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Chlamydia pneumoniae Infection Induced Allergic
Airway Sensitization Is Controlled by Regulatory T-Cells
and Plasmacytoid Dendritic Cells
Timothy R. Crother1, Nicolas W. J. Schröder1¤, Justin Karlin1, Shuang Chen1, Kenichi Shimada1, Anatoly

Slepenkin2, Randa Alsabeh3, Ellena Peterson2, Moshe Arditi1*

1 Pediatrics Infectious Diseases, Cedars-Sinai Medical Center, University of California Los Angeles, Los Angeles, California, United States of America, 2 Department of

Pathology, University of California Irvine, Irvine, California, United States of America, 3 Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center,

University of California Los Angeles, Los Angeles, California, United States of America

Abstract

Chlamydia pneumoniae (CP) is associated with induction and exacerbation of asthma. CP infection can induce allergic airway
sensitization in mice in a dose- and time-dependent manner. Allergen exposure 5 days after a low dose (mild-moderate),
but not a high dose (severe) CP infection induces antigen sensitization in mice. Innate immune signals play a critical role in
controlling CP infection induced allergic airway sensitization, however these mechanisms have not been fully elucidated.
Wild-type, TLR22/2, and TLR42/2 mice were infected intranasally (i.n.) with a low dose of CP, followed by i.n. exposure to
human serum albumin (HSA) and challenged with HSA 2 weeks later. Airway inflammation, immunoglobulins, eosinophils,
and goblet cells were measured. Low dose CP infection induced allergic sensitization in TLR22/2 mice, but not in TLR42/2
mice, due to differential Treg responses in these genotypes. TLR22/2 mice had reduced numbers of Tregs in the lung
during CP infection while TLR42/2 mice had increased numbers. High dose CP infection resulted in an increase in Tregs
and pDCs in lungs, which prevented antigen sensitization in WT mice. Depletion of Tregs or pDCs resulted in allergic airway
sensitization. We conclude that Tregs and pDCs are critical determinants regulating CP infection-induced allergic
sensitization. Furthermore, TLR2 and TLR4 signaling during CP infection may play a regulatory role through the modulation
of Tregs.
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Introduction

Asthma is characterized by an inappropriate immune response

that results in bronchoconstriction, mucus secretion, and eosino-

philic airway inflammation, and is thought to develop in two stages

[1]. The first stage, known as sensitization, encompasses the

exposure to a normally innocuous antigen in the lungs during

some type of inflammatory response that leads to the development

of Th2 type memory cells [2]. Later, upon re-exposure to the same

antigen, these memory cells are activated, resulting in an

inflammation of the lungs. There are many possible mechanisms

for antigen sensitization to occur, and one increasingly important

scenario involves respiratory infections.

It is known that respiratory viral infections among young

children can lead to a much greater risk of asthma development

[3]. Experimental studies using murine models have also shown

that pulmonary viral infections can enhance antigen sensitization

and or lead to exacerbation of asthma, depending on the timing

and severity of infection [4,5]. However, much less is known about

the interactions of bacterial infections and asthma. Chlamydia

muridarum infection in the lungs of neonatal mice results in a more

severe asthma phenotype later on in life [6] and many clinical

studies have linked the bacterial pathogen, Chlamydia pneumoniae

(CP) with both the development and exacerbation of asthma

[7,8,9]. Murine studies showed that a mild pulmonary CP

infection could act as an adjuvant for antigen sensitization to an

otherwise inert protein (human serum albumin (HSA)), which

upon re-exposure to HSA resulted in eosinophilic airway

inflammation and goblet cell hyperplasia [10]. Interestingly,

allergic airway sensitization critically depended on the severity

and timing of CP infection, as a low-dose (mild) infection and

antigen exposure within 5 days of infection induced allergic

sensitization, whereas high-dose (severe) CP infection or antigen

exposure 10 days after infection did not [10]. Temporal and dose-

related effects on the ability of CP infection to induce allergic

sensitization reflected DC activation and could be reproduced by

means of adoptive transfer of HSA-pulsed lung DCs from infected

mice, and be modulated by Treg cells [10].

In this study, we now provide additional mechanistic insights on

the specific roles of Treg cells and plasmacytoid DCs in the

temporal and dose-related allergic sensitization induced by CP

infection. We show that TLR4 signaling is required for antigen
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sensitization, but TLR2 is not, and that Tregs are involved in both

phenotypes. Additionally, we find that during a severe CP

infection, which is normally non-permissive for allergic sensitiza-

tion in this murine model, both Tregs and plasmacytoid dendritic

cells (pDCs) are increased in the lung and that the depletion of

either cell type results in the reversal of the phenotype and allows

development of allergic sensitization. In further mechanistic

investigations we observed that in addition to a live CP infection,

UV killed CP (CPUV) can also induce allergic sensitization and we

show that this observation is not specific to pulmonary CP

infection but can occur with other bacteria as well, as UV killed

Bordetella bronchiseptica was also able to induce allergic sensitization

to HSA. Indeed, we show that bacterial ligands, such as a TLR2

ligand, in addition to the TLR4 ligand LPS, are able to induce the

allergic sensitization. Collectively these data now provide strong

evidence that killed CP, or other bacteria such as Bordetella

bronchiseptica, as well as TLR2 ligands can induce allergic

sensitization, and that during a live CP infection, both Tregs

and pDCs critically regulate the temporal and dose-dependent

induction of allergic airway sensitization. Additionally, TLR2 and

TLR4 signaling during CP infection may play a regulatory role

though the modulation of Tregs.

