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ABSTRACT OF THE DISSERTATION

Wilcoxon Rank Sum Tests to Detect One-Sided Mixture Alternatives in Group
Sequential Clinical Trials

by

Dylan Campbell Friel

Doctor of Philosophy, Graduate Program in Applied Statistics
University of California, Riverside, June 2022

Dr. Daniel R. Jeske, Chairperson

Group sequential clinical trials offer administrative, economic, and ethical benefits over fixed

sample methods when testing a treatment versus control. Traditional methods based on the

assumption that the treatment distribution is a pure shift of the control distribution may not

always hold. The possibility that an individual from the treatment group may not respond

to the treatment motivates the use of a mixture distribution for the treatment group. This

work considers two test procedures based on the Wilcoxon Rank Sum statistic for a group

sequential design to detect the one-sided mixture alternative. Error spending functions are

used for the allocation of error rates at each stage. The two tests are evaluated individually

in determination of critical values and arm sizes and asymptotic multivariate normality is

shown to hold for both. Upon comparison, the tests are presented to be asymptotically

equivalent. Both test statistics maintain the Type I error rate even if F is misspecified in

the design alternative. A more general definition of the treatment effect is used with the

mixture distribution. Various estimators for the treatment effect are evaluated.
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Chapter 1

Introduction

The setting of this work is that of testing a new treatment versus a control. This

may be most simply thought of as developing a new drug to compete with a known drug on

the market. Clinical trials are a popular and effective process used to perform these tests

while ensuring safety of the participants and general population. Group sequential clinical

trials take these ideals a step further by allowing the possibility of terminating a trial early

for either efficacy or futility.

Traditional methods of evaluating a treatment versus control assume that the

treatment effect should be represented by an additive shift of the control distribution. In

this pure shift situation, all treated individuals have responses that come from the shifted

distribution. However, this may not always be the case. The proposed methodology seeks

to combine these and bring a nonparametric test into the realm of group sequential clinical

trials with mixture alternative.
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1.1 Background

1.1.1 Clinical Trials

Clinical trials are a prominent procedure used in experiments to test the efficacy

of a new treatment. The steps are deliberate and aim to obtain meaningful results in a

prompt yet safe manner, even testing on animals before moving to humans. With the move

to testing on humans, the trials enter the first of (at least) three phases. The purpose of

Phase I is to establish an appropriate dosage as well as determine the toxicity of a treatment.

At this early stage, the small number participants are usually healthy volunteers. Phase

II begins the first treatment of diseased patients and analysis of efficacy of the treatment.

The number of participants is limited. Phase III is further investigates the efficacy of the

treatment and allows many more individuals to participate in the trial. Upon completion

of the phases, a final decision may be made about the efficacy of the treatment.

Planning is an essential component in the implementation of clinical trials. This

has not only administrative but also statistical benefits. Statistically, it needs to be deter-

mined the treatment effect size the experimenters are trying to detect in order to formulate

the appropriate hypotheses. Then a suitable test statistic can be chosen from which we

would calculate the sample size necessary to detect the alternative hypothesis with a speci-

fied amount of power. These sample size calculations are an important part of planning an

experiment to ensure the test has sufficient power to detect a difference in the control and

treatment groups. This paper will focus on scenarios where the size of the groups are equal.

A common model used for representing a difference between control and treatment

is the location-shift model. In this setting, the control group has some density f(x) with

2



Figure 1.1: A normal density centered at µ then shifted by parameter δ.

center µ. Then the treatment group has the density g(x) = f(x−δ). The parameter δ shifts

the density from its center at µ to the new center µ+δ. The shape and spread of the density

remain unchanged. Figure 1.1 shows a simple example using the normal distribution where

the original density is N(µ, σ2) is shifted by δ to become N(µ+ δ, σ2).

This paper will focus on scenarios where a treatment provides improvement over

a control. Without loss of generality, the hypotheses will be designed as upper one-sided

tests to correspond to larger values exhibiting an effective improvement. In our location

shift setting, this will be represented by δ > 0. Two-sided tests would look to show that

a treatment does better or worse than the control. A lower one-sided test may be used to

determine that a treatment performs at least as well as the control.

Here, we provide a simple example of a test procedure to detect a location-shift.

In the fixed sample setting under normal theory, we have a control group X1, . . . , Xm
iid∼

N(µX , σ
2) and a treatment group Y1, . . . , Ym

iid∼ N(µY , σ
2) where σ2 is known. In order

to test whether the treatment is an improvement over the control, we can use a simple

3



difference of two means test using the following hypotheses:

H0 : µY − µX = 0

HA : µY − µX > 0 (1.1)

If we believe the treatment group is a location-shift of the control group then we can rewrite

the setup as X1, . . . , Xm
iid∼ N(µ, σ2) and Y1, . . . , Ym

iid∼ N(µ + δ, σ2) with the hypotheses

that more clearly represent what is being tested:

H0 : δ = 0

HA : δ > 0 (1.2)

When σ2 is known, the difference of two means test statistic is

Z =
1√

2mσ2

(
m∑
i=1

Yi −
m∑
i=1

Xi

)
=

√
m

2σ2
(Y −X) (1.3)

where Z ∼ N(δ
√

m
2σ2 , 1). We will reject the null hypothesis when Z > zα for a specified

Type I error α.

In order to prepare to detect the desired difference for the above test, we can

determine the necessary sample size with the specified δ, α, and power (1− β) using

m =
2σ2(Φ−1(1− α) + Φ−1(1− β))2

δ2
(1.4)

4



where Φ(u) is the cumulative distribution function (CDF) of the standard normal distribu-

tion. Note that we can define δ = Kσ, then K is the size of the shift in terms of σ. When

using this formulation, Equation (1.4) does not depend on σ.

1.1.2 Wilcoxon Rank Sum

The difference of two means test works well but requires the experimenter to have

(or assume they have) normal data. When the distribution of the data is unknown and the

sample size is small, it would not be appropriate to use the above test.

If the distribution of the data is known to be non-normal or the distribution of the

data is unknown then it would be recommended to use a nonparametric test. Nonparametric

test statistics offer an alternative option to the same or similar hypotheses as parametric

test statistics while forgoing specific distributional assumptions. A trade-off from requiring

less assumptions is the test may have slightly less power than its parametric equivalent [4].

For the location-shift setting, the Wilcoxon Rank Sum test is the recommended

nonparametric test [4, 24]. We keep the independent and identically distributed assumptions

for the observations within groups and the independence assumption between groups. The

only assumption we make for the properties of the distributions are that they are continuous.

The samples areX1, . . . , Xm
iid∼ F and Y1, . . . , Ym

iid∼ G and the null hypothesis isH0 : F = G

or H0 : F (u) = G(u) for all u.

5



Figure 1.2: An example where G(u) ≤ F (u) for the CDFs F and G. If X ∼ F and Y ∼ G,
then we may say that Y is stochastically larger than X.

The Wilcoxon Rank Sum test is designed for the general alternative hypothesis.

In the one-sided case, this is represented by either of the following:

HA : F (u) ≤ G(u) for all u or HA : F (u) ≥ G(u) for all u

F (u) < G(u) for some u F (u) > G(u) for some u

The case of G(u) ≤ F (u) for all u and G(u) < F (u) for some u, shown in Figure 1.2, may

also be described by saying that Y is stochastically larger than X. Simply, it is the setting

where values of Y tend to be larger than values of X.

6



Thus, the location-shift model where Y = X + δ for some δ > 0 is a subset of this

scenario. We can write our hypotheses to show this in our test with

H0 : G(u) = F (u) for all u

HA : G(u) = F (u− δ) for all u and some δ > 0

(1.5)

or as in Equation (1.2) above, clearly showing this test can be used for the same hypotheses

as used for the difference of two means test.

In order to implement the Wilcoxon Rank Sum test, let Ri be the rank of Yi in

the combined group of the X’s and Y ’s. Then the test statistic is

W =
m∑
i=1

Ri (1.6)

and we will reject when W > wα. The exact distribution of W can be determined relatively

easily for small sample sizes, but can require much computation for larger sample sizes.

There are
(

2m
m

)
possible arrangements of the X’s and Y ’s.

The distribution of W is known to be asymptotically normal for large m [4].

Using the mean, m(2m+1)
2 , and variance, m2(2m+1)

12 , of W for equal sample sizes under the

null hypothesis, then

W −m(2m+ 1)/2

m2(2m+ 1)/12

d→ N(0, 1) (1.7)

With the normal approximation, we are able to calculate a sample size N = m+m

for the above test. Let p = P (X < Y ) and m = cN , where in the equal sample size case

7



c = 1/2. Then for a specified α and Type II error β we find the upper zα and zβ quantiles

of the standard normal distribution. Finally, the sample size for detecting the alternative

corresponding to p can be calculated as

N =
(zα + zβ)2

12c(1− c)(p− 1
2)2

(1.8)

When using the normal approximation, the experimenter may apply a continuity

correction to their test statistic. This may be desired since the distribution of W is discrete,

while the normal distribution is continuous.

The asymptotic relative efficiency (ARE) is a measure of comparison between two

statistics. An ARE of one signifies the tests perform equivalently, a value less than one

indicates worse performance, and greater than one indicates better performance. In the

case of testing a location-shift, a possible parametric test would be the two-sample t test.

It is known that the ARE when comparing the Wilcoxon Rank Sum test to the two-sample

t test is never lower than 0.864. The interpretation of this value is that the Wilcoxon Rank

Sum test has at worst 86.4% of the performance of the two-sample t test. The ARE when

comparing these two tests is even closer, 0.955, when the distribution of the data is normal.

There are even situations when the Wilcoxon Rank Sum test outperforms the t test. Two

examples of this occur when the distribution has heavier tails. If the distribution is logistic,

then the ARE is 1.09, and if it is Laplace, then the ARE is 1.50 [4].
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1.2 Mixture Models and Nonresponders

We know that a treatment will not have the same effect on all individuals, and

this is represented by the variance of a distribution. However, the possibility that an

individual is unaffected by the treatment is not truly present in the location-shift model.

Good [5] and Boos and Brownie [1] both show instances of “nonresponders” to a given

treatment. Here, nonresponders are individuals that have been given the treatment and were

unaffected by it. If an individual is not responding to the treatment, they are considered

as those who did not receive the treatment. Therefore, they have responses that come

from the same distribution as the control group responses. Good [5] introduces the idea

of the treatment distribution being a combination of responders and nonresponders. The

proportion of nonresponders is considered unknown, and with their existence, the treatment

distribution will be represented by a mixture of the control distribution and a location shift

applied to the control distribution.

A mixture distribution can be thought of a as population that is made of subpop-

ulations [11]. When observing the data, we wish to record both the variable of interest, X,

and its subpopulation, V , such that we have the pair (Xi, Vi) for the ith individual from

the sample, i = 1, . . . ,m. Let µv be a parameter with value specific to the vth distribution.

If the subpopulation from which an observation comes is known then

P (X = x|V = v) = f(x;µv) (1.9)
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However, in practice the subpopulation may be unknown. Let the probability that

an observation comes from the vth population be P (V = v) = θv such that θv ≥ 0 and∑
v θv = 1. Then the joint distribution of (X,V ) is

P (X = x, V = v) = P (X = x|V = v)P (V = v) = f(x;µv)θv (1.10)

Finally we consider all the possible subpopulations, and the mixture distribution

comes together as

h(x;θ,µ) =
∑

P (X = x|V = v)P (V = v) =
∑

θvf(x;µv) (1.11)

For the simple two-component mixture model, let f and g be the densities of the

two subpopulations with probabilities (1 − θ) and θ, respectively, θ ∈ (0, 1). If X is a

random variable from this mixture distribution then we may write

X ∼ (1− θ)f + θg (1.12)

as a simpler alternative to Equation (1.11). A possible instance of this two-component

scenario is pictured in Figure 1.3.

The two-component mixture model is introduced by Good [5] as the distribution

for the treatment population. Using Figure 1.3, we may have f as the density of the control

group and g as the shift of f . Then θ represents the proportion of responders who come from

10



Figure 1.3: A mixture density where the observations could come from subdensity f or
subdensity g with θ = 0.7.

the shifted component while the nonresponders come from subdensity f with proportion

(1− θ).

When under the false assumption that all individuals in the treatment group will

respond to the treatment, the test will be underpowered. The sample size required to detect

an alternative that has nonresponders is larger than the sample size needed for the pure

shift alternative. As seen in Figure 1.4, the difference between the required sample sizes

grows quickly as the proportion of nonresponders increases.

1.2.1 Parametric Test

Under normal theory, we sample X1, . . . , Xm from the control group distribution,

F ≡ N(µ, σ2) and Y1, . . . , Ym from the treatment population whose distribution is G ≡

11



Figure 1.4: Arm size needed to detect a shift as θ increases, all else held equal.

(1 − θ)N(µ, σ2) + θN(µ + δ, σ2). The assumptions in place are that all observations are

independent, σ2 is known, µ ∈ (−∞,∞), δ > 0, and θ ∈ (0, 1). We now write the hypotheses

as

H0 : F = G

HA : F ≥ G(u) for all u, F > G(u) for some u (1.13)

where G(u) = (1− θ)F (u) + θF (u− δ). For this test, one can use the same test statistic as

above for the pure location-shift alternative under normal theory seen in Equation (1.3).

Under the null hypothesis, the test statistic will have the standard normal distri-

bution. Therefore, we will reject the null hypothesis if the test statistic is larger than the

upper α quantile of the standard normal distribution. Under the alternative hypothesis for
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large m, the test statistic is asymptotically distributed as

N

(
θδ

√
m

2σ2
, 1 +

θ(1− θ)δ2

2σ2

)
(1.14)

We can then find the necessary arm size required to detect the alternative for specified θ, δ,

Type I error α, and Type II error β. Let zα and zβ be the upper α and upper β quantiles

of the standard normal distribution, respectively. Then the arm size is

m =
(
√

2zα +
√

2 + θ(1− θ)(δ/σ)2zβ)2

θ2(δ/σ)2
(1.15)

1.2.2 Nonparametric Test

Jeske and Yao [9] investigated the use of the Wilcoxon Rank Sum test statistic

with a mixture alternative. Moving out of normal theory and into nonparametrics means

we will sample from some continuous density so X1, . . . , Xm ∼ F and Y1, . . . , Ym ∼ G. The

hypotheses will be the same as above, i.e. we are testing if G(u) = (1− θ)F (u) + θF (u− δ).

They use the standardized test statistic

Z =
W −m(2m+ 1)/2√
m2(2m+ 1)/12

(1.16)

where W is the Wilcoxon Rank Sum test statistic. Since the null hypothesis and test

statistic are the same as the standardized Wilcoxon Rank Sum test statistic for the pure

location-shift alternative, this test statistic has an asymptotic standard normal distribution

for large m under H0.
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Jeske and Yao state that under the mixture alternative, the test statistic has the

following limiting normal distribution

√
2m

m2

(
W − (m(mγ(F,G) + (m+ 1)/2))

)
d→ N

(
0,
ξ1(F,G)

λ
+
ξ2(F,G)

1− λ

)
(1.17)

where

γ(F,G) = P (X1 < Y1) ξ1(F,G) = P (X1 < Y1, X1 < Y2)− γ2(F,G)

λ = lim
(2m)→∞

m/(2m) < 1 ξ2(F,G) = P (X1 < Y1, X2 < Y1)− γ2(F,G)

With the mixture alternative G(u) = (1 − θ)F (u) + θF (u − δ), they rewrite

γ(F,G) ≡ γ(θ, δ, F ), ξ1(F,G) ≡ ξ1(θ, δ, F ), and ξ2(F,G) ≡ ξ2(θ, δ, F ). Using the asymp-

totic distribution, Jeske and Yao [9] show that the formula for determining the sample size

necessary to detect the mixture alternative is

m =

(
zα
√

(ρ+ 1)/12ρ+ zβ
√
ξ1(θ, δ, F ) + ξ2(θ, δ, F )/ρ

γ(θ, δ, F )− 1/2

)2

(1.18)

where ρ is the ratio of the arm sizes. In the scenario where the arm sizes are equal, the

above equation simplifies to

m =

(
zα/
√

6 + zβ
√
ξ1(θ, δ, F ) + ξ2(θ, δ, F )

γ(θ, δ, F )− 1/2

)2

(1.19)
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K
θ 0.25 0.5 0.75 1.0

0.5 730 189 89 54
0.6 507 131 62 37
0.7 372 96 45 27
0.8 285 73 34 20
0.9 225 58 27 16
1.0 182 46 21 13

Table 1.1: Standardized Logistic fixed sample sizes for α = 0.05 and 80% power; δ = Kσ.

In Table 1.1, we see arm sizes needed for various combinations of θ and shift size

using the Wilcoxon Rank Sum test statistic with a mixture alternative as determined by

Equation (1.19). The change in the required sample size depending on θ is easily seen,

highlighting the importance of using the mixture alternative when appropriate.

Jeske and Yao [9] focus on location-scale families where the CDF Ψ(u) has zero

mean and unit variance and the corresponding density function is ψ(u). Then the X

observations have the distribution F (u) = Ψ((u−µF )/σF ) and could be equivalently defined

as X = µF + σFZ, where Z ∼ Ψ. In this way, µF and σF can be interpreted as the mean

and standard deviation for any choice of F . The treatment group may then be written as

Y = (1− θ)[µF + σFZ] + θ[µF + δ + σFZ].

1.3 Group Sequential Clinical Trials

Group sequential clinical trials further break down a phase from a clinical trial into

several more stages. Instead of doing a single fixed sample experiment, data is analyzed at

a preset number of times during the study. It is common for the study to have 2-5 stages.

New individuals are recruited for each stage. For the first stage, a test statistic is calculated
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and used to determine whether the null hypothesis should be rejected, accepted, or if there

is not enough evidence to reject/accept and the experiment should continue to the next

stage. At each stage after the first, a test statistic is calculated based on the observations

gathered at the current stage as well as all previous stages. Then the decision of whether

to reject, accept, or continue the experiment is made. At the final stage, there is only

the decision to reject or accept the null hypothesis. It is common in this setting to use

the “accept” terminology instead of “fail to reject” in regard to the null hypothesis in this

setting.

Implementing group sequential methods provides several benefits over fixed sample

experiments. If the treatment turns out to be unsafe for patients, the experiment may be

ended at an early stage with fewer participants exposed. Even if the treatment is not

unsafe but there is early evidence that it is not effective, the trial may end earlier than

fixed sample methods. This would allow research to move in a new direction to discover

a treatment that is effective. On the other hand, if there is evidence that the treatment

is particularly effective, it may get released to the public sooner. These ethical benefits of

early stopping are accompanied by economical benefits. Ending at an early stage would

mean less costs are wasted if the treatment is ineffective and money could be earned sooner

if it is effective. Finally, evaluation at several points throughout the study means it may be

closely monitored to ensure everything is operating as planned.

The setup for the group sequential hypothesis tests will be the same as the fixed

sample setting except for there will be 2mS observations in total where m is the arm size

for each group per stage and S is the total number of stages. The potential control group
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sample is X1, . . . , XmS and the potential treatment group sample is Y1, . . . , YmS . Because

the number of stages is random, it is possible that not all potential observations will be

realized.

To illustrate the group sequential trial testing procedure, we may consider a case

where the treatment group observations come from a pure shift of the control group distri-

bution. An example test statistic could be the following

Zs =
1√

2msσ2

(
ms∑
i=1

Yi −
ms∑
i=1

Xi

)
(1.20)

where S is the total number of stages and s = 1, . . . , S.

In this setting, we may reject when the test statistic is larger than an upper critical

value or fail to reject if the test statistic is smaller than a lower critical value. This could

happen at any stage and would end the experiment early if it happens at a stage prior to

stage S. Seen in Figure 1.5, the critical values r1, . . . , rS−1, a1, . . . , aS−1, and u need to be

determined. Here, the ri’s, i = 1, . . . , S − 1, represent the upper critical values at which

we would reject the null hypothesis, the ai’s, i = 1, . . . , S − 1, represent the lower critical

values at which we would accept the null hypothesis, and u is the critical value for the final

stage. After stage s = 1, . . . , S − 1, we make the following comparisons and corresponding

17



Figure 1.5: An example of the critical values for the test statistic of a 4-stage group sequen-
tial trial.

decisions

if Zs ≥ rs reject, end experiment (1.21)

if Zs ≤ as accept, end experiment (1.22)

otherwise continue to next stage (1.23)

After stage S

if ZS ≥ u reject, end experiment (1.24)

if ZS < u accept, end experiment (1.25)

18



The critical values are found using both the Type I error (α) and Type II error

(β) set by the experimenter at the beginning of the study and the joint distribution of

(Z1, . . . , ZS) under both the null and alternative hypotheses. The Type I and Type II

error should be decided for the overall experiment as well as per stage. There are various

ways to split the per stage Type I and Type II error. We will use error spending functions

established by Jennison and Turnbull [8].

We define functions f(t) and g(t) to set the Type I and Type II errors at each

stage, respectively. These nondecreasing functions are chosen such that they are equal to

zero for t = 0 and f(t) = α and g(t) = β for t ≥ 1. Following Jennison and Turnbull, we

have

f(t) = min(α, αtρ) g(t) = min(β, βtρ) (1.26)

for t ∈ (0, 1) and ρ > 0. With equal increases in the arm sizes, t is defined at stage s as

ts = s/S. The experimenter may choose ρ = 1 for equal spending at each stage and larger

ρ to have smaller Type I and Type II error for early stages. Values such as ρ = 2 or ρ = 3

may be a desired strategy in order to make it more likely to avoid an early false positive or

false negative.

The resulting Type I and Type II errors for each stage are calculated as follows

α1 = f(t1) β1 = g(t1) (1.27)

αs = f(ts)− f(ts−1) βs = g(ts)− g(ts−1) (1.28)
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where s = 2, . . . , S. Then the overall Type I and Type II errors for the entire study are

α =
∑S

s=1 αs and β =
∑S

s=1 βs

Once the desired Type I and Type II errors are set, the critical values are found

using the joint distribution of (Z1, . . . , ZS) under both the null and alternative hypotheses.

They are chosen to satisfy the following set of equations

PH0(Z1 ≥ r1) = α1 (1.29)

PHA(Z1 ≤ a1) = β1 (1.30)

For s = 2, . . . , S − 1,

PH0(a1 < Z1 < r1, . . . , as−1 < Zs−1 < rs−1, Zs ≥ rs) = αs (1.31)

PHA(a1 < Z1 < r1, . . . , as−1 < Zs−1 < rs−1, Zs ≤ as) = βs (1.32)

Finally, at stage S,

PH0(a1 < Z1 < r1, . . . , aS−1 < ZS−1 < rS−1, ZS ≥ u) = αS (1.33)

PHA(a1 < Z1 < r1, . . . , aS−1 < ZS−1 < rS−1, ZS < u) = βS (1.34)

The critical values are best found in pairs beginning with r1 and a1 then moving through

subsequent stages until the final stage is reached.

20



1.3.1 Parametric Test

Peng et al. [16] developed a group sequential test for detecting a one-sided mixture

alternative with a location-shift component under normal theory. The procedure assumes

that the control consists of N(µ, σ2) random variables and the treatment come from the

mixture distribution (1 − θ)N(µ, σ2) + θN(µ + δ, σ2) where θ ∈ (0, 1), δ > 0, and σ2 is

known. The test statistic is the same as the one used in Equation (1.20). For large m, the

joint distribution is multivariate normal



Z1

Z2

...

ZS


d→ NS





θδ
√
m/(2σ2)

θδ
√

2m/(2σ2)

...

