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Calculations of Co.position Boundaries of Saturated Phases 

Leo Brewer and Susie Hahn 

ABSTRACT 

A program for the HP-4ICV calculator is presented for 

calculating the equilibrium composition boundaries of pairs 

of saturating solids, liquids. or a combination of a solid 

and liquid. The activity coefficients must be represented in 

the form In Y1 = (bh/T - bs)x~ + (ch/T - cs)x~ where h refers 

to an enthalpy contribution and s refers to an excess entropy 

contri bution. For solid-liquid equilibria, enthalpies and 

entropies of fusion are required. For all equilibria, provi­

sion is made for use of hypothetical standard states such as 

the Henry's Law standard states. For example, in treating 

solid solutions of molybdenum in face-centered cubic metals 

such as Ni, Rh, or Pt, it is sometimes convenient to use a 

hypothetical fcc standard state of fu which represents the 

limiting Henry's Law behavior of Mo in the fcc metal and has 

much different properties than a real fcc molybdenum solid. 
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Calculation o~ Composition Boundaries o~ Saturating Phases 

Such calculations require that Gibbs energy o~ solution be expressed 

in analytical form as a function o~ temperature and composition. The 

functional ~orm of the regular solution equation is the most practical for 

most systems. 

The regular solution derivationl , 2 gives the Gibbs energy in terms 

o~ volume fraction. If the volume ~raction is expanded as a truncated power 

series in mole ~raction, one obtains 

= and = 

~Gf·is the excess partial molal Gibbs energy of component I and VI is the 

molal volume of component 1. As the regular solution equation is derived 

under constant volume conditions, an excess entropy term arises from the 
" 2 1.. 1..2 

volume change upon mixing. In addition, since bg=(V2/Vl)[~EI/Vl)2-(~E2/V2)2] /RT, 

the temperature coe~ficients of the molal volume and o~ the energy o~ 
1 vaporization, ~E, also result in an excess entropy. The enthalpy and 

excess entropy can be expressed as similar functions of mole fraction. 

Their combination to give the partial molal Gibbs energy equation yields 

for each component in its standard state dissolving in the solution 

lnYI ~Gf/RT 2 3 2 = = (bh/T- bs)x2 + (ch/T- cs)x2 = nlx2 

lnY2 ~G~/RT [~/T-b~~(Ch/T-Cs)]xi - (Ch/T-cs)xi 
2 = = = nrl 

where the signs o~ the bh' ch' bs and Cs terms are the same as the signs 

o~ the corresponding enthalpy and entropy terms in the Gibbs energy 

equation. Thus, bgT at a temperature T equals bh-bsT, etc. These equations 

average out the contributions of ~Cp values to the Gibbs energy by using 

the average enthalpy and entropy values over the temperature range of 

interest. Analytical equations of this form are found to reproduce, 

\) within the range of experimental uncertainty, the thermodynamic properties 

of many metallic solutions over a considerable range of temperature and 

composition. 

When a miscibility gap exists in the solution at a given temperature, 

the partial molal Gibbs energies of both components are equal in both 

saturating phases. If the mole fractions are expressed. as Xl = l-y and 

x2 = y in the phase with excess component 1 and as Xl = x and x2 = I-x 
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in the phase with excess component 2, the equilibrium condition can be 

expressed as 

lnx + b(1_x)2 + c(1-x)3 = In(l-y) + by2 + Cy3 

lny + (b+ic)(1-y)2 - c(1_y)3 = In(l-x) + (b+ic)x2 cx3 

where b = (bh/T-bs) and similarily for co When the same values of b and c 

are not applicable for both phases, 

lnx + bx (1-x)2 + cx (1-x)3 +.ex 
2 3 lny + by (l-y ) . + Cy(l-y) + 7 

the 

= 

= 

equations become 

In(l-y) + (by+icy)y2 

( 3') 2 In(l-x) + bx+iCx x = 

The subscript x indicates the constants apply in the phase region for which 

x = xl is 'small and y indicates applicability in the phase region for which 

y = x2 is small. These general equations may be reduced to the first set 

if bx = b, by = b+ic,'-Cx = c, and cy = -c. When the solubilities are small, 

the cubic terms can be dropped with the constants of the quadratic terms being 

nx = bx+cx and ny = by+cy. The ex and ey terms are discussed below. 

For a symmetrical immiscibility gap when the molal volumes of the two 

components are closely the same, c = 0 and bx = by resulting in equal values 

of x and y. The two equations reduce to In[x!(l-x)] + b(1-2x) = ~which is 

readily solved by Prgm. 1M I 1iU~+tt e..::. O. If the excess entropy is neglected, 

b will be inversely proportional to T and the calculations can be repeated 

at a new temperature T2 by multiplying b by Tl/T2. This can be done by 

Tl '" T~ / STO-tf~ S1"()i(J.~ .X~5 to obtain the value of x = y at T2. The 

temperature that brings b down to 2 will be the critical temperature. For 

b < 2, the system will be miscible. 

