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RATIONAL DYCK PATHS IN THE NON RELATIVELY PRIME CASE

EUGENE GORSKY, MIKHAIL MAZIN, AND MONICA VAZIRANI

ABSTRACT. We study the relationship between rational slope Dyck paths and invariant subsets

of Z, extending the work of the first two authors in the relatively prime case. We also find a bi-

jection between (dn, dm)–Dyck paths and d-tuples of (n,m)-Dyck paths endowed with certain

gluing data. These are the first steps towards understanding the relationship between rational

slope Catalan combinatorics and the geometry of affine Springer fibers and knot invariants in the

non relatively prime case.

1. INTRODUCTION

Catalan numbers, in one of their incarnations, count the number of Dyck paths, that is, the

lattice paths in a square which never cross the diagonal. In recent years, a number of interesting

results and conjectures [3, 4, 7, 9, 12, 13, 14, 16, 24, 28] about “rational Catalan combinatorics”

have been formulated. An (n,m)-Dyck path is a lattice path in an n×m rectangle, going from

the bottom-right corner (m, 0) to the top-left corner (0, n) and never going above the diagonal,

which is the line that connects them. We will denote the set of all (n,m)-Dyck paths by Yn,m.

For coprime m and n there are a number of interesting maps involving Yn,m, see Figure 1:

(a) J. Anderson constructed a bijectionA between Yn,m and the set Coren,m of simultaneous

(n,m)-core partitions.

(b) Armstrong, Loehr, and Warrington defined a “sweep” map ζ : Yn,m → Yn,m and con-

jectured that it is bijective. This conjecture was proved by Thomas and Williams in

[26].

(c) The first two authors defined two maps D and G between Yn,m and the set Mn,m of

(n,m)-invariant subsets of Z≥0 containing 0. If combined with a natural bijection be-

tween Coren,m and Mn,m, the map D coincides with A. Furthermore, one can prove

that ζ = G ◦ D−1. As a consequence, the map G is also bijective.

Yn,m

Mn,m

Yn,m

Coren,m

D G

ζ

A

FIGURE 1. Rational Catalan maps in the coprime case

Date: September 24, 2018.

Key words and phrases. rational Dyck paths, rational Catalan combinatorics, simultaneous core partitions,

invariant integer subsets, semigroups.
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The goal of the present paper is a partial generalization of the diagram in Figure 1 to the

non-coprime case. Let (n,m) be relatively prime, and d be a positive integer. Let N = dn and

M = dm. The set YN,M is well defined for all n,m, d, and the definition of ζ can be carried

over with minimal changes. However, while the sets CoreN,M and MN,M are still in bijection

with each other, the sets become infinite. Indeed, an (N,M)-invariant subset of Z≥0 can be

identified with a collection of d (n,m)-invariant subsets, one for each remainder mod d. These

subsets won’t necessarily have minimum element 0, and so we will want to shift or translate

each a fixed amount. we will want to shift or translate each a fixed amount. More abstractly,

this defines a map ǫ : MN,M → (Mn,m)
d and different shifts correspond to different preimages

under ǫ.
To resolve this problem, we introduce a certain equivalence relation ∼ on MN,M . It satisfies

that ∆1 ∼ ∆2 implies ǭ(∆1) = ǭ(∆2), where ǭ : MN,M → (Mn,m)
d → (Mn,m)

d/Sd, so ǭ is

well defined on MN,M/∼. The following theorem is the main result of the paper.

Theorem 1.1. For all positive N,M one can define maps

D,G : MN,M/∼ −→ YN,M

such that the following results hold:

(a) The maps D and G are bijective.

(b) The “sweep” map factorizes similarly to the coprime case: ζ = G ◦ D−1.

(c) Let d = gcd(N,M), n = N/d, and m = M/d. The composition

cold := Dd ◦ ǫ ◦ D−1 : YN,M → (Yn,m)
d/Sd,

can be described as follows: color the N + M steps in an (N,M)-Dyck path with

d colors, i.e., by Z/dZ, so that there are n + m steps of the same color i, and these

steps will form an (n,m)-Dyck path after possibly translating connected components

by integer multiples of
−−−−−→
(m,−n) to make the i-colored steps connected.

As we do not have a canonical way of assigning colors, we must pass to Sd orbits above. We

shall see in Section 3.2 that the coloring is finer than Sd orbits and in fact corresponds to an

isomorphims class of a labeled directed graph with d nodes.

YN,M

MN,M/∼

YN,M

(Mn,m)
d /Sd

(Yn,m)
d /Sd

D G

ζ

ǭ
Dd

cold

FIGURE 2. Rational Catalan maps in the non-coprime case.

We illustrate all these maps in Figure 2. We also give an explicit description of the “coloring

map” cold, as well as its inverse given proper gluing data. In the “classical” case M = N we get

d = N and m = n = 1, therefore cold colors a Dyck path in n colors such that the pairs of steps

of the same color form a (1, 1)-Dyck path. In this case the coloring is equivalent to presenting

a Dyck path as a regular sequence of parentheses, with every opening and its corresponding

closing parenthesis corresponding to the pair of steps of the same color.
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We conjecture a relation between the constructions of this paper, combinatorial identities

and link invariants. Recall that the “compositional rational shuffle conjecture” of [7] (proved

in [24]) relates a certain sum over (N,M)-Dyck paths to certain matrix elements of operators

acting on symmetric functions. Here we propose a different sum over (N,M)-invariant subsets,

and plan to clarify the relation between the two in the future work. We define the generating

series:

(1) CN,M(q, t) =
∑

∆∈MN,M

qgap(∆)tdinv(∆),

where

gap(∆) = |Z≥0 \∆|.

For d = 1 it agrees with the rational q, t-Catalan polynomial [12, 3]

cN,M(q, t) =
∑

D∈YN,M

qarea(D)tdinv(D),

and it follows from the results of [24] that:

(2) Cn,m(q, t) = cn,m(q, t) =
∑

D∈YN,M

qarea(D)tdinv(D) = (Pn,m(1), hn).

Here Pn,m is a certain operator defined in [16, 7] and acting on the space of symmetric functions.

In particular, the left hand side of (2) is symmetric in q and t. It was also proved in [16] that the

right hand side of (2) equals the “refined Chern-Simons invariant” (in the sense of [1]) of the

(n,m) torus knot, and conjectured that it equals the Poincaré polynomial of the (a = 0) part of

the Khovanov-Rozansky homology [19] of this knot.

For d > 1, the formula for cN,M(q, t) generalizing (2) was conjectured in [7] and proved in

[24]. However, CN,M is now an infinite power series while cn,m is a finite polynomial.

Conjecture 1.2. For general d ≥ 1, the following statements hold:

(a) One has CN,M(q, t) = 1
(1−q)d−1 (P

d
n,m(1), hN), where Pn,m is the same operator as in

(2).

(b) The series CN,M(q, t)/(1− q) agrees with the Poincaré series of the (a = 0) part of the

Khovanov-Rozansky homology of the (N,M) torus link.

The part (a) immediately implies that CN,M(q, t)(1−q)d−1 is symmetric in q and t. To support

the conjecture, we use a recent result of Elias and Hogancamp [10] to prove the following:

Theorem 1.3. Conjecture 1.2(b) holds for M = N .

In the case M = N , part (a) of the conjecture is equivalent to [10, Conjecture 1.15] (see also

[27]), but, to our knowledge, it is still open. For general M and N , it fits into the framework of

conjectures of [1, 16, 17], and we refer the reader to these references for more details.

ACKNOWLEDGEMENTS

We would like to thank François Bergeron and Nathan Williams for the useful discussions.

A preliminary version of the paper was reported at the FPSAC 2016 conference [15]. The

work of E. G. was partially supported by the NSF grant DMS-1559338, Hellman fellowship,

grant RSF 16-11-10160 and Russian Academic Excellence Project 5-100. NSF grant DMS-

1559338 partially supported collaborative visits by M. M. M.M. participation in FPSAC 2016

was supported by a KSU start-up grant.



4 EUGENE GORSKY, MIKHAIL MAZIN, AND MONICA VAZIRANI

2. RELATIVELY PRIME CASE

Let (n,m) be a pair of relatively prime positive integers. Consider an n×m rectangle Rn,m.
Let Yn,m be the set of Young diagrams that fit under the diagonal in Rn,m. We will often abuse

notation by identifying a diagram D ∈ Yn,m with its boundary path (sometimes also called a

rational Dyck path), and with the corresponding partition. We will also think about the rectangle

Rn,m as a set of boxes, identified with a subset in Z≥0 with the bottom-left corner box identified

with (0, 0). In our convention, n is the height of Rn,m and m is its width; and the boundary

path of D ⊂ Rn,m follows the boundary from the bottom-right corner to the top-left corner. See

Example 2.14 below. In Section 3.3.1, it will also be convenient to identify the path D with a

function (or its plot) [0, n+m] → R2.

There are two important combinatorial statistics on the set Yn,m : area and dinv.