θδ
√
Sm/(2σ2)


,

(
1 +

θ(1− θ)δ2

2σ2

)


1
√

1/2 . . .
√

1/S√
1/2 1 . . .

√
2/S

. . .√
1/S

√
2/S . . . 1




(1.35)

R code is available for the user to input the number of stages, overall Type I error,

overall Type II error, ρ for the error spending function, the proportion of the population

that will respond to treatment, and the desired shift in terms of standard deviations from

the mean. The function in R uses the asymptotic multivariate distribution and numerical

integration to determine and output the critical values and arm size to be used per group at

each stage. Table 1.2 displays arm sizes for various scenarios calculated using this R code.
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K
θ Stages 0.25 0.5 0.75 1.0

0.5 1 794 200 90 52
2 414 105 47 27
3 284 72 33 19
4 216 55 25 14

0.6 1 551 139 63 36
2 288 73 33 19
3 197 50 23 13
4 150 38 17 10

0.7 1 405 102 46 27
2 212 54 24 14
3 145 37 17 10
4 110 28 13 8

0.8 1 310 78 35 20
2 162 41 19 11
3 111 28 13 8
4 85 22 10 6

0.9 1 245 62 28 16
2 128 32 15 9
3 88 22 10 6
4 67 17 8 5

1 1 198 50 22 13
2 104 26 12 7
3 71 18 8 5
4 54 14 6 4

Table 1.2: Arm sizes calculated using GSDMix() for α = 0.05 and 80% power with ρ = 2
and δ = Kσ.
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1.3.2 Nonparametric Tests

There is not currently a nonparametric test designed for testing a mixture alter-

native in group sequential clinical trials. However, there are various existing nonparametric

tests designed for other scenarios in group sequential clinical trials. Wilcoxon, Rhodes, and

Bradley [25] developed two methods for testing the Lehmann alternative. Spurrier and

Hewett [21] use the Wilcoxon Rank Sum statistic in group sequential methods to detect the

general alternative F < G in situations with only two stages. Madsen and Hewett [14] create

an alternative rank-based statistic to test pure shift alternatives in multiple stages. Lee and

DeMets [10] create a nonparametric test for group sequential designs with repeated mea-

surements on individuals. Su and Lachin [22] present work with multivariate observations.

Using the test statistic from Spurrier and Hewett [21] in an arbitrary number of stages,

Shuster, Chang, and Tian [19] focus on ordinal categorical data. Yuan, Zheng, Huang and

Tan [26] allow for the consideration of covariate information in their test statistic. Huang

and Tan [7] develop methods for the experimenter interested in multiple primary endpoints.

In this work, we look to develop an S-stage group sequential clinical trial test to detect the

mixture alternative with some continuous F .

The rest of the dissertation is organized as follows. In Chapter 2, we introduce

our proposed test procedure including discussion of the test statistic, its distribution, the

normal approximation of its distribution, and computation of arm size. The power and

robustness properties are also examined. Chapter 3 investigates a comparison of the test

statistic used by Shuster et al. [19] and the test statistic we introduce in Section 2. Chapter

4 introduces a multiplicative treatment effect in the mixture setting as an alternative to the
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location-shift model. In Chapter 5, we explore estimation of the treatment effect in both

the location-shift and multiplicative treatment effect mixture settings. We conclude with a

brief summary and considerations for future work in Chapter 6.
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Chapter 2

Sequential Average Rank

The purpose of this work is to develop nonparametric ranking techniques to be

used in group sequential clinical trials where the distribution of the treatment group is a

mixture distribution. As we look to build upon the work of Jeske and Yao [9], an issue to

be determined is how to combine information across the stages in the statistic. Here we

examine the proposed group sequential method, the Sequential Average Rank procedure.

2.1 Test Statistic

The Sequential Average Rank (SAR) test statistic is calculated by finding the

Wilcoxon Rank Sum statistic for each stage using only the observations within that stage

and averaging these statistics across stages. We will focus on the scenario where the number

of observations, m, are equal between groups and stages. Let X11, . . . , X1m, . . . , XS1, . . . ,

XSm
iid∼ F represent potential observations from the control group and Y11, . . . , Y1m, . . . ,

YS1, . . . , YSm
iid∼ G represent potential observations from the treatment group. Because
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the number of stages is random, it is possible that not all potential observations will be

realized. We are interested in testing the null hypothesis H0 : F = G against the one-sided

alternative, HA : G is the mixture distribution. We take G(u) = (1 − θ)F (u) + θF (u − δ)

where θ ∈ (0, 1) is the proportion of responders and δ = KσF is the shift size for K > 0

and σF > 0. With σF defined as the standard deviation of F , K represents the size of the

shift in the terms of number of standard deviations. For identifiability, define the null case

as the point (θ, δ) = (0, 0). For Rs1, . . . , Rsm, the ranks of the Y observations at stage s,

we get the Wilcoxon Rank Sum statistic at stage s, Ws =
∑m

j=1Rsj .

With equal arm sizes for each group and at each stage, the mean and variance

under the null hypothesis of each Ws is

µ =
m(2m+ 1)

2
σ2 =

m2(2m+ 1)

12
(2.1)

Using these moments, we can easily calculate the standardized test statistic we desire. The

SAR test statistic at stage s = 1, . . . , S is

Zs =
1
s

∑s
i=1Wi − µ
σ/
√
s

(2.2)

The marginal mean and variance at each stage are zero and one, respectively, under the

null hypothesis. Since the Wi’s are independent, the covariance of the SAR under the null
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hypothesis between stages s and s′ for s ≤ s′, can be found in the following way

Cov(Zs, Zs′) = Cov

(
1
s

∑s
i=1Wi − µ
σ/
√
s

,
1
s′
∑s′

j=1Wj − µ
σ/
√
s′

)
=

√
ss′

ss′σ2

s∑
i=1

Var(Wi)

=
sσ2
√
ss′

ss′σ2
=

√
s

s′
(2.3)

In order to determine the mean and variance of the SAR under the alternative

hypothesis, we define

p = P (X < Y )

p1 = P (X1 < Y1, X1 < Y2) (2.4)

p2 = P (X1 < Y1, X2 < Y1)

When testing the mixture alternative G(u) = (1− θ)F (u) + θF (u− δ), these probabilities

can be written as the following one-dimensional integrals:

p =

∫ ∞
−∞

∫ y

−∞
f(x)g(y) dx dy =

∫ ∞
−∞

F (u) dG(u)

=

∫ ∞
−∞

F (u)[(1− θ)f(u) + θf(u− δ)] du (2.5)

p1 =

∫ ∞
−∞

[1−G(u)]2 dF (u) =

∫ ∞
−∞

[1− (1− θ)F (u)− θF (u− δ)]2f(u) du (2.6)

p2 =

∫ ∞
−∞

[F (u)]2 dG(u) =

∫ ∞
−∞

F 2(u)[(1− θ)f(u) + θf(u− δ)] du (2.7)

where f(u) is the probability density function of F .
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The mean and variance for the Wilcoxon Rank Sum statistic with equal arm sizes

under the alternative hypothesis are

µA = m

(
mp+

(m+ 1)

2

)
(2.8)

σ2
A = m2

(
p(1− p) + (m− 1)(p1 − p2) + (m− 1)(p2 − p2)

)
(2.9)

Note that under the null hypothesis, p = 1/2 and p1 = p2 = 1/3, and using these probabil-

ities result in the previous mean and variance [4].

These lead us to the mean, variance, and covariance of the SAR under the alter-

native hypothesis.

EA[Zs] = EA

[
1
s

∑s
i=1Wi − µ
σ/
√
s

]
=
µA − µ
σ/
√
s

(2.10)

VarA(Zs) = VarA

(
1
s

∑s
i=1Wi − µ
σ/
√
s

)
=
σ2
A

σ2
(2.11)

CovA(Zs, Zs′) = CovA

(
1
s

∑s
i=1Wi − µ
σ/
√
s

,
1
s′
∑s′

j=1Wj − µ
σ/
√
s′

)
=
σ2
A

σ2

√
s

s′
(2.12)
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2.2 Monte Carlo Simulation of the Exact Distribution

The exact joint distribution of (Z1, . . . , ZS) under the null hypothesis does not

depend on the distribution of the data since it inherits the distribution-free properties of

the Wilcoxon Rank Sum statistic. Therefore, the SAR test statistic is nonparametric in this

regard. The joint distribution is needed in order to determine the critical values and arm size

required to detect the alternative for a given level of power. Under alternative hypothesis,

the joint distribution depends on the choice of F . Furthermore, the joint distribution and,

therefore, the critical values depend on m under both the null and alternative hypotheses.

The proper solutions to Equations (1.29)-(1.34) cannot be achieved until m is large enough.

Determining the full joint distribution can be computationally intensive, although

we can use simulation to approximate the distribution and obtain the appropriate critical

values and arm size. The algorithm used to determine the critical values and arm size when

simulating the joint distribution is visualized in the flowchart in Figure 2.1. It follows the

general procedure established in Section 1.3.

The algorithm starts at an arm size m = m0. This can easily be chosen to be

m = 0, and the algorithm will eventually reach the necessary arm size to detect the given

design alternative. However, the arm sizes for small shifts can be large, resulting in many

iterations of the algorithm when increasing m by one. Through empirical evidence, the

arm sizes for two stages are found to be roughly half of the fixed sample arm size, the arm

sizes for three stages are roughly one third of the fixed sample arm size, for four stages are

roughly one fourth, etc. This phenomenon can be seen in Table 1.2 and persists for our

method. Using this observation along with the fixed sample arm size formula from Jeske
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Start.

Input S, θ, K, F , α, β,
and ρ.

Set m = m0.

Simulate Z1, . . . , ZS under H0 and HA B times.

Using the simulated values to approximate Equations (1.29)-(1.33),
determine a1, . . . , aS−1 and r1, . . . , rS−1.

Find u such that the design Type I error is satisfied.

Using Equation
(1.34), does u

achieve the design
Type II error?

Increase m.

Stop.
Output arm size and critical values.

No

Yes

Figure 2.1: Flow chart of the algorithm used to find critical values when simulating the
exact joint distribution of the test statistic.
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and Yao [9], one can quickly find an improved starting value. This approach is implemented

in the algorithm to start m = m0 with this approximate value instead of zero to reduce the

number of iterations to achieve the final result.

The exact joint and marginal distributions of the SAR are discrete with the number

of possible values increasing as the arm size increases. In situations with small arm sizes

and especially at early stages, it may not be possible to achieve the design Type I error or

Type II error. In these cases, the code running the algorithm is designed to assign an upper

critical value +∞ or lower critical value −∞ rather than have an inflated Type I or Type II

error. Consider a two-stage scenario where r1 = +∞, and we have some attainable values

for a1 and u. Thus the resulting test would be impossible to reject at stage 1, while still

leaving the possibility of accepting the null hypothesis at the first stage. These situations

are uncommon. They are more likely to arise with the Type I error, since it is often much

smaller than the Type II error, and depend on the error spending function, proportion of

responders, and shift size. When a critical value is assigned ±∞, the Type I or Type II

error is neither spent nor pushed to a future stage. Therefore, the overall error rates will

be strictly less than the values use for the design alternative.

The discrete nature of the distribution of the SAR test statistic makes achieving

the exact Type I and Type II errors impossible in most situations. Because of this, the

algorithm will result in critical values that correspond to Type I and Type II errors that

are less than or equal to the design values.
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2.3 Multivariate Normal Approximation

The Wilcoxon Rank Sum statistic at stage s, Ws, used for the SAR is calculated

using only the observations at stage s. Therefore Ws and the Wilcoxon Rank Sum statistic

calculated at stage s′ are independent. Furthermore, since the arm sizes are the same at

stage s and s′, Ws and Ws′ are identically distributed. Under the null hypothesis, the

distribution of Ws can be approximated by a normal distribution for large m [4]. Working

under this assumption, we are interested in the limiting distribution of the SAR at stage s,

Zs. It can be shown that the sum of independent normal random variables has a normal

distribution [17]. First, let Yi = Wi−µ
σ , then Yi ∼ N(0, 1). Now Zs = 1√

s

∑s
i=1 Yi. Let MZs

be the moment generating function of Zs and MYi be the moment generating function of

the Yi’s. Using the moment generating functions we get

MZs(t) = M∑
Yi/
√
s(t) =

s∏
i=1

M 1√
s
Yi

(t) =

s∏
i=1

MYi(
t√
s

) (2.13)

=

[
MY1(

t√
s

)

]s
(2.14)

=
[
et

2/2s
]s

(2.15)

= et
2/2 (2.16)

which is the moment generating function of a N(0, 1) random variable, s = 1, . . . , S.

Now we wish to consider the joint distribution of the Zs’s under the null hypothesis.

It is possible to show that a vector of random variables has a multivariate normal distribution

by showing that linear functions of the random variables are univariate normal [15]. Let

~Y = (Y1, . . . , YS), where Ys is defined as above for s = 1, . . . , s, then ~Y has the following
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S-variate normal distribution

~Y =



Y1

Y2

...

YS


d→ NS(~0, IS) (2.17)

since ~c~Y is univariate normal for all fixed S-vectors ~c, where IS is the S×S identity matrix.

The SAR can be written in vector form as

~Z =



1 0 0 . . . 0

1/
√

2 1/
√

2 0 . . . 0

...

1/
√
S 1/

√
S 1/

√
S . . . 1/

√
S





Y1

Y2

...

YS


= M~Y (2.18)

Then

~Z
d→ NS(M~0,MISM’) ≡ Ns(~0,MM>) (2.19)

Thus under the null hypothesis for large m, the SAR has a multivariate normal distribution.

This holds for any conformable matrix M. Note this is regarding constants, such as the case

that M is a zero matrix, as degenerate forms of the normal distribution.

The Wilcoxon Rank Sum statistic is known to follow a normal distribution asymp-

totically under the general alternative [4]. Following the same procedure as above under the

alternative hypothesis, the distribution of the SAR statistic has a limiting multivariate nor-
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mal distribution. Now, each Ys will have mean (µA−µ)/(σ/
√
s) and variance σ2

A/σ
2. Using

the same M as above, the distribution of ~Z under the alternative hypothesis can be approx-

imated by a normal distribution with mean vector M((µA−µ)/σ)~1 and variance-covariance

matrix σ2
A/σ

2MM>.

Using the normal approximation to obtain the critical values and arm size for a

given alternative will follow a similar algorithm as simulating the exact joint distribution,

seen in Figure 2.2. This algorithm will utilize the same approach to determine a starting

value m0 as the algorithm for the simulation of the exact distribution. Instead of ap-

proximating Equations (1.29)-(1.34) empirically using the simulation, we now may use the

multivariate normal densities.

In R, we can use the mvtnorm [3] package for the distribution function of a mul-

tivariate normal random variable. Its pmvnorm() function allows us to find the cumulative

probability for a candidate critical value at the current stage. Therefore, we use this in

combination with a root finding function to find the critical value that satisfies the design

Type I or Type II error.

2.4 Comparison of Exact Distribution and Normal Approx-

imation

When simulating the exact joint distribution of the text statistic, the goal is to

achieve the true critical values. However, the joint distribution can be extensive. With such

a vast distribution that grows with the arm size, it can take much time and resources to
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Start.

Input S, θ, K, F , α, β,
and ρ.

Set m = m0.

Calculate the normal approximation to the densities of Z1, . . . , ZS under H0 and HA.

Using the densities to approximate Equations (1.29)-(1.33),
determine a1, . . . , aS−1 and r1, . . . , rS−1.

Find u such that the design Type I error is satisfied.

Using Equation
(1.34), does u

achieve the design
Type II error?

Increase m.

Stop.
Output arm size and critical values.

No

Yes

Figure 2.2: Flow chart of the algorithm used to find critical values and arm size when using
the multivariate normal approximation of the joint distribution of the SAR.
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Figure 2.3: Comparison of algorithms for the SAR test statistic for various scenarios using
100,000 simulations for the exact simulation with α = 0.05, β = 0.2, and ρ = 2.

simulate. It quickly becomes possible that the user is not simulating the entire exact dis-

tribution depending on the arm size and number of simulations. Simulating an appropriate

number of times to get a good representation of the distribution is a concern. Without a

large enough number, simulation of the exact distribution is itself an approximation.

The multivariate approximation offers a great increase in computation speed. Fig-

ure 2.3 highlights the computation time difference. Similarities in the solutions between the

two algorithms are also apparent in Figure 2.3. They recommend the same arm size in each

case and the critical values become virtually indistinguishable for large m.

It would be recommended in most cases to use the normal approximation. This

algorithm gives a great increase in speed while still offering the same arm sizes and often

virtually identical critical values. It can be done without the uncertainty of running sufficient

simulations to represent the distribution.
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2.5 Properties

We wish to show that there are some properties of the SAR that make it even

more useful and competitive with existing methods, namely the test statistic from Peng et

al. [16].

2.5.1 Arm Sizes

The arm sizes needed to detect the mixture alternative using both algorithms of

the SAR for various combinations of number of stages, θ, δ = KσF , and F are shown

in Tables 2.1-2.4. The fixed sample arm sizes using the normal approximation in these

tables were determined by the algorithm in Figure 2.2 to be consistent with the rest of the

formulation of the tables, rather than using Equation (1.19).

Arm sizes from the simulation of the exact distribution were obtained by running

the simulation three times and taking the largest arm size of the three runs. The variation

in the arm size from this method is perhaps due to the number of simulations. This may

be an explanation for some differences between the algorithms, especially in large arm size

situations.

The focus here is on standardized location-scale family distributions following the

definitions from Jeske and Yao mentioned in Section 1.2.2. For the normal distribution, Ψ

is the CDF of the standard normal distribution. The logistic distribution will have Ψ(u) =

(1 + exp(−cu))−1 with c = π/3. The Laplace distribution will use Ψ(u) = (ecu/2)I(u <

0) + (1− e−cu/2)I(u ≥ 0) with c =
√

2. Finally, the t distribution with 3 degrees of freedom
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K
θ Stages 0.25 0.5 0.75 1.0

0.5 1 837 (837) 215 (215) 101 (100) 60 (60)
2 437 (437) 113 (113) 53 (53) 32 (32)
3 299 (299) 78 (77) 37 (36) 22 (22)
4 228 (228) 59 (59) 28 (28) 17 (17)
5 185 (184) 48 (48) 23 (23) 14 (14)

0.6 1 581 (580) 149 (149) 69 (69) 42 (41)
2 304 (303) 78 (78) 37 (37) 22 (22)
3 208 (208) 54 (54) 26 (25) 16 (15)
4 159 (158) 41 (41) 20 (20) 12 (12)
5 128 (128) 34 (34) 16 (16) 10 (10)

0.7 1 426 (426) 110 (109) 51 (50) 30 (30)
2 223 (223) 58 (58) 27 (27) 16 (16)
3 153 (153) 40 (40) 19 (19) 12 (11)
4 117 (117) 31 (30) 15 (15) 9 (9)
5 95 (94) 25 (25) 12 (12) 8 (7)

0.8 1 327 (326) 84 (83) 39 (38) 23 (22)
2 171 (171) 44 (44) 21 (21) 13 (12)
3 117 (117) 31 (30) 15 (14) 9 (9)
4 90 (89) 24 (23) 12 (11) 7 (7)
5 73 (72) 19 (19) 10 (9) 6 (6)

0.9 1 258 (257) 66 (65) 30 (30) 18 (17)
2 135 (135) 35 (16) 17 (16) 10 (10)
3 93 (93) 24 (24) 12 (11) 7 (7)
4 71 (71) 19 (19) 9 (9) 6 (6)
5 58 (57) 16 (15) 8 (7) 5 (5)

1 1 210 (208) 53 (53) 25 (24) 15 (14)
2 110 (109) 28 (28) 14 (13) 8 (8)
3 75 (75) 20 (20) 10 (9) 6 (6)
4 58 (57) 15 (15) 8 (7) 5 (5)
5 47 (47) 13 (12) 7 (6) 4 (4)

Table 2.1: Arm sizes needed to detect the mixture alternative using the SAR where F is
the standard normal distribution for α = 0.05 and 80% power with ρ = 2 determined with
1,000,000 simulations to represent the exact joint distribution. Arm sizes determined by
the normal approximation are in parentheses.