Program 1M carries out the simultaneous solution of these two equations 

for x and y to yield the compositions of the saturating phases. The 

iterative solution using the secant method is based in part on a portion of 

Prgm. SD-Il of the HP-67 Standard Pac. 3 Program 1M first assumes that 

the solubilities are small enough to neglect dx and dy and to approximate 

I-x by 1. This yields as the first approximation x, = e-(bx+cx ) x, is 

used to calculate the first approximation of dye 
2 3 Iny + by(l-y) + cy(l-y) + dy + ey = 0 

is then solved by iteration to yield y". If flag 0 is set, the value of 

y obtained by each iteraction is flashed. The process continues until the 

fractional change in y in the last iterative step rounded to the number of 
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places after the decimal designated in step 2 is displayed as zero. The 

same process is then used in step 7 to calculate x". The value of x" is 

used to calculate a new value of dy and the equation for y is solved again 

to obtain y "~ Steps 6 and 7 are alternately repeated until the values of 

x and y show no additional change. To speed convergence, step 2 should 

be set initially at FIX 2 and no change in x and y will be noted after 

~x/x or ~y/y < 0.005. For x and.y -0.1, the values of x and y will be 

accurate to 0.0005 and can be read to 4 places by keying· ~IX 4. If it is 

desired to calculate x and y more accurately, steps 7 and 6 can be repeated 

with FI'" 3·or 4. If there is no interest in the progress of the iteration 

at each step, CFO will stop the flashing of successive x or y values. 

SFO will change back to flashing. 

If the same standard states are not used for both phases, a constant 

term would be added to dx or dy or both corresponding to the Gibbs energy 

difference between the standard states divided by RT. The equilibrium 

between the solidus and liquidus portions of a phase diagram will be 

considered as an example. For solid with largely component 1 in 

equilibri~~ with the liquid phase, then ex = ~Gf,l/RT = ~Hf,l/RT -

and ey = -~Gf,2/RT = -~Hf,2/RT + ~S~,2/R, where ~~ and ~S~ are the average 

enthalpies and entropies of fusion of the. two components over the temperature 

range of interest. In the equations given on the previous page, bx and by 

will be considerably different, in general, for the example of solid-liquid 

equilibria. 

Program 1M provides for insertion of the enthalpy and entropy terms 

to allow calculation of bx ' cx ' ex, by, cy and ey at various temperatures 

and then to solve for x and y values for the saturating phases at the given 

temperature~~ IVhen the b, c and e values are already known for the desired 

temperature, the enthalpy values are inserted as zero and the b, c and e 

values are inserted with reversed sign for the entropy terms as illustrated 

in one of the test examples. 

For mutual solubilities of two liquid phases or two solid phases for 

which there are no ex or ey terms due to differences in standard states, 

~H~,lAS~,1~H~,2 and ~Sf,2 are entered as zero. If,hen the,difference in 

standard states corresponds to the solid phase transition, then ~H~ and 
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LlSr are replaced by the corresponding values for the transition. For 

liquid immiscibility with small enough solubilities for the approximation 

lnYl = (bx+cx )y2 and lnY2 = (bx+icx)(1-y)2 in the phase rich in component 

2~ the regular solution theory predicts (bx+cx)/(bx+tcx) = (V2/Vl). 

This is sometimes useful~ but, in practice, the value of c is often more 

dependent upon change in character of the bonding across the solution range than 

upon the volumes of the pure materials, especially with change in electronic 

configuration upon solution. One can sometimes obtain a useful value of c by 

comparison of (lnYl)/X~ = b+c at large x2 with (lnY2)/xi = b+tc at large Xl· 
2 2 

If c = 0 is used in Prgm. IM, (lnYl)/x2 and (lnY2)!xl are taken equal for a 

given solution, but their value can be greatly different on opposite sides of 

the miscibility gap. 

pirections: 

(1) Insert Prgm. IM 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
(8) 

FlX n, usually n=2 initially 

6Hr ,l/R t ~Sr,l/R t b~ t b: A 

-6Hr 2/R t -~Sf 2/R t b~ t b~ R/S (or a) , , 
y y x x / ( ) ch t Cs t ch t Cs R S or b 

T B (or to cD) . 

C IRepeat 7 and 8 alternately until 
R/Sx and y show no change in succes-

sive steps; read final values 
with fiX- n+l 

E. 

x', Y I • 0 • •• y" 

x" ..... 0 • •• x'" 
y" ......... y"' 

f>r ,,,t 01&. t 
T 

x"' 'till 

If Y is known; after step 7, ~,~ n to desired accuracy followed by 

( 8 ,) y STO ;;U. d 

( 7') c x" ......... xfinal 

If x is known; after step 6, FtX n to desired accuracy followed by 

(7") x STO il' d 

(8") c 

dy 

y" ....•.... y final 

NOTE 1: The alternatives a and b for R/S in steps 3 and 4 allows alteration 
of part of the data without need to reinsert all of the data. For 
step 6, temperature in °c can be inserted followed by D to convert 
to OK and initiate the calculations. 