Results

UV killed C. pneumoniae and UV killed Bordetella
bronchiseptica induce antigen sensitization and
eosinophilic airway inflammation

We wished to investigate if in addition to live CP infection [10],

UV killed CP (CPUV) could also induce allergic sensitization and

if so, try and break down the relative importance of various PAMP

signals during infection towards antigen sensitization. Mice were

exposed to 16106 CPUV in combination with 100 mg human

serum albumin (HSA) or PBS control intranasally, then re-exposed

to HSA two weeks later (Fig S1A). Upon re-exposure to HSA,

mice that were initially exposed to HSA and CPUV developed

significant inflammation in the lungs as determined by H&E

staining (Figure 1A). In contrast, mice that received HSA without

CPUV during sensitization, or mice that were challenged with

PBS instead of HSA did not develop pulmonary inflammation.

Similarly, mice sensitized with HSA and CPUV, followed by HSA

challenge, had significantly increased eosinophils in the lung

compared to controls (Figure 1B). Significant goblet cell

hyperplasia was also found in mice that received both HSA and

CPUV during sensitization, and HSA challenge (Figure 1C).

Finally, HSA-specific IgE and IgG1 levels were significantly

increased in mice that were sensitized with both HSA and CPUV,

while IgG2a levels were unchanged (Figure 1D). These data

indicate that CPUV can also act as a potent adjuvant and drive

antigen sensitization. We next wanted to determine if this

observation was specific to CPUV or if it could be induced with

another bacterial adjuvant. We used UV killed Bordetella

bronchiseptica (BBUV). Mice were exposed to 16106 CFU BBUV

in combination with 100 mg human serum albumin (HSA) or PBS

control intranasally, then re-exposed to HSA two weeks later as

described above. Upon re-exposure to HSA, mice that were

initially exposed to HSA and BBUV also developed significant

inflammation in the lungs as well as significantly increased

infiltration of eosinophils, goblet cells, and HSA-specific IgE and

IgG1 (Fig S2A–D), similar to findings obtained by CPUV. These

observations clearly suggest that killed bacteria other than CP can

also induce allergic sensitization, implying that various microbial

ligands present in killed bacteria are most likely able to drive this

antigen sensitization.

TLR2 signaling can drive antigen sensitization
It is known that innate immune cells can detect Chlamydia

pneumoniae by both TLR2 and TLR4 pattern recognition receptors

(PRR) [11,12]. However, C. pneumoniae uses predominantly TLR2

signaling for cytokine release [12,13]. MyD88 signaling is essential

for CP infection induced antigen sensitization in this allergic

asthma model [10]. Both TLR2 and TLR4 signaling can proceed

through MyD88, and since the role of a TLR4 ligand, LPS alone

in this antigen sensitization model has already been described [14],

we investigated whether TLR2 signaling by itself could also induce

antigen sensitization in this model. Using the same protocol as

above, except substituting CPUV with either LP2 (TLR2 ligand)

or LPS (TLR4 ligand), upon subsequent challenge with HSA, mice

that were sensitized in the presence of either LPS or LP2

developed both eosinophilic airway inflammation and goblet cell

hyperplasia (Figure 2A–B), while the control mice did not. As far

as we are aware, this is the first reported instance of a TLR2 ligand

driving allergic antigen sensitization in the lung.

Airway sensitization by C. pneumoniae requires TLR4-
but not TLR2- dependent signaling

We next investigated the roles of TLR2 and TLR4 signaling

during live CP infection induced antigen sensitization. Since CP

signals predominantly through TLR2 for cytokine release, and

that a TLR2 ligand, LP2 alone could drive antigen sensitization,

we hypothesized that CP infection-induced allergic sensitization

would not be seen in TLR22/2 mice, but would be observed in

TLR42/2 mice. Utilizing our previously published protocol for

live infection induced antigen sensitization (Fig S1B) [10], WT,

TLR22/2, TLR42/2, and TRIF2/2 mice were infected with

56105 IFU of CP, sensitized with HSA for three days (beginning 5

days after infection), and then challenged with HSA. As expected

WT mice developed allergic sensitization with eosinophilia and

goblet cell hyperplasia in the lungs of mice that were infected with

CP and sensitized/challenged with HSA (Figure 2C–D). However,

we observed that TLR22/2 mice were successfully sensitized,

while TLR42/2 mice were not. Indeed, TLR22/2 mice

developed increased eosinophils and goblet cells in the lung, while

TLR42/2 mice did not (Figure 2C–D), suggesting that CP-

induced allergic sensitization requires TLR4 but not TLR2. TLR4

can signal through both MyD88 and TRIF. MyD88 signaling is

absolutely required for CP infection induced antigen sensitization

[10], but the role of TRIF signaling is unknown. Therefore we

investigated whether TRIF2/2 mice could be sensitized by live

CP infection. We observed that TRIF was not important in

infection-induced allergic sensitization as TRIF2/2 mice devel-

oped allergic sensitization and were indistinguishable from WT

mice (Figure 2C–D). In order to dissect the molecular mechanisms

as to why TLR22/2 mice but not TLR42/2 mice could be

sensitized, we investigated the relative activation of TLR22/2

and TLR42/2 bone marrow derived dendritic cells (BMDCs) by

CP infection. BMDCs were exposed to live CP, LPS, LP2, or

CPUV for 24 hrs and IL-6 levels in the supernatants were

measured. LPS, LP2, CP, and CPUV all induced IL-6 production

in WT BMDCs, as expected (Fig S3A). In BMDCs obtained from

TLR42/2 mice, LPS did not induce IL-6, LP2 exposure was

unchanged from wild type mice, while both live and UV killed C.

pneumoniae still induced IL-6, but at lower levels than WT cells. On

the other hand, TLR22/2 BMDCs responded to LPS, and but

not to the TLR2 ligand LP2 as expected, but showed substantially

reduced IL-6 release in response to live-CP and to CPUV

compared to WT and TLR42/2 BMDCs. While these data

corroborate previously published data that CP signals mainly

through TLR2 for cytokine release, they do not explain the lack of

Tregs Control CP Infection Induced Sensitization
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sensitization in TLR42/2 mice. We next investigated the

activation state of the BMDCs after exposure to CP in order to

discern any differential responses between TLR2- and TLR4-

deficient BMDCs. Both TLR22/2 and TLR42/2 BMDCs had

reduced levels of CD80 and CD86 expression on the surface

compared to WT BMDCs after CP exposure (Fig S3B). Again,

these data did not provide any explanation for the differential

sensitization observed between TLR22/2 and TLR42/2 mice.

