changing contingencies. a ∣ A value 

space can be constructed in which each axis is the value of one of the pictures, such that 

a point in this space defines the value of the pictures relative to one another. The changing 

reward contingencies result in a circular trajectory through this value space. On the right, 

the same picture values are plotted independently. b ∣ Four examples of firing patterns 

of hippocampal (HC) neurons, showing how the firing rate varied across two successive 

completions of the circular trajectory. Peak firing rate values are shown for each neuron. 

Neurons encoded specific locations in value space. c ∣ Top: Activity of four example 

HC value place neurons plotted following conventions in part b. Bottom: Four example 

orbitofrontal cortex (OFC) neurons, plotted in the same manner. d ∣ Average peak spatial 

information encoded by OFC value neurons (left, purple) and HC value place neurons (right) 

on the circular trajectory. Figure adapted with permission from REF.98, Elsevier.

Knudsen and Wallis Page 25

Nat Rev Neurosci. Author manuscript; available in PMC 2023 September 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	The value hypothesis
	The cognitive map hypothesis
	The role of the hippocampus
	Reconciling the hypotheses
	Future directions
	References
	Fig. 1 ∣
	Fig. 2 ∣
	Fig. 3 ∣
	Fig. 4 ∣
	Fig. 5 ∣