38



K
θ Stages 0.25 0.5 0.75 1.0

0.5 1 732 (731) 190 (189) 90 (90) 55 (54)
2 382 (382) 99 (99) 47 (47) 29 (29)
3 262 (261) 69 (68) 33 (33) 21 (20)
4 199 (199) 52 (52) 25 (25) 16 (16)
5 162 (161) 43 (42) 21 (20) 13 (13)

0.6 1 508 (507) 132 (132) 62 (62) 38 (38)
2 265 (265) 69 (69) 33 (33) 20 (20)
3 182 (182) 48 (48) 23 (23) 14 (14)
4 139 (139) 37 (36) 18 (18) 11 (11)
5 112 (112) 30 (30) 15 (14) 9 (9)

0.7 1 374 (373) 97 (96) 45 (45) 28 (28)
2 195 (195) 51 (51) 24 (24) 15 (15)
3 134 (134) 35 (35) 17 (17) 11 (10)
4 102 (102) 27 (27) 14 (13) 8 (8)
5 83 (83) 22 (22) 11 (11) 7 (7)

0.8 1 286 (285) 74 (74) 35 (34) 21 (21)
2 149 (149) 39 (39) 19 (19) 11 (11)
3 102 (102) 27 (27) 13 (13) 8 (8)
4 78 (78) 21 (21) 10 (10) 7 (6)
5 64 (63) 17 (17) 9 (8) 6 (5)

0.9 1 225 (225) 58 (58) 27 (26) 17 (16)
2 118 (118) 31 (31) 15 (15) 9 (9)
3 81 (81) 22 (21) 11 (10) 7 (6)
4 62 (62) 17 (17) 8 (8) 6 (5)
5 51 (50) 14 (14) 7 (7) 5 (4)

1 1 182 (182) 47 (47) 22 (21) 14 (13)
2 96 (96) 25 (25) 12 (12) 8 (7)
3 66 (66) 18 (17) 9 (8) 6 (5)
4 51 (50) 14 (13) 7 (7) 5 (4)
5 41 (41) 11 (11) 6 (6) 4 (4)

Table 2.2: Arm sizes needed to detect the mixture alternative using the SAR where F is
the logistic distribution for α = 0.05 and 80% power with ρ = 2 determined with 1,000,000
simulations to represent the exact joint distribution. Arm sizes determined by the normal
approximation are in parentheses.
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K
θ Stages 0.25 0.5 0.75 1.0

0.5 1 546 (546) 149 (149) 74 (74) 48 (48)
2 286 (285) 78 (78) 40 (39) 26 (25)
3 196 (195) 54 (54) 27 (27) 18 (18)
4 149 (149) 41 (41) 21 (21) 14 (14)
5 121 (121) 34 (33) 17 (17) 12 (11)

0.6 1 379 (379) 103 (103) 51 (51) 33 (33)
2 199 (198) 54 (54) 28 (27) 18 (18)
3 136 (136) 38 (37) 19 (19) 13 (12)
4 104 (104) 29 (29) 15 (15) 10 (10)
5 84 (84) 24 (23) 12 (12) 8 (8)

0.7 1 279 (278) 76 (76) 38 (38) 24 (24)
2 146 (146) 40 (40) 20 (20) 13 (13)
3 100 (100) 28 (28) 14 (14) 9 (9)
4 77 (76) 22 (21) 11 (11) 8 (7)
5 62 (62) 18 (17) 9 (9) 7 (6)

0.8 1 213 (213) 58 (58) 29 (29) 18 (18)
2 112 (112) 31 (31) 16 (15) 10 (10)
3 77 (77) 21 (21) 11 (11) 8 (7)
4 59 (59) 17 (16) 9 (8) 6 (6)
5 48 (48) 14 (13) 7 (7) 5 (5)

0.9 1 169 (168) 46 (45) 23 (22) 15 (14)
2 89 (88) 25 (24) 12 (12) 8 (8)
3 61 (61) 17 (17) 9 (9) 6 (6)
4 47 (46) 13 (13) 7 (7) 5 (5)
5 38 (38) 11 (11) 6 (6) 4 (4)

1 1 136 (136) 37 (37) 18 (18) 12 (11)
2 72 (72) 20 (20) 10 (10) 7 (6)
3 49 (49) 14 (14) 7 (7) 5 (5)
4 38 (38) 11 (11) 6 (6) 4 (4)
5 31 (31) 9 (9) 5 (5) 4 (3)

Table 2.3: Arm sizes needed to detect the mixture alternative using the SAR where F is
the Laplace distribution for α = 0.05 and 80% power with ρ = 2 determined with 1,000,000
simulations to represent the exact joint distribution. Arm sizes determined by the normal
approximation are in parentheses.
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K
θ Stages 0.25 0.5 0.75 1.0

0.5 1 430 (428) 117 (116) 59 (58) 39 (38)
2 224 (224) 61 (61) 31 (31) 21 (20)
3 154 (153) 42 (42) 22 (21) 15 (14)
4 117 (117) 33 (32) 17 (17) 11 (11)
5 95 (95) 26 (26) 14 (14) 10 (9)

0.6 1 298 (297) 81 (80) 40 (40) 27 (26)
2 156 (156) 43 (42) 22 (21) 15 (14)
3 107 (107) 30 (29) 15 (15) 10 (10)
4 82 (81) 23 (23) 12 (12) 8 (8)
5 66 (66) 19 (18) 10 (10) 7 (7)

0.7 1 219 (218) 59 (58) 30 (29) 20 (19)
2 115 (114) 31 (31) 16 (16) 11 (10)
3 79 (78) 22 (22) 12 (11) 8 (7)
4 60 (60) 17 (17) 9 (9) 6 (6)
5 49 (49) 14 (14) 8 (7) 5 (5)

0.8 1 167 (166) 45 (45) 23 (22) 15 (14)
2 88 (88) 24 (24) 12 (12) 9 (8)
3 61 (60) 17 (17) 9 (9) 6 (6)
4 46 (46) 13 (13) 7 (7) 5 (5)
5 38 (37) 11 (11) 6 (6) 4 (4)

0.9 1 132 (131) 36 (35) 18 (17) 12 (11)
2 70 (69) 19 (19) 10 (10) 7 (6)
3 48 (48) 14 (13) 7 (7) 5 (5)
4 37 (37) 11 (10) 6 (5) 4 (4)
5 30 (30) 9 (9) 5 (5) 4 (3)

1 1 107 (106) 29 (28) 14 (14) 9 (9)
2 56 (56) 16 (15) 8 (8) 6 (5)
3 39 (39) 11 (11) 6 (6) 4 (4)
4 30 (30) 9 (8) 5 (4) 4 (3)
5 24 (24) 7 (7) 4 (4) 3 (3)

Table 2.4: Arm sizes needed to detect the mixture alternative using the SAR where F is
the t3 distribution for α = 0.05 and 80% power with ρ = 2 determined with 1,000,000
simulations to represent the exact joint distribution. Arm sizes determined by the normal
approximation are in parentheses.
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has ψ(u) = 2/π(1 + u2)2. With these locations-scale formulations, each Ψ has zero mean

and unit variance. Then F (u) = Ψ((u − µF )/σF ) with mean µF and standard deviation

σF .

We note the effect of θ. As θ increases with all else equal, the arm size decreases. If

there are nonresponders that are unaccounted for in the treatment group, the experimenter

would not have the necessary arm size if they worked under the pure shift assumption

(θ = 1). We also see that if K increases, the required arm size decreases. This expected as

the control group distribution and shifted distribution are growing farther apart, making it

easier to detect the shift.

Only Table 2.1, where F is normal, contains arm sizes larger than those in Table

1.2 for the same design alternative. It is unsurprising that a method designed under normal

theory would require less than a method designed for any distribution when F is normal.

However, if we know that F is logistic, Laplace, or t3, then the experiment can be performed

with a much smaller arm size than previous methods.

In fact, the arm size is decreasing as F changes from normal to logistic to Laplace

to t3 with all else equal. One might imagine the normal distribution would offer the smallest

arm sizes since it has lighter tails than the other distributions. However, this ordering of the

distributions is explained by Jeske and Yao by showing the Kullback-Leibler (K-L) distances

between the null and mixture distributions from smallest to largest are the normal, logistic,

Laplace, and t3. A larger K-L distance corresponds to distributions that less similar.

Here, we offer an illustration to explain the ordering of the K-L distances. By start-

ing with each distribution having zero mean and unit variance we might imagine “squeezing”
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these distributions with heavier tails. This results in the normal distribution having the

heaviest tails. Consider a density centered at zero and a pure shift of the density to have

mean two. Figure 2.4 displays this setting for three different distributions as well as their

K-L distances and area of overlap. The default t3 distribution has the heaviest tails and

most overlap between the mean zero and shifted densities. When we use the standardized

location-scale form of the t3 to reduce the base variance to one, there is much less overlap

between the density with mean zero and the density with mean two as pictured in the

bottom of Figure 2.4. This occurs because it is a scale change of the default t3 distribu-

tion. Therefore, a probability, such as being with one standard deviation of the mean, is

unchanged. The density becomes more concentrated around its center because the standard

deviation being equal to one is smaller than the default standard deviation. Furthermore,

the shift for the default t3 in Figure 2.4 is presented as an absolute shift of two whereas it

is a shift of two standard deviations for both the normal and location-scale t3. If the shift

of the default t3 were presented in terms of standard deviations (i.e. the shifted distribu-

tion having mean 2
√

3), the K-L distance and area of overlap would be the same as the

location-scale t3 values. Like the default t3, the standardized location-scale t3 has heavier

tails than the normal distribution. The use of “t3” anywhere else in this paper refers to the

standardized location-scale form of the t3 distribution.

The average sample number shows what the total sample size will be on average

for a given design. It accounts for the random number of stages associated with the trial.

Average sample numbers for a variety of designs are displayed in Table 2.5. The values are

calculated by simulating each setting until termination, finding the average stage at which
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Figure 2.4: Example of overlap between location-shifted densities.

it stopped, then multiplying the average by the arm size per stage, 2m. From the table, it

is apparent that group sequential methods can offer smaller average sample sizes over fixed

sample methods.

2.5.2 Power Simulation

In this section, we evaluate the power of the SAR test statistic. We set the

design alternative with a particular S, θ, K, α, β, and ρ. While the SAR test statistic

is nonparametric in the sense that its distribution is the same under the null hypothesis for

any choice of F , an F must be considered when calculating the power, arm size, and critical

values. We do this for the situation where the F is normal, logistic, Laplace, or t3. Each

distribution is scaled to have zero mean and unit variance. For each distribution, we get the
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K = 0.5 K = 1
θ Stages Normal Logistic Laplace t3 Normal Logistic Laplace t3

0.6 1 294.0 260.0 204.0 158.0 80.0 72.0 64.0 50.0
2 253.4 223.9 175.5 136.6 71.7 65.0 58.0 45.6
3 239.5 213.0 164.4 129.0 67.1 62.3 53.4 44.2
4 231.0 202.8 162.6 128.2 67.6 61.8 55.5 44.7

0.8 1 164.0 144.0 112.0 86.0 44.0 40.0 34.0 26.0
2 143.2 126.4 100.3 77.9 39.3 36.1 32.4 26.3
3 133.7 120.0 93.6 75.0 40.1 35.7 31.1 26.3
4 129.9 117.5 90.5 72.7 39.0 34.4 32.9 27.7

1 1 104.0 90.0 70.0 54.0 26.0 24.0 20.0 16.0
2 91.0 81.3 64.5 48.9 26.3 23.5 19.5 16.8
3 88.5 76.0 61.9 48.7 26.6 22.3 20.9 18.3
4 84.5 73.7 61.2 45.6 27.5 23.4 22.0 17.0

Table 2.5: Average sample numbers to detect the mixture alternative with SAR for α = 0.05
and 80% power with ρ = 2 determined with 100,000 simulations. Critical values and arm
sizes were determined by normal approximation.

arm size and critical values via simulation for the chosen design alternative. Then we use

the same distribution to simulate scenarios where K is different than the design alternative.

That is, we are calculating the power for different K.

The design alternative uses S = 2, θ = 0.8, K = 0.5, α = 0.05, β = 0.2, and ρ = 2

for each F . The power curves are shown in Figure 2.5. We calculated the power curves for

the SAR test statistic as well as the test statistic from Peng et al. [16]. Since the procedure

from Peng et al. [16] does not use F when determining the critical values and arm size, they

are the same in all four panels. Clearly, both test statistics provide basically equal power

curves. The large arm size used for Peng et al. [16] invokes the Central Limit Theorem,

and in doing so, the test can handle data that is not normal.

The noticeable difference between the two methods is the arm size. The method

from Peng et al. [16] will recommend the same arm size for different F , all else equal. The
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Figure 2.5: Power curves for both SAR and the test statistic from Peng et al. from a design
alternative with S = 2, θ = 0.8, K = 0.5, α = 0.05, β = 0.2, ρ = 2, and F is Normal,
Logistic, Laplace, or t3.

SAR is able to take a hypothesized distribution of the data into account, thus adapting its

design to the data. This results in a different arm size needed to detect the alternative as

well as different critical values (not shown).

It can be seen that the order of distributions from greatest to least arm size is

normal, logistic, Laplace, t3. The only F for which the SAR has a larger arm size than the

competition is the normal distribution. Peng et al. [16] developed their test statistic under

normal theory, thus it is more efficient than the SAR when F is normal. If we believe the

distribution of the data is logistic, Laplace, or t3 then using the SAR test statistic allows

us to design the test appropriately and use a reduced arm size.

Under the alternative hypothesis, the joint distribution of the SAR test statistic

depends on the choice of F . This is due to the fact that the integrals in Equation (2.6)

vary with F . Thus, an F must be chosen when designing the test in order to determine

46



the critical values and arm size. However, under the null hypothesis, the joint distribution

of the SAR test statistic inherits the distribution-free property of the Wilcoxon Rank Sum

statistic. This is rooted in the probabilities from Equation (2.4) having the values 1/2,

1/3, and 1/3, respectively, under the null hypothesis for any F . Consequently, the SAR

procedure guarantees a test with size α, even if the hypothesized F for the alternative is

misspecified.

2.5.3 Robustness

Next, we explore the robustness of the SAR test procedure. This will involve two

parts: evaluating how the SAR responds if a hypothesized value of the design alternative,

namely θ or F , differs from the true value.

Like the power study, we set S = 2, θ = 0.8, K = 0.5, α = 0.05, β = 0.2, and ρ = 2.

We do this for each of the four previous location-scale distributions. Then we evaluate the

power for a range of K as well as a different θ than the design. For the design with θ = 0.8,

we look at a situation where the true proportion of responders is lower, θ = 0.5, and a

situation where it is higher, θ = 1.

The power curves for θ less than the design alternative can be seen in Figure 2.6,

and power curves for θ greater than the design alternative are in Figure 2.7. Again we

compare SAR with the test statistic from Peng et al. [16] and see that performance is

roughly equal between the two methods for either situation. The power curves change as

we would expect with a different θ than the design: if there are more nonresponders (lower

θ) than the design, the power of the test will be lower, and power will be higher if there

are more responders (higher θ) than the design. With more responders there will be more
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Figure 2.6: Power curves where the true θ value is less than the design alternative, θ = 0.8.

evidence of the shifted component of the treatment distribution which should make it easier

to detect the effect.

Further evidence to support these results lie in the examination of Tables 2.1-2.4.

The arm sizes are decreasing for increasing θ. Therefore, the test will not have the necessary

arm size to detect the shift if θ is less than the design value, resulting in lower power.

The second component of exploring the robustness of the SAR is to see how the

power curves react when the true F is different than the design alternative. We use the

same design alternative setup as above and create plots where each F is used for the design

alternative, seen in Figure 2.8. Then we simulate to evaluate the power for different K and

a different F than the design alternative.
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Figure 2.7: Power curves where the true θ value is greater than the design alternative,
θ = 0.8.

Figure 2.8: Power curves where the distribution is different than the design.
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Throughout the plots, there are distinctly separated power curves for each dis-

tribution. We see that if the data actually comes from the normal distribution it has the

lowest power curve, irrespective of the design alternative F . After normal, comes logistic,

Laplace, and finally t3 with the highest power curves. This is the same type of ordering as

the arm sizes from the power study and corresponds to a smaller arm size being capable

of detecting the same size shift if the distribution was t3 compared to normal. Thus, it

would be possible to have more or less power than desired depending on the hypothesized

F versus nature.
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Chapter 3

Sequential Rerank

The second method we wish to consider to combine the observations at each stage

we will deem the Group Sequential Rerank procedure. This method is explored by Spurrier

and Hewett [21] for two stages and general alternative. It is used by Shuster et al. [19] for

ordinal categorical data with an arbitrary number of stages and general alternative. We

investigate the test statistic in an arbitrary number of stages with continuous data under a

mixture alternative.

3.1 Test Statistic

For this method, we will again be finding the Wilcoxon Rank Sum statistic at each

stage. However, the Sequential Rerank (SR) statistic at stage s will be using the Wilcoxon

Rank Sum statistic calculated from all observations up to and including stage s in contrast

to the SAR using only the observations at stage s. The SR will take into account the

information from each stage by directly both using within-stage and between-stage ranks.
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Let X11, . . . , X1m, . . . , XS1, . . . , XSm ∼ F be the potential observations from the

control group and Y11, . . . , Y1m, . . . , YS1, . . . , YSm ∼ G be the potential observations from

the treatment group for a group sequential clinical trial with S stages. We wish to detect the

alternative that G(u) = (1− θ)F (u) + θF (u− δ) for θ ∈ (0, 1] and δ > 0. For identifiability,

define the null case as the point (θ, δ) = (0, 0). Let Ri1, . . . , Rim be the ranks of Yi1, . . . , Yim

among all X and Y observations up to and including stage i, i = 1, . . . , s. That is, we find

the ranks of Yi1, . . . , Yim in the combined sample of 2sm observations. At each stage, we

calculate the Wilcoxon Rank Sum statistic using all observations from previous stages as

well as the current stage. At stage s, the mean and variance are found by extending the

mean and variance of the fixed sample Wilcoxon Rank Sum statistic. We simply replace m

with sm in the fixed sample formulas to find the mean and variance of the of the Wilcoxon

Rank Sum statistic at stage s under the null hypothesis are

µs =
sm(2sm+ 1)

2
σ2
s =

(sm)2(2sm+ 1)

12
(3.1)

Using these, we define the standardized SR test statistic at stage s, s = 1, . . . , S

Z̃s =

∑s
i=1

∑m
j=1Rij − µs
σs

(3.2)

This statistic has zero mean and unit variance under the null hypothesis. Hewett

and Spurrier [6] provide the covariance for Z̃1 and Z̃2 under the null hypothesis and their

methods can be use to establish the covariance between any two stages s and s′. Let s ≤ s′.
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Then the covariance between Z̃s and Z̃s′ is

Cov(Z̃s, Z̃s′) =
(sm)2(sm+ (s′ − s)m+ sm+ (s′ − s)m+ 1)

12σsσs′
=

(sm)2(2s′m+ 1)

12σsσs′
(3.3)

Under the alternative hypothesis, we use the probabilities defined in Equation

(2.4). Then we can extend the fixed sample mean and variance of the Wilcoxon Rank Sum

statistic from Equations (2.8) and (2.9) to have sm observations.

EA[Z̃s] =
sm
(
smp+ sm+1

2

)
− µs

σs
(3.4)

VarA(Z̃s) =
(sm)2

σ2
s

(
p(1− p) + (sm− 1)(p1 − p2) + (sm− 1)(p2 − p2)

)
=

(sm)2

σ2
s

(
p(1− p) + (sm− 1)(p1 + p2 − 2p2)

)
(3.5)

The covariance of the SR statistic between stages s and s′, s ≤ s′, can be found using the

Mann-Whitney formulation of the Wilcoxon Rank Sum statistic. The result is the following:

CovA(Z̃s, Z̃s′) =
(sm)2

σsσs′

(
p(1− p) + (s′m− 1)(p1 + p2 − 2p2)

)
(3.6)

The same arm size algorithm from Figure 2.1 can be used to determine the arm

size and critical values where we replace the SAR statistic with the SR statistic.
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3.2 Discussion of the Joint Distribution

The number of possible values in the exact distribution grows quickly. For a two-

stage test, “there are (4m)!/(m!m!m!m!) possible rankings of the first and second samples

of the X’s and Y ’s” [6]. As for SAR, we consider a multivariate normal approximation to

circumvent the need for running the large number of simulations that could be necessary

to enumerate the exact distribution.

It is clear that the marginal distribution at each stage is asymptotically normal

both under the null and alternative hypothesis, given that each is a standardized Wilcoxon

Rank Sum statistic. Spurrier and Hewett [21] show that the SR test statistic for the first and

second stages has a limiting bivariate normal distribution under the null and alternative

hypotheses. Their methods can be applied to any pairwise combination of stages. This

results in asymptotic bivariate normality for any two (Z̃s, Z̃s′). Shuster et al. [19] show

that the SR statistic will have an asymptotic multivariate normal distribution for three or

more stages under both hypotheses.

We present an empirical illustration of the limiting multivariate normal of the

SR test statistic. First, we generate the joint distribution of the SR under both the null

and alternative hypothesis for a four-stage design alternative where the data comes from

a Laplace distribution with θ = 0.8, K = 0.25. We use an arm size of 58, the necessary

arm size based on our algorithm to detect alternative with α = 0.05, β = 0.2, and ρ = 2.

This was done with 100,000 simulations where a single simulation is calculation of the test

statistic through all four stages. Figure 3.1 shows scatterplots of the values of the SR test

statistic for each pairwise combination of the stages. Each plot shows the points forming
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Figure 3.1: Pairwise scatterplots of the values of the SR at each stage with contours of the
bivariate normal distribution overlaid.

a clear ellipse, suggesting bivariate normality. The bivariate normal density contours are

overlaid using the mean vector and variance-covariance matrices determined by Equations

(3.4) and (3.6), respectively. The similarity of the points and the curves suggest bivariate

normality holds for each pairwise combination of the stages.

In order to provide evidence of multivariate normality, we consider an inverse

Cholesky transformation. If we have X = (X1, . . . , XS) ∼ NS(µ,Σ), then the Cholesky

decomposition of the covariance matrix is Σ = Γ′Γ. Let Z = (Γ′)−1(X − µ). Then Z will

be NS(0, IS), where IS is the S × S identity matrix. Thus, if we have multivariate normal

data to begin with, the inverse Cholesky transformation will result in independent standard

normal random variables. We aim to show that since performing the Cholesky transforma-

tion on the joint distribution of the SR test statistic results in independent standard normal

random variables, the joint distribution must have been multivariate normal from the start.
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We will consider this transformation under both the null and alternative hypothe-

ses. The joint distribution of the SR statistic is simulated as above and we perform the

transformation on the variance-covariance matrices calculated by Equations (3.3) and (3.6).

Figures 3.2 and 3.3 show the results of the transformation under the null and alternative

hypotheses, respectively. In the plots on the diagonals in these figures, we see the univari-

ate histograms at each stage with the N(0, 1) density overlaid. In the upper triangle of

the grids, we present scatterplots of each pairwise combination of the stages. These have

N2(0, I2) density curves overlaid. The similarity of the transformed data to the density

curves in both the univariate and bivariate plots suggests that the transformation did in-

deed result in independent standard normal random variables. In the lower triangle of the

figures are the results of a nonparametric test for independence. The Spearman test for

independence tests the null hypothesis of independence versus the alternative that there

is some relation between the variables. We perform a Bonferroni correction to adjust for

multiple testing. The corrected p-values are all extremely large. Therefore, it suggests that

the joint distribution of the SR is multivariate normal under both the null and alternative

hypotheses.

We note that Figures 3.1-3.3 used a random subset of 5,000 simulations from the

original 100,000 due to computation constraints.

More empirical support that the distribution of the SR under both the null and

alternative hypotheses is multivariate normal can be seen in Figure 3.4. Critical values

and arm sizes were determined by using the multivariate normal approximation of the joint

distribution and compared to the values obtained by the simulation of the joint distribution.
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Figure 3.2: Results of the Cholesky transformation on the SR test statistic under the null
hypothesis.

Figure 3.3: Results of the Cholesky transformation on the SR test statistic under the
alternative hypothesis.
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Figure 3.4: Comparison of the multivariate normal approximation and simulation of the
exact distribution for the SR using 100,000 simulations with α = 0.05, β = 0.2, and ρ = 2.

The means and variance-covariance matrices from Section 3.1 were used for the multivariate

normal distribution. Replacing the SAR statistic with the SR statistic, the same steps as

the algorithm in Figure 2.2 were used to determine the arm size and critical values.

In the various scenarios, both algorithms give the exact same arm size. There

are some small differences in the critical values in the smaller arm size situations. This is

perhaps attributed to the discreteness of the test statistic when there are small arm sizes.

The critical values become indistinguishable between the two algorithms as the arm size

increases. As with the SAR, we see a great improvement in computation time by using the

normal approximation.

Tables 3.1-3.4 display arm sizes needed to detect a number of design alternatives

while using the SR statistic. The fixed sample arm sizes using the normal approximation in

these tables were determined by the algorithm in Figure 2.2 to be consistent with the rest of
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the formulation of the tables, rather than using Equation (1.19). The arm sizes determined

by simulation in these tables were found by running the simulation three times and taking

the largest arm size. Some differences between the arm sizes from the simulation and normal

approximation may be attributed to the randomness of three simulations. The normal

approximation was used under both the null and alternative hypotheses. Equal arm sizes

between the simulation algorithm and the normal approximation algorithm provide further

evidence that the distribution of the SR statistic can be approximated by the multivariate

normal distribution.

3.3 Comparison of SAR and SR

With both the SAR and SR being based on the Wilcoxon Rank Sum statistic, it

is of interest to see how they compare and whether one may be universally preferred over

the other. Note that the SR statistic and SAR statistic are the same for the first stage of a

group sequential clinical trial, as they are both essentially the fixed sample Wilcoxon Rank

Sum test at that time. We also keep in mind that the comparisons of the observations at

each stage to determine the ranks for the SAR statistic are a subset of the comparisons

done for the SR statistic since both use the within-stage ranks.