We next studied the role of Tregs in these two genotypes. Previous

reports revealed that TLR22/2 mice had reduced circulating

numbers of Tregs [15,16]. Since Tregs play an important

suppressive role in the development of asthma [17,18] we

therefore investigated the numbers of Tregs in these mice during

infection. WT, TLR22/2 and TLR42/2 mice were infected

Figure 1. Parallel exposure of mice to CPUV and HSA induces allergic airway sensitization. A: Inflammatory scores of H&E stained lung
sections of mice after sensitization and challenge. Shown below are representative sections. B: Staining of lung sections for eosinophil-specific
peroxidase. Total numbers of eosinophils were related to the total area of the section. Shown below are representative sections. C: Goblet cells
visualized by PAS staining. Total numbers of goblet cells were related to the total length of bronchial basal membrane in the section. Representative
sections are shown below. D: HSA-specific IgE, IgG1 and IgG2a titers. *p#0.05, **p#0.01, ***p#0.001.
doi:10.1371/journal.pone.0020784.g001

Tregs Control CP Infection Induced Sensitization
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with CP as before and the numbers of Tregs in the lung were

assessed by flow cytometry 5 days after infection. We observed that

baseline levels of Tregs in the lung were significantly reduced in

TLR22/2 mice compared to WT and TLR42/2 mice

(Figure 2E, Figure S4A), which was maintained at 5 days after

infection, during the time when sensitization would begin.

Additionally, TLR42/2 mice now had a significant increase in

Tregs as compared to WT mice (Figure 2E). The reduced

numbers of Tregs in TLR22/2 mice provide a possible

explanation for the ability of TLR22/2 mice to be sensitized,

despite reduced activation and responsiveness in their dendritic

cells. Conversely, the inability of TLR42/2 mice to be sensitized

Figure 2. The effects of TLR signaling on CP infection induced antigen sensitization. A and B: Administration of HSA to mice in the
presence of TLR2- or TLR4-ligands induces airway sensitization. Mice were sensitized with either HSA alone (n = 8), 100 ng Pam2CSK4 (LP2) alone
(n = 4), HSA+100 ng LP2 (n = 8), 100 ng LPS alone (n = 4) or HSA+100 ng LPS (n = 5). Mice were challenged with HSA and eosinophil and goblet cell
numbers were assessed. C and D: Wild type (WT) (n = 7), TLR22/2 (n = 7), TLR42/2 (n = 7) and TRIF2/2 (n = 8) mice were infected with 56105 CP
followed by HSA sensitization and challenge as shown in Figure 1B. Eosinophil and goblet cell numbers were assessed. E: Percentage of lung Tregs in
wild type, TLR22/2, and TLR42/2 uninfected and CP-infected mice. Wild type, TLR42/2, and TLR22/2 mice (n = 3–6 per group) were inoculated
with 56105 IFU of CP. 5 days after inoculation, mice were sacrificed, lung leukocyte preparations were generated and analyzed for the presence of
CD4+, CD25+, Foxp3+ Tregs by flow cytometry. Data are presented as a percentage of total lung cells. Shown are combined data from 2–3 separate
experiments. *p#0.05, **p#0.01.
doi:10.1371/journal.pone.0020784.g002

Tregs Control CP Infection Induced Sensitization
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during CP infection may be a result of increased levels of Tregs in

their lungs.

Treg depletion in TLR42/2 mice allows allergic
sensitization by C. pneumoniae infection

Since the infected TLR42/2 mice had increased levels of

Tregs in the lungs during the sensitization period (Figure 2E), we

decided to directly test whether these Tregs were preventing

allergic sensitization. Using the same model as above, TLR42/2

mice were given the PC61 antibody (or IgG control) one day prior

to sensitization to deplete the Tregs during the sensitization

window. In agreement with our hypothesis, the depletion of Tregs

in TLR42/2 mice reversed the phenotype and allowed allergic

sensitization with eosinophilia and goblet cell hyperplasia in these

mice (Figure 3A–B). Additionally, HSA specific IgE and IgG1

were also significantly increased in these mice (Figure 3C).

Importantly, in a control experiment, uninfected mice that

received the PC61 antibody during sensitization did not develop

an allergic airway response to HSA. These observations suggest

that Tregs prevent antigen sensitization in TLR42/2 mice

infected with CP.

TLR22/2 mice have an extended time-window for C.
pneumoniae infection induced antigen sensitization

Tregs control the time window during which WT mice could be

sensitized relative to the start of the CP infection [10]. Normally,

WT mice could be sensitized 5 days after low-dose (mild) infection,

but not 10 days after, due to an influx of Tregs [10]. However, if the

Tregs were depleted, the mice could now be sensitized 10 days after

infection [10]. We reasoned that since TLR22/2 mice had

reduced numbers of lung Tregs at baseline, and did not increase

their Treg numbers 5 days after infection, they should be able to

develop sensitization even at day 10 after infection if Treg played a

critical role in this event. We infected TLR22/2 and WT mice as

before and sensitized them with HSA 10 days after infection instead

of 5 days (Fig S1B). We observed that TLR22/2 mice had

significantly reduced Tregs 10 days after infection compared to WT

mice (Figure 4A, Figure S4B). As we predicted, we observed that

TLR22/2 mice can develop allergic sensitization when the

antigen is introduced initially both at day 5 and day 10 after

infection, while WT mice is sensitized only when antigen is given at

day 5 but not day 10 after infection (Figures 4B–D and 2C–D).