Definition 2.1. Let D ∈ Yn,m. Then area(D) is equal to the number of whole boxes that fit

between the diagonal of Rn,m and the boundary path of D.

Note that area(D) ranges from 0 for the full diagram to

δ =
(m− 1)(n− 1)

2
for the empty diagram. The co− area(D) = δ − area(D) is then just the number of boxes

in the Young diagram D. One natural approach to the dinv statistic is to define the map ζ :
Yn,m → Yn,m and then set dinv(D) := area(ζ(D)). In the case m = n+ 1 the map ζ was first

defined by Haglund ([18]), then it was generalized by Loehr to the case m = kn + 1 for any

k ∈ Z≥0 ([20]), and to the general case of any relatively prime (n,m) by Gorsky and Mazin in

[12]. In [4] it was put into even larger framework of so called sweep maps. Below is one of the

equivalent possible definitions.

Definition 2.2. The rank of a box (x, y) ∈ Z2 is given by the linear function

rank(x, y) = mn−m− n− nx−my.

Note that the boxes of non-negative ranks are exactly those that fit under the bottom-right

to top-left diagonal of Rn,m. Let D ∈ Yn,m. One ranks the steps of the boundary path of D as

follows.

Definition 2.3. The rank of a vertical step of D is equal to the rank of the box immediately to

the left of it. The rank of a horizontal step is equal to the rank of the box immediately above it.

In other words, the ranks of steps can be defined inductively as follows. We follow the boundary

path of D starting from the bottom-right corner. The first step is ranked −m. Otherwise, the

rank of each step equal to the rank of the previous step plus n, if the previous step is horizontal,

and it equals to the rank of the previous step minus m, if the previous step is vertical. Note the

last step is ranked 0 (and is vertical).

Note that for relatively prime (n,m) all the ranks of the steps of a diagram D ∈ Yn,m are

distinct.

Definition 2.4. The boundary path of the diagram ζ(D) is obtained from the boundary path of

D by rearranging the steps in the increasing order of ranks.

The definition of the map ζ is illustrated in Example 2.14. One can verify that the diagram

ζ(D) fits under the diagonal of Rn,m (see [12] and [4]). The following result is considerably

harder, see also [13, 18, 20, 28] for partial results in this direction.

Theorem 2.5 ([26]). The map ζ is bijective.

The following approach to studying the map ζ was suggested in [12].
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Definition 2.6. We say that a subset ∆ ⊂ Z≥0 is (n,m)-invariant and 0-normalized if ∆+m ⊂
∆, ∆+ n ⊂ ∆, and min(∆) = 0. Let Mn,m be the set of all such subsets ∆.

In [12] two maps D and G from the set Mn,m to Yn,m were constructed.

Definition 2.7. Let ∆ ∈ Mn,m. The diagram D(∆) consists of all boxes in Rn,m whose ranks

belong to ∆.

Clearly, D(∆) fits under the diagonal. In particular, one gets that D(Γn,m) = ∅, where

Γn,m := {an + bm | a, b ∈ Z≥0} is the semigroup generated by n and m, and D(Z≥0) is the

full diagram containing all the boxes below the diagonal. Note that the (n,m)-invariance of ∆
implies that D(∆) is indeed a Young diagram. Note also that D is a bijection. Indeed, it is not

hard to see that rank provides a bijection between the boxes below the diagonal in Rn,m and the

integers in Z≥0 \ Γn,m.
It is also important to sometimes consider the periodic extension P (∆) of the boundary path

of D(∆). Equivalently, it can be defined as the infinite lattice path separating the boxes in Z2

which ranks belong to ∆ from the boxes which ranks belong to the complement Z\∆. We will

call such paths (n,m)-periodic. See Figure 3 for an example.

Remark 2.8. J. Anderson in [2] defined a bijection between Yn,m and the set Coren,m of (n,m)-
cores, that is, Young diagrams with no hooks of length n or m. The standard bijection between

Coren,m and Mn,m identifies Anderson’s bijection with the map D, see e.g [13] for details.

Definition 2.9. The numbers 0 = a0 < a1 < . . . < an−1, such that

{a0, . . . , an−1} = ∆ \ (∆ + n)

are called the n-generators of ∆. The numbers {b0 < b1 < . . . < bm−1} such that

{b0, . . . , bm−1} = (∆−m) \∆

are called the m-cogenerators of ∆.

Remark 2.10. Let D = D(∆). The ranks of the vertical steps of D are exactly the n-generators

of ∆, and the ranks of the horizontal steps of D are exactly the m-cogenerators of ∆. We will

often mark n-generators by × and m-cogenerators by �.

Definition 2.11. The diagram G(∆) has row lengths g0, . . . , gn−1 given by the following for-

mula:

gk = ♯{bi | bi > ak}.

Equivalently, the boundary path of G(∆) can be obtained by rearranging the set

S = {a0, . . . , an−1, b0, . . . , bm−1}

in increasing order and replacing n-generators by vertical steps and m-cogenerators by hori-

zontal steps, from bottom right to top left.

The next result follows from the above definitions.

Proposition 2.12. [12, 13] The following identity holds:

ζ(D) = G ◦ D−1(D).

Corollary 2.13. Since ζ and D are bijective, the map G is a bijection too.

Example 2.14. For example, if n = 5, m = 3, and ∆ = {0, 3, 5, 6, 7, 8, . . .} then the 5-

generators of ∆ are 0, 3, 6, 7, 9 and 3-cogenerators are −3, 2, 4. The diagram D(∆) consists of

one box, which has rank 7. The ranked boundary path of D is

h h v h v v v v

−3 2 7 4 9 6 3 0
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0
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FIGURE 3. Here n = 5 and m = 3. On the left is (a fragment of)

the periodic path P = P ({0, 3, 5, 6, 7, 8, . . .}), center is the diagram D =
D({0, 3, 5, 6, 7, 8, . . .}), and on the right is the diagram ζ(D).

read bottom to top, which we sort to the boundary path of ζ(D)

h v h v h v v v

−3 0 2 3 4 6 7 9

See Figure 3 for the diagrams D and ζ(D). Note, that if one takes the union of the 5-generators

and 3-cogenerators and reads them in the increasing order, then one gets −3, 0, 2, 3, 4, 6, 7, 9.
Replacing generators by “v” and cogenerators by “h”, one gets hvhvhvvv, which is the bound-

ary path of ζ(D).

The approach with invariant subsets allows one to relate the dinv statistic to geometry. Let

V = C[t]/t2δC[t] be the ring of polynomials of degree less than 2δ = (m − 1)(n − 1). Let

Gr(δ, V ) be the Grassmannian of half-dimensional subspaces in V. Consider the subvariety

Jn,m ⊂ Gr(δ, V ) consisting of subspaces in V invariant under multiplication by tm and tn :

Jn,m = {U ∈ Gr(δ, V ) : tmU ⊂ U, tnU ⊂ U}.

These varieties appear in algebraic geometry as local versions of the compactified Jacobians

(see Beauville [5] and Piontkowski [25]), and in representation theory as homogeneous affine

Springer fibers, where they were first considered by Lusztig and Smelt in [22] and then by

Piontkowski [25]. Both Lusztig and Smelt, and Piontkowski showed that Jn,m has a natural

decomposition into complex affine cells enumerated by elements of Mn,m. Moreover, the di-

mension of the cell C∆ corresponding to an invariant subset ∆ ∈ Mn,m is given by

dimCC∆ = |G(∆)| = δ − dinv(∆).

Therefore, one gets the following theorem.

Theorem 2.15 ([12]). The Poincaré polynomial Pn,m(t) of the variety Jn,m is given by

Pn,m(t) =
∑

D∈Yn,m

t2(δ−dinv(D)).

Moreover, bijectivity of the map ζ (or, equivalently, the map G) implies a simpler formula:

Pn,m(t) =
∑

D∈Yn,m

t2|D|,

where |D| = δ − area(D) is simply the number of boxes in D.
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7 4 1 −2
0
2 −1

1 −216
18
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12
10

15 12 9 6 3 0

D =

8
7
6 5 4

4
2
2
1 1

0
0 −1−2−2

ζ(D) =

FIGURE 4. Here n = 9 and m = 6. On the left is the diagram D with the

boundary path hvhvvhhhvhvvvvv marked with ranks; and on the right is the

diagram ζ(D).

3. NON-RELATIVELY PRIME CASE.

3.1. Sweep map. The notion of a rational Dyck path naturally generalizes to the non relatively

prime case. Let (n,m) be relatively prime, and d be a positive integer. Let N = dn and

M = dn. Consider an N × M rectangle RN,M and the set YN,M of Young diagrams that fit

under the diagonal in RN,M . The area statistic can be generalized directly. The dinv statistic

and the map ζ are a bit more tricky. It is convenient to adjust the rank function on the boxes in

the following way:

rank(x, y) = dmn−m− n− nx−my.