We begin by looking at the limits of the mean, variance, and covariance of each

statistic. At each stage, s and p are fixed, since s is the stage number and p = P (X < Y )

is determined by θ, δ, and F . First, we compare the means by looking at the limit of

their ratio for increasing m. Under the null hypothesis, both test statistics have zero mean.
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K
θ Stages 0.25 0.5 0.75 1.0

0.5 1 837 (837) 215 (215) 101 (100) 60 (60)
2 437 (437) 113 (113) 53 (53) 32 (32)
3 300 (299) 77 (77) 36 (36) 22 (22)
4 228 (228) 59 (59) 28 (28) 17 (17)
5 184 (184) 48 (48) 23 (22) 14 (14)

0.6 1 581 (580) 149 (149) 69 (69) 42 (42)
2 304 (303) 78 (78) 37 (36) 22 (22)
3 208 (207) 54 (54) 25 (25) 15 (15)
4 159 (158) 41 (41) 19 (19) 12 (12)
5 128 (128) 33 (33) 16 (16) 10 (10)

0.7 1 426 (426) 110 (109) 51 (51) 30 (30)
2 223 (223) 57 (57) 27 (27) 16 (16)
3 153 (152) 40 (39) 19 (18) 11 (11)
4 116 (116) 30 (30) 14 (14) 9 (9)
5 94 (94) 25 (24) 12 (12) 7 (7)

0.8 1 327 (326) 84 (84) 39 (39) 23 (23)
2 171 (171) 44 (44) 21 (20) 12 (12)
3 117 (117) 30 (30) 14 (14) 9 (9)
4 89 (89) 23 (23) 11 (11) 7 (7)
5 72 (72) 19 (19) 9 (9) 6 (5)

0.9 1 258 (257) 66 (66) 30 (30) 18 (18)
2 135 (135) 35 (35) 16 (16) 10 (10)
3 92 (92) 24 (24) 11 (11) 7 (7)
4 70 (70) 18 (18) 9 (9) 6 (5)
5 57 (57) 15 (15) 7 (7) 5 (4)

1 1 210 (209) 53 (53) 25 (24) 15 (14)
2 109 (109) 28 (28) 13 (13) 8 (8)
3 75 (75) 20 (19) 9 (9) 6 (5)
4 57 (57) 15 (15) 7 (7) 5 (4)
5 46 (46) 12 (12) 6 (6) 4 (4)

Table 3.1: Arm sizes needed to detect the mixture alternative using the SR where F is
the standard normal distribution for α = 0.05 and 80% power with ρ = 2 determined with
1,000,000 simulations to represent the exact joint distribution. Arm sizes determined by
the normal approximation are in parentheses.
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K
θ Stages 0.25 0.5 0.75 1.0

0.5 1 732 (730) 190 (190) 90 (90) 55 (55)
2 383 (382) 100 (99) 47 (47) 29 (29)
3 262 (261) 68 (68) 33 (32) 20 (20)
4 199 (199) 52 (52) 25 (25) 15 (15)
5 162 (161) 42 (42) 20 (20) 13 (12)

0.6 1 508 (507) 132 (133) 62 (62) 38 (37)
2 265 (265) 69 (69) 33 (33) 20 (20)
3 182 (181) 47 (47) 23 (22) 14 (14)
4 138 (138) 36 (36) 17 (17) 11 (11)
5 112 (112) 29 (29) 14 (14) 9 (9)

0.7 1 374 (373) 97 (96) 45 (45) 28 (28)
2 195 (195) 51 (51) 24 (24) 15 (15)
3 134 (133) 35 (35) 17 (17) 10 (10)
4 102 (102) 27 (27) 13 (13) 8 (8)
5 82 (82) 22 (22) 10 (10) 7 (6)

0.8 1 286 (285) 74 (74) 35 (35) 21 (21)
2 149 (149) 39 (39) 19 (18) 11 (11)
3 102 (102) 27 (27) 13 (13) 8 (8)
4 78 (78) 20 (20) 10 (10) 6 (6)
5 63 (63) 17 (17) 8 (8) 5 (5)

0.9 1 225 (225) 58 (58) 27 (27) 17 (16)
2 118 (118) 31 (31) 15 (14) 9 (9)
3 81 (81) 21 (21) 10 (10) 6 (6)
4 62 (62) 16 (16) 8 (8) 5 (5)
5 50 (50) 13 (13) 7 (6) 4 (4)

1 1 182 (182) 47 (47) 22 (22) 14 (13)
2 96 (95) 25 (25) 12 (12) 7 (7)
3 66 (65) 17 (17) 8 (8) 5 (5)
4 50 (50) 13 (13) 7 (6) 4 (4)
5 41 (40) 11 (11) 5 (5) 4 (3)

Table 3.2: Arm sizes needed to detect the mixture alternative using the SR where F logistic
distribution for α = 0.05 and 80% power with ρ = 2 determined with 1,000,000 simulations
to represent the exact joint distribution. Arm sizes determined by the normal approximation
are in parentheses.
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K
θ Stages 0.25 0.5 0.75 1.0

0.5 1 546 (546) 149 (149) 74 (74) 48 (48)
2 286 (285) 78 (78) 39 (39) 25 (25)
3 195 (195) 54 (53) 27 (27) 18 (17)
4 149 (149) 41 (41) 21 (21) 14 (13)
5 121 (120) 33 (33) 17 (17) 11 (11)

0.6 1 379 (379) 103 (103) 51 (51) 33 (33)
2 198 (198) 54 (54) 27 (27) 18 (17)
3 136 (136) 37 (37) 19 (19) 12 (12)
4 103 (103) 29 (28) 14 (14) 9 (9)
5 84 (84) 23 (23) 12 (12) 8 (8)

0.7 1 279 (278) 76 (76) 38 (38) 24 (24)
2 146 (146) 40 (40) 20 (20) 13 (13)
3 100 (100) 27 (27) 14 (14) 9 (9)
4 76 (76) 21 (21) 11 (11) 7 (7)
5 62 (62) 17 (17) 9 (9) 6 (6)

0.8 1 213 (213) 58 (58) 29 (29) 18 (18)
2 111 (111) 31 (30) 15 (15) 10 (10)
3 77 (76) 21 (21) 11 (11) 7 (7)
4 58 (58) 16 (16) 8 (8) 6 (5)
5 47 (47) 13 (13) 7 (7) 5 (4)

0.9 1 169 (168) 46 (46) 23 (23) 15 (14)
2 88 (88) 24 (24) 12 (12) 8 (8)
3 61 (60) 17 (17) 9 (8) 6 (5)
4 46 (46) 13 (13) 7 (6) 4 (4)
5 38 (37) 11 (10) 6 (5) 4 (4)

1 1 136 (136) 37 (37) 18 (18) 12 (11)
2 72 (71) 20 (19) 10 (10) 7 (6)
3 49 (49) 14 (13) 7 (7) 5 (4)
4 37 (37) 11 (10) 6 (5) 4 (3)
5 30 (30) 9 (8) 5 (4) 3 (3)

Table 3.3: Arm sizes needed to detect the mixture alternative using the SR where F is the
Laplace distribution for α = 0.05 and 80% power with ρ = 2 determined with 1,000,000
simulations to represent the exact joint distribution. Arm sizes determined by the normal
approximation are in parentheses.

62



K
θ Stages 0.25 0.5 0.75 1.0

0.5 1 430 (428) 117 (116) 59 (58) 39 (38)
2 224 (224) 61 (61) 31 (31) 20 (20)
3 154 (153) 42 (42) 21 (21) 14 (14)
4 117 (117) 32 (32) 16 (16) 11 (11)
5 95 (94) 26 (26) 13 (13) 9 (9)

0.6 1 298 (297) 81 (80) 40 (40) 27 (26)
2 156 (155) 42 (42) 22 (21) 14 (14)
3 107 (106) 29 (29) 15 (15) 10 (10)
4 82 (81) 22 (22) 12 (11) 8 (8)
5 66 (66) 18 (18) 9 (9) 6 (6)

0.7 1 219 (218) 59 (59) 30 (29) 20 (19)
2 114 (114) 31 (31) 16 (16) 11 (10)
3 78 (78) 21 (21) 11 (11) 7 (7)
4 60 (60) 16 (16) 9 (8) 6 (6)
5 48 (48) 13 (13) 7 (7) 5 (5)

0.8 1 167 (167) 45 (45) 23 (22) 15 (15)
2 87 (87) 24 (24) 12 (12) 8 (8)
3 60 (60) 17 (16) 9 (8) 6 (6)
4 46 (46) 13 (13) 7 (6) 5 (4)
5 37 (37) 10 (10) 6 (5) 4 (4)

0.9 1 132 (132) 36 (35) 18 (18) 12 (11)
2 69 (69) 19 (19) 9 (9) 7 (6)
3 47 (47) 13 (13) 7 (7) 5 (4)
4 36 (36) 10 (10) 5 (5) 4 (3)
5 29 (29) 8 (8) 4 (4) 3 (3)

1 1 107 (107) 29 (29) 14 (14) 9 (9)
2 56 (56) 15 (15) 8 (8) 5 (5)
3 38 (38) 11 (11) 6 (5) 4 (4)
4 30 (29) 8 (8) 4 (4) 3 (3)
5 24 (24) 7 (7) 4 (3) 3 (2)

Table 3.4: Arm sizes needed to detect the mixture alternative using the SR where F is
the t3 distribution for α = 0.05 and 80% power with ρ = 2 determined with 1,000,000
simulations to represent the exact joint distribution. Arm sizes determined by the normal
approximation are in parentheses.
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Under the alternative hypothesis, the mean of the SAR statistic is

EA[Zs] =
µA − µ
σ/
√
s

=

√
s
(
m
(
mp+ m+1

2

)
− m(2m+1)

2

)
√
m2(2m+ 1)/12

=

√
12s

(
p− 1

2

)
m2

√
2m3 +m2

(3.7)

and the mean of the SR statistic is

EA[Z̃s] =
sm
(
smp+ sm+1

2

)
− µs

σs
=
sm
(
smp+ sm+1

2

)
− sm(2sm+1)

2√
(sm)2(2sm+ 1)/12

=

√
12
(
p− 1

2

)
(sm)2√

2(sm)3 + (sm)2
(3.8)

Using these means, we examine their ratio as m→∞

lim
m→∞

EA[Zs]

EA[Z̃s]
= lim

m→∞

(√
12s

(
p− 1

2

)
m2

√
2m3 +m2

)(√
2(sm)3 + (sm)2

√
12
(
p− 1

2

)
(sm)2

)
(3.9)

= lim
m→∞

√
s
(√

2(sm)3 + (sm)2
)

s2
√

2m3 +m2
(3.10)

=

√
s
(√

s3
)

s2
= 1 (3.11)

When m→∞, it can be seen that the ratio of the means goes to one. Therefore the means

under both the null and alternative hypotheses are asymptotically equivalent. Figure 3.5

provides a visual of the ratio of the means under a particular design alternative.

Next, we examine the covariance of the test statistics. We will consider stages s

and s′, for s ≤ s′. Equality allows us to consider the variance. Recall that both test statistics

have unit variance under the null hypothesis. Under the null hypothesis, the covariance of
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Figure 3.5: Ratio of the means of the SAR and SR under the alternative hypothesis as
m→∞ for a design with S = 4, θ = 0.8, K = 0.5, and F is the normal distribution.

the SAR between stages s and s′ is a fixed number,
√
s/s′, only depending on the number

of the stages being used. The covariance of the SR depends on the stages as well as m.

With some simplification of this covariance under the null hypothesis we get

Cov(Z̃s, Z̃s′) =
(sm)2(2s′m+ 1)

12σsσs′
=

(sm)2(2s′m+ 1)

12
√

((sm)2(2sm+ 1)/12)((s′m)2(2s′m+ 1)/12)

=
s(2s′m+ 1)

s′
√

4ss′m2 + 2sm+ 2s′m+ 1
(3.12)

This has the limit

lim
m→∞

Cov(Z̃s, Z̃s′) =

√
s

s′
(3.13)
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Figure 3.6: Covariance of the SAR and SR under the null hypothesis as m → ∞ for a
four-stage design.

Thus, we see that the asymptotic covariance of the SR is exactly the covariance

of the SAR under the null hypothesis. The behavior of this covariance as m → ∞ can be

seen in Figure 3.6.

The general covariance of the SAR statistic and the SR statistic are those used

under the alternative hypothesis. Both depend on the number of stages, the arm size, and

other aspects of the design alternative: θ, K, and F . Consider the following calculations of

the limit of the ratio of covariances under the alternative hypothesis as m→∞. First, the
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covariance for the SAR statistic:

CovA(Zs, Zs′) =
( s
s′

) 1
2 σ2

A

σ2

=
( s
s′

) 1
2 m

2
(
p(1− p) + (m− 1)(p1 − p2) + (m− 1)(p2 − p2)

)
m2(2m+ 1)/12

=
( s
s′

) 1
2 12

(
p(1− p) + (m− 1)(p1 − p2 + p2 − p2)

)
2m+ 1

(3.14)

For the covariance of the SR statistic, we have

CovA(Z̃s, Z̃s′) =
(sm)2

σsσs′

(
p(1− p) + (s′m− 1)(p1 − p2) + (s′m− 1)(p2 − p2)

)
=

(sm)2
(
p(1− p) + (s′m− 1)(p1 − p2) + (s′m− 1)(p2 − p2)

)√(
(sm)2(2sm+ 1)/12

)(
(s′m)2(2s′m+ 1)/12

)
=

12s
(
p(1− p) + (s′m− 1)(p1 − p2 + p2 − p2)

)
s′
√

4ss′m2 + 2sm+ 2s′m+ 1
(3.15)

The limit of their ratio is

lim
m→∞

CovA(Zs, Zs′)

CovA(Z̃s, Z̃s′)
= lim

m→∞

(
s
s′

) 1
2

12
(
p(1−p)+(m−1)(p1−p2+p2−p2)

)
2m+1

12s
(
p(1−p)+(s′m−1)(p1−p2+p2−p2)

)
s′
√

4ss′m2+2sm+2s′m+1

(3.16)

= lim
m→∞

[√
s′

s

p(1− p) + (m− 1)(p1 + p2 − 2p2)

p(1− p) + (s′m− 1)(p1 + p2 − 2p2)
(3.17)

·
√

4ss′m+ 2sm+ 2s′m+ 1

2m+ 1

]
(3.18)

=

√
s′

s

(
1

s′

)√
ss′ = 1 (3.19)

Thus, the two standardized test statistics both have zero mean, unit variance, and

the same asymptotic covariance under the null hypothesis and have the same asymptotic
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Figure 3.7: Covariance of the SAR and SR under the alternative hypothesis as m→∞ for
a design with S = 4, θ = 0.8, K = 0.5, and F is the normal distribution.

mean and variance-covariance matrix under the alternative hypothesis. Figure 3.7 shows

the behavior of the variance and covariance for a particular scenario as m gets large.

With the asymptotic equality of means, variances, and covariances shown above

and the asymptotic behavior of the bivariate distribution, it can be seen that the SAR

and Rerank methods have the same bivariate limiting distributions under both the null

and alternative hypothesis. This is most notable for two-stage designs, however it holds

for pairwise groupings of any two stages. From the discussion of the full limiting joint

distribution, we know the SAR and SR test statistics have the same asymptotic multivariate

normal distribution.

As an illustration of the similarity between the SAR and SR procedures, consider

the arm sizes needed to detect a given design alternative for each method in Table 3.5.
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The arm sizes were determined by the normal approximation of the joint distributions for

both the SAR statistic and SR statistic. Many of the arm sizes presented are equal. Any

inequality between the arm sizes is only a difference of one in favor of the SR statistic.

K = 0.5 K = 1
θ Stages Normal Logistic Laplace t3 Normal Logistic Laplace t3

0.6 1 147 (147) 130 (130) 102 (102) 79 (79) 40 (40) 36 (36) 32 (32) 25 (25)
2 78 (78) 69 (69) 54 (54) 42 (42) 22 (22) 20 (20) 17 (18) 14 (14)
3 54 (54) 47 (48) 37 (37) 29 (29) 15 (15) 14 (14) 12 (12) 10 (10)
4 41 (41) 36 (36) 28 (29) 22 (23) 12 (12) 11 (11) 9 (10) 8 (8)

0.8 1 82 (82) 72 (72) 56 (56) 43 (43) 22 (22) 20 (20) 17 (17) 13 (13)
2 44 (44) 39 (39) 30 (31) 24 (24) 12 (12) 11 (11) 10 (10) 8 (8)
3 30 (30) 27 (27) 21 (21) 16 (17) 9 (9) 8 (8) 7 (7) 6 (6)
4 23 (23) 20 (21) 16 (16) 13 (13) 7 (7) 6 (6) 5 (6) 4 (5)

1 1 52 (52) 45 (45) 35 (35) 27 (27) 13 (13) 12 (12) 10 (10) 8 (8)
2 28 (28) 25 (25) 19 (20) 15 (15) 8 (8) 7 (7) 6 (6) 5 (5)
3 19 (20) 17 (17) 13 (14) 11 (11) 5 (6) 5 (5) 4 (5) 4 (4)
4 15 (15) 13 (13) 10 (11) 8 (8) 4 (5) 4 (4) 3 (4) 3 (3)

Table 3.5: Arm sizes necessary to detect the mixture alternative with SR statistic for
α = 0.05 and 80% power with ρ = 2 determined by the normal approximation. Arm sizes
for the SAR statistic determined by the normal approximation are in parentheses.

Although we are not using the between-stage ranks with the SAR, these compar-

isons do not seem to provide much more information than the within-stage ranks used in

both the SAR and SR. To shed some light on this, we can examine the Mann-Whitney

formulation of the Wilcoxon Rank Sum statistics used in the SAR and the SR. We consider

a two-stage group sequential design, but the ideas hold for more than two stages. For the

SAR at stage 2, the Mann-Whitney U is

U2 =
m∑
i=1

m∑
j=1

I(X1i < Y1j) +
m∑
i=1

m∑
j=1

I(X2i < Y2j) (3.20)
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where I(·) is one if the argument is true and zero otherwise. The SR statistic at stage s

uses Mann-Whitney Ũ

Ũ2 =
m∑
i=1

m∑
j=1

I(X1i < Y1j) +
m∑
i=1

m∑
j=1

I(X2i < Y2j)+ (3.21)

m∑
i=1

m∑
j=1

I(X1i < Y2j) +
m∑
i=1

m∑
j=1

I(X2i < Y1j) (3.22)

Obviously, the quantities that constitute the SAR are a subset of those used for the SR.

More importantly, the additional quantities, the between-stage comparisons, used for the

SR are not independent of the within-stage comparisons. This dependence is likely the

reason that there is little information gained with their inclusion.

An added benefit of the SAR, is the ability to only record the Wilcoxon Rank Sum

statistic at each stage whereas all observations need to be used throughout the entirety of

the experiment with the SR. With the evidence above of asymptotic equivalence, we will

focus solely on the SAR in the remainder of this work.
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Chapter 4

Multiplicative Treatment Effect

While the previous chapters focused on distributions that are continuous and sym-

metric with support on the real line, this may not be the data type for all experimenters.

In this chapter, we wish to explore the efficacy of the SAR statistic when the data comes

from a continuous, non-negative distribution.

4.1 Scale Family and Multiplicative Treatment Effect

To define a scale family, let Z have CDF Ψ with scale parameter equal to one

without loss of generality. If X = σFZ has CDF F (x) = Ψ(x/σF ) for σF > 0, then X

has scale parameter σF . Without loss of generality, we can assume σF = 1. It is common

for a distribution in the scale family to also be parameterized by a second value, a shape

parameter. Applying the SAR in this setting is appropriate if the distribution is in a scale

family whose range is [0,∞) and whose shape parameter remains fixed. As in the location-

shift treatment effect setting, a larger observation will correspond to an improvement. With
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Distribution Gamma Weibull Folded normal Log logistic

Density function 1
Γ(α)βα x

α−1 exp(−x/β) α
β

(
x
β

)α−1
exp (−(x/β)α)

√
2
π

exp
(
− x2

2σ2

)
αxα−1λ
[1+λxα]2

Table 4.1: Probability density functions of various scale family distributions. All parameters
> 0.

these attributes, the distribution will be stochastically increasing with an increasing scale

parameter, thus fulfilling the requirements to use the Wilcoxon Rank Sum test [2]. Since

Note that rather than an additive shift as in the previous location-shift setting, we

are now working with a multiplicative treatment effect. Both the mean and variance of the

responders will be greater than the mean and variance of the control group. However, the

shape of the distribution is preserved when a random variable is multiplied by a constant.

Simpson et al. [20] provide motivation for a multiplicative treatment effect with their

investigation of data regarding rain clouds.

Some possible choices of F are the gamma distribution with a given shape param-

eter, the Weibull distribution with a given shape parameter, the folded normal distribution,

and the log logistic distribution for a given shape parameter. Their densities are presented

in Table 4.1.

4.2 Test Statistic and Distribution

The test statistic used in this setting will be the SAR test statistic from Equation

(2.2). With any choice of applicable distribution, the test statistic remains distribution-free

under the null hypothesis and the Type I error is preserved, even if F is misspecified. The

selection of a shape parameter mirrors the assumed equal variance in the location shift

setting. We are interested in testing the null hypothesis H0 : F = G against the one-sided
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alternative, HA : G is the mixture distribution. We take G(u) = (1−θ)F (u)+θF (u/δ) where

θ ∈ (0, 1] is the proportion of responders and δ > 1. The control group will be represented

by X as defined in Section 4.1. Then an observation from the treatment group will be

Y = (1− θ)X + θδX. For identifiability, define the null case as the point (θ, δ) = (0, 1).

Under the null hypothesis, the SAR statistic maintains the same distribution as

established in Chapter 2. Under the alternative hypothesis, the only change to the dis-

tribution is the calculation of the probabilities from Equations (2.5), (2.6), and (2.7). To

account for the multiplicative treatment effect, they are now replaced with

p =

∫ ∞
0

F (u)

[
(1− θ)f(u) +

θ

δ
f
(u
δ

)]
du (4.1)

p1 =

∫ ∞
0

[
1− (1− θ)F (u)− θF

(u
δ

)]2
f(u) du (4.2)

p2 =

∫ ∞
0

(F (u))2

[
(1− θ)f(u) +

θ

δ
f
(u
δ

)]
du (4.3)

where F is the CDF of the control group and f is its density function. These probabilities

are then used in the calculation of the mean, variance, and covariance of the SAR statistic

established in Chapter 2. The asymptotic multivariate normal approximation still holds in

this setting.

For the remainder of this work in the multiplicative treatment effect setting, we

will focus on the gamma family of distributions to illustrate the properties of the SAR test

statistic. A random variable with the gamma density from Table 4.1 has shape parameter

α and scale parameter β. Using a different shape parameter for the design alternative will

offer various possibilities of distributions to show the corresponding effects on the test.
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4.3 Arm Size and Power

Tables 4.2 - 4.5 show arm sizes for various design alternatives with data originating

from a gamma distribution as determined by the algorithms developed in Chapter 2. The

arm sizes from the simulations are the result of running the simulation three times and

displaying the largest arm size. This approach is likely the cause of the difference between

the simulated arm sizes and those determined by the normal approximation (in parentheses),

since the simulated result is always larger if the two methods are not equal.

As in the location-shift mixture setting, the arm size decreases as θ or δ increases.

This aligns with the intuition that if there are more responders to treatment and they have

much greater values than the control group, the treatment group will differ more from the

control group. It can be seen from the tables that as the shape parameter is increasing, the

arm size is decreasing. This brings about the same type of results seen from the ordering

of the location-shift distributions. That is, the experimenter can expect to have higher

power if the true shape parameter is greater than the shape parameter used for the design

alternative because their arm size will be more than the minimum needed.

This relationship between the value of the shape parameter and the arm sizes is

explained by the Kullback-Leibler (K-L) distances between the distributions under the null

and alternative hypotheses. Figure 4.1 displays these distances for four gamma distributions

with different shape parameters as θ changes. A δ of 1.5 was chosen and held fixed for the

alternative distribution, although the same type of ordering occurs for any δ > 1.
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Figure 4.1: Kullback-Leibler distances comparing the null and mixture alternative with
δ = 1.5 and a range of θ for various gamma distributions with σF = 1.