Importantly, in control experiments, uninfected TLR22/2 mice

Figure 3. Treg depletion allows CP infection induced antigen sensitization in TLR42/2 mice. TLR42/2 mice received either CP+PC61
mAB (n = 8), CP+IgG control (n = 7), PBS+PC61 mAB (n = 8), or PBS+IgG control (n = 6), and were sensitized and challenged with HSA as described in
Figure 1C. A: Staining of lung sections for eosinophil-specific peroxidase. Total numbers of eosinophils were related to the total area of the section.
B: Goblet cells visualized by PAS staining. Total numbers of goblet cells were related to the total length of bronchial basal membrane in the section.
C: HSA-specific IgE, IgG1, and IgG2a titers. *p#0.05, **p#0.01, ***p#0.001.
doi:10.1371/journal.pone.0020784.g003

Tregs Control CP Infection Induced Sensitization
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were not sensitized, indicating that while the Treg numbers are also

reduced in these mice, CP infection was still required as an adjuvant

for antigen sensitization to occur. These observations, while not

providing definitive proof, strongly suggest that the reduced

numbers of Tregs in TLR22/2 mice likely allowed for the

extended time window for allergic sensitization and support the

conclusion that Tregs critically regulate infection-induced allergic

sensitization.

Severe C. pneumoniae infection increases Tregs and
pDCs in the lung

In our earlier publication, we reported that dose-dependence or

infection severity was a determinant for antigen sensitization [10].

A moderate low dose infection (56105 IFU) induced antigen

sensitization, while a severe high dose infection (56106 IFU)

prevented sensitization from occurring. Given the importance of

Tregs during CP infection-induced antigen sensitization, we

investigated whether Tregs might also play an inhibitory role

during a severe (high-dose) CP infection. We infected WT mice

with either 56105 or 56106 IFU CP and examined the number of

Tregs in the lungs 5 days after infection by flow cytometry. There

was no significant change in Treg numbers in lungs between

uninfected mice and low dose infected mice at day 5 (Figure 5A).

However, we observed a dramatic and significant increase of

Tregs in the lungs of mice in the high-dose infection group,

compared to low-dose infection group and uninfected control mice

(Figures 5A, Figure S4C). We also investigated Plasmacytoid

Dendritic cells (pDCs), another cell type that plays a suppressive

role towards antigen sensitization. Like Tregs, pDCs were

significantly increased during a severe CP infection compared to

uninfected mice (Figure 5B, Figure S4D). However, the pDCs

were also increased in the low dose infection group as well,

Figure 4. TLR22/2 mice have an extended time window for CP infection induced antigen sensitization. A: Tregs were assessed in the
lungs of WT and TLR22/2 mice 10 days after low dose (56105) CP infection. Data are presented as CD4+, CD25+, FoxP3+ Tregs as percentage of total
lung cells. B–D: WT infected mice (n = 8), and TLR22/2 mice infected (n = 8) and uninfected (n = 8) were sensitized and challenged with HSA as
described in Figure 1D. Inflammation (B), Eosinophils (C) and Goblet cells (D) were scored for as before. *p#0.05, **p#0.01, ***p#0.001.
doi:10.1371/journal.pone.0020784.g004

Tregs Control CP Infection Induced Sensitization
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although not as much as with the high dose infection. For

representative flow cytometric scatterplots of Tregs and pDCs

during infection, see Figure S4E–F. Thus two suppressive cell

types towards antigen sensitization, Tregs and pDCs, were present

in greater numbers during a severe CP infection in WT mice,

compared to the moderate infection group, likely preventing

antigen sensitization.

Treg depletion allows antigen sensitization to occur
during severe C. pneumoniae infection

In order to determine if the increased Tregs in the lung during a

severe CP infection played a critical role in preventing antigen

sensitization, we depleted Tregs during the course of sensitization.

Specific depletion of Tregs was made possible by the use of the

Foxp3-specific human diphtheria toxin receptor (DTR) transgenic

mice (FoxP3-DTR-tg), in which all Foxp3 Treg cells express

human diphtheria toxin (DT) receptor (DTR) and, therefore can

be efficiently eliminated upon treatment with DT [19,20]. FoxP3-

DTR-tg mice were infected with high dose (56106 IFU) CP and

sensitized 5 days later as before. However, at one day before and

on the second day of sensitization, 1 mg of diphtheria toxin (DT),

or PBS control, was injected i.p. into the mice to selectively deplete

Tregs (Fig S1C) during sensitization. The mice were then

challenged and sacrificed as before. Lung Treg depletion was

nearly 100% one day after DT injection as shown in Figure 6A by

flow cytometry. Specific depletion of Treg cells during the

sensitization period in high-dose CP- infected FoxP3-DTR-tg

mice reversed the phenotype and allowed the high dose infection

to result in allergic sensitization with significantly increased

recruitment of eosinophils in the lungs (Figure 6B, 6D) as well as

goblet cell hyperplasia, compared to infected FoxP3-DTR-tg mice

that did not receive DT (Figure 6C, 6E). Both PBS control and

uninfected DT controls did not respond to antigen challenge.