The steps of the boundary path of a diagram D ∈ YN,M are ranked as before with respect to the

new rank function. The first step is still ranked −m and the inductive description of the ranks

still holds with respect to +n,−m; it still holds that the boxes with non-negative rank are those

below the diagonal. However, for d > 1 some distinct steps might have the same rank, therefore

rearranging the steps of the path according to their rank is problematic. The following idea for

overcoming this difficulty was suggested by François Bergeron. It can also be found in [4].

Definition 3.1. Let D ∈ YN,M . The boundary path of the diagram ζ(D) is obtained from the

boundary path of D by rearranging the steps so their ranks are weakly increasing. If two steps

have the same rank, then they are ordered in the reversed order of appearance in the boundary

path of D.

Example 3.2. Consider the diagram D ∈ Y9,6 with the boundary path hvhvvhhhvhvvvvv (see

Figure 4). The ranked boundary path of D is

h v h v v h h h v h v v v v v

−2 1 −1 2 0 −2 1 4 7 5 8 6 4 2 0

which we sort to the boundary path of ζ(D)

h h h v v h v v v v h h v v v

−2 −2 −1 0 0 1 1 2 2 4 4 5 6 7 8.

Note there are two steps of rank 4 in the boundary path of D : when read bottom to top on the

path but left to right above, first there is a horizontal step, and then there is a vertical step. In

the boundary path of ζ(D) the order of these two steps is reversed. Similarly for the two steps

of rank 1.

Now the statistic dinv can be defined as

dinv(D) := area(ζ(D)).
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Note that in [7] a different definition of dinv for the non relatively prime case is used:

dinv′(D) := ♯

{
� ∈ D :

leg(�)

arm(�) + 1
<

n

m
≤

leg(�) + 1

arm(�)

}
.

Lemma 3.3. One has

dinv(D) = dinv′(D)

for any D ∈ YN,M .

Proof. This result essentially follows from Corollary 1 on page 8 in [23]. For every box � ∈
RN,M there is exactly one horizontal step h� of the Dyck path D in the same column, and

exactly one vertical step v� of D in the same row. This provides a bijection between the boxes

in RN,M and the couples: one vertical step of D and one horizontal step of D. The reordering

of the steps according to ζ gives rise to a bijective map φ : RN,M → RN,M , where the box φ(�)
corresponds to the pair of steps of ζ(D) obtained from h� and v� by reordering according to ζ .

With the terminology above, arm(�) is the number of boxes strictly between the box � ∈
RN,M and the horizontal step h� of the boundary of D, whereas its leg(�) is the number of

boxes strictly between the box � and v�. Observe, v� appears in the path before h� if and only

if � ∈ D. Consider two cases:

(1) Suppose � ∈ D, then one has

rank(h�) = rank(�)−m(leg(�) + 1),

and

rank(v�) = rank(�)− narm(�).

One gets φ(�) ∈ ζ(D) if and only if after the reordering the step in ζ(D) corresponding

to v� comes before the step corresponding to h�. According to the definition of ζ, in

this case it is equivalent to rank(v�) < rank(h�), which is in turn equivalent to

leg(�) + 1

arm(�)
<

n

m
.

(2) Suppose � ∈ RN,M\D. Similarly, one gets

rank(h�) = rank(�) +mleg(�),

and

rank(v�) = rank(�) + n(arm(�) + 1).

In this case,
leg(�)

arm(�) + 1
≥

n

m

if and only if rank(v�) ≤ rank(h�), if and only if φ(�) ∈ ζ(D).

Since by definition dinv(D) = ♯R+
N,M − ♯ζ(D), where R+

N,M is the set of boxes in RN,M that

fit under the diagonal, one gets

dinv(D) = ♯R+
N,M−♯

{
� ∈ D :

leg(�) + 1

arm(�)
<

n

m

}
−♯

{
� ∈ RN,M\D :

leg(�)

arm(�) + 1
≥

n

m

}

by the above considerations. Corollary 1 on page 8 in [23] proves

♯

{
� ∈ RN,M\D :

leg(�)

arm(�) + 1
≥

n

m

}
= ♯

{
� ∈ D :

leg(�)

arm(�) + 1
≥

n

m

}
+ ♯(R+

N,M\D).

Therefore, we conclude that

dinv(D) = ♯D − ♯

{
� ∈ D :

leg(�) + 1

arm(�)
<

n

m

}
− ♯

{
� ∈ D :

leg(�)

arm(�) + 1
≥

n

m

}
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= ♯

{
� ∈ D :

leg(�)

arm(�) + 1
<

n

m
≤

leg(�) + 1

arm(�)

}
= dinv

′(D).

�

The cardinality of the sets YN,M of Dyck paths get more complicated in the non-relatively

prime. In [8] Bizley shows that

exp(
∑

d≥1

1

d(m+ n)

(
d(m+ n)

dm

)
xd)

is the generating function whose coefficients give the cardinalities of YN,M , where (N,M) =
(dn, dm) for gcd(n,m) = 1.

On the other hand, the set MN,M of subsets 0 ∈ ∆ ⊂ Z≥0 invariant under addition of M and

N is infinite when gcd(N,M) = d > 1. Therefore, there is no hope to construct a bijection

between the set of such subsets and YN,M . However, the map G : MN,M → YN,M is still well

defined. We define an equivalence relation ∼ on the set MN,M , so that the relative order of N-

generators and M-cogenerators, and hence the value of G, is the same within each equivalence

class. We then construct a bijection D between the equivalent classes MN,M/∼ and YN,M , so

that one gets ζ = G ◦ D−1 as in the d = 1 case.

Comparing the definition of G to Lemma 3.3, one can see that dinv is constant on the fibres

of G. Further, each fiber of G is a union of ∼ equivalence classes. In fact, each equivalence

class is precisely one fiber by the result of Thomas and Williams[26] showing that ζ is always

bijective.

Given an (N,M)-invariant subset ∆ ∈ MN,M one can extract d many (n,m)-invariant sub-

sets from it by the following procedure: for each r ∈ {0, 1 . . . , d− 1} consider the subset in ∆
consisting of all integers congruent to r modulo d, subtract r from all these elements and then

divide by d. In other words one has

∆r = [(∆ ∩ (dZ+ r))− r] /d.(3)

Note that the subsets ∆r for r > 0 might not be 0-normalized. Note also that ∆ can be uniquely

reconstructed from ∆0, . . . ,∆d−1, so we have a bijection between the set of 0-normalized

(N,M)-invariant subsets and (ordered or Z/dZ-colored) collections of d many (n,m)-invariant

subsets, such that ∆0 is zero normalized and ∆i ⊂ Z≥0 for all i.

Remark 3.4. There is a natural bijection, extending Anderson’s construction, between the set

of (N,M)-invariant subsets and the set of (N,M)-cores. If λ is an (N,M)-core corresponding

to ∆ then one can check that the d-quotient of λ ([21]) consists of d diagrams each of which are

(n,m)-cores. They naturally correspond to ∆0, . . . ,∆d−1.

3.2. Equivalence relation. The idea of the equivalence relation is that one should fix the col-

lection ∆0, . . . ,∆d−1 up to shifts, but allow them to slide with respect to each other as long as

the N-generators and M-cogenerators of ∆ do not “jump” over each other. It is motivated by

making the invariant sets in the same fiber of G equivalent. Recall the map G only cares about

the relative order of the N-generators and M-cogenerators. We will analyze an equivalence

class by understanding all the positions the generators and cogenerators can fill while retaining

this relative order. This analysis will allow us to construct a representative in the equivalence

class of ∆ ∈ MN,M which has the minimal number of gaps, and it is on that representative that

we can define D. Later, we will describe the equivalence class of ∆ in terms of rank data from

the ∆r along with appropriate gluing data.

Let us first explain the equivalence relation with an example.

Example 3.5. Let (N,M) = (6, 4). The following two elements of YN,M are equivalent. Let

∆1 be given by:
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 . . .
× ◦ � ◦ × � • ◦ × × • � • × • . . .

and ∆2 :
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 . . .
× ◦ � ◦ × ◦ • � × ◦ • × • � • . . .

.

Here ×’s are 6-generators, �’s are the 4-cogenerators, •’s are other elements of the subset, and

◦’s are the other elements of the complement. Note that not all 6 generators and 4 cogenerators

fit in the pictures. It is more illustrative to split ∆1 into its even and odd parts:

r = 0 0 2 4 6 8 10 12 14 . . .
× � × • × • • . . .

r = 1 1 3 5 7 9 11 13 . . .
◦ ◦ � ◦ × � . . .

.

It is more compact to then stack them as

r = 0 −4 −2 0 2 4 6 8 10 12 14 16 18 . . .
� ◦ × � × • × • • • • . . .

r = 1 −3 −1 1 3 5 7 9 11 13 15 17 19 . . .
◦ ◦ ◦ ◦ � ◦ × � × • × . . .

,

reminiscent of a d-abacus.