Next, we investigate the power of the SAR procedure in the multiplicative treat-

ment effect setting. Figure 4.2 presents the results of simulated power curves for four

different shape parameter settings. Each design alternative is the same except for the shape

parameter. Each plot shows power curves for a true θ less than, equal to, and greater than

the design alternative θ. The results match the expectation that the power will be higher

if the true θ is higher than the design alternative θ and lower if the true θ is lower.
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Figure 4.2: Power curves for various gamma distributions with S = 2, θ = 0.8, δ = 1.5,
α = 0.05, β = 0.2, and ρ = 2.
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δ
θ Stage 1.25 1.5 1.75 2

0.5 1 1334 (1333) 412 (410) 221 (219) 148 (146)
2 697 (697) 216 (215) 116 (116) 78 (78)
3 477 (477) 148 (147) 80 (79) 54 (53)
4 364 (363) 113 (113) 61 (61) 41 (41)
5 295 (294) 91 (91) 50 (49) 33 (33)

0.6 1 928 (925) 286 (284) 153 (152) 102 (101)
2 485 (484) 149 (149) 81 (80) 54 (54)
3 332 (331) 103 (103) 56 (55) 37 (37)
4 253 (252) 79 (78) 43 (42) 29 (29)
5 205 (204) 64 (63) 35 (34) 23 (23)

0.7 1 681 (679) 210 (208) 112 (111) 75 (73)
2 356 (356) 110 (110) 59 (59) 40 (40)
3 243 (243) 76 (75) 41 (41) 28 (27)
4 186 (186) 58 (58) 31 (31) 21 (21)
5 151 (150) 47 (47) 26 (25) 18 (17)

0.8 1 521 (519) 160 (159) 86 (84) 58 (56)
2 272 (272) 84 (84) 45 (45) 31 (30)
3 186 (186) 58 (58) 31 (31) 21 (21)
4 142 (142) 44 (44) 24 (24) 17 (16)
5 115 (115) 36 (36) 20 (20) 14 (13)

0.9 1 412 (410) 127 (125) 68 (66) 45 (44)
2 216 (215) 67 (66) 36 (36) 24 (24)
3 148 (147) 46 (46) 25 (25) 17 (17)
4 113 (113) 35 (35) 19 (19) 13 (13)
5 91 (91) 29 (29) 16 (16) 11 (11)

1 1 333 (331) 103 (101) 55 (53) 36 (35)
2 175 (174) 54 (54) 29 (29) 20 (19)
3 120 (119) 37 (37) 21 (20) 14 (14)
4 91 (91) 29 (29) 16 (16) 11 (11)
5 74 (74) 23 (23) 13 (13) 9 (9)

Table 4.2: Arm sizes required to detect the mixture alternative where α = 0.05, β = 0.2,
ρ = 2, and F is the gamma distribution with shape parameter equal to 1 using 1,000,000
simulations. Arm sizes determined by the normal approximation are in parentheses.
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δ
θ Stage 1.25 1.5 1.75 2

0.5 1 598 (596) 188 (186) 103 (101) 71 (69)
2 312 (312) 99 (98) 54 (54) 38 (37)
3 214 (214) 68 (68) 38 (37) 26 (26)
4 163 (163) 52 (52) 29 (29) 20 (20)
5 132 (132) 42 (42) 24 (23) 17 (16)

0.6 1 415 (413) 130 (128) 72 (70) 49 (47)
2 217 (217) 69 (68) 38 (38) 26 (26)
3 149 (149) 47 (47) 26 (26) 18 (18)
4 114 (113) 36 (36) 20 (20) 14 (14)
5 92 (92) 30 (29) 17 (16) 12 (11)

0.7 1 305 (303) 95 (94) 52 (51) 36 (34)
2 160 (159) 50 (50) 28 (28) 19 (19)
3 109 (109) 35 (35) 19 (19) 14 (13)
4 84 (83) 27 (27) 15 (15) 11 (10)
5 68 (68) 22 (22) 13 (12) 9 (9)

0.8 1 233 (231) 73 (71) 40 (38) 27 (26)
2 122 (122) 39 (38) 21 (21) 15 (15)
3 84 (84) 27 (27) 15 (15) 11 (10)
4 64 (64) 21 (20) 12 (12) 8 (8)
5 52 (52) 17 (17) 10 (9) 7 (7)

0.9 1 184 (182) 57 (56) 31 (30) 21 (20)
2 97 (96) 31 (30) 17 (17) 12 (12)
3 67 (66) 21 (21) 12 (12) 9 (8)
4 51 (51) 17 (16) 10 (9) 7 (6)
5 41 (41) 14 (13) 8 (8) 6 (5)

1 1 149 (147) 46 (45) 25 (24) 17 (16)
2 79 (78) 25 (25) 14 (14) 10 (9)
3 54 (54) 18 (17) 10 (10) 7 (7)
4 42 (41) 14 (13) 8 (8) 6 (5)
5 34 (33) 11 (11) 7 (6) 5 (4)

Table 4.3: Arm sizes required to detect the mixture alternative where α = 0.05, β = 0.2,
ρ = 2, and F is the gamma distribution with shape parameter equal to 2 using 1,000,000
simulations. Arm sizes determined by the normal approximation are in parentheses.
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δ
θ Stage 1.25 1.5 1.75 2

0.5 1 286 (284) 93 (91) 53 (51) 38 (36)
2 150 (149) 49 (49) 28 (28) 20 (20)
3 103 (102) 34 (34) 20 (20) 15 (14)
4 78 (78) 26 (26) 15 (15) 11 (11)
5 64 (63) 21 (21) 13 (12) 9 (9)

0.6 1 198 (196) 64 (62) 37 (35) 26 (25)
2 104 (104) 34 (34) 20 (20) 14 (14)
3 71 (71) 24 (23) 14 (14) 10 (10)
4 55 (54) 18 (18) 11 (11) 8 (8)
5 44 (44) 15 (15) 9 (9) 7 (6)

0.7 1 145 (143) 47 (45) 27 (25) 19 (18)
2 76 (76) 25 (25) 15 (14) 11 (10)
3 53 (52) 18 (17) 11 (10) 8 (7)
4 40 (40) 14 (13) 8 (8) 6 (6)
5 33 (33) 11 (11) 7 (7) 5 (5)

0.8 1 111 (109) 36 (34) 20 (19) 15 (13)
2 59 (58) 19 (19) 11 (11) 8 (8)
3 40 (40) 14 (13) 8 (8) 6 (6)
4 31 (31) 11 (10) 7 (6) 5 (5)
5 25 (25) 9 (9) 6 (5) 4 (4)

0.9 1 88 (86) 28 (26) 16 (14) 12 (10)
2 46 (46) 16 (15) 9 (9) 7 (6)
3 32 (32) 11 (11) 7 (6) 5 (5)
4 25 (25) 9 (8) 5 (5) 4 (4)
5 20 (20) 7 (7) 5 (4) 4 (3)

1 1 71 (69) 23 (21) 13 (11) 9 (8)
2 38 (37) 12 (12) 7 (7) 6 (5)
3 26 (26) 9 (9) 5 (5) 4 (4)
4 20 (20) 7 (7) 5 (4) 4 (3)
5 17 (16) 6 (6) 4 (3) 3 (3)

Table 4.4: Arm sizes required to detect the mixture alternative where α = 0.05, β = 0.2,
ρ = 2, and F is the gamma distribution with shape parameter equal to 4 using 1,000,000
simulations. Arm sizes determined by the normal approximation are in parentheses.
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δ
θ Stage 1.25 1.5 1.75 2

0.5 1 227 (225) 75 (73) 44 (42) 32 (31)
2 119 (119) 40 (40) 24 (23) 17 (17)
3 82 (82) 28 (27) 17 (16) 12 (12)
4 63 (62) 21 (21) 13 (13) 10 (9)
5 51 (51) 17 (17) 11 (10) 8 (8)

0.6 1 158 (156) 52 (50) 31 (29) 22 (21)
2 83 (83) 28 (28) 16 (16) 12 (12)
3 57 (57) 19 (19) 12 (11) 9 (8)
4 44 (44) 15 (15) 9 (9) 7 (7)
5 36 (35) 13 (12) 8 (7) 6 (6)

0.7 1 116 (114) 38 (36) 22 (21) 16 (15)
2 61 (61) 20 (20) 12 (12) 9 (9)
3 42 (42) 15 (14) 9 (8) 7 (6)
4 32 (32) 11 (11) 7 (7) 5 (5)
5 26 (26) 9 (9) 6 (6) 5 (4)

0.8 1 88 (87) 29 (27) 17 (15) 12 (11)
2 47 (47) 16 (15) 9 (9) 7 (7)
3 32 (32) 11 (11) 7 (7) 5 (5)
4 25 (25) 9 (9) 6 (5) 4 (4)
5 21 (20) 7 (7) 5 (4) 4 (3)

0.9 1 70 (68) 23 (21) 13 (12) 9 (8)
2 37 (37) 12 (12) 8 (7) 6 (5)
3 26 (25) 9 (9) 6 (5) 4 (4)
4 20 (20) 7 (7) 5 (4) 4 (3)
5 16 (16) 6 (6) 4 (4) 3 (3)

1 1 56 (55) 18 (17) 11 (9) 7 (6)
2 30 (30) 10 (10) 6 (6) 5 (4)
3 21 (21) 7 (7) 5 (4) 4 (3)
4 16 (16) 6 (6) 4 (3) 3 (3)
5 14 (13) 5 (5) 4 (3) 3 (2)

Table 4.5: Arm sizes required to detect the mixture alternative where α = 0.05, β = 0.2,
ρ = 2, and F is the gamma distribution with shape parameter equal to 5 using 1,000,000
simulations. Arm sizes determined by the normal approximation are in parentheses.
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Chapter 5

Estimation

Under the traditional pure shift assumption, the treatment effect is δ. However,

in the mixture setting the treatment effect consists of the pair (θ, δ). In this chapter, we

consider several possible estimation techniques in both the location-shift and multiplicative

treatment effect mixture settings. Each estimator will be calculated based on observations

up to and including stage s′, the stage at which the trial ends. They will be evaluated on

their bias and square root of their mean squared error.

5.1 Location-shift Mixture Alternative

In this section, we consider several possible estimation techniques applied in the

location-shift mixture alternative setting.

81



5.1.1 Maximum Likelihood Estimation

Maximum likelihood estimators (MLEs) are a popular technique for their effec-

tiveness in estimation. We obtain the MLEs from the pooled control and treatment groups

by maximizing over all four parameters in the joint likelihood in Equation (5.1). Estimates

are obtained for {µF ∈ (−∞,+∞), σF ∈ (0,+∞), θ ∈ (0, 1], δ ∈ (0,+∞)}, although we are

most interested in the estimates of (θ, δ).

L(µF , σ
2
F , θ, δ|x,y) =

[
s′m∏
i=1

f(xi;µF , σ
2
F )

][
s′m∏
i=1

[
(1− θ)f(yi;µF , σ

2
F ) + θf(yi;µF + δ, σ2

F )
]]

(5.1)

The F used for the likelihood will be the same as the one chosen for the design alternative.

These estimates will be primarily considered as a baseline of comparison for the other

estimators. This is partially due to the fact that we must choose an F when calculating the

MLEs, while the other estimators rely less on this choice or do not require it at all.

5.1.2 k-means

The second set of estimators for (θ, δ) we will investigate are found after applying

the popular unsupervised clustering method, k-means [13]. This clustering algorithm is

designed to separate points into k groups based on their distance from the center of the

group. It begins with choosing the number of clusters. Since we are working under the

assumption that the treatment observations come from a mixture of an F and a shifted

version of F , the number of clusters will be two. Then two observations are randomly

chosen to start the clusters. They will function as the mean of the cluster on the first
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iteration of the algorithm. The rest of the observations are assigned to the cluster of the

nearest mean based on some distance metric. In our case, we calculate distance by using

euclidean distance. Once all points are assigned, means are calculated from the clusters.

These are used as the centers in the second iteration, and potentially new cluster assignments

are made. The algorithm proceeds until there is no change in the assignment of the points.

The final solution of clusters should minimize the sum of the within-group sum of

squares of the two clusters. However, the algorithm may have different results, depending

on the starting values. In order to avoid a local minimum solution, we run the algorithm 50

times with random starting values each time and select the clusters that have the smallest

total within-cluster sum of squares.

When running the k-means algorithm, we will only use the treatment group ob-

servations. Then we calculate the estimators by

θ̂k−means =
number of observations in group with larger mean

total number of observations
(5.2)

δ̂k−means = larger mean− smaller mean (5.3)

5.1.3 Constrained k-means

Next, we explore estimating the treatment effect using estimators calculated after

applying the constrained k-means algorithm (CKM) proposed by Wagstaff et al. [23].

This clustering algorithm will run the traditional k-means algorithm with an additional

set of constraints based on prior knowledge of the data. It takes as input a set of “must-

link” observations and a set of “cannot-link” observations. The must-link constraints are
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the observations the user identifies as being in the same cluster, while the cannot-link

constraints are the observations the user identifies as being in different clusters. In the CKM

algorithm, points are assigned to clusters in a way that does not violate the constraints.

The only difference between the traditional k-means algorithm and the CKM algorithm is

that before an observation is assigned to a cluster, the constraints are checked.

With the CKM algorithm, we are no longer limited to using only the treatment

group observations as with traditional k-means. We input the control observations for the

must-link constraints, since we know they are all from F . CKM will always keep these ob-

servations in the same cluster. We assign the largest observation from the treatment group

and the smallest observation from the combined sample as the cannot-link constraint. The

largest observation from the treatment group is likely a responder to the treatment that

comes from the shifted version of F . The smallest observation from either the control treat-

ment group is likely to come from the null distribution. Therefore these two observations

should not be grouped into the same cluster. In order to avoid a local minimum solution,

we run the algorithm 50 times with random starting values and choose the result with the

smallest total within-cluster sum of squares.

Occasionally for two clusters, the cluster that includes the control group observa-

tions will also include the largest observations of the treatment group. This contradicts the

assumption that the largest observations in the treatment group would come from a shifted

version of F . However, it may suggest that there is no shift and give evidence of the null

hypothesis. If CKM clusters the observations in this way, we will set the estimates for (θ, δ)

to (0, 0) to represent the null scenario.
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Under the mixture alternative, there should be two clusters. Let the cluster with

the control group observations be Cluster 1 with mean C1 and the cluster without the

control group observations be Cluster 2 with mean C2. Then we calculate the estimates for

(θ, δ) as

θ̂CKM =


# of observations in Cluster 2

s′m if C2 − C1 > 0

0 otherwise

(5.4)

δ̂CKM =


C2 − C1 if C2 − C1 > 0

0 otherwise

(5.5)

5.1.4 Method of Moments

We consider a method of moments (MoM) estimator that builds upon the es-

timator proposed by Jeske and Yao [9]. These estimates will use the sample mean and

sample variance of the control group (X,S2
X), respectively, and treatment group, (Y , S2

Y ),

respectively, from all observations up to and including the termination stage, s′.

Due to the randomness of the sample statistics, it is possible for the estimators

to violate the parameter space. In order for the estimators to appropriately represent the

null scenario, if either estimator is equal to zero then the estimate of the other will also be

set to zero. For our MoM estimators, this situation would occur only if Y −X ≤ 0 which

would lead to the estimate of δ to be zero. Therefore, we modify the estimators from Jeske

and Yao [9] such that they are calculated if Y −X > 0 and are set to zero otherwise.
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Our MoM estimators for (θ, δ) can be calculated as

θ̂MoM =


[
1 +

(S2
Y −S

2
X)+

(Y−X)2+εs′

]−1
if Y −X > 0

0 otherwise

(5.6)

δ̂MoM =


(Y −X)

[
1 +

(S2
Y −S

2
X)+

(Y−X)2+εs′

]
if Y −X > 0

0 otherwise

(5.7)

where t+ = t if t > 0 and 0 otherwise is used to restrict the estimates to the parameter

space. For εs′ , we will use an adaptive approach suggested by Lubich et al. [12]. It is

calculated by

εs′ = S2
X

log
(
(2ms′)2

)
2ms′

. (5.8)

Use of εs′ ensures consistency of the estimators and makes the estimators invariant to scale

transformations.

5.1.5 Modified MoM

As noted by Jeske and Yao [9], the MoM estimator has worse performance when F

has heavy tails. In order to handle these situations, we make an attempt at a more robust

version of the MoM estimator. First, we replace the sample means in (5.6) and (5.7) with

sample medians. Then we replace the sample variances with functions involving the sample

interquartile ranges (IQRs).

For the location-scale family, X ∼ F if and only if X ∼ µF + σFZ, where Z ∼ Φ.

Then the pth percentile of X is Xp = µF + σFZp. Using this, it can be seen that the IQR
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of X is

IQR(X) = X75 −X25 = (µF + σFZ75)− (µF + σFZ25) = σF (Z75 − Z25). (5.9)

Therefore

σ̂F =
ÎQR(X)

Z75 − Z25
(5.10)

is an unbiased estimate of σF . We can square this to get an estimate of σ2
F for use in the

MoM estimators. This will be a biased estimate of σ2
F due to Jensen’s inequality, but should

suffer less from heavy-tailed distributions.

This adjustment will work as a replacement for the sample variance of the control

group, however the same cannot be done for the treatment group. Because of the mixture

distribution, we are unable to factor out σF in the IQR as in Equation (5.9). In our setting,

we know that the variance of the treatment group is

σ2
Y = σ2

F + θ(1− θ)δ2. (5.11)

We suggest using the square of Equation (5.10) as an estimate of the variance of the control

group and using (θ̂k−means, δ̂k−means) as estimates of (θ, δ). Even if the results of the k-

means estimators may be inaccurate, they may only have a small effect on the modified

MoM estimators.
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Normal Logistic Laplace t3
Z75 − Z25 1.3490 1.2114 0.9802 0.8832

Table 5.1: IQR values for standardized location-scale distributions.

In our setting, we will have

σ̂IQR =
ÎQR(Xs′)

Z75 − Z25
(5.12)

where s′ indicates we will use observations up to and including the termination stage and

Z ∼ Φ. In our simulations, we choose Φ to match the choice of F from the design alternative.

Thus, this estimator depends on the choice of F . Table 5.1 shows the theoretical IQRs used

in the denominator of Equation (5.10) for each F .

To accompany the use of a robust estimator for the spread of F , we will use the

median as a robust estimator as the center of F . Let X̃ and Ỹ be the medians of the control

and treatment observations up to and including stage s′, respectively. To keep the values

of the estimators within the parameter space, the modified MoM estimators we use will

be calculated only when the Ỹ is less than X̃. We set (θ̂Mod. MoM , δ̂Mod. MoM ) to (0, 0) if

Ỹ − X̃ < 0, otherwise

θ̂Mod. MoM =

{
1 +

(σ̂2
IQR + θ̂k−means(1− θ̂k−means)δ̂2

k−means − σ̂2
IQR)+

(Ỹs′ − X̃s′)2 + εIQR

}−1

(5.13)

δ̂Mod. MoM = (Ỹs′ − X̃s′)

{
1 +

(σ̂2
IQR + θ̂k−means(1− θ̂k−means)δ̂2

k−means − σ̂2
IQR)+

(Ỹs′ − X̃s′)2 + εIQR

}

(5.14)
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Since the adaptive epsilon from Equation (5.8) uses the sample standard deviation from the

control group, we replace this with Equation (5.12) to get

εIQR = σ̂2
IQR

log
(
(2ms′)2

)
2ms′

. (5.15)

5.1.6 Bootstrap Bias-corrected MoM

By only calculating the estimate upon termination, the estimator will be biased

[8, 16]. To adjust for this, we apply the bootstrap bias correction used by Peng et al. [16] to

our MoM estimators. In order to avoid relying on a choice of F , we will use a nonparametric

bootstrap sampling technique in place of parametric sampling.

After the trial ends, we obtain the MoM estimates of (θ, δ) and proceed with the

bootstrap bias correction if the estimates are not (0, 0). For the bootstrap sampling, we

calculate the empirical cumulative distribution function, F̂ , using only observations from

the control group up to and including the stage at which the experiment terminated. Each

bootstrap sample will simulate a group sequential trial of its own, resulting in bootstrap

samples that may terminate earlier or later than the original sample.

Nonparametric bootstrap sampling is commonly done by resampling from the orig-

inal sample, or equivalently F̂ , with replacement. However, resampling using F̂ can result

in ties in the bootstrap sample. This would be a violation of our assumptions for the

test, namely that F is continuous and therefore the probability of one observation being

equal to a specific value is zero. We will use a method that can mimic simulating from a

continuous distribution. Let X(1), X(2), . . . , X(s′m−1), X(s′m) be the order statistics of the

control group. We use Ogive: linear interpolations between the points (X(i), F̂ (X(i))) and
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Figure 5.1: F̂ with linear interpolation (Ogive) between points and exponential functions in
the tails and generation of a bootstrap sample value. An example bootstrap sample value,
x∗, is shown.

(X(i+1), F̂ (X(i+1))) for i = 1, . . . , s′m − 2. For the tail behavior of F̂ , we will apply the

framework of the location-scale families used previously and assume the range of the data

is (−∞,+∞). In the lower tail, we plot the function f(x) = exp(−ax) such that it goes

through the point (X(1), 1/(s
′m)). Then, this can be used to solve for a. Similarly, in the

upper tail we plot the function g(x) = 1 − exp(−bx) such that it goes through the point

(X(s′m−1), (s
′m− 1)/(s′m)). Then solve for b in the same fashion as a. Figure 5.1 provides

a visual of F̂ with the Ogive to connect the points and exponential functions for the tails.

90



To obtain a value, x∗, for a bootstrap sample, we can create a plot as in Figure

5.1 using X1, . . . , Xs′m. Generate p ∈ (0, 1). Then

x∗ =



− log(p)/a if p < F̂ (X(1))

(p− b0i)/b1i if F̂ (X(i)) ≤ p ≤ F̂ (X(i+1)), i = 1, . . . , s′m− 2

− log(1− p)/b if p > F̂ (X(s′m−1))

(5.16)

where (b0i, b1i) are the intercept and slope of the line connecting (X(i), F̂ (X(i))) and (X(i+1),

F̂ (X(i+1))) for i = 1, . . . , s′m − 2. All of the observations for the bootstrap sample for the

control group can be generated in this way.

For a bootstrap sample value for the treatment group, y∗, we first find a value x∗

as above. Then

y∗ =


x∗ with probability 1− θ̂MoM

x∗ + δ̂MoM with probability θ̂MoM

(5.17)

We use this process to generate all bootstrap treatment observations.

Once we have a terminated bootstrap trial, we calculate bootstrap estimates

(θ̂∗, δ̂∗) using the MoM estimators. Then we adjust these to correct for their bias. The

algorithm for calculating the bootstrap bias corrected estimates of (θ, δ) is outlined with

the following steps:

1. Generate B bootstrap samples until termination.

2. Calculate method of moments estimates of (θ, δ) for each sample path, denoted (θ̂∗j , δ̂
∗
j ),

j = 1, . . . , B.
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3. Bootstrap bias corrected MoM estimates of (θ, δ) are

θ̂BC MoM = 2θ̂MoM −
1

B

B∑
j=1

θ̂∗j (5.18)

δ̂BC MoM = 2δ̂MoM −
1

B

B∑
j=1

δ̂∗j (5.19)

5.1.7 Results Comparisons

This section will discuss the results of simulating estimates of (θ, δ) using the

estimators from the previous sections. They will be evaluated on their bias and square

root of their mean squared error (RMSE). The process will involve simulating a group

sequential trial until termination, then calculating the estimates using the observations up

to and including the termination stage. We present the results such that a specific group

sequential design alternative is set and the true θ, δ, and/or F may be different than the

values chosen for the design alternative.