Thus both infection and Treg depletion was required for

sensitization to occur. We isolated mediastinal lymph nodes

8 days after the conclusion of sensitization from infected and

Treg-depleted mice and restimulated the lymphocytes with HSA

and observed significantly increased IL-5 production in response

to antigen stimulation compared to control mice with undepleted

Tregs (Figure 6F). Additionally, HSA specific IgE and IgG1 were

significantly increased in the serum of the infected and Treg-

depleted mice (Figure 6G). Not surprisingly since there was a

severe intracellular infection, HSA specific IgG2a, a Th1 isotype,

was also increased in these mice (Figure 6G). Thus Treg depletion

allowed for the generation of antigen specific Th2 cells that

resulted in allergic sensitization and eosinophilic airway inflam-

mation upon restimulation with the same antigen.

pDC depletion also allows antigen sensitization to occur
during severe C. pneumoniae infection

During high dose CP infection, a condition that does not allow

allergic sensitization, we also observed significantly increased pDC

numbers in the lungs, in addition to increased number of Tregs,

compared to low-dose infection group as shown above (Figure 5B).

Given the known interaction between pDCs and Tregs [21], and

the fact that pDCs can also have a suppressive effect on allergic

sensitization [22,23], we next sought to determine if the increased

pDCs numbers in the lungs observed during high dose CP

infection may have also contributed to suppression of antigen

sensitization in this group of mice. To test this possibility, we

infected WT mice with a high dose of CP and depleted their pDCs

using a pDC-specific depleting antibody (mAb927 [24]) (Fig S1C

and Figure 7A) during the sensitization window. pDC-depletion

allowed the high-dose CP-infected mice to become sensitized

compared to non-depleted controls (Figure 7B–D). pDC-depleted

uninfected controls did not develop an allergic airway response.

Taken together, our data suggest that in addition to Tregs, pDCs

can also provide a suppressive signal preventing bacterial

pulmonary infection-induced allergic asthma sensitization in case

of high-dose infection, and that these two regulatory cell types

work in concert to regulate the temporal and dose dependent

adjuvant effects of the infection.

Figure 5. Tregs and pDCs are induced during high dose CP infection. A–C: WT mice were infected with either low dose (56105) or high dose
(56106) CP intranasally. 5 days after infection, the lungs were harvested and single cell suspensions were analyzed by flow cytometry. A: Tregs. Data
are presented as CD4+, CD25+, FoxP3+ Tregs as a percentage of total lung cells. B: pDCs. Data are presented as BST2+, B220+, CD3 CD19 CD11b- and
side scatter low as a percentage of total lung cells. *p#0.05, **p#0.01, ***p#0.001.
doi:10.1371/journal.pone.0020784.g005

Tregs Control CP Infection Induced Sensitization
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Discussion

Chlamydia pneumoniae lung infection can trigger allergic airway

sensitization against an inert inhaled antigen, and that this is depe-

ndent on the severity and timing of infection [10]. In this study, we

observed that in addition to live CP infection, UV killed CP is also

able to act as adjuvant and can trigger successful antigen

sensitization. UV killed CP provides ligands for both TLR2 and

TLR4 [11,12,13], and potentially NOD1 and NOD2 [25], which

can likely induce sensitization. Indeed, our results using LPS (TLR4

ligand) or LP2 (TLR2 ligand) are in agreement with previous studies

showing that either LPS alone or Pam3Cys could provide an

adjuvant effect towards antigen sensitization [14,26]. However, our

observation is novel as it shows that a TLR2 ligand could stimulate

antigen sensitization in the lung directly, since a previous study used

a subcutaneous route for sensitization [26]. We investigated if the

observations we made in CP and killed CP could be generalized

to other bacterial pathogens and we obtained similar allergic

sensitization by UV killed Bordetella bronchiseptica, another pathogen

that has been associated with wheezing and development of allergic

asthma in children. These observations suggest that killed bacteria

other than CP can also induce allergic sensitization, suggesting that

microbial ligands in killed bacteria are most likely able to trigger this

antigen sensitization and play an adjuvant role.

In the current study, we also sought to dissect the role of the

TLR2 and TLR4 in Chlamydia pneumoniae infection-induced allergic

Figure 6. Treg depletion allows high dose CP infection induced antigen sensitization. FoxP3-DTR tg mice received either CP+diphtheria
toxin (DT) (n = 9), CP+PBS (n = 9), PBS+DT (n = 7), or PBS+PBS (n = 7), and were sensitized and challenged with HSA as described in Figure 1E.
A: Representative flow cytometric analysis of Treg depletion the day after DT injection. B: Representative staining of lung eosinophils in CP infected
and DT treated mice. C: Representative staining of lung goblet cells in CP infected and DT treated mice. D: Total numbers of eosinophils were related
to the total area of the section. E: Total numbers of goblet cells were related to the total length of bronchial basal membrane in the section.
F: Mediastinal lymph node cells were restimulated with HSA after sensitization. Supernatants were measured for IL-5 by ELISA. G: HSA-specific IgE,
IgG1, and IgG2a titers. *p#0.05, **p#0.01, ***p#0.001.
doi:10.1371/journal.pone.0020784.g006

Tregs Control CP Infection Induced Sensitization

PLoS ONE | www.plosone.org 8 June 2011 | Volume 6 | Issue 6 | e20784



sensitization. We found that both TLR2 and TLR4 can provide

the necessary signals in the lung resulting in antigen sensitization.

However, during live CP infection, we observed that only

TLR22/2 mice, but not TLR42/2 mice could be sensitized.

Further investigation revealed a differential Treg response

between these two genotypes; TLR22/2 mice showed reduced

numbers of Tregs in the lung after CP infection, while TLR42/2

had increased numbers of Tregs. These differential Treg responses

likely explain the differential ability for allergic sensitization that

we observed between TLR2- and TLR4-deficient mice. Indeed,

depletion of Tregs in TLR42/2 mice reversed the phenotype

and allowed antigen sensitization in these mice. Furthermore,

reduced Treg numbers in TLR22/2 mice, allowed these mice to

be sensitized even at day 10 after infection, extending the time

window for antigen sensitization relative to the initial infection.