Finally we just record ∆1
0 and ∆1

1:

−2 −1 0 1 2 3 4 5 6 7 8 9 10 . . .
∆1

0 � ◦ × � × • × • • • • . . .
∆1

1 ◦ ◦ ◦ ◦ � ◦ × � × • × . . .
.

To restore ∆1 one should multiply both ∆1
0 and ∆1

1 by two, add one to ∆1
1, and merge them

together. In other words, ∆1 = 2∆1
0 ∪ (1 + 2∆1

1). Similarly, for ∆2 one gets

−2 −1 0 1 2 3 4 5 6 7 8 9 10 . . .
∆2

0 � ◦ × � × • × • • • • • . . .
∆2

1 ◦ ◦ ◦ ◦ ◦ � ◦ × � × • × . . .
.

Note that the sequences of N-generators and M-cogenerators are the same for ∆1 and ∆2,
even if we take into account the remainder modulo 2. In both cases one gets

� × � × � × × � × ×(4)

where red is for even generators and cogenerators (r = 0), and blue is for odd (r = 1). This is

the reason ∆1 ∼ ∆2. If we only knew the even and odd parts, then, in this example, the odd

part can be shifted by 1 with respect to the even part without changing the sequence or parity of

generators and cogenerators. Note that one cannot shift further: in ∆1 one cannot shift the odd

part to the left, and in ∆2 one cannot shift the odd part to the right and still yield an invariant

set equivalent to ∆1. Also note that while ∆1
0 = ∆2

0, ∆
1
1 = −1+∆2

1.

Let us give a formal definition of the equivalence classes.

Definition 3.6. The skeleton of an (N,M)-invariant subset ∆ is the set consisting of its N-

generators and M-cogenerators.

Example 3.7. The skeleton of ∆1 from Example 3.5 above is {−4, 0, 2, 4, 5, 8, 9, 11, 13, 17}.
Note is has 10 = 6 + 4 elements.

Note that one can uniquely reconstruct an invariant subset ∆ from its skeleton. Indeed, the

skeleton contains all the N-generators of ∆, and to distinguish the N-generators from the M-

cogenerators one should simply choose the biggest elements in each congruence class mod N.
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An attentive reader may have noticed that the above definition of the skeleton are not obvi-

ously symmetric in N and M . It fact, it is (almost) symmetric by the following lemma.

Lemma 3.8. Let ∆ be some (N,M)-invariant subset. An integer x is either an N-generator or

an M-cogenerator of ∆ if and only if x+M is an (N +M)-generator of ∆.

Proof. Indeed, x+M is an (N +M)-generator of ∆ if and only if x+M ∈ ∆ and x−N /∈ ∆.

If x is an N-generator then x ∈ ∆, so x +M ∈ ∆, but x − N /∈ ∆. Hence by the above it

is an (N +M)-generator. Assume that x is an M-cogenerator. Then x /∈ ∆ but x +M ∈ ∆.

If x − N ∈ ∆ then x ∈ ∆, contradiction, therefore x − N /∈ ∆, and again x + M is an

(N +M)-generator.

Conversely, assume that x−N = x+M − (N +M) /∈ ∆ and x+M ∈ ∆. If x ∈ ∆ then

x is an N-generator, and if x /∈ ∆ then x is a M-cogenerator. �

Remark 3.9. One can also prove Lemma 3.8 using generating functions. Let f(t) =
∑

s∈∆ ts

be the generating function for ∆, then the generating function for the set of N-generators equals

(1 − tN)f(t) while the generating function for the set of M-generators equals (t−M − 1)f(t).
Therefore the generating function for the skeleton equals:

(1− tN)f(t) + (t−M − 1)f(t) = (t−M − tN )f(t) = t−M(1− tM+N)f(t).

Corollary 3.10. Let ∆ ∈ MN,M . Then x is in the (N,M)-skeleton of ∆ if and only if x−N+M
is in the (M,N)–skeleton of ∆.

Remark 3.11. Indeed, the distribution of generators and cogenerators in the (N,M) and (M,N)
skeletons is different (say, there are N generators in the former and M in the latter). One can

be obtained from the other by reading the distribution backwards and swapping ×s and �s. In

Example 3.5 the (6, 4)-skeleton of ∆1 is {−4, 2, 5, 11} ∪ {0, 4, 8, 9, 13, 17} whereas its (4, 6)-
skeleton is {−6,−2, 2, 3, 7, 11} ∪ {0, 6, 9, 15}, pictured as

� × × � � × � × � × ,

which one should compare to (4).

In other words, the (N,M)-skeleton and the (M,N)-skeleton of ∆ differ by a shift by (M −
N) which does not depend on ∆. In particular, all the constructions are symmetric (up to an

overall shift) in M and N . From now on we will continue to use notation as in Definitions 3.6

above and 3.13 below.

Let ∆ be an (N,M)-invariant set, let S be its skeleton, and S0, . . . , Sd−1 be the parts of the

skeleton in different remainders modulo d = gcd(M,N) (i.e., Si = S ∩ (dZ+ i)).

Definition 3.12. A shift S0, S1 + a1, . . . , Sd−1 + ad−1 is called acceptable (relative to S) if

there exists a continuous path φ = (φ1, . . . , φd−1) : [0, 1] → Rd−1 with φ(0) = (0, . . . , 0) and

φ(1) = (a1, . . . , ad−1), such that for any 0 ≤ t ≤ 1 the sets S0, S1 + φ1(t), . . . , Sd−1 + φd−1(t)
are pairwise disjoint. In other words, we allow S1, . . . , Sd−1 to shift by translations as long as

the elements of different Si’s do not intersect. In this case we will call the tuple (a1, . . . , ad−1)
an acceptable shifting of S and an integral shifting when all ai ∈ Z.

When S is understood we will lighten notation by not specifying the shifts are relative to S
or the shiftings are of S. In fact, in the rest of this section we will assume everything is relative

to some fixed skeleton S unless stated otherwise.

Definition 3.13. Let ∆,∆′ ∈ MN,M with skeletons S =
⊔

Si, S
′ =

⊔
S ′
i, respectively. We

say that ∆ is equivalent to ∆′ or ∆ ∼ ∆′ if there exist a permutation σ ∈ Sd−1 such that

S ′
0, S

′
σ(1), . . . , S

′
σ(d−1) is an acceptable shift of S0, S1, . . . , Sd−1.
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Equivalence class will always mean ∼ equivalence class.

Dealing with equivalence classes is complicated. Instead, we want to choose one representa-

tive from each class—a minimal one, as defined below. Our goal is to shift S1, . . . , Sd−1 down

as much as possible, so that the parts of the skeleton are “stuck” on one another. In fact, this

will minimize the size of Z≥0 \ ∆. Note that not every integral acceptable shift of a skeleton

is again a skeleton of some (N,M)-invariant subset, because different parts of the skeleton

might end up in the same congruence class modulo d. However, it is convenient to consider

the set of all acceptable integral shifts. We will show that there always exists a minimal in-

tegral acceptable shift and use it as an intermediate step in the construction of the bijection

D : MN,M/∼ → YN,M .

Lemma 3.14. The acceptability condition on a shifting a1, . . . , ad−1 is equivalent to satisfying

a system of linear inequalities of the form

ai − aj < b̃ij ,

where b̃ij ∈ Z>0 ∪∞ for 0 ≤ i, j < d, are fixed and the condition a0 = 0. In particular, the set

of acceptable shiftings is convex.

Proof. Fix a skeleton S. Set

(5) b̃ij := min
x∈Si, y∈Sj , y>x

y − x,

if {x, y : x ∈ Si, y ∈ Sj, y > x} 6= ∅, and b̃ij = ∞ otherwise. Suppose that (a1, . . . , ad−1)

is an acceptable shifting of S. It follows that for any i, j one has ai − aj < b̃ij . Indeed,

assume otherwise, i.e., ai − aj ≥ b̃ij . By definition, there exist x ∈ Si and y ∈ Sj such that

y − x = b̃ij > 0. However, after shifting one has

(y + aj)− (x+ ai) = b̃ij − (ai − aj) ≤ 0.

Therefore, for any continuous path φ : [0, 1] → Rd−1 such that φ(0) = (0, . . . , 0) and φ(1) =
(a1, . . . , ad−1), there exists t ∈ (0, 1] such that y + φi(t) = x+ φj(t). Contradiction.

Conversely, suppose that (a1, . . . , ad−1) is such that all the inequalities ai − aj < b̃ij are

satisfied. Take the path φ to be the line segment connecting (0, . . . , 0) and (a1, . . . , ad−1), i.e.,

take

φ(t) := (ta1, . . . , tad−1).

Then for any t ∈ [0, 1], any 1 ≤ i, j ≤ d− 1, i 6= j, and any x ∈ Si and y ∈ Sj with y > x one

has x+ tai 6= y + taj . Indeed,

(y + taj)− (x+ tai) = (y − x)− t(ai − aj) > b̃ij − t̃bij ≥ 0.