First, consider the estimation of θ as presented in Table 5.2. Notably, the k-means

estimator does well when the true θ is around 0.5. However, as θ moves closer to one the

k-means estimator is no longer preferred. In empirical results that are not shown, the same

effect happens when θ moves closer to zero. For the cases where θ = 0.7 and θ = 0.9, we

see some mixed results for the best estimator. Generally, the MoM estimator is either the

best or second-best choice. As θ increases with all else equal, the bias and RMSE of the

k-means and CKM estimators increase. In the same setting, the RMSE of the Mod. MoM

generally increases. The RMSE of the MLE, MoM, and BC MoM decreases as θ increases.

When estimating θ, all estimators generally see their bias and RMSE decrease as the size
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of the shift increases with all else equal. The k-means-based estimators seem to attempt to

split the observations into roughly equal-sized clusters, whereas the other estimators seem

to perform better if there is less mixing of the two components of the mixture distribution.

A final consideration is the effect of F . The bias of the MLE has mixed results

on whether heavy-tailed distributions increase its bias. For large θ, the RMSE of the MLE

decreases for heavy-tailed distributions. The F does not appear to have much of an effect

on the k-means estimator. The bias of the CKM estimator sees an increase for heavy tails

only in small shift scenarios, while the RMSE has an overall increase with heavy-tailed

F . Similarly, the MoM estimator’s bias increases with the heaviness of the tails of F and

large θ. The RMSE sees and overall increase with heavy-tailed F . The Mod. MoM bias

decreases with heavier-tailed F . The RMSE is generally decreasing, but sometimes has a

slightly increase for the t3 distribution which has the heaviest tails. Bias of the BC MoM

does not see much change with F , but the RMSE is increasing with F and large θ.

Next, we compare the estimators of δ. The results can be seen in Table 5.3. We

quickly see that the k-means and CKM estimators are generally among the poorest of the

six choices by both metrics. The MLE appears as the best choice in many of the scenarios,

especially when the shift is large. Once again the MoM offers several instances of being the

second best estimator mixed with some situations as the best choice based on either the

bias or RMSE.

Similar patterns that are present in the estimation of θ also appear when estimating

δ. We examine the tables as θ increases with all else equal. For both the MLE and MoM,

the bias does not seem to exhibit any particular pattern, but the RMSE decreases as θ
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increases. The k-means estimator sees its bias decrease. The CKM estimator shows a

generally increasing bias. Both the k-means and CKM estimators show no pattern in

the RMSE with increasing θ. The modified MoM and BC MoM both generally show an

increase in bias and decrease in RMSE. When we consider increasing δ with all else equal,

all estimators generally see a decrease in both bias and RMSE. This is unsurprising as

we expect the larger shift to make it easier to detect the centers of the null and shifted

distributions.

Now, consider the effects of moving from the light-tailed normal distribution to

the heavy-tailed t3 distribution. The notable effects on the bias are seen in the k-means

estimator and BC MoM estimator which both exhibit a general increase. The MoM is

unique and seems to show bias decreasing with heavier tails and θ = 0.5 but increasing bias

otherwise. All estimators except the Mod. MoM generally show monotone increasing of the

RMSE. The Mod. MoM actually appears to be decreasing until it reaches the t3 where it

too succumbs to the heaviest tails.

Another situation we wish to consider is when the true (θ, δ) are (0, 0) to investigate

the performance of the estimators if the null hypothesis were true. Table 5.4 presents the

bias and RMSE results from simulations of group sequential trials for some design alternative

but the true (θ, δ) were (0, 0). In this setting, although we define the hull hypothesis as the

point (0, 0), either θ = 0 or δ = 0 is essentially the null scenario. Thus, a pair of estimators

only correctly identifying one of the parameters as zero is evidence of the null. With this

in mind, it seems that the Mod. MoM has the best performance for estimating θ as zero,

while the MoM has the best performance for estimating δ as zero.
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We present some final thoughts on the estimators in the mixture alternative setting

where the responder distribution is a location-shift of the control distribution. First, we

note that the MLE is not always the best estimator as we may have expected. Lindsay [11]

provides some evidence for this by explaining that when the shift is less than two standard

deviations, there is very little information about θ. Furthermore, the MLE relies on the

design alternative choice of F . Both the k-means and CKM estimators often estimate θ

as 0.5 even when the true value is much different. This then leads to the downfall of

its estimate of δ. If the experimenter had prior knowledge that θ may be around 0.5,

they may be interested in using the k-means or CKM estimators. The Modified MoM

estimators exhibited decreasing in both bias and RMSE as the tails of the distribution

became increasingly heavy. This suggests that using robust estimates of the center and

spread of the control and treatment distributions can help. Unfortunately, it too even

struggled with the t3 distribution which had the heaviest tails of all the F ’s considered.

Like the MLE, the Mod. MoM depends on the choice of F for the design alternative. The

BC MoM has mixed results on effectively reducing the bias of the MoM estimator. Whether

the bias reduction is present or not, use of the BC MoM comes with the cost of increased

RMSE and computation time.

Overall, we recommend the use of the MoM estimator for both the pair (θ, δ). It

is one of the most competitive estimators, often showing as the best or second best choice

by either bias or RMSE for (θ, δ). It also does not depend on the choice of F in the design

alternative.
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Bias RMSE
θ δ Estimator Normal Logistic Laplace t3 Normal Logistic Laplace t3
0.5 1 MLE 0.1074 0.0957 0.1147 0.1587 0.3522 0.3510 0.3715 0.3896

k-means -0.0054 0.0009 -0.0015 0.0042 0.1454 0.1596 0.1833 0.2222
CKM -0.1556 -0.1734 -0.1906 -0.2101 0.2344 0.2551 0.2825 0.3057
MoM 0.1204 0.0908 0.0955 0.0907 0.3553 0.3460 0.3574 0.3755
Mod. MoM -0.1835 -0.1763 -0.1517 -0.1234 0.2761 0.2665 0.2468 0.2351
BC MoM 0.0466 0.0216 0.0273 0.0360 0.4175 0.3999 0.4208 0.4282

1.5 MLE 0.0742 0.0997 0.1117 0.1194 0.2829 0.2995 0.3152 0.3119
k-means -0.0036 -0.0037 -0.0064 -0.0054 0.1304 0.1345 0.1418 0.1736
CKM -0.0870 -0.0938 -0.1013 -0.1175 0.1875 0.2014 0.2218 0.2393
MoM 0.0962 0.1039 0.0947 0.0824 0.2841 0.2956 0.3017 0.3012
Mod. MoM -0.1012 -0.0830 -0.0856 -0.0651 0.2283 0.2229 0.2296 0.2143
BC MoM 0.0364 0.0500 0.0452 0.0411 0.3377 0.3431 0.3447 0.3394

2 MLE 0.0530 0.0635 0.0927 0.0896 0.2223 0.2314 0.2562 0.2457
k-means 0.0019 -0.0046 -0.0002 0.0017 0.1227 0.1216 0.1203 0.1379
CKM -0.0410 -0.0380 -0.0442 -0.0523 0.1433 0.1501 0.1662 0.1842
MoM 0.0533 0.0701 0.0773 0.0675 0.2252 0.2344 0.2453 0.2527
Mod. MoM -0.0531 -0.0434 -0.0346 -0.0353 0.2116 0.2117 0.2131 0.2208
BC MoM 0.0085 0.0342 0.0434 0.0415 0.2668 0.2634 0.2710 0.2711

0.7 1 MLE 0.0015 0.0156 0.0561 0.0862 0.2832 0.2874 0.2872 0.2725
k-means -0.1839 -0.1891 -0.1718 -0.1796 0.2301 0.2476 0.2649 0.2941
CKM -0.2807 -0.3034 -0.3226 -0.3152 0.3290 0.3617 0.4012 0.4037
MoM 0.0168 0.0099 0.0169 0.0146 0.2694 0.2789 0.2907 0.2916
Mod. MoM -0.2632 -0.2429 -0.2009 -0.1635 0.3307 0.3094 0.2669 0.2427
BC MoM -0.0270 -0.0284 -0.0181 -0.0108 0.3264 0.3329 0.3349 0.3253

1.5 MLE 0.0453 0.0649 0.0802 0.0848 0.2130 0.2226 0.2235 0.2135
k-means -0.1647 -0.1519 -0.1320 -0.1338 0.2161 0.2174 0.2128 0.2447
CKM -0.1816 -0.1885 -0.1749 -0.1904 0.2371 0.2623 0.2666 0.3070
MoM 0.0457 0.0434 0.0498 0.0256 0.2085 0.2279 0.2273 0.2349
Mod. MoM -0.1109 -0.0983 -0.0718 -0.0480 0.2073 0.1992 0.1718 0.1635
BC MoM 0.0252 0.0222 0.0288 0.0094 0.2260 0.2496 0.2509 0.2525

2 MLE 0.0562 0.0552 0.0632 0.0623 0.1756 0.1698 0.1764 0.1757
k-means -0.1309 -0.1114 -0.0922 -0.0834 0.1949 0.1856 0.1779 0.1922
CKM -0.1118 -0.1101 -0.0983 -0.1062 0.1750 0.1908 0.1980 0.2314
MoM 0.0476 0.0406 0.0495 0.0325 0.1752 0.1768 0.1872 0.1963
Mod. MoM -0.0303 -0.0182 0.0014 0.0058 0.1437 0.1327 0.1247 0.1349
BC MoM 0.0318 0.0266 0.0359 0.0210 0.1860 0.1836 0.1958 0.2043

0.9 1 MLE -0.0725 -0.0518 -0.0272 -0.0046 0.2374 0.2146 0.1802 0.1657
k-means -0.3979 -0.3859 -0.3871 -0.3996 0.4246 0.4251 0.4566 0.4805
CKM -0.4134 -0.4363 -0.4463 -0.4598 0.4461 0.4835 0.5154 0.5424
MoM -0.0597 -0.0690 -0.0815 -0.0906 0.2030 0.2197 0.2287 0.2559
Mod. MoM -0.3252 -0.3081 -0.2688 -0.2466 0.3736 0.3515 0.3028 0.2984
BC MoM -0.0787 -0.0902 -0.0958 -0.1035 0.2378 0.2685 0.2507 0.2802

1.5 MLE -0.0128 -0.0050 0.0041 0.0072 0.1387 0.1301 0.1234 0.1191
k-means -0.3710 -0.3608 -0.3431 -0.3374 0.4036 0.4104 0.4191 0.4240
CKM -0.2992 -0.3051 -0.3039 -0.2859 0.3379 0.3625 0.3962 0.3936
MoM -0.0179 -0.0294 -0.0339 -0.0495 0.1325 0.1480 0.1614 0.1905
Mod. MoM -0.1722 -0.1609 -0.1429 -0.1285 0.2105 0.1963 0.1777 0.1827
BC MoM -0.0248 -0.0368 -0.0415 -0.0558 0.1423 0.1586 0.1755 0.2036

2 MLE -0.0092 -0.0029 -0.0019 0.0060 0.1229 0.1101 0.1022 0.0938
k-means -0.3356 -0.3226 -0.2940 -0.2769 0.3760 0.3772 0.3733 0.3747
CKM -0.2169 -0.2031 -0.1917 -0.1682 0.2568 0.2668 0.2837 0.2923
MoM -0.0160 -0.0189 -0.0253 -0.0327 0.1200 0.1243 0.1360 0.1565
Mod. MoM -0.1028 -0.0911 -0.0835 -0.0731 0.1401 0.1263 0.1173 0.1314
BC MoM -0.0215 -0.0228 -0.0291 -0.0372 0.1335 0.1309 0.1427 0.1733

Table 5.2: Bias and RMSE values for estimating θ based on 1000 simulations with 1000
bootstrap sample paths where the data come from the F , θ, and δ values indicated in the
table with σF = 1. The design alternative uses S = 2, θ = 0.7, K = 1.5, F = Normal, α =
0.01, β = 0.1, and ρ = 2 resulting in an arm size of 17.
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Bias RMSE
θ δ Estimator Normal Logistic Laplace t3 Normal Logistic Laplace t3
0.5 1 MLE 0.0011 0.0334 0.1164 0.0378 0.7938 0.9689 1.0517 1.2303

k-means 0.8667 0.8820 0.9357 1.2552 0.9302 0.9999 1.1393 2.2790
CKM 0.5753 0.5260 0.5100 0.6038 0.8773 0.9853 1.1241 1.7572
MoM -0.2155 -0.1377 -0.0534 0.0181 0.5884 0.6245 0.7094 0.9037
Mod. MoM 0.2228 0.2550 0.2842 0.2804 0.7498 0.7228 0.6682 1.0353
BC MoM -0.1364 -0.0469 0.0498 0.1339 0.6500 0.7186 0.8525 1.1144

1.5 MLE 0.0082 -0.0141 -0.0097 -0.0043 0.6039 0.6814 0.7979 0.9645
k-means 0.5819 0.5599 0.5853 0.7503 0.6709 0.6636 0.7892 1.6906
CKM 0.3705 0.3700 0.3518 0.4050 0.7053 0.8134 0.9586 1.5185
MoM -0.1679 -0.1365 -0.0916 0.0616 0.6276 0.6602 0.7153 1.0136
Mod. MoM 0.2251 0.2074 0.1967 0.1926 0.6661 0.6291 0.6602 0.8539
BC MoM -0.0809 -0.0436 0.0008 0.1727 0.6644 0.7655 0.8209 1.2956

2 MLE -0.0232 -0.0183 -0.0535 -0.0569 0.5098 0.5473 0.6564 0.7474
k-means 0.3862 0.3653 0.3706 0.5025 0.5200 0.5093 0.5745 1.7330
CKM 0.2598 0.3002 0.2951 0.2928 0.5497 0.6299 0.8387 1.3145
MoM -0.1204 -0.1032 -0.0877 0.0159 0.6392 0.6419 0.7096 0.8898
Mod. MoM 0.1601 0.1699 0.1412 0.1922 0.6516 0.6317 0.6349 1.6528
BC MoM -0.0295 -0.0355 -0.0161 0.0879 0.7209 0.7052 0.8171 1.0771

0.7 1 MLE 0.1249 0.1575 0.0945 0.0824 0.5742 0.7479 0.7524 0.8201
k-means 0.8314 0.8516 0.9163 1.1709 0.8853 0.9620 1.1498 2.1862
CKM 0.6300 0.6331 0.6184 0.7780 0.8390 1.0050 1.1883 2.0327
MoM 0.0191 0.0622 0.0923 0.2718 0.4787 0.5294 0.5887 1.1048
Mod. MoM 0.4859 0.5144 0.4773 0.4998 0.7085 0.6986 0.6318 1.0227
BC MoM 0.0665 0.1074 0.1488 0.3409 0.5176 0.5848 0.6914 1.3874

1.5 MLE 0.0700 0.0218 -0.0001 0.0027 0.4402 0.4615 0.4860 0.5501
k-means 0.5335 0.5398 0.5677 0.8217 0.6330 0.7154 0.8777 1.9417
CKM 0.5026 0.4671 0.4336 0.5015 0.6678 0.8177 0.9101 1.5170
MoM 0.0487 0.0505 0.0512 0.2179 0.4709 0.5018 0.5176 0.9961
Mod. MoM 0.4520 0.3964 0.3836 0.3908 0.5820 0.5581 0.5300 0.7217
BC MoM 0.0676 0.0758 0.0756 0.2606 0.4821 0.5352 0.5538 1.3181

2 MLE -0.0014 0.0294 0.0165 -0.0174 0.4023 0.4173 0.5196 0.5132
k-means 0.2783 0.3435 0.3530 0.4815 0.5123 0.6217 0.7033 1.3866
CKM 0.3249 0.3637 0.3649 0.3643 0.5061 0.6982 0.8547 1.2377
MoM 0.0041 0.0642 0.0467 0.0920 0.4322 0.4784 0.5222 0.7468
Mod. MoM 0.2965 0.3482 0.3521 0.3327 0.4860 0.5023 0.4850 0.6034
BC MoM 0.0157 0.0697 0.0519 0.0995 0.4409 0.4824 0.5249 0.8421

0.9 1 MLE 0.2032 0.1490 0.1804 0.1389 0.4766 0.4905 0.4597 0.5885
k-means 0.7489 0.7787 0.9310 1.2112 0.8118 0.9503 1.1939 2.5463
CKM 0.7365 0.6347 0.7646 0.8734 0.8692 0.9329 1.2168 1.9201
MoM 0.1553 0.1659 0.2710 0.3526 0.4312 0.4811 0.5522 0.9795
Mod. MoM 0.6021 0.5558 0.5673 0.6048 0.7130 0.6569 0.6470 1.8585
BC MoM 0.1694 0.1807 0.2860 0.3901 0.4432 0.4984 0.5755 1.2697

1.5 MLE 0.1187 0.1053 0.0965 0.0819 0.3816 0.3632 0.3884 0.5134
k-means 0.3371 0.4321 0.5461 0.6685 0.5115 0.7619 0.9962 1.7338
CKM 0.5292 0.5588 0.5411 0.5899 0.6446 0.8793 1.0528 1.5916
MoM 0.1260 0.1512 0.1683 0.2484 0.3946 0.4342 0.4884 0.8771
Mod. MoM 0.4460 0.4365 0.4168 0.4200 0.5549 0.5466 0.5197 0.7679
BC MoM 0.1275 0.1530 0.1704 0.2629 0.3972 0.4372 0.4914 1.0648

2 MLE 0.0529 0.0655 0.0676 0.0607 0.3533 0.3633 0.3420 0.3200
k-means 0.0227 0.1012 0.2371 0.3785 0.5338 0.7002 0.8874 1.7632
CKM 0.3249 0.3379 0.3650 0.4073 0.4671 0.6423 0.7971 1.4140
MoM 0.0663 0.1048 0.1185 0.2277 0.3772 0.4282 0.4535 1.1534
Mod. MoM 0.3312 0.3625 0.3521 0.3664 0.4993 0.5085 0.4704 0.8198
BC MoM 0.0652 0.1014 0.1143 0.2535 0.3736 0.4250 0.4494 1.5974

Table 5.3: Bias and RMSE values for estimating δ based on 1000 simulations with 1000
bootstrap sample paths where the data come from the F , θ, and δ values indicated in the
table with σF = 1. The design alternative uses S = 2, θ = 0.7, K = 1.5, F = Normal, α =
0.01, β = 0.1, and ρ = 2 resulting in an arm size of 17.
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Parameter Statistic Estimator Normal Logistic Laplace t3
θ Bias MLE 0.6062 0.5640 0.5418 0.5699

k-means 0.4898 0.4929 0.4797 0.5037
CKM 0.2021 0.1771 0.1364 0.1394
MoM 0.3351 0.3548 0.3208 0.2895
Mod. MoM 0.1274 0.1416 0.1360 0.1434
BC MoM 0.2582 0.2874 0.2425 0.2198

RMSE MLE 0.7229 0.7010 0.6891 0.7136
k-means 0.5135 0.5312 0.5444 0.5734
CKM 0.2647 0.2394 0.1939 0.2034
MoM 0.5368 0.5582 0.5280 0.5016
Mod. MoM 0.2077 0.2218 0.2241 0.2441
BC MoM 0.5214 0.5458 0.5251 0.5016

δ Bias MLE 0.1089 0.0900 0.2532 0.1421
k-means 1.6954 1.7806 1.9372 2.0936
CKM 1.0542 1.1745 1.3436 1.3157
MoM 0.1647 0.1861 0.2599 0.3244
Mod. MoM 0.4321 0.3855 0.3357 0.3072
BC MoM 0.2097 0.2370 0.3507 0.4480

RMSE MLE 1.0161 1.3788 1.6952 1.9066
k-means 1.7300 1.8785 2.1130 2.7665
CKM 1.3190 1.5349 1.8064 2.1513
MoM 0.3310 0.3969 0.6173 1.1834
Mod. MoM 0.7306 0.6629 0.6293 0.7685
BC MoM 0.4448 0.5456 0.8846 1.7946

Table 5.4: Bias and RMSE values for estimating θ and δ based on 1000 simulations and
1000 bootstrap simulations where the true (θ, δ) are (0, 0) and the data come from the F
indicated in the table with σF = 1. The design alternative uses S = 2, θ = 0.7, K = 1.5,
F = Normal, α = 0.01, β = 0.1, and ρ = 2 resulting in an arm size of 17.
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5.2 Multiplicative Treatment Effect Mixture Alternative

In this section, we examine estimators in the mixture alternative setting where one

component of the mixture has a multiplicative treatment effect of the control distribution.

We will use a limited set of estimators influenced by the results of the estimators in the

location-shift mixture setting. As in the location-shift setting, estimation is treated as being

calculated only upon termination of the group sequential clinical trial and all observations

up to and including the termination stage are used.

5.2.1 MoM

The same MoM estimators defined in Section 5.1.4 cannot be appropriately applied

to the multiplicative treatment effect data since it was derived in the location-shift setting.

However, we can follow similar steps to solve for method of moments estimators to be

used in the multiplicative treatment effect setting. To do this, we find the first and second

moments of the treatment distribution. The mean of the treatment is

E[Y ] = (1− θ)E[X] + θδE[X] = E[X] ((1− θ) + θδ) = E[X] (1 + θ(δ − 1)) (5.20)

and, if I ∼ Bernoulli(θ), the variance is

Var(Y ) = Var ((1− I)X + IδX)

= Var (E[(1− I)X + IδX|I]) + E [Var((1− I)X + IδX|I)]

= (E[X])2θ(1− θ)(δ − 1)2 + Var(X)
(
(1− θ) + θδ2

)
(5.21)
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The MoM estimator is found by setting the sample moments equal to the theo-

retical moments and solving for the parameters of interest. We solve the following sets of

equations for θ and δ

X̄ = E[X] Ȳ = E[X] (1 + θ(δ − 1)) (5.22)

S2
X = Var(X) S2

Y = (E[X])2θ(1− θ)(δ − 1)2 + Var(X)
(
(1− θ) + θδ2

)
(5.23)

where (X̄, S2
X) are the sample mean and variance, respectively, of the control group obser-

vations and (Ȳ , S2
Y ) are the sample mean and variance, respectively, of the treatment group

observations. To aid in the solution, define

∆ =
E[Y ]− E[X]

E[X]
= θ(δ − 1) (5.24)

With plug-in estimator of Equation (5.24),

∆̂ =
Ȳ − X̄
X̄

(5.25)

Then, method of moments estimators of (θ, δ) can be found to be

θ̂ =

[
1 +

S2
Y − S2

X(∆̂ + 1)2

∆̂2(X̄2 + S2
X)

]−1

(5.26)

δ̂ =
1

θ̂
∆̂ + 1 (5.27)
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As in the location-shift mixture setting, there are quantities within these equa-

tions that should always be positive based on the theoretical values. However, due to the

randomness of the sample statistics used in place of theoretical values, they may violate

the parameter space. Thus, we provide support of restricting certain sample quantities to

maintain the quality of the estimators. First, consider Equation (5.26). If the fraction is

negative, then the value of θ̂ will be outside of the parameter space in which θ resides. The

fraction could only be negative if S2
Y − S2

X(∆̂ + 1)2 is negative. Therefore, we subject this

quantity to the t+ function which is equal to t if t is positive and zero otherwise. Further

justification that this quantity must be positive using the true theoretical values in place of

the plug-in estimates is shown in Appendix A.