These observations show that allergen sensitization during

bacterial lung infection is regulated by CD4+ CD25+ Tregs.

It was previously reported that TLR22/2 mice have reduced

numbers of Tregs in the blood [15]. In fact, additional studies have

shown that TLR2 is critical for expansion, survival, and proper

function of Tregs [16,27,28]. These studies provided us with a

possible explanation for the differences we saw in sensitization

between TLR22/2 and TLR42/2 mice. Indeed, we found

similarly reduced numbers of Tregs in the lungs of TLR22/2

mice. Strikingly, we also found that at the time of sensitization

(5 days after infection), TLR42/2 mice actually had much

greater numbers of Tregs than TLR22/2 or WT mice. To our

knowledge, this is the first report of increased Treg numbers in

TLR42/2 mice during a pulmonary infection. Some recent

studies indicate that TLR4 and TLR2 might have differential

effects on Treg numbers. Zhang et al showed that TLR42/2

mice had increased islet allograft survival due to the presence of

Tregs [29]. While another group found that TLR4 signaling

impaired the expansion of Tregs during a fungal infection [30].

Finally, TLR22/2 and TLR42/2 mice were found to have

opposite phenotypes in a spontaneous model of murine arthritis

[31]. In that study, TLR22/2 mice had reduced FoxP3

expression, greater IL-17 expression, and increase arthritis

severity, while TLR42/2 mice had a lesser severity of arthritis,

and lowered IL-17 expression. Taken together, it is clear that TLR

signaling can have a profound effect on the Treg compartment of

the immune system.

The observation that a severe (high dose) CP infection prevents

antigen sensitization was partially attributed to poor DC

trafficking to the regional lymph nodes and a greater Th1

response with high dose infection [10]. However, in this study, we

also found the numbers of two suppressive cell types, Tregs and

plasmacytoid dendritic cells, were present in the lung in much

greater numbers during the severe infection. It is not surprising

that the numbers of Tregs would increase during the more severe

Figure 7. pDC depletion allows high dose CP infection induced antigen sensitization. A–D: WT mice received either CP+mAB 927 (n = 9),
CP+IgG control (n = 8), PBS+mAB 927 (n = 10), or PBS+IgG control (n = 8), and were sensitized and challenged with HSA as described in Figure 1E.
A: Representative flow cytometric analysis of pDC depletion the day after mAB 927 injection. pDCs are indicated in the gated population.
Inflammation (B), Eosinophils (C) and Goblet cells (D) were scored for as before. *p#0.05, **p#0.01, ***p#0.001.
doi:10.1371/journal.pone.0020784.g007
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infection, as one of the purposes of Tregs is to dampen the effects

of an over-exuberant immune response [32]. While pDCs are

known to play an important role in anti-viral responses, they have

also been linked to the activation of Tregs [21,33]. Indeed,

depletion of either cell type during severe pulmonary CP infection

resulted in restoration of the antigen sensitization phenotype

despite the increased Th1 response. Interestingly, the depletion of

pDCs during the severe infection did not alter the numbers of

Tregs in the lung or draining lymph node (data not shown),

indicating that the pDCs suppressive effects were either mediated

by influencing the activity of the Tregs, or by some other

mechanism. These observations are consistent with prior studies,

where the depletion of either Tregs or pDCs in various non-

infectious asthma models has resulted in an increased asthma

response [22,23,34,35].

While most studies of pulmonary bacterial infections and

asthma are directed towards exacerbation, our investigations have

been directed towards the development phase of the disease.

Several other groups have investigated the role of bacterial

infections on antigen sensitization, looking at Chlamydia muridarum,

Streptococcus pneumoniae, or Porphyromonas gingivalis as their infection

models [36,37,38]. However, all these models employ antigen

sensitization via the intraperitoneal route using an adjuvant such

as alum, and then examine the effects of bacterial infection on that

sensitization. We have chosen to examine the infection itself as the

potential adjuvant and have found, depending on the severity and

timing of the infection, that the same infection can induce or

suppress antigen sensitization. Prevention of C. pneumoniae infection

by vaccination, especially at early ages, might prevent unwanted

allergic sensitizations and the development of asthma. Thus the

development of a C. pneumoniae vaccine could be a desirable

endeavor (with other potentially beneficial effects, such as towards

COPD and atherosclerosis). At early ages children acquire both

bacterial and viral infections and it is of critical importance to

understand the potential mechanisms of antigen sensitization that

might result in the development of asthma. It is logical that Tregs

play such an important role during sensitization and while a

pulmonary bacterial infection can provide an adjuvant effect, that

same infection can result in reduced or greater numbers of Tregs,

which may ultimately control whether allergic sensitization occurs

or not.

Materials and Methods

Ethics Statement
All animal experiments were performed according to the

guidelines and approved protocol (IACUC Protocol #2097) of

the Cedars-Sinai Medical Center Institutional Animal Care and

Use Committee. Cedars-Sinai Medical Center is fully accredited

by the Association for Assessment and Accreditation of Laboratory

Animal Care (AAALAC International) and abides by all applicable

laws governing the use of laboratory animals. Laboratory animals

are maintained in accordance with the applicable portions of the

Animal Welfare Act and the guidelines prescribed in the DHHS

publication, Guide for the Care and Use of Laboratory Animals.

Mice
C57BL/6 mice 8 to 12 weeks of age were used throughout the

study and were housed under specific pathogen free conditions

[10]. In some studies, C57BL/6 mice were acquired from Jackson

Labs (Bar Harbor, ME), while in others, WT littermate controls

were used. TLR22/2 and TLR42/2 mice (provided by Shizuo

Akira, Osaka, Japan) were backcrossed to C57BL/6 background

for at least 8 generations and bred at our facility. FoxP3-DTR-tg

mice were acquired from Alexander Rudensky (Sloan-Kettering

Cancer Center, NY) and were backcrossed to C57BL/6

background for at least 8 generations.