(The case y < x is covered similarly by the inequality aj − ai < b̃ji.) �

We are interested in integral acceptable shiftings, so we can set bij = b̃ij − 1, and then all

integral acceptable shiftings satisfy

(6) ai − aj ≤ bij .

Let A = AS ⊂ Rd−1 be the set defined by the inequalities (6).

Example 3.15. Let (n,m) = (3, 2) and d = 4. Consider the (12, 8)-invariant subset

∆ = {0, 1, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, 27, 28, 29, 30}∪ (Z≥32).

As in Example 3.5, it is convenient to reserve a separate row for each remainder modulo d = 4 :



RATIONAL DYCK PATHS IN THE NON RELATIVELY PRIME CASE 13

−8 −4 0 4 8 12 16 20 24 28 32 36 40 44 . . .

0 � ◦ × � × • × • • • • • • • . . .

1 � � × × × • • • • • • • • • . . .

2 ◦ ◦ ◦ ◦ ◦ ◦ ◦ � � × × × • • . . .

3 ◦ ◦ ◦ ◦ ◦ ◦ � ◦ × � × • × • . . .

Here each box in the table correspond to the sum of the numbers at the top of the column

and at the left and of the row, so to recover the subset ∆ one should read the table column

by column, top to bottom, then left to right. As usual, × denotes a 12-generator, and � an

8-cogenerator, while • are the other elements of ∆ and ◦ the other elements in the complement.

The parts S0, S1, S2, and S3 of the skeleton of ∆ are given by

S0 = {−8, 0, 4, 8, 16}, S1 = {−7,−3, 1, 5, 9}, S2 = {22, 26, 30, 34, 38},

and S3 = {19, 27, 31, 35, 43}.

We can compute the numbers bij = b̃ij − 1, i 6= j in this example:

(bij)
3
i,j=0 =




0 5 2
2 12 9
∞ ∞ 0
∞ ∞ 2


 .

Therefore, the set AS ⊂ R
3 is given by the shiftings (a1, a2, a3) satisfying

−2 ≤ a0 − a1 ≤ 0, −∞ ≤ a0 − a2 ≤ 5, −∞ ≤ a0 − a3 ≤ 2,

−∞ ≤ a1 − a2 ≤ 12, −∞ ≤ a1 − a3 ≤ 9, −2 ≤ a2 − a3 ≤ 0,

where a0 = 0. This simplifies to

0 ≤ a1 ≤ 2, a3 ≥ −2, 0 ≤ a3 − a2 ≤ 2.

Lemma 3.16. Define

(7) mi = max
i=i1,i2,...,ik=0

k−1∑

ℓ=1

(−biℓ+1il)

where the maximum is taken over all sequences {i1, i2, ..., ik} of integers between 0 and d − 1,
such that i1 = i and ik = 0. Then (m1, . . . , md−1) ∈ A and for any i and any integral acceptable

shifting (a1, . . . , ad−1) ∈ A ∩ Zd−1 we have ai ≥ mi.

Proof. By definition, there exists a sequence of integers i = i1, i2, . . . , ik−1, ik = 0 such that

mi =
k−1∑
ℓ=1

(−biℓ+1iℓ). Then one has

ai = (ai1 − ai2) + (ai2 − ai3) + . . .+ (aik−1
− a0) ≥ −bi2i1 − . . .− bikik−1

= mi.

Suppose (m1, . . . , md−1) 6∈ A. Then mi −mj > bij for some 0 ≤ i, j < d. By definition, there

exists a sequence i = i1, i2, . . . , ik = 0 such that mi =
k−1∑
ℓ=1

(−biℓ+1il). But then

mj < mi − bij = −bij +

k−1∑

ℓ=1

(−biℓ+1iℓ),

which contradicts the maximality of mj (consider the sequence j, i = i1, i2, . . . , ik = 0). In

other words, (m1, . . . , md−1) is the minimal integral acceptable shifting. �
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Note all mi ≤ 0 as (0, . . . , 0) ∈ A. Set M0 = S0,M1 = S1 +m1, . . . ,Md−1 = Sd−1 +md−1

to be the shifted parts of the skeleton corresponding to the minimal integral acceptable shift

relative to S.

Definition 3.17. Let f(i) be the remainder of any element of Mi modulo d (recall that all

elements of Mi have the same remainder). This defines a function f : {0, . . . , d − 1} →
{0, . . . , d− 1}.

For every 0 ≤ i < d set si := ⌊Mi

d
⌋ = {⌊x

d
⌋ | x ∈ Mi} and let ∆i be the (n,m)-invariant

subset such that si is the skeleton of ∆i. Note ∆i might not be 0-normalized.

Definition 3.18. Let the directed graph (digraph) G = GS on the vertex set {0, . . . , d − 1} be

defined in the following way: vertices i and j are connected by an edge i → j if f(i) < f(j)
and the intersection si ∩ sj is not empty.

Lemma 3.19. The value f(i) equals the length of the longest oriented path from 0 to i in the

digraph G.

Proof. By definition, we have f(i) < f(j) for any edge i → j. Therefore, it suffices to prove

the following two conditions:

(1) If f(j) > 0 then there exists i such that f(i) = f(j)− 1 and G contains the edge i → j.
(2) f(i) = 0 implies i = 0.

Both conditions follow immediately from the minimality of the shift. Indeed, if the first property

is not satisfied for a vertex i of G then (m1, . . . , mi − 1, . . . , md−1) is an acceptable shifting,

which contradicts Lemma 3.16.

Suppose now that f(i) = 0, i 6= 0. This and the first property imply that f(j) 6= d − 1 for

any j ∈ {0, . . . , d−1}. Therefore, again, (m1, . . . , mi−1, . . . , md−1) is an acceptable shifting.

Contradiction. �

Corollary 3.20. The function f can be recovered from the orientation of the graph G.

Example 3.21. Continuing Example 3.15, we compute

m1 = −b01 = 0, m2 = −b32 − b03 = −4, m3 = −b03 = −2,

so the minimal integral acceptable shifting of S is (0,−4,−3). The minimal integral acceptable

shift is then given by

M0 = S0 = {−8, 0, 4, 8, 16}, M1 = S1 + 0 = {−7,−3, 1, 5, 9},

M2 = S2 − 4 = {18, 22, 26, 30, 34}, M3 = S3 − 2 = {17, 25, 29, 33, 41}.

Note that elements of both M1 and M3 have remainder 1 modulo d = 4. Therefore, this shift

does not correspond to any (12, 8)-invariant subset. The skeletons si = ⌊Mi

4
⌋ are given by

s0 = {−2, 0, 1, 2, 4}, s1 = {−2,−1, 0, 1, 2},

s2 = {4, 5, 6, 7, 8}, s3 = {4, 6, 7, 8, 10},

and we get f(0) = 0, f(1) = f(3) = 1, and f(2) = 2. Note Mi = dsi + f(i). See Figure

5 for the graph G. We will also consider the (n,m)-periodic lattice paths corresponding to

s0, s1, s2, s3 (see Figure 6).

Definition 3.22. Let T d
n,m denote the set of acyclically oriented graphs G on d vertices with a

unique source v0, and vertices labeled by skeletons of (n,m)-invariant subsets, such that

(1) All labels are non-negatively normalized, and the label of v0 is zero normalized,

(2) Two skeletons intersect if and only if the corresponding vertices are connected by an

edge.

Elements of T d
n,m are considered up to label preserving isomorphisms.



RATIONAL DYCK PATHS IN THE NON RELATIVELY PRIME CASE 15

{4,5,6,7,8}

{4,6,7,8,10}{-2,-1,0,1,2}

{-2,0,1,2,4}

FIGURE 5. The digraph G with vertices labelled by the skeletons of the (3, 2)-
invariant subsets. The function f corresponds to the levels: 0 at the blue vertex,

1 at the green and orange vertices, and 2 at the red vertex.
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FIGURE 6. The four (3, 2)-periodic paths corresponding to the skeletons from

Figure 5. Note that the elements of the skeletons are exactly the ranks of the

boxes above the horizontal steps and to the left of the vertical steps. Equivalently,

they are the ranks of the steps of the paths.

Note that the underlying (not oriented) graph is determined by the d-tuple of (n,m)-invariant

subsets. We will refer to the orientation of the digraph G as the gluing data on the d-tuple of

invariant subsets.

The construction above provides a map

A : MN,M/∼ → T d
n,m.

Moreover, the map is injective by construction, because given a labeled graph G ∈ T d
n,m one

can use Lemma 3.19 to reconstruct the function f(i) and then recover the sets M0, . . . ,Md−1

by setting Mi = dsi + f(i). We need to show that this map is also surjective, i.e., show that for

any labeled digraph G ∈ T d
n,m the corresponding sets M0, . . . ,Md−1 form a minimal integral

acceptable shift of the skeleton of an (N,M)-invariant subset.