The other quantity of concern is ∆̂. It is easily seen that ∆ must be positive. We

also note that if ∆̂ is negative, then Equation (5.27) will be less than one which violates

the parameter space of δ. The only time δ̂ is negative is if Y − X < 0. If this occurs, it

is evidence of the null scenario. Thus, keep the estimators within the parameter space, we

will set the estimates of θ to zero and the estimate of δ to one if ∆̂ < 0 and calculate them

otherwise.
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With these considerations, we define the MoM estimators for the multiplicative

treatment effect in the mixture setting as

θ̂MoM =


[
1 +

(S2
Y −S

2
X(∆̂+1)2)+

∆̂2(X̄2+S2
X)+εs′

]−1

if ∆̂ > 0

0 otherwise

(5.28)

δ̂MoM =


1
θ̂
∆̂ + 1 if ∆̂ > 0

1 otherwise

(5.29)

where t+ = t if t > 0 and 0 otherwise, εs′ is defined in Equation (5.8).

5.2.2 CKM

We implement the CKM algorithm discussed in Section 5.1.3. The CKM algorithm

can be implemented in the same way as defined previously. In fact, we even use the same

estimator for θ. However, with a multiplicative treatment effect it is more appropriate to

use the ratio of the means of the clusters to estimate δ instead of the difference of their

means. Like the location-shift setting, if the mean of the cluster with the control group

data is greater than the mean of the cluster without the control group data, it suggests that

there is no treatment effect. Therefore, if this occurs we set the estimates of (θ, δ) to (0, 1).

Let Cluster 1 be the cluster with the control group observations with mean C1

and Cluster 2 be the cluster without the control group observations with mean C2. Then
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the estimators for (θ, δ) are

θ̂CKM =


# of observations in Cluster 2

s′m if C2 − C1 > 0

0 otherwise

(5.30)

δ̂CKM =


C2

C1
if C2 − C1 > 0

1 otherwise

(5.31)

5.2.3 CKM-log

Due to the skewed nature of the data, the CKM estimators may have poor perfor-

mance. We can imagine a single responder to the treatment having an observation that is

much larger than all other observations. When using euclidean distance from the mean of

a cluster to determine the cluster assignment of an observation, this point’s distance could

skew the results. Then the CKM algorithm may put this in a cluster of its own and group

all other observations in a single cluster, giving an estimate of θ close to zero. This result

could be counterproductive to the estimation if there are other responders to the treatment.

Therefore, we are interested in transforming the data in such a way that the CKM algo-

rithm using euclidean distance from a cluster mean is an appropriate distance measure. We

attempt to do this by taking the log of the entire sample as the data on which we run the

CKM algorithm.

Using the log of all of the observations as the input, then the CKM algorithm

is implemented as previously described. Once the clusters are found, we check if there is

evidence of no treatment effect. Since taking the log of the observations is a monotone

transformation, it is again appropriate to check if the mean of the cluster with the control
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group observations is greater than the mean of the cluster without the control group ob-

servations. If it is, then we set the estimates of (θ, δ) to (0, 1). Otherwise, we calculate the

estimate of θ in the same way as before. For the estimate of δ, we will now have cluster

means on the log scale. Therefore, we use the exponential function on their difference to

get an estimate of the ratio of the means of the raw data.

Let Cluster 1 be the cluster with the control group observations with mean C1

and Cluster 2 be the cluster without the control group observations with mean C2. Then

the CKM-log (CKM-l) estimators for (θ, δ) are

θ̂CKM−l =


# of observations in cluster 2

s′m if C2 − C1 > 0

0 otherwise

(5.32)

δ̂CKM−l =


exp

(
C2 − C1

)
if C2 − C1 > 0

1 otherwise

(5.33)

5.2.4 Results Comparisons

We examine the results of simulating estimates of (θ, δ) with the MoM, CKM, and

CKM-l estimators in the multiplicative treatment effect mixture setting. They are evaluated

on their bias and RMSE. We simulate a group sequential clinical trial until termination,

then calculate the estimates using the observations up to and including the termination

stage. The results are presented such that a specific group sequential design alternative was

chosen and the true parameter values may have been different than the values used in the

design alternative.
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We begin by investigating the estimation of θ. The bias and RMSE of the θ

estimators can be found in Table 5.5. It can immediately be seen that for a true θ of 0.7 or

0.9, the MoM estimator performs best in all but two instances where it is a close second. The

CKM-l estimator appears to do best when the true θ is 0.5. This parallels the results from

the location-shift mixture setting. A k-means based estimator may be preferred if there is

reason to believe the true θ is close to 0.5, otherwise the MoM estimator is preferred.

There are several patterns that can be seen in Table 5.5. First, as θ increases, the

bias and RMSE of the CKM and CKM-l estimators increases. As δ increases, the bias of the

CKM and CKM-l estimators and RMSE of all three estimators decreases. Finally, as the

shape parameter increases, the bias and RMSE of all three estimators generally decrease.

For the estimation of δ, the MoM estimator is far and away the best choice over the

CKM and CKM-l estimators as presented in Table 5.6. Again, there are patterns apparent

in the estimation. As θ increases the bias of the MoM estimator increases, while the bias

and RMSE of the CKM and CKM-l estimators generally decrease. As δ increases, the bias

and RMSE of all three estimators generally increase. As the shape parameter increases, the

bias and RMSE of all three estimators decrease.

Overall, the MoM estimator is the preferred estimator for (θ, δ). If the experi-

menter has reason to believe the true θ is around 0.5, they may wish to use the CKM-l

estimator for θ. In a comparison between the CKM and CKM-l estimators of (θ, δ), the

CKM-l estimator generally offers a slight improvement over the CKM estimators.
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Bias RMSE
θ δ Estimator Shape 1 Shape 2 Shape 4 Shape 5 Shape 1 Shape 2 Shape 4 Shape 5
0.5 1.5 MoM -0.0103 0.0320 0.0859 0.0994 0.4191 0.3894 0.3589 0.3552

CKM -0.3672 -0.3322 -0.2853 -0.2766 0.3819 0.3547 0.3174 0.3131
CKM-l -0.1743 -0.1524 -0.1259 -0.1179 0.2817 0.2602 0.2213 0.2171

2 MoM 0.0555 0.1018 0.0899 0.0913 0.3824 0.3317 0.2845 0.2631
CKM -0.3648 -0.3287 -0.2713 -0.2450 0.3802 0.3553 0.3083 0.2857
CKM-l -0.1211 -0.0971 -0.0738 -0.0555 0.2455 0.2137 0.1848 0.1661

2.5 MoM 0.0900 0.0716 0.0773 0.0692 0.3384 0.2910 0.2320 0.2106
CKM -0.3726 -0.3265 -0.2513 -0.2237 0.3881 0.3509 0.2885 0.2657
CKM-l -0.1009 -0.0866 -0.0403 -0.0334 0.2325 0.2050 0.1436 0.1371

0.7 1.5 MoM -0.1498 -0.0702 -0.0133 0.0377 0.4278 0.3773 0.3082 0.2770
CKM -0.5581 -0.5168 -0.4534 -0.4194 0.5689 0.5340 0.4782 0.4465
CKM-l -0.3461 -0.3136 -0.2746 -0.2468 0.4145 0.3747 0.3325 0.3014

2 MoM -0.0251 0.0185 0.0404 0.0511 0.3369 0.2731 0.2226 0.2131
CKM -0.5491 -0.4898 -0.4010 -0.3723 0.5624 0.5099 0.4318 0.4051
CKM-l -0.2750 -0.2356 -0.1849 -0.1732 0.3503 0.3026 0.2477 0.2371

2.5 MoM 0.0122 0.0483 0.0315 0.0368 0.2876 0.2361 0.1882 0.1769
CKM -0.5394 -0.4633 -0.3706 -0.3292 0.5531 0.4849 0.4054 0.3668
CKM-l -0.2382 -0.1997 -0.1388 -0.1258 0.3178 0.2725 0.2001 0.1921

0.9 1.5 MoM -0.2659 -0.1786 -0.0923 -0.0761 0.4676 0.3690 0.2599 0.2288
CKM -0.7435 -0.6832 -0.5993 -0.5746 0.7528 0.6985 0.6199 0.5956
CKM-l -0.5081 -0.4735 -0.4126 -0.3965 0.5554 0.5163 0.4495 0.4318

2 MoM -0.1311 -0.0737 -0.0391 -0.0517 0.3189 0.2317 0.1655 0.1697
CKM -0.7229 -0.6355 -0.5369 -0.5102 0.7344 0.6550 0.5648 0.5421
CKM-l -0.4395 -0.3884 -0.3035 -0.2896 0.4893 0.4366 0.3388 0.3334

2.5 MoM -0.0960 -0.0613 -0.0303 -0.0278 0.2571 0.1917 0.1495 0.1421
CKM -0.7128 -0.6218 -0.4953 -0.4512 0.7242 0.6415 0.5296 0.4883
CKM-l -0.3940 -0.3278 -0.2323 -0.2051 0.4471 0.3738 0.2728 0.2478

Table 5.5: Bias and RMSE values for estimating θ where the data come from the distribu-
tion, θ, and δ values indicated in the table for a design scenario with S = 2, θ = 0.7, δ =
2, F = Gamma, α = 0.05, β = 0.2, and ρ = 2 resulting in an arm size of 19.
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Bias RMSE
θ δ Estimator Shape 1 Shape 2 Shape 4 Shape 5 Shape 1 Shape 2 Shape 4 Shape 5
0.5 1.5 MoM 0.0341 0.0526 -0.0176 -0.0268 0.7012 0.5841 0.3693 0.3430

CKM 3.3242 2.3552 1.7341 1.6244 3.8523 2.6653 1.8647 1.7449
CKM-l 3.1784 2.0881 1.6010 1.4779 3.7097 2.3339 1.6821 1.5464

2 MoM 0.0438 0.0436 -0.0086 0.0022 0.9749 0.6733 0.4991 0.4169
CKM 3.8473 2.8584 2.2113 2.1135 4.5143 3.2176 2.3868 2.2270
CKM-l 3.9232 2.6038 1.9835 1.9388 4.4645 2.7978 2.0703 2.0045

2.5 MoM 0.1756 0.0995 0.0237 -0.0165 1.3124 0.9223 0.6073 0.5018
CKM 4.8281 3.4797 2.6730 2.5220 5.7311 3.8877 2.8610 2.6451
CKM-l 4.5790 3.0978 2.5085 2.3628 5.1340 3.3345 2.5755 2.4159

0.7 1.5 MoM 0.2218 0.1044 0.0953 0.0650 0.8151 0.5287 0.3639 0.3000
CKM 3.3439 2.1798 1.6277 1.4628 3.9266 2.4831 1.7560 1.5495
CKM-l 3.2517 1.9759 1.4470 1.3498 3.8229 2.1665 1.5322 1.4040

2 MoM 0.2689 0.1885 0.1070 0.0547 1.0592 0.6730 0.4816 0.4006
CKM 3.9302 2.7999 2.0845 1.9333 4.6418 3.1191 2.2153 2.0272
CKM-l 4.1111 2.5602 1.9266 1.7781 4.7068 2.7383 2.0043 1.8381

2.5 MoM 0.3671 0.1790 0.1127 0.0499 1.2155 0.8371 0.5570 0.5169
CKM 4.6514 3.3164 2.5601 2.3612 5.3758 3.6130 2.6814 2.4436
CKM-l 4.9679 3.1214 2.4120 2.2376 5.6141 3.3187 2.4763 2.2910

0.9 1.5 MoM 0.3189 0.2429 0.1612 0.1435 0.8349 0.5531 0.3639 0.3196
CKM 3.1906 2.0435 1.4304 1.3232 3.7730 2.3137 1.5398 1.4021
CKM-l 3.2679 1.8966 1.3371 1.2012 3.7879 2.0854 1.4103 1.2595

2 MoM 0.4110 0.3000 0.1458 0.1353 0.9975 0.6720 0.4596 0.4120
CKM 3.7579 2.6826 1.8843 1.7210 4.3301 2.9083 1.9824 1.7961
CKM-l 4.2068 2.4766 1.7724 1.6072 4.7409 2.6579 1.8302 1.6579

2.5 MoM 0.5949 0.3052 0.1476 0.0945 1.3008 0.8334 0.5457 0.4688
CKM 4.6359 3.1636 2.3042 2.0765 5.2000 3.3798 2.3899 2.1434
CKM-l 4.9921 3.0445 2.2137 2.0294 5.5437 3.2271 2.2715 2.0715

Table 5.6: Bias and RMSE values for estimating δ where the data come from the distribu-
tion, θ, and δ values indicated in the table for a design scenario with S = 2, θ = 0.7, δ =
2, F = Gamma, α = 0.05, β = 0.2, and ρ = 2 resulting in an arm size of 19.
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Chapter 6

Conclusions

In this work, we argue that the traditional assumption of the pure shift model

to represent the treatment distribution may not always be correct. A mixture model is a

more appropriate representation of the treatment group as there may be individuals who

are unaffected by the treatment. If nonresponders exist but the experimenter erroneously

works under the pure shift assumption, a design will be underpowered. Both a location-shift

and multiplicative treatment effect mixture are considered.

We present a novel method of using the Wilcoxon Rank Sum statistic in group

sequential clinical trials with the SAR test procedure. It’s usefulness over existing methods

if the experimenter has some idea about F is shown in the reduction of the arm size needed

to detect a given alternative. A similar conclusion is reached in the comparison with fixed

sample methods by the average sample numbers. The SAR is compared to the SR, an

alternative application of the Wilcoxon Rank Sum statistic in the group sequential setting,

and their asymptotic equivalence is shown. Both of these test statistics maintain the Type
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I error rate irrespective of F . The SAR is presented as the preferred method due to its

slightly simpler computation.

Several estimators are evaluated for the treatment effect (θ, δ) in both the location-

shift and multiplicative treatment effect setting. Based on their bias and RMSE, the method

of moments estimators for (θ, δ) are preferred overall. Prior knowledge that roughly half

of the individuals may respond to the treatment could warrant the use of a k-means-based

estimator for θ.

Future work could investigate several paths. First, discrete data could be consid-

ered. This would result in ties in the ranks. Secondly, two-sided tests could be considered

where we may reject because the treatment is effective over the control or could be actively

worse than the control. A related idea would be to explore the use of a third component in

the mixture distribution. The first two components would be those we have explored in this

work and the third component could represent individuals that experience negative effects

from the treatment. One could explore a discrete mixture with an arbitrary number of com-

ponents or a continuous mixture. It may be worthwhile to investigate the combination of

the location-shift mixture and the multiplicative treatment effect mixture to represent the

treatment distribution. Further exploration into the amount of information lost by using

the SAR instead of the SR could be a useful avenue.

In regards to estimation, properties of the estimators could be explored. Then

confidence intervals could be established for the treatment effect. Other estimators, such

as one based on hierarchical clustering instead of k-means, may also be investigated.
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Appendix A

Multiplicative Treatment Effect

MoM Restriction

In the MoM estimators used in the multiplicative treatment effect mixture alter-

native setting, we utilize a function t+ that is equal to t if t is positive and zero otherwise.

This function keeps the estimates within the parameter space. We provide justification that

the value of the function should be positive in the context of the MoM estimators by using

the true theoretical values of the sample estimates used in Equations (5.28) and (5.29). Let

(µX , σ
2
X) be the mean and variance of the control group, respectively, and let (µY , σ

2
Y ) be

the mean and variance of the treatment group, respectively. Then ∆ = (µY − µX)/µX and
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we solve the following equation

σ2
Y − σ2

X(∆ + 1)2 ?
> 0

σ2
Y

?
> σ2

X(∆ + 1)2

σ2
Y

σ2
X

?
>

(
µY − µX
µX

+ 1

)2

σ2
Y

σ2
X

?
>

(
µY
µX

)2

(µX)2θ(1− θ)(δ − 1)2 + σ2
X

(
(1− θ) + θδ2

)
σ2
X

?
>

(
µX (1 + θ(δ − 1))

µX

)2

µ2
X

σ2
X

θ(1− θ)(δ − 1)2 + (1 + θ(δ2 − 1))
?
> (1 + θ(δ − 1))2

µ2
X

σ2
X

θ(1− θ)(δ − 1)2 + (1 + θ(δ − 1)(δ + 1))
?
> 1 + 2θ(δ − 1) + θ2(δ − 1)2

µ2
X

σ2
X

θ(1− θ)(δ − 1)2 + θ(δ − 1)(δ + 1)
?
> 2θ(δ − 1) + θ2(δ − 1)2

µ2
X

σ2
X

(1− θ)(δ − 1) + (δ + 1)
?
> 2 + θ(δ − 1)

µ2
X

σ2
X

(1− θ)(δ − 1)
?
> θ(δ − 1)− δ + 1

µ2
X

σ2
X

(1− θ)
?
> θ − (δ − 1)

δ − 1

µ2
X

σ2
X

(1− θ)
?
> −(1− θ)

µ2
X

σ2
X

> −1

which is always true. Therefore, we use (S2
Y − S2

X(∆̂ + 1)2)+ in our MoM estimators in the

multiplicative treatment effect mixture setting.
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Appendix B

R Function Documentation and

Code

B.1 Code Manual

grp.seq.mix Calculate critical values and arm size for a mixture alternative

Description

grp.seq.mix() is used for the design of one-sided group sequential clinical trials with

mixture alternative using the Sequential Average Rank (SAR) or Sequential Rerank

(SR) test statistic. Error spending functions are implemented such that the test may

reject early for efficacy or accept early for futility. The function handles fixed sample

(single stage) design as well as the pure shift (theta=1). Requires packages rmutil

if f = "laplace" and mvtnorm if norm.approx = TRUE.

114



Usage

grp.seq.mix(num.stages, alpha, beta, rho, theta, K, delta,

f = c("normal", "logistic", "laplace", "t3", "gamma"),

mu = 0, sigma = 1, shape = 1, method = c("sar","sr"),

B = 1e5, norm.approx = TRUE)

Arguments
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num.stages Maximum number of planned stages.

alpha Overall Type I error for the design.

beta Overall Type II error for the design.

rho Exponent in error spending functions.

theta Specified proportion of nonresponders in the treatment distribu-

tion.

K Size of the location-shift in terms of standard deviations.

delta Multiplicative treatment effect.

f Distribution of the data.

mu Mean of f if it is from the location-scale family.

sigma Scale parameter. Standard deviation of f if it is from the location-

scale family.

shape Shape parameter of the distribution of the data if it is from the

scale family.

method Choice of test statistic.

B Number of simulations when approximating the exact distribution

by simulation.

norm.approx If TRUE, the normal approximation of the distribution of the test

statistic is used instead of simulation.
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Value

Design Alternative Prints the number of stages, f, and theta val-

ues inputted for the design alternative. Also

prints K if f is in the location-scale family and

delta if f = "gamma".

Arm Size Arm size per stage per group needed to detect

the alternative.

Upper Critical Values Vector of the upper critical values. In the

case of a single stage trial, this is replaced

with Critical Value showing the only criti-

cal value used in that case.

Lower Critical Values Vector of the lower critical values. Omitted if

num.stages = 1.

Type I Error Vector of the realized Type I error per stage

and overall.

Type II Error Vector of the realized Type II error per stage

and overall.

Example

grp.seq.mix(num.stages=3, alpha=0.05, beta=0.2, rho=2, theta=0.8,

K=0.5, sigma=1, f="logistic", B=10000, method="sar", norm.approx=TRUE)
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Example Output

$‘Design Alternative‘

Stages f theta K

3 logistic 0.8 0.5

$‘Arm Size‘

[1] 27

$‘Upper Critical Values‘

[1] 2.5392 2.0680 1.6965

$‘Lower Critical Values‘

[1] -0.4587 0.7480 1.6965

$‘Type I Error‘

Stage 1 Stage 2 Stage 3 Overall

0.0056 0.0167 0.0278 0.0500

$‘Type II Error‘

Stage 1 Stage 2 Stage 3 Overall

0.0222 0.0667 0.1042 0.1931

B.2 R Code

# packages: rmutil, mvtnorm
grp.seq.mix <- function(num.stages=2,alpha,beta,rho,theta,delta,K=1,mu=0,

sigma=1,shape=2,f="normal",B=1e5,method="sar",
norm.approx=FALSE){

m.start = 1
k <- num.stages
method <- ifelse(method=="sr","rerank",method)
f <- ifelse(f=="t3","t",f)
std=TRUE
pi1 <- c(alpha*(1/k)^rho,diff(alpha*((1:k)/k)^rho))
pi2 <- c(beta*(1/k)^rho,diff(beta*((1:k)/k)^rho))
d <- f
# if(d=="gamma" & mu==0){mu <- arg1 <- 1; arg2 <- shape
# } else if(d=="gamma" & mu>0){arg1 <- mu; arg2 <- shape
# } else {arg1 <- mu; arg2 <- sigma}
if(d=="gamma"){arg1 <- mu <- sigma; arg2 <- shape
} else {arg1 <- mu; arg2 <- sigma}
if(f=="normal"){
f <- function(n,arg1=0,arg2=1){rnorm(n=n,mean=arg1,sd=arg2)}
ppsi <- function(x,arg1=0,arg2=1){pnorm(x,mean=arg1,sd=arg2)}
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dpsi <- function(x,arg1=0,arg2=1,lg=FALSE){
dnorm(x,mean=arg1,sd=arg2,log=lg)}

qpsi <- function(q,arg1=0,arg2=1) qnorm(q)*arg2 + arg1
} else if(f=="logistic"){

f <- function(n,arg1=0,arg2){rlogis(n=n,location=arg1,arg2*sqrt(3)/pi)}
ppsi <- function(x,arg1=0,arg2=1){

plogis(x,location=arg1,scale=arg2*sqrt(3)/pi)}
dpsi <- function(x,arg1=0,arg2=1,lg=FALSE){

dlogis(x,location=arg1,scale=arg2*sqrt(3)/pi,log=lg)}
qpsi <- function(q,arg1=0,arg2=1){

qlogis(q,location=arg1,scale=arg2*sqrt(3)/pi) }
} else if(f=="laplace"){

# uses package rmutil
f <- function(n,arg1=0,arg2){

rmutil::rlaplace(n=n,m=arg1,s=arg2/sqrt(2))}
ppsi <- function(x,arg1=0,arg2=1){

rmutil::plaplace(x,m=arg1,s=arg2/sqrt(2))}
dpsi <- function(x,arg1=0,arg2=1,lg=FALSE){

rmutil::dlaplace(x,m=arg1,s=arg2/sqrt(2),log=lg)}
qpsi <- function(q,arg1=0,arg2=1){

rmutil::qlaplace(q,m=arg1,s=arg2/sqrt(2)) }
} else if(f=="t"){
f <- function(n,arg1=0,arg2){arg1 + arg2*rt(n=n,df=3,ncp=0)/sqrt(3)}
ppsi <- function(x,arg1=0,arg2=1){pt((x-arg1)*sqrt(3)/arg2,df=3,ncp=0)}
dpsi <- function(x,arg1=0,arg2=1,lg=FALSE){
if(lg==FALSE){

return(dt((x-arg1)*sqrt(3)/arg2,df=3,ncp=0)*sqrt(3)/arg2)
} else {

dt((x-arg1)*sqrt(3)/arg2,df=3,ncp=0,log=T)+log(sqrt(3))-log(arg2) }
}
qpsi <- function(q,arg1=0,arg2=1) qt(q,df=3)/sqrt(3)*arg2 + arg1