Infection with C. pneumoniae
Chlamydia pneumoniae CM-1 (ATCC, Manassas, VA) was

propagated in HEp-2 cells as previously described [11]. HEp-2

cells and C. pneumoniae stocks were determined to be free of

Mycoplasma contamination by PCR. Mice were intranasally

infected with C. pneumoniae by inoculating with 40 ml of PBS

containing either 56105 or 56106 IFU of the microorganism.

Allergen sensitization and assessment of eosinophilic
airway inflammation

Human serum albumin (HSA) (low endotoxin, Sigma, St Louis,

Mo) was used as an antigen throughout the study as described

earlier [10] in order to reduce the possibility of LPS contamination

[39]. HSA on its own does not induce allergic airway sensitization

and is completely inert [10,39]. Mice previously infected with C.

pneumoniae received 100 mg of HSA in PBS (sensitization) intra-

nasally on 3 consecutive days, starting at various time points after

infection, as indicated in the text and figures (Fig S1). Control

groups received PBS only. On days 15, 16, 19, and 20 after initial

sensitization, mice were re-exposed to 25 mg HSA (challenge)

intranasally as above. Mice were sacrificed on day 21 and sera and

lungs were harvested. The right lobes of the lungs were fixed in

10% formalin, and paraffin-embedded and hematoxylin and

eosin–stained sections were evaluated. The degree of inflammation

was scored by a blinded pathologist, as described previously [11].

Goblet cells were detected by means of periodic acid–Schiff

staining. For assessment of eosinophilic airway inflammation, the

left lobe was fixed in PBS/2% paraformaldehyde/0.2% picric

acid, and 7 mm cryosections were prepared. Eosinophils were

detected by means of eosinophil peroxidase– specific staining, as

described previously [40]. Data were expressed as the number of

eosinophils per square millimeter lung section, as well as the

number of goblet cells per millimeter of bronchial basal membrane

using Image Pro Plus 5.1 Software (Media Cybernetics, Bethesda,

MD) to measure the lung area and the bronchial basal membrane

length respectively as reported previously [10]. For some

experiments, mice were sensitized with HSA plus LPS (100 ng: a

protein-free preparation derived from Escherichia coli K235, kindly

provided by S.N. Vogel, University of Maryland, Baltimore, MD),

Pam2Cys lipopeptide (100 ng: EMC microcollections, Tübingen,

Germany). In some experiments, 1 mg diphtheria toxin (Sigma,

MO) was injected i.p. twice, one day before sensitization and on

the second day of sensitization, to deplete Tregs in FoxP3-DTR-tg

mice. In other experiments using TLR4-deficient mice, 100 mg

PC61 antibody (BioLegend, San Diego, CA) was injected i.p. into

mice one day before sensitization to deplete Tregs. One injection

could deplete Tregs for at least 4 days [10]. For other experiments,

500 mg mAB 927 (pDC depleting mAB 927 was provided to us by

Marco Colonna, Washington University, MO) [24] was injected

i.p. twice, one day before sensitization and on the second day of

sensitization, to deplete pDCs in mice. Rat IgG from serum was

used as antibody controls (Sigma, MO).

Flow cytometry
Total lung cell preparations from mice infected with C.

pneumoniae were prepared by digesting lungs with 100 mg/mL

Blendzyme 3 (Roche, Mannheim, Germany) and 20 mg/mL

DNAseI (Roche). Cell suspensions were prepared as published

earlier [10]. Numbers of pDCs in the lungs were identified as
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CD11b CD3 CD19 negative, and B220 BST2 positive. Treg cells

in the lungs were identified as CD4 CD25 FoxP3 positive. Bone

marrow dendritic cells were identified as CD11b CD11c positive

and F4/80 negative. CD11b PerCP Cy5.5, CD11c E450, CD19

PE-Cy5, CD3 PE-Cy5, CD4 PE-Cy5, B220 PE, FoxP3 PE, F4/80

APC, and CD25 FITC were all purchased from eBioscience (San

Diego, CA). 120g8 APC (BST2) was purchased from Imgenex

(San Diego, CA). Surface expression of CD80 and CD86 on

BMDCs was determined using flow cytometry. CD80 FITC and

CD86 FITC were purchased from eBioscience. Flow cytometric

analysis was performed using a FACScan flow cytometer (BD

Biosciences, San Jose, CA), or a CYAN flow cytometer (Dako,

Carpinteria, CA) and the data was analyzed using Summit (Dako,

Carpinteria, CA, USA).

Determination of HSA-specific immunoglobulins
HSA-specific immunoglobulins were determined as described

previously [10]. Details are provided in the On Line Repository

for this article.

UV Inactivation of Bacteria
For UV-inactivation, chlamydial suspensions were placed under

a UV lamp (15 W at 30 cm) for 15 min. UV-inactivation was

confirmed by subculturing of treated bacteria in HEp-2 cells.

Bordetella bronchiseptica (provided by Dr. Jeff Miller, UCLA, CA) was

UV-inactivated as above.

Bone marrow–derived DCs
Bone marrow–derived dendritic cells (BMDCs) were generated

by incubating bone marrow cells with 10 ng/ml recombinant

mouse GM-CSF (Biosource, Bethesda, MD) for 6 days, with

medium changes at days 3 and 5. DCs were harvested at day 6

and purified with CD11c microbeads, as described above. Purity

was assessed by means of flow cytometry was routinely around

98%.