Let G ∈ T d
n,m be a labeled graph. Let f be the function on the vertex set of G constructed as

in Lemma 3.19, i.e., for a vertex v, f(v) equals to the length of the longest oriented path from

the source v0 to v. Since elements of T d
n,m are considered up to label preserving isomorphisms,
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one can assume that the vertex set of G is VG = {0, 1, . . . , d− 1} and the function f is weakly

monotone:

i < j ⇒ f(i) ≤ f(j).

In particular, one gets v0 = 0. Note, that two different labeled digraphs on the vertex set

{0, 1, . . . , d− 1} might be related by a label preserving isomorphism, in which case they corre-

spond to the same element of T d
n,m (see Figure 7 for an example).

Let the vertices 0, . . . , d− 1 of G have labels s0, . . . , sd−1 respectively.

Lemma 3.23. Given G ∈ T d
n,m, there exists an (N,M)-invariant subset ∆ = ∆G with skeleton

S =
⊔

Si, such that

M0 := ds0,M1 := ds1 + f(1), . . . ,Md−1 := dsd−1 + f(d− 1)

is the minimal integral acceptable shift of S0, . . . , Sd−1. More over, we can choose ∆ by setting

S0 := ds0, S1 := ds1 + 1, . . . , Sd−1 := dsd−1 + (d− 1).

Proof. By construction, for every i every element of Si has remainder i modulo d. It follows

that S :=
⊔
Si is the skeleton of an (N,M)-invariant set ∆. The non-negative normalization

of the si imply ∆ ∈ MN,M . It remains to show that M0,M1, . . . ,Md−1 is the minimal integral

acceptable shift of S0, S1, . . . , Sd−1. By construction, for every i we have Mi = Si + ai where

ai := f(i) − i. Recall that the minimal integral acceptable shifting is given by (7), and by (5)

the integers bij are given by

bij :=

(
min

x∈Si, y∈Sj , y>x
y − x

)
− 1.

Suppose i → j is an edge of G. Then as f is monotone we must have i < j. Since si∩sj 6= ∅
it follows that there are x ∈ Si and y ∈ Sj such that ⌊x

d
⌋ = ⌊y

d
⌋, so we get bij = (j − i) − 1.

On the other hand, suppose there is no directed edge i → j. If i < j we immediately get that

bij ≥ (d+ j − i)− 1 ≥ j. Similarly, if i > j (even if j → i) we get bij ≥ (j + d− i)− 1 ≥ j.

It follows that to maximize
k−1∑
ℓ=1

(−biℓ+1iℓ) in (7) one has to consider the longest directed path in

G from 0 to i. Such a path has f(i) steps, so we get

mi = f(i)− i = ai.

Therefore, M0,M1, . . . ,Md−1 is the minimal integral acceptable shift of S0, S1, . . . , Sd−1. �

Note that the representative constructed in Lemma 3.23 above has the following property:⌊
Si

d

⌋
=

⌊
Mi

d

⌋
where, as before, S0, . . . , Sd−1 are the parts of the skeleton of the representative

∆ of the equivalence class in the corresponding remainders modulo d, and M0, . . . ,Md−1 is the

minimal integral acceptable shift of S0, . . . , Sd−1. We call such representatives ∆ the minimal

representatives. Note that an equivalence class might contain more than one minimal represen-

tative (see Example 3.24). Recall the sets M0, . . . ,Md−1 might not correspond to an element of

MN,M , but the S0, . . . , Sd−1 will.

Example 3.24. Continuing Example 3.21 and using the graph on the left of the Figure 7, one

gets

S0 = 4{−2, 0, 1, 2, 4} = {−8, 0, 4, 8, 16},

S1 = 4{4, 6, 7, 8, 10}+ 1 = {17, 25, 29, 33, 41},

S2 = 4{−2,−1, 0, 1, 2}+ 2 = {−6,−2, 0, 6, 10},

S3 = 4{4, 5, 6, 7, 8}+ 3 = {19, 23, 27, 31, 35}.

Therefore, the (12, 8)-invariant subset ∆G we constructed is depicted below.
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3 {4,5,6,7,8}

1 {4,6,7,8,10}2{-2,-1,0,1,2}

0 {-2,0,1,2,4}

3 {4,5,6,7,8}

2{4,6,7,8,10} 1 {-2,-1,0,1,2}

0 {-2,0,1,2,4}

FIGURE 7. Two graphs corresponding to the same point of T 4
3,2 : the isomorhism

switching vertices 1 and 2 preserves the labels.

−8 −4 0 4 8 12 16 20 24 28 32 36 40 44 . . .

0 � ◦ × � × • × • • • • • • • . . .

1 ◦ ◦ ◦ ◦ ◦ ◦ � ◦ × � × • × • . . .

2 � � × × × • • • • • • • • • . . .

3 ◦ ◦ ◦ ◦ ◦ ◦ � � × × × • • • . . .

Note that if we had used the graph on the right of Figure 7 instead, we would get a different

invariant subset in the same equivalence class. Both these subsets are minimal, as they are

constructed according to the algorithm in Lemma 3.23. Note that they are both different from

the invariant subset we started from in Example 3.15 , which was not minimal.

Also note this set has 14 gaps, which is the area of the rational Dyck path constructed in

Figure 8.

3.3. From equivalence classes to Dyck paths. The last step is to construct a bijection B :
T d
n,m → YN,M so that we can set D = B ◦ A. Let G ∈ T d

n,m be a labeled graph, and let

P0, . . . , Pd−1 be the (m,n)-periodic lattice paths corresponding to the labels s0, . . . , sd−1 of G.

Lemma 3.25. Let 0 ≤ i < j < d. Then the paths Pi and Pj intersect if and only if the

skeletons si and sj intersect or, equivalently, if and only if the graph G has an edge between the

corresponding vertices.

Proof. Suppose that x ∈ si ∩ sj , and let � be a box in Z
2 with rank(�) = x. Then Pi contains

either the step v� that is to the right (if x is an n-generator) or the step h� at its bottom (if x
is an m-cogenerator). (Here we extend the notation from Lemma 3.3 to periodic paths.) In

both cases, Pi passes through the right-bottom corner of �. The same is true for Pj . Hence Pi

intersects Pj at that corner.

Conversely, if Pi contains a lattice point p let � be the box with p at its bottom right corner.

Then Pi must contain either the step v� going up from p, or the the step h� going left from p.

In both cases, it implies x = rank(�) has to be in the skeleton si. The same holds for Pj and

sj, so x ∈ si ∩ sj . Finally, the graph G has an edge between two vertices if and only if the

corresponding skeletons intersect. �
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3.3.1. Gluing algorithm. We will glue together paths P0, . . . , Pd−1 (more precisely, a union

of possibly disconnected intervals of total length (n + m) of these paths) to get an (N,M)-
Dyck path D in the following way, which we call our gluing algorithm. We start by taking the

interval of P0 that is an (n,m)-Dyck path (there is a unique way to choose such an interval, up

to a periodic shift). At each step we glue in an interval of length (n+m) of one of the periodic

paths P1, . . . , Pd−1 into our path. This is done using the following procedure.

Let D̂ be a (kn, km)-Dyck path and let P̂ be an (n,m)-periodic path, such that the intersec-

tion D̂ ∩ P̂ is not empty. Let p be the first point of intersection of D̂ and P̂ relative to D̂ (recall

that we orient all lattice paths from bottom-right to top-left, i.e., p is the point of intersection,

closest to the bottom-right end of D̂). The new ((k + 1)n, (k + 1)m)-Dyck path D̂ ∨ P̂ is the

union of three lattice paths:

(1) First we follow the path D̂ from its start up to p;

(2) Then we follow P̂ for (n +m) steps starting at p;

(3) Finally, we follow the remaining part of D̂ translated by n up and m to the left, i.e., by

+(−m,n).

More precisely, let us now also identify a (kn, km)-Dyck path D̂ with the function D̂ :

[0, k(n+m)] → R
2, so that D̂ is its plot and the function is an isometry to the image. Similarly,

a periodic path can be regarded as a function P : R → R2 satisfying P (z +m+ n) = P (z) +
(−m,n). Given r ∈ Z and a function I : [r, r + n + m] → R2 satisfying I(r + n + m) =
I(r) + (−m,n), we extend I periodically to P (I) : R → R2 by P (I)(z + k(n + m)) =
I(z) + k(−m,n), for r ≤ z ≤ r + n + m. Note if I was an interval of a (kn, km)-Dyck

path then P (I) is normalized so 0 ≤ z ≤ n +m implies P (z) is between the lines y = 0 and

y = n. However, it is convenient to treat periodic paths so their parameterization might not be

normalized in this way (i.e., so that we need not have a = b below, or so that we can consider

an interval of it as a function with domain [0, n + m]). Using this function notation, we may

describe

D̂ ∨ P̂ (z) =





D̂(z) 0 ≤ z ≤ a

P̂ (z + b− a) a ≤ z ≤ a+ n +m

D̂(z − (m+ n)) + (−m,n) a + n+m ≤ z ≤ (k + 1)(n+m)

where a, b ∈ R are the parameters such that D̂(a) = P̂ (b) = p and p ∈ R2 is the first point of

D̂ that is also in P̂ .