} else if(f=="gamma"){
# f <- function(n,arg1=mu,arg2=shape){
# rgamma(n=n,shape=arg2,scale=arg1/arg2)}
# ppsi <- function(x,arg1=mu,arg2=shape){
# pgamma(x,shape=arg2,scale=arg1/arg2)}
# dpsi <- function(x,arg1=mu,arg2=shape,lg=FALSE){
# dgamma(x,shape=arg2,scale=arg1/arg2,log=lg)}
f <- function(n,arg1=mu,arg2=shape){

rgamma(n=n,shape=arg2,scale=arg1)}
ppsi <- function(x,arg1=mu,arg2=shape){

pgamma(x,shape=arg2,scale=arg1)}
dpsi <- function(x,arg1=mu,arg2=shape,lg=FALSE){

dgamma(x,shape=arg2,scale=arg1,log=lg)}
}
# normal approx for one stage
if(d!="gamma"){ # probs for location shift
delta <- K*sigma
h1<-function(y,theta,K) {ppsi(y)*((1-theta)*dpsi(y) + theta*dpsi(y-K))}
gamval<-integrate(h1,-Inf,Inf,theta,K)$value
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h2<-function(y,theta,K){
((1-(1-theta)*ppsi(y)-theta*ppsi(y-K))^2)*dpsi(y)}

xi1<-integrate(h2,-Inf,Inf,theta,K)$value-gamval^2
h3<-function(y,theta,K) {

(ppsi(y))^2*((1-theta)*dpsi(y) + theta*dpsi(y-K))}
xi2<-integrate(h3,-Inf,Inf,theta,K)$value-gamval^2
lambda <- 1/2
# P(X<Y)
pxy <- integrate(function(y){

ppsi(y)*((1-theta)*dpsi(y)+theta*dpsi(y-K))},-Inf,Inf)$value
# P(X1 < Y1, X1 < Y2)
pxyy <- integrate(function(y){

(1-(1-theta)*ppsi(y)-theta*ppsi(y-K))^2*dpsi(y)},-Inf,Inf)$value
# P(X1 < Y1, X2 < Y2)
pxxy <- integrate(function(y){

(ppsi(y))^2*((1-theta)*dpsi(y)+theta*dpsi(y-K))},-Inf,Inf)$value
} else { # probs for gamma distr multiplicative shift

h1<-function(y,theta,K) {
ppsi(y)*((1-theta)*dpsi(y) + theta*dpsi(y/delta)/delta)}

gamval<-integrate(h1,-Inf,Inf,theta,K)$value
h2<-function(y,theta,K) {

((1-(1-theta)*ppsi(y)-theta*ppsi(y/delta))^2)*dpsi(y)}
xi1<-integrate(h2,-Inf,Inf,theta,K)$value-gamval^2
h3<-function(y,theta,K) {

(ppsi(y))^2*((1-theta)*dpsi(y) + theta*dpsi(y/delta)/delta)}
xi2<-integrate(h3,-Inf,Inf,theta,K)$value-gamval^2
lambda <- 1/2
# P(X<Y)
pxy <- integrate(function(y){

ppsi(y)*((1-theta)*dpsi(y)+theta*dpsi(y/delta)/delta)},
-Inf,Inf)$value

# P(X1 < Y1, X1 < Y2)
pxyy <- integrate(function(y){

(1-(1-theta)*ppsi(y)-theta*ppsi(y/delta))^2*dpsi(y)},
-Inf,Inf)$value

# P(X1 < Y1, X2 < Y2)
pxxy <- integrate(function(y){

(ppsi(y))^2*((1-theta)*dpsi(y)+theta*dpsi(y/delta)/delta)},
-Inf,Inf)$value

}
# jeske yao 2020 fixed sample formula for arm size
m.approx <- ((qnorm(1-alpha)/sqrt(6) +

qnorm(1-beta)*sqrt(xi1+xi2))/(gamval-1/2))^2

if(norm.approx==FALSE){
if(k==1){ # simulate just one stage
if(d!="gamma"){delta <- K*sigma}
p <- 1
if((m.approx-10)>m.start){m.start <- floor(m.approx - 10)}
inc <- function(incr = 1, m = m.start){

while(p>=pi2){
ifelse(m<15,m<-m+1,m <- m+incr)
w <- vector("numeric",B)
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w.alt <- vector("numeric",B)
for(i in 1:B){
if(d!="gamma"){

obs <- matrix(f(n=k*2*m,arg2=arg2),ncol=2,nrow=(k*m),byrow=F)
obs.alt <- NULL
y <- sapply(runif(m),FUN = function(i){

if(i<theta){
f(n=1,arg1=delta,arg2=arg2)}else{f(n=1,arg2=arg2)}})

obs.alt <- rbind(obs.alt,matrix(c(f(n=m,arg2=sigma),y),
ncol=2,nrow=m,byrow=F))

} else {
obs <- matrix(f(n=k*2*m,arg1=mu,arg2=shape),

ncol=2,nrow=(k*m),byrow=F)
obs.alt <- NULL
y <- sapply(runif(m),FUN = function(i){if(i<theta){

f(n=1,arg1=delta*mu,arg2=shape)}else{
f(n=1,arg1=mu,arg2=shape)}})

obs.alt <- rbind(obs.alt,
matrix(c(f(n=m,arg1=mu,arg2=shape),y),
ncol=2,nrow=m,byrow=F))

}
# calculate rank sum value
w[i] <- sum(rank(obs)[(m+1):(m+m)])
w.alt[i] <- sum(rank(obs.alt)[(m+1):(m+m)])

}
p.r <- 0
index.max <- m*m + m*(m+1)/2
u <- sort(unique(w),decreasing = TRUE)
index <- index.max + 1
while(p.r <= pi1){
p.rej <- p.r
index <- index - 1
p.r <- sum(w>=(index))/B
if(index==1){break}

}
if(index==index.max & sum(w>=index)/B>pi1[1]){
r <- Inf

} else if(sum(w>=index)/B <= pi1[1]) {
r <- index

} else {
r <- index+1

}
if(std==TRUE){mu <- m*((m+m)+1)/2; sig <- sqrt(m*m*((m+m)+1)/12)
r <- (r-mu)/sig
w.alt <- (w.alt - mu)/sig; w <- (w-mu)/sig}
p <- sum(w.alt<r)/B

}
p.rej <- sum(w>=r)/B
p.acc <- sum(w.alt<r)/B
# out <- list(r=r,m=m,theta=theta,K=K,B=B,
# distribution=d,p.rej=p.rej,p.acc=p.acc)
if(d!="gamma"){
out.df <- data.frame(Stages=k,f=d,theta=theta,K=K,row.names = "")

} else { out.df <- data.frame(Stages=k,f=d,theta=theta,delta=delta,

121



row.names = "")}
out <- list("Design Alternative"=out.df,

"Arm Size"=m,
"Critical Value"=round(r,4),
"Type I Error"=round(p.rej,4),
"Type II Error"=round(p.acc,4))

return(out)
}
incr.size <- 10
res <- inc(incr=incr.size)
# if(res£m>=15){
# res <- inc(incr = 1, m = res£m-incr.size-1)
if(res$`Arm Size`>=15){
res <- inc(incr = 1, m = res$`Arm Size`-incr.size-1)
return(res)

} else {return(res)}
} else { # simulate 2+ stages
if(d!="gamma"){delta <- K*sigma}
p.start <- 1
# use normal approx for one stage to get close initially
if((m.approx/k-10)>m.start){m.start <- floor(m.approx/k - 10)}
incr.size <- 10
incr.arm.size <- function(incr = 1, p = 1, m = m.start){

while(p>=pi2[k]){
p.previous <- p
ifelse(m<15,m<-m+1,m <- m+incr)
n <- m
r <- vector("numeric",k)
a <- vector("numeric",k)
if(method=="rerank"){w <- matrix(0,ncol = k,nrow=B)

w.alt <- matrix(0,ncol = k,nrow=B)}
else{srs <- matrix(0,ncol = k,nrow=B)

srs.alt <- matrix(0,ncol = k,nrow=B)}
### faster code
for(i in 1:B){
if(d!="gamma"){

obs <- matrix(f(n=k*2*m,arg2=sigma),ncol=2,nrow=(k*m),byrow=F)
ind <- sample(1:2,prob=c(1-theta,theta),

size=k*m,replace = TRUE)
mus <- c(0,delta)
y <- f(n=k*m,arg1=mus[ind],arg2=sigma)
obs.alt <- matrix(c(f(n=k*m,arg2=sigma),y),

ncol=2,nrow=(k*m),byrow=F)
} else {

obs <- matrix(f(n=k*2*m,arg1=mu,arg2=shape),
ncol=2,nrow=(k*m),byrow=F)

ind <- sample(1:2,prob=c(1-theta,theta),
size=k*m,replace = TRUE)

mus <- c(mu,delta*mu)
y <- f(n=k*m,arg1=mus[ind],arg2=shape)
obs.alt <- matrix(c(f(n=k*m,arg1=mu,arg2=shape),y),

ncol=2,nrow=(k*m),byrow=F)
}
for(i1 in 1:k){
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if(method=="rerank"){
w[i,i1] <- sum(rank(obs[1:(i1*m),])[(i1*m+1):(i1*m+i1*m)])
w.alt[i,i1] <- sum(

rank(obs.alt[1:(i1*m),])[(i1*m+1):(i1*m+i1*m)])
}
else{
srs[i,i1] <- sum(

rank(obs[((i1-1)*m+1):(i1*m),])[(n+1):(n+m)])
srs.alt[i,i1] <- sum(

rank(obs.alt[((i1-1)*m+1):(i1*m),])[(n+1):(n+m)])
}

}
}
# ts = test statistic
if(method=="rerank" & std==TRUE){

mu <- (1:k)*m*((1:k)*(m+m)+1)/2
sig <- sqrt((1:k)^2*m*m*((1:k)*(m+m)+1)/12)
ts <- t(apply(w,1,FUN=function(x) (x - mu)/(sig)))
ts.alt <- t(apply(w.alt,1,FUN=function(x) (x - mu)/(sig)))

}
else if(method=="rerank" & std==FALSE){

ts <- w; ts.alt <- w.alt
}
if(method!="rerank" & std==TRUE){ # sar standardized

mu <- m*((m+m)+1)/2
sig <- sqrt(m*m*((m+m)+1)/12)
ts <- t(apply(srs,1,FUN=function(x){

(cumsum(x)/seq_along(x) -
mu)/(sig/sqrt(seq_along(x)))}))

ts.alt <- t(apply(srs.alt,1,FUN=function(x){
(cumsum(x)/seq_along(x) -

mu)/(sig/sqrt(seq_along(x)))}))
}
if(method!="rerank" & std==FALSE){ # sar not standardized

ts <- t(apply(srs,1,FUN=function(x) (cumsum(x)/seq_along(x))))
ts.alt <- t(apply(srs.alt,1,FUN=function(x){

(cumsum(x)/seq_along(x))}))
}

p.r <- vector("numeric",length=k)
p.a <- vector("numeric",length=k)
p <- 0
index <- 0
u <- sort(unique(ts[,1]),decreasing = T)
while(p <= pi1[1]){

p.rej <- p
index <- index + 1
p <- sum(ts[,1]>=u[index])/B
if(index==length(u)){break}

}
if(index==1 & sum(ts[,1]>=u[index])/B>pi1[1]){

r[1] <- Inf
} else if(sum(ts[,1]>=u[index])/B <= pi1[1]) {

r[1] <- u[index]
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} else {
r[1] <- u[index-1]

}
p.r[1] <- sum(ts[,1]>=r[1])/B

p.acc <- 0
u.alt <- sort(unique(ts.alt[,1]))
index <- 0
while(p.acc <= pi2[1]){
index <- index + 1
p.acc <- sum(ts.alt[,1]<=u.alt[index])/B

}
if(index==1 & sum(ts.alt[,1]<=u.alt[index])/B>pi2[1]){
a[1] <- -Inf

} else if(sum(ts.alt[,1]<=u.alt[index])/B <= pi2[1]) {
a[1] <- u.alt[index]

} else {
a[1] <- u.alt[index-1]

}
p.a[1] <- sum(ts.alt[,1]<=a[1])/B

s <- ts[ts[,1]<r[1] & ts[,1]>a[1],]
s.alt <- ts.alt[ts.alt[,1]<r[1] & ts.alt[,1]>a[1],]
for(i in 2:k){

if(dim(s)[1]==0 || dim(s.alt)[1]==0){break}
p.rej <- 0
u <- sort(unique(s[,i]),decreasing = TRUE)
index <- 0
while(p.rej <= pi1[i]){
index <- index + 1
p.rej <- sum(s[,i]>=(u[index]))/B
if(index==length(u)){break}

}
if(index==1 & sum(s[,i]>=u[index])/B>pi1[i]){
r[i] <- Inf

} else if(sum(s[,i]>=u[index])/B <= pi1[i]) {
r[i] <- u[index]

} else {
r[i] <- u[index-1]

}
p.r[i] <- sum(s[,i]>=r[i])/B

p.acc <- 0
u.alt <- sort(unique(s.alt[,i]))
index <- 0
while(p.acc <= pi2[i]){
index <- index + 1
p.acc <- sum(s.alt[,i]<=u.alt[index])/B
if(index==length(u.alt)){break}

}
if(index==1 & sum(s.alt[,i]<=u.alt[index])/B>pi2[i]){
a[i] <- -Inf

} else if(sum(s.alt[,i]<=u.alt[index])/B <= pi2[i]) {
a[i] <- u.alt[index]

} else {
a[i] <- u.alt[index-1]

}
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p.a[i] <- sum(s.alt[,i]<=a[i])/B
if(i!=k){
s <- s[s[,i]<r[i] & s[,i]>a[i],]
s.alt <- s.alt[s.alt[,i]<r[i] & s.alt[,i]>a[i],]

}
}
p <- sum(s.alt[,k]<r[k])/B
p.out <- p
p.a[k] <- p

}
if(dim(s)[1]==0 || dim(s.alt)[1]==0){

return("Unable to achieve design.")
} else{
# return(list(r=r,a=c(a[1:(k-1)],r[k]),m=m,p.r=p.r,
# p.a=p.a,p.out=p.out,K=K,theta=theta))
if(d!="gamma"){

out.df <- data.frame(Stages=k,f=d,theta=theta,K=K,
row.names = "")

} else { out.df <- data.frame(Stages=k,f=d,theta=theta,
delta=delta,row.names = "")}

out <- list("Design Alternative"=out.df,
"Arm Size"=m,
"Upper Critical Values"=round(r,4),
"Lower Critical Values"=round(c(a[1:(k-1)],r[k]),4),
"Type I Error"=round(c(p.r,sum(p.r)),4),
"Type II Error"=round(c(c(p.a[1:(k-1)],p.out),

sum(c(p.a[1:(k-1)],p.out))),4))
names(out$`Type I Error`) <- c(paste("Stage",1:k),"Overall")
names(out$`Type II Error`) <- c(paste("Stage",1:k),"Overall")
return(out)

}
}
res1 <- incr.arm.size(incr=incr.size,p=p.start,m=m.start)
if(is.list(res1)==FALSE){return(res1)
# } else if(res1£m>=15){
} else if(res1$`Arm Size`>=15){
# res2 <- incr.arm.size(incr=1,p=1, m = res1£m-incr.size-1)
res2 <- incr.arm.size(incr=1,p=1, m = res1$`Arm Size`-incr.size-1)
return(res2)

} else{return(res1)}
}

} else { # norm.approx == TRUE
if(k==1){ # fixed sample
if(d!="gamma"){delta <- K*sigma}
p <- 1
if((m.approx-10)>m.start){m <- floor(m.approx - 10)}else{m <- 0}
while(p>=pi2){

m <- m+1
mu <- m*(m+m+1)/2
v <- m*m*(m+m+1)/12
r <- qnorm(1-pi1)
p <- pnorm(r,mean=(m*(m*pxy + (m+1)/2) - mu)/sqrt(v),

sd=m^2*(pxy*(1-pxy)+(m-1)*(pxyy-pxy^2+pxxy-pxy^2))/v)
}
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# return(list(r=r,m=m,p=p,K=K,theta=theta))
if(d!="gamma"){

out.df <- data.frame(Stages=k,f=d,theta=theta,K=K,row.names = "")
} else { out.df <- data.frame(Stages=k,f=d,theta=theta,delta=delta,

row.names = "")}
out <- list("Design Alternative"=out.df,

"Arm Size"=m,
"Critical Value"=round(r,4),
"Type I Error"=round(pnorm(r,lower.tail = FALSE),4),
"Type II Error"=round(p,4))

return(out)

}else{ # multiple stages
if(d!="gamma"){delta <- K*sigma}
p <- 1
if((m.approx/k-10)>m.start){m <- floor(m.approx/k - 10)}else{m <- 0}
while(p>=pi2[k]){

m <- m+1
r <- vector("numeric",k)
a <- vector("numeric",k)

if(method=="sar" & std=="TRUE"){
mu <- m*(m+m+1)/2
v <- m*m*(m+m+1)/12
null.mu <- rep(0,k)
null.var <- v/(1:k)
null.cov <- outer(1:k,1:k,

Vectorize(function(x,y){sqrt(x*y)/max(x,y)}))
alt.mu <- (m*(m*gamval + (m+1)/2) - mu)/(sqrt(v)/sqrt(1:k))
# first one is from jeske/yao
# alt.v <- ((m*m/sqrt(m+m))^2*(xi1/lambda + xi2/(1-lambda)))/v
alt.v <- m^2*(pxy*(1-pxy)+(m-1)*(pxyy-pxy^2+pxxy-pxy^2))/v
# alt.var <- ((m*m/sqrt(m+m))^2*(xi1/lambda +
# xi2/(1-lambda)))/((1:k)*v)
alt.cov <- outer(1:k,1:k,

Vectorize(function(x,y){sqrt(x*y)/max(x,y)}))*alt.v
}
if(method=="rerank" & std=="TRUE"){
mu <- (1:k)*m*((1:k)*(m+m)+1)/2
v <- (1:k)^2*m*m*((1:k)*(m+m)+1)/12
null.mu <- rep(0,k)
null.var <- rep(1,k)
null.cov <- outer(1:k,1:k,Vectorize(function(x,y){
(((min(x,y)*m)^2*(2*max(x,y)*m+1))/12)/(sqrt(v[x]*v[y]))}))

alt.mu <- ((1:k)*m*((1:k)*m*gamval + ((1:k)*m+1)/2) - mu)/sqrt(v)
# don't even use these alt.var variables
alt.var <- (((1:k)*m)^2*(pxy*(1-pxy) + ((1:k)*m-1)*(pxyy-pxy^2) +

((1:k)*m-1)*(pxxy-pxy^2)))/v
# from jeske/yao
# alt.var2 <- (((1:k)^2*m*m/sqrt((1:k)*m+
# (1:k)*m))^2*(xi1/lambda + xi2/(1-lambda)))/(v)
alt.cov <- outer(1:k,1:k,Vectorize(function(x,y){
# ((min(x,y)*m)^2*(gamval*(1-gamval) + (max(x,y)*m-1)*(xi1) +
# (max(x,y)*m-1)*(xi2)))/sqrt(v[x]*v[y])
((min(x,y)*m)^2*(pxy*(1-pxy) + (max(x,y)*m-1)*(pxyy-pxy^2 +

pxxy-pxy^2)))/sqrt(v[x]*v[y])
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}))
}

# critical values
r[1] <- qnorm(1-pi1[1],mean = null.mu[1],sd=sqrt(null.cov[1,1]))
a[1] <- qnorm(pi2[1],mean=alt.mu[1],sd=sqrt(alt.cov[1,1]))
for(i in 2:k){ # uses mvtnorm package
if(m>3){
r[i] <- uniroot(f=function(x){as.numeric(mvtnorm::pmvnorm(

lower=c(a[1:(i-1)],x),upper=c(r[1:(i-1)],Inf),
mean=null.mu[1:i],
sigma=null.cov[1:i,1:i])) - pi1[i]},

lower=0,upper=4)$root
} else {

r[i] <- optimize(f=function(x){(as.numeric(mvtnorm::pmvnorm(
lower=c(a[1:(i-1)],x),upper=c(r[1:(i-1)],Inf),
mean=null.mu[1:i],
sigma=null.cov[1:i,1:i])) - pi1[i])^2},

lower=0,upper=4)$minimum
}
if(i!=k){

if(m>3){
a[i] <- uniroot(f=function(x){as.numeric(mvtnorm::pmvnorm(

lower=c(a[1:(i-1)],-Inf),upper=c(r[1:(i-1)],x),
mean=alt.mu[1:i],
sigma=alt.cov[1:i,1:i])) - pi2[i]},

lower=-4,upper=4)$root
} else {
a[i] <- optimize(f=function(x){(as.numeric(mvtnorm::pmvnorm(

lower=c(a[1:(i-1)],-Inf),upper=c(r[1:(i-1)],x),
mean=alt.mu[1:i],
sigma=alt.cov[1:i,1:i])) - pi2[i])^2},

lower=-4,upper=4)$minimum
}

}
rm(i)

}
# uses mvtnorm package
p <- as.numeric(mvtnorm::pmvnorm(lower=c(a[1:(k-1)],-Inf),

upper=c(r[1:(k-1)],r[k]),mean=alt.mu[1:k],
sigma=alt.cov[1:k,1:k]))

p.r <- p.a <- vector("numeric",k)
p.r[1] <- pnorm(r[1],mean=null.mu[1],sd=sqrt(null.cov[1,1]),

lower.tail = FALSE)
p.a[1] <- pnorm(a[1],mean=alt.mu[1],sd=sqrt(alt.cov[1,1]))
for(i in 2:k){
if(i!=k){ # uses mvtnorm package

p.r[i] <- mvtnorm::pmvnorm(lower=c(a[1:(i-1)],r[i]),
upper=c(r[1:(i-1)],Inf),mean=null.mu[1:i],
sigma=null.cov[1:i,1:i])

p.a[i] <- mvtnorm::pmvnorm(lower=c(a[1:(i-1)],-Inf),
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upper=c(r[1:(i-1)],a[i]),mean=alt.mu[1:i],
sigma=alt.cov[1:i,1:i])

} else {
p.r[i] <- mvtnorm::pmvnorm(lower=c(a[1:(i-1)],r[i]),

upper=c(r[1:(i-1)],Inf),mean=null.mu[1:i],
sigma=null.cov[1:i,1:i])

p.a[i] <- mvtnorm::pmvnorm(lower=c(a[1:(i-1)],-Inf),
upper=c(r[1:(i-1)],r[i]),mean=alt.mu[1:i],
sigma=alt.cov[1:i,1:i])

}
rm(i)

}
}
# return(list(r=r,a=c(a[1:(k-1)],r[k]),m=m,p.r=p.r,
# p.a=p.a,K=K,theta=theta))
if(d!="gamma"){

out.df <- data.frame(Stages=k,f=d,theta=theta,K=K,row.names = "")
} else { out.df <- data.frame(Stages=k,f=d,theta=theta,delta=delta,

row.names = "")}
out <- list("Design Alternative"=out.df,

"Arm Size"=m,
"Upper Critical Values"=round(r,4),
"Lower Critical Values"=round(c(a[1:(k-1)],r[k]),4),
"Type I Error"=round(c(p.r,sum(p.r)),4),
"Type II Error"=round(c(p.a,sum(p.a)),4))

names(out$`Type I Error`) <- c(paste("Stage",1:k),"Overall")
names(out$`Type II Error`) <- c(paste("Stage",1:k),"Overall")
return(out)

}
}

}
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