Cytokine detection
26105 mediastinal lymph node cells were stimulated with HSA

(200 mg/ml) for three days and supernatants collected. IL-5 levels

were determined by ELISA (eBioscience). BMDCs were incubated

with either CP, LPS (InvivoGen, San Diego, CA), or LP2

(Pam2CSK4) (InvivoGen), and supernatants collected. Levels of

IL-6 were determined by ELISA (BD Biosciences).

Determination of HSA-specific immunoglobulins
For HSA-specific IgG1 and IgG2a titers, plates were coated

with 50 mg/mL HSA overnight, followed by blocking with PBS/

1% BSA at 37uC for 30 minutes. Plates were incubated with

serum samples diluted in PBS/1% BSA at 37uC for 90 minutes,

followed by detection of bound immunoglobulin with biotinylated

anti-mouse IgG1 and IgG2a antibodies, respectively (BD Biosci-

ences), and streptavidin (eBioscience). For HSA- specific IgE, HSA

was biotinylated with the FluoreporterBiotin-XX kit (Invitrogen,

Carlsbad, CA). Plates were coated with anti-mouse IgE antibody

(BD Biosciences), blocked with BSA, and incubated with serum

samples. Bound HSA-specific IgE was detected by using

biotinylated HSA and streptavidin-HRP. As a standard, pooled

sera from mice immunized with HSA plus LPS was used and set

arbitrarily at 1.0 U/ml.

Statistical analyses
Independent experiments were conducted at least in triplicate,

except as otherwise noted. Data are reported as mean values

6SEM and compared by using 2-tailed unpaired Student’s t test.

For multiple comparison test, statistical significance was evaluated

by one or two-way ANOVA with Tukey’s post-hoc test where

appropriate. A p value of less than 0.05 was required to reject the

null hypothesis.

Supporting Information

Figure S1 Sensitization and challenge protocols. A:
CPUV protocol. Starting with day 0, groups of mice received

intranasal injections of 100 mg HSA with or without 16106 UV-

inactivated CP on 3 consecutive days (or LPS, or LP2). Control

groups received HSA plus a mock extract of HEp-2 cells or CPUV

only. At day 15, mice received 4 intranasal injections of 25 mg

HSA. A control group received PBS. Mice were sacrificed 24 h

after the final challenge. B: CP infection protocol. At day 25

either 56105 or 56106 IFU CP were injected intranasally to mice.

5 days later the mice were sensitized, challenged, and sacrificed as

above. C: Depletion protocols. At day 25 either 56105 or

56106 IFU CP were injected intranasally to mice. Either

diphtheria toxin, mAB 927, or mAB PC61 were injected i.p. into

mice on the days indicated to deplete Tregs, plasmacytoid

dendritic cells, and Tregs respectively. The mice were sensitized

and challenged as before.

(TIF)

Figure S2 UV-killed Bordetella bronchiseptica (BBUV)
induces airway allergic sensitization to human serum
albumin (HSA). Mice were sensitized as indicated in Figure

E1A. A: Inflammatory scores of H&E stained lung sections of mice

after sensitization and challenge. B: BBUV-sensitized (n = 15) and

PBS control (n = 9) eosinophil numbers per lung section area

(mm2), representative peroxidase-stained sections (100-fold mag-

nification) are shown. C: BBUV-sensitized (n = 9) and PBS control

(n = 5) goblet cell numbers per basal membrane length (mm),

representative periodic acid-Schiff-stained sections (100-fold mag-

nification) are shown. D: HSA-specific IgE, IgG1, and IgG2a

relative titers. *p#0.05, **p#0.01, ***p#0.001.

(TIF)

Figure S3 Innate immune responses in TLR knockout
BMDCs. A: IL-6 expression in BMDCs from wild type,

TLR22/2, TLR42/2, and MyD882/2 mice. DCs were

infected with CP (MOI = 2.5), or exposed to CPUV (MOI2.5),

LPS (100 ng/ml), or LP2 (100 ng/ml) for 24 hr. IL-6 was

measured by ELISA in the supernatants. B: Up-regulation of

costimulatory molecules on BMDCs from wild type, TLR22/2

and TLR42/2 mice. DCs were infected with CP (MOI = 2.5)

and expression of CD80 and CD86 were determined by FACS

after 24 h. Shown are data from uninfected controls (bold line),

infected cells (dotted lines), and isotype controls (in grey).

(TIF)

Figure S4 Quantization of Tregs and pDCs in the lung.
A: The total number of lung Tregs in wild type, TLR22/2, and

TLR42/2 uninfected and CP-infected mice. Wild type,

TLR42/2, and TLR22/2 mice (n = 3–6 per group) were

inoculated with 56105 IFU of CP. 5 days after inoculation, mice

were sacrificed, lung leukocyte preparations were generated and

analyzed for the presence of CD4+, CD25+, Foxp3+ Tregs by

flow cytometry. B: Tregs were assessed in the lungs of WT and

TLR22/2 mice 10 days after low dose (56105) CP infection.

Data are presented as the total count of CD4+, CD25+, FoxP3+
Tregs in the lung. C–F: WT mice were infected with either low

dose (56105) or high dose (56106) CP intranasally. 5 days after

infection, the lungs were harvested and single cell suspensions were
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analyzed by flow cytometry. C: Tregs. Data are presented as total

count of CD4+, CD25+, FoxP3+ Tregs in the lung. D: pDCs.

Data are presented as BST2+, B220+, CD3 CD19 CD11b- and

side scatter low as a total pDC cell count in the lung. E–F:
Representative Flow cytometric scatter plots for Tregs and pDCs

in mouse Lungs during CP infection. E: Tregs. Data are presented

as CD4+, CD25+, FoxP3+ Tregs. F: pDCs. Data are presented as

BST2+, B220+, CD3 CD19 CD11b- and side scatter low.

*p#0.05, **p#0.01, ***p#0.001.

(TIF)
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