We apply the above procedure d− 1 times in the following order. Let kj = #{i | f(i) ≤ j}.

We start by setting D0 to be the interval of P0 such that D0 is an (n,m)-Dyck path. Take all

paths Pi, such that f(i) = 1. Note that all such paths intersect D0 and do not intersect each

other. Therefore, we can glue them in using the above procedure, and the order in which we do

it does not matter, i.e. the path created is independent of gluing order for these i. Let D1 be the

resulting rational Dyck path. Note is it a (k1n, k1m)-Dyck path.

At the (j + 1)th step we start with the (kjn, kjm)-Dyck path Dj obtained from D0 by gluing

in intervals of all paths Pi such that f(i) ≤ j, one level of G at a time, and we glue in intervals

of all Pi’s, such that f(i) = j + 1. Again, all such paths intersect at least one of the intervals

we glued in on the previous step, and they do not intersect each other. We proceed in the same

manner until we glued in intervals of all periodic paths P1, . . . , Pd−1. (See Figure 8 for an

example.)

We need to show that this process is invertible. Consider an (N,M)-Dyck path D.
First we will define removal of intervals. Let D be a (kn, km)-Dyck path. We call I a

balanced interval of D if it consists of n + m consecutive steps of D of which n are vertical

and m are horizontal. Using our function notation, this means I is the restriction of D to
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FIGURE 8. We apply the gluing algorithm to the periodic paths from Figure 6,

using the graph from Figure 5. On each step we indicate the gluing point: the

first intersection of the Dyck path built so far with the next periodic path.

[r, r + n +m], with r ∈ Z and D(r) = D(r + n +m) + (m,−n). We will say D′ is obtained

from D by removing a balanced interval I if it corresponds to the function given by

D′(z) =

{
D(z) 0 ≤ z ≤ r

D(z + (m+ n)) + (m,−n) r ≤ z ≤ (k − 1)(n+m)
.

Definition 3.26. An interval I of D is called good if it is of length n + m, balanced, and its

(n,m)-periodic extension does not intersect the part of D before I.

Our definition of good is motivated by the need to invert the gluing process. Thus good

intervals must have the following properties. Suppose we remove a good interval I from a

(kn, km)-Dyck path D which yields D′. If we now glue the periodic extension of I into D′ by

taking the first (lowest rightmost) point of D′ that intersects the periodic path, this should yield

the original D, i.e., D = D′ ∨ P (I). That good removal inverts the gluing algorithm is based

on the following Lemmas.

Lemma 3.27. There always exists at least one good interval in a (kn, km)-Dyck path D.

Proof. The proof goes in two steps. First, one can show that there always exists at least one

balanced interval of D of length (n+m). This is equivalent to showing that the intersection of

D with D translated by n down and m to the right, i.e. D intersect D+ (m,−n), is non-empty.

Since D is a Dyck path, it stays weakly below the diagonal connecting its start with its end. It

follows that D + (m,−n) intersects the vertical line through the start of D (weakly) below the

start of D, and ends (weakly) above D. Therefore, it has to intersect D.

Second, the balanced interval closest to the bottom-right end of D is always good. �

Lemma 3.28. Periodic extensions of the good intervals of D do not intersect each other.

Proof. Indeed, otherwise the one further away from the bottom-right end of D is not good. �

Lemma 3.29. If I and J are good intervals of D, and D′ is obtained from D by removing I,
then the image of J in D′ is still a good interval of D′.

Proof. Indeed, if the periodic extension of J intersects the part of D′ before it, then it also

intersects the part of D before it. �

Lemma 3.30. Let G ∈ T d
n,m and suppose that the (N,M)-Dyck path D was obtained from

the periodic paths P1, . . . , Pd−1 according to the gluing algorithm given by G. The periodic

extension P (I) of good intervals I of D agree with the Pi for i the sinks of G.



20 EUGENE GORSKY, MIKHAIL MAZIN, AND MONICA VAZIRANI

Proof. In this proof we will use “before” and “after” according to the steps of the gluing al-

gorithm (temporally), and switch to “higher” or “lower” to refer to locations of steps or lattice

points of paths.

Let I be a good interval of D. Then, according to Lemma 3.29 either it was glued in on the

last step of our algorithm, or it was already a good interval before the last step. In the latter

case, the same holds for the second to the last step and so on. Therefore, I was glued in at some

point.

Suppose that I corresponds to the vertex i of G, and suppose that there is an edge i → j in

G. Then the interval corresponding to j was glued in after I was. Therefore, either it was glued

in in the middle of I, or lower than I , in which case after that gluing I is not a good interval any

more, because periodic paths Pi and Pj intersect. Contradiction. �

Theorem 3.31. The map B : T d
n,m → YN,M is a bijection.

Proof. We will induct on d. The case d = 1 corresponds to the relatively prime case.

There is some flexibility in the gluing algorithm: if two periodic paths do not intersect each

other, then as noted previously it does not matter in which order we glue in intervals of these

paths. In particular, we can change the order so that the paths corresponding to the sink vertices

i of the graph G are glued in at the last step of the gluing algorithm. Suppose that G has k sink

vertices {i1, . . . , ik} and let G′ ∈ T d−k
n,m be the labeled graph obtained from G by removing the

sink vertices. Let also (si1 , . . . , sik) be the skeletons corresponding to the sink vertices of G.
Note that the following two properties are satisfied:

(1) The skeletons si1 , . . . , sik are pairwise disjoint,

(2) Every skeleton corresponding to a sink vertex of the graph G′ intersects at least one of

the skeletons si, i 6∈ {i1, . . . , ik}.

Indeed, if the first property is not satisfied then the corresponding two vertices of G are con-

nected by an edge and cannot both be sinks. If the second property is not satisfied, then the cor-

responding vertex is also a sink of G, which is a contradiction. Conversely, for any 0 < k < d,
any labeled graph G′ ∈ T d−k

n,m and a collection of skeletons si1 , . . . , sik satisfying the above two

conditions there is a unique graph G ∈ T d
n,m, such that si1 , . . . , sik are the labels of the sink

vertices of G, and G′ is obtained from G by removing the sink vertices.

Exactly the same situation happens on the Dyck path side. Let D ∈ YN,M be an (N,M)-Dyck

path. Suppose it has k good intervals, and let D′ ∈ Y(N−kn,M−km) be the Dyck path obtained

from D by removing the good intervals. Let P1, . . . , Pk be the periodic extensions of the good

intervals of D. The following two properties are satisfied:

(1) The periodic paths P1, . . . , Pk are pairwise disjoint,

(2) The periodic extension of any good interval of the Dyck path D′ intersects at least one

of the paths P1, . . . , Pk.

Indeed, if the first property is not satisfied then the corresponding two intervals of D cannot

both be good. If the second property is not satisfied, then the corresponding good interval of

D′ is also a good interval of D, which is a contradiction. Conversely, for any 0 < k < d, any

Dyck path D′ ∈ Y(N−kn,M−km) and a collection of (n,m)-periodic paths P1, . . . , Pk satisfying

the above two conditions there is a unique Dyck path D ∈ YN,M , such that P1, . . . , Pk are the

periodic extensions of the good intervals of D, and D′ is obtained from D by removing all good

intervals.

Using Lemma 3.25 and induction on d we now can build the inverse map B−1 : YN,M →
T d
n,m. See Figure 9 for an example. �

We conclude that since the maps A : MN,M/∼ → T d
n,m and B : T d

n,m → YN,M are bijections,

the map D = B ◦ A : MN,M/∼ → YN,M is a bijection as well.
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FIGURE 9. On the first step we remove two good intervals and record the cor-

responding skeletons: {−2,−1, 0, 1, 2} and {4, 5, 6, 7, 8}. On the second step

there is only one good interval, with the corresponding skeleton {4, 6, 7, 8, 10}.
Finally, on the last step we are left with a (3, 2)-Dyck path, which is its own good

interval. The corresponding skeleton is {−2, 0, 1, 2, 4}. On the right we have the

reconstructed labeled graph. Note the sinks are the first intervals removed. Note,

that it is isomorphic to the graph in Figure 5.

Theorem 3.32. The sweep map ζ : YN,M → YN,M factorizes according to Figure 2:

ζ = G ◦ D−1

for all positive N,M .

Proof. Let D ∈ YN,M be a Dyck path, and let ∆ ∈ MN,M be a minimal representative of

the equivalence class D−1(D) ⊂ MN,M . Similar to the d = 1 case, the steps of the path

D correspond to the elements of the skeleton S of ∆. However, the correspondence is a bit

trickier. Since the ∆ is a minimal representative, the rank of a step of D equals ⌊x
d
⌋, where x

is the corresponding element of the skeleton of ∆. However, according to the gluing algorithm,

if x, y ∈ S are two elements of the skeleton of ∆, such that x < y and ⌊x
d
⌋ = ⌊y

d
⌋, then the

step corresponding to x is glued in lower than the step corresponding to y. In turn, that implies

that the step in D corresponding to x appears higher than the step corresponding to y, which

matches with the “tie breaking” adjustment in the construction of the sweep map in the non

relatively prime case (see Example 3.2). �

The following proposition gives a simple interpretation of the area statistic for rational Dyck

paths in terms of (N,M)–invariant subsets.

Proposition 3.33. Let ∆ ∈ MN,M . Then

area(D(∆)) = min
∆′∼∆

gap(∆′),

where, as above, gap(∆′) = |Z≥0 \∆
′|.

Proof. As before, let ∆0, . . . ,∆d−1 be the d-tuple of (n,m)-invariant subsets defined by

∆r = [(∆ ∩ (dZ+ r))− r] /d.

Let also mr = min∆r. Then

gap(∆) =
∑

r

gap(∆r) =
∑

r

[mr + gap(∆r −mr)] .
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Note that (∆r−mr) ∈ Mn,m and, in particular, gap(∆r−mr) = area [D(∆r −mr)] , because

in the relatively prime case the area statistic counts the boxes whose ranks are exactly the gaps,

and each gap is counted exactly once. It follows that to obtain the ∆′ with minimal gap over

the equivalence class of ∆ one should consider an invariant subset with the minimal
∑

r mr,
which is equivalent to considering one of the minimal representatives. Therefore, it is sufficient

to prove that if ∆ is a minimal representative, then area(D(∆)) = gap(∆). Let us compute

the area between D(∆) and the diagonal in the (N,M) rectangle RN,M . It consists of the areas

between the Dyck paths (possibly shifted and disconnected) for the (n,m)-invariant subsets

∆r and their local diagonals, and the parallelograms between these small diagonals and the

big diagonal. Since ∆ is a minimal representative, the smallest rank of a box that fits under

the local diagonal corresponding to ∆r is mr. Therefore, such a parallelogram contains the

boxes with all possible ranks between 0 and mr, each rank appearing exactly once. Therefore

area(D(∆)) = gap(∆). �

3.4. Example: k-Catalan arrangement. Let us describe the equivalence relation in the case

M = kN , k ∈ Z>0. In this case, d = N , n = 1 and m = k. A module is (N,M)-invariant if

and only if it is N-invariant, and therefore has the form

∆(k0, . . . , kN−1) = {ki +Nj : i = 0, . . . , N − 1, j ≥ 0},

where ki is an arbitrary integer with remainder i modulo N . To be 0-normalized we further

require k0 = 0 and ki ≥ 0. Now ∆i = {ki + Nj : j ≥ 0}, so the skeleton Si has a unique

N-generator ki and has k M-cogenerators ki −N, . . . , ki − kN . Therefore the i-th skeleton of

∆ has the form

Si = {ki, ki −N, . . . , ki − kN}.

Recall that the k-Catalan arrangement in R
N is defined by the equations xi−xj = s where i <

j and s runs through {−k, . . . , k}, and the k-Shi arrangement is defined by the same equations

with s ∈ {−(k − 1), . . . , k}. We will call the connected components of their complements

k-Catalan and k-Shi regions, respectively. Clearly, in the dominant cone where x1 < . . . < xN

the arrangements agree and it is known that the number of dominant k-Shi regions is equal to

the nth Fuss-Catalan number

cN(k) :=
((k + 1)N)!

(kN + 1)!N !
,

which is also equal to the number of Dyck paths in the N × kN rectangle. Since the k-Catalan

arrangement is SN -invariant, the total number of k-Catalan regions equals N !cN (k).
If we pass to V = RN/ span(1, 1, . . . , 1), the connected components of the complement of

the hyperplane arrangement {xi − xj = s|s ∈ Z} are called alcoves. Observe that while these

regions are unbounded in RN , in V they are bounded and each alcove has centroid of the form

(a1
N
, · · · , aN

N
) with ai ∈ Z and {ai mod N} distinct. We will always take our representative of

(a1
N
, · · · , aN

N
) + span(1, 1, . . . , 1) to be such that min{ai} = 0. This is compatible with taking

∆ to be 0-normalized. (Note that in the literature one often normalizes to be “balanced,” so that∑
ai = 0 and

∑
ki =

(
N+1
2

)
.)

Note further that to each ∆(k0, . . . , kN−1) we can associate the alcove that has centroid p∆ =

(k0
N
, · · · , kN−1

N
). Since ∆ is independent of the order of the ki, we could just as easily associate

to it the alcove in the dominant cone x1 < · · · < xN that has centroid p+∆ = (
kσ(0)

N
, · · · ,

kσ(N−1)

N
),

where σ ∈ Perm{0, 1, . . . , N − 1} is chosen so that kσ(i) < kσ(i+1).

Proposition 3.34. The set of integral acceptable shifts for ∆ for which the shifting is by distinct

integers modN is in bijection with the set of alcoves that are in the same k-Catalan region as

p∆.
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Proof. Indeed, the shifting (a0, . . . , aN−1) is acceptable if and only if for all i and j the order of

(colored) points in the sets Si ∪ Sj and Si + ai ∪ Sj + aj is the same. As the order of x and y
(i.e., whether x < y) is determined by whether x − y < 0 and since our shifting is by integers

distinct modN , it suffices to consider the signs of such differences. More algebraically, for all

pairs (x = ki− tN, y = kj− t′N) ∈ Si×Sj the sign of x−y and the sign of (x+ai)− (y+aj)
is the same. The sign the x − y is determined by the sign of ki/N − kj/N − (t − t′), so we

require that the points (k0/N, . . . , kN−1/N) and ((k0 + a0)/N, . . . , (kN−1 − aN−1)/N) are on

the same side of the hyperplane xi − xj = t − t′. (This is still true if we look at points whose

coordinates are sorted to lie in the dominant cone, i.e., the alcoves in the same region as p+∆.) It

remains to notice that possible values of t− t′ run between −k and k. �

We conclude that the set of equivalence classes of (N, kN)–invariant subsets is in bijection

with the set of dominant k-Catalan (or, equivalently, dominant k-Shi) regions, and both sets

have cN(k) elements. Therefore our main construction provides yet another bijection [FV10]

between dominant k-Shi regions and Dyck paths in N × kN rectangle.

4. RELATION TO KNOT INVARIANTS

In this section we prove Theorem 1.3. We will use the following result:

Theorem 4.1. ([10, Theorem 1.9]) The Poincaré series of the (a = 0) part of the Khovanov-

Rozansky homology of the (n, n) torus link equals

Fn(q, t) =
∑

a=(a1,...,an)∈Zn
≥0

q
∑

aitd(a),

where d(a) = |{i < j : ai = aj or aj = ai + 1}|.

Lemma 4.2. One has

(1− q)Fn(q, t) =
∑

a=(a1,...,an−1,0)∈Zn
≥0

q
∑

aitd(a).

Proof. Let us define the cyclic shift operator π : (a1, . . . , an) 7→ (an − 1, a1, . . . , an−1), which

is well defined if an > 0. By applying π repeatedly, we can transform a given tuple a to a tuple

with an = 0. Clearly,
∑

π(a) =
∑

ai − 1 and one can check that d(π(a)) = d(a). Therefore:

Fn(q, t) =
∑

k≥0

∑

a=(a1,...,an−1,0)∈Zn
≥0

qk+
∑

aitd(a) =
1

1− q

∑

a=(a1,...,an−1,0)∈Zn
≥0

q
∑

aitd(a).

�

We are ready to prove Theorem 1.3.

Proof of Theorem 1.3. By Lemma 4.2 and Theorem 4.1 we need to prove the identity

Cn,n(q, t) =
∑

a=(a1,...,an−1,0)∈Zn
≥0

q
∑

aitd(a).

A subset ∆ ⊂ Z≥0 is (n, n)–invariant if and only if it is n–invariant. In remainder i it has

an n-generator xi = i + nai and an n-cogenerator yi = i + nai − n, for some ai ≥ 0. It is

0-normalized if an = 0. It is easy to check that gap(∆) =
∑

ai. Now

dinv(∆) =

(
n

2

)
−♯{i, j : yj > xi} =

(
n

2

)
−♯{i < j : aj > ai+1}−♯{i > j : aj > ai} = d(a).

�
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Example 4.3. Let us compute C2,2(q, t). All 2-invariant 0-normalized subsets have the form

∆k = {0, 2, . . . , 2k, 2k + 1, 2k + 2, . . .}.

Clearly, gap(∆k) = k and

dinv(∆k) =

{
1, if k = 0,

0, if k > 0.

Therefore

C2,2(q, t) =
∞∑

k=0

qgap(∆k)tdinv(∆k) = t+
q

1− q
=

q + t− qt

1− q
.

Note that c2,2(q, t) = q + t.
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