;-
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NOTE 2: The display control of step 2 can be changed at any time, but is best 
started with only two places. If higher than three place accuracy is 
desired, n can be increased at each successive repeat of steps 7 and 
8 •. For each new T, start at step 6 following step 8. If step 7 was 
the last step, key RCLOO REGSWAP RDN before starting again at step 6. 

NOTE 3: C can be used in place of RIS for step 8, but alternating between C 
for the x calculation and Rls for the y calculation helps one keep 
track of which value is being calculated. 

NOTE 4: If it is desired to repeat step 7' to obtain a value to a larger 
number of places, change FIX n and repeat steps 8' and 7'. Similarly, 
if x is known, repeat steps 7" and 8". 

NOTE 5: At any time after step 6 has been carried out, registers 7-9 and 27-29 
can be recalled to check the values of e, bg and cg • Immediately 
after steps 6 or 8, eX, bg

X, and cg
X will be in R7-9 and the 

corresponding y values in R27-29. After step 7, the registers are 
reversed. After step 7, RCLl5 will give the value of dx = -In a 1 and 
RCL35 will give the value of d = -In a. After step 8 with the x 
values in the low-numbered regIsters, tfie order is reversed. 

NOTE 6: Step 6 assumes x and yare small. If they are not, follow step 6 by 
x' t y' XEQ8, where x' and y' are estimates of the solution. Then 
continue with steps 7 and 8. 

TEST: 

(2) 

(3) 

( 4) 

(5) 

( 6) 

(7) 

(8) 

(7) 

(8) 

(9) 

FIX 2 GTO 1M; 

5127 t 1.774 t 4X103 t .3 A 5127.00; 

-1371 t -.762 t 8x103 t .2 RIS -1371.00; 

500 t .1 t 500 t .1 Rls 500.00; 

2x103 B (or 1726.85 D) x=.07, y=.02, .02, .02, .02, .02; 

C x=. 1 0 , • 1 0 , • 1 0 , • 1 0 ; 

RI S y=. 0 2 , • 02, F IX 4, .0 19 0 ; 

C x=.1014, .1014, .1014, .1014, FIX 5, .10138; 

Rls y=.01902, .01902, .01902, FIX 6, .019022. 

E Print Out 

2000.000000 

0.101381 0.019022 

y = .019022 known 

Steps 2-7 the same as above; (8') FIX 4, .019022 STO 26; d, dx=.0177; 

(7') C .1014, .1014, .1014, FIX 5, .10138 

x = .10138 known 

Steps 2-6 the same as above; (7") FIX 4 .10138 STO 06; d, dy=.0873; 

(8") C .0190, .0190, .0190, .0190, FIX 6, .019022 
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0, b~ = 2.5, bg = 3, cg = .5, cg = .1 

(3) 0 tot 0 t -2.5 A 0.00 

(4) 0 tot 0 t -3 Rls 0.00 

(5) 0 t -.1 t 0 + -.5 Rls 0.00 

( 6) 1 B x=. 05, y=. 04, .06,.06,.06,.06 

(7) C .08, .08, .08, FIX 3, .075; (8) Rls .062,' 0062, .062, FIX 4$ .0618 

(7) C 00755, .0755, .0755, .0755 

92*lBL A 
STI) 17 RDN STO 16 RDN 
STO 14 PDH STO 13 
SF 88 864.824616 
sro 138 ~EGSWAP RDN 
RHl 

16*lBl .3 

fE' A RTN 

1'3*lBl to 
STO 19 RDN STO 18 RDN 
STO 39 PDH STC 38 RT~ 

n*lBL 8 
STO 91 XEQ 88 XEQ d 
XEQ l~lI3 GTI) C 

34*lBL 88 
7.1 STO 82 13.1 
STO 83 XEG 86 ISG 03 
XEQ 136 + XEv 136 + 
CHS Et-~: PSE SW Ie 
1.5 * ST086 STO 11 
PiH 

S4*lBL C 
PCl 11 MEg 92 XEQ 83 
STO 96 XEQ 91 PCl 96 
XEQ d RCl 26 PTN 
GEl C 

65*lBL Ii 
273.15 t GTe: 8 

69*LBL l}6 
pel IND 83 ISG G7 

RCL el I RC_ ;r.<. 03 
ISG 93 - STO i~~ J2 
1% 82 RTN 

se*L2.i... d 
PCl 99 * lliSTX !. :; ~: 
RCl 9S + - RCl 86 
Xt2 * 1 RCl 86- - lM 
- RCL ae REGSWHP RDN 
STO 15 PTN 

182*LBL 81 
RCl 11 PCl 11 pel 10 
- STO 12 2 ! -

STO 18 PTN 

113*lBl 82 
RCL 11 XEQ e STO 95 
PCl 19 XEQ e STO 84 
RTt-! 

121*LBL 83 
PCl as GTO 84 

124+LBL as 
PCl 11 KEg e STO 85 

12:3*18l 94 
PCl Ie PCl 11 ~ 

PCl 85 RCl 84 - ! * 
Si+ 11 PCl 11 FS? 08 
PSE ! RHD X~13? 
GTO 85 ReL 11 RTN 

147+I.BL J? 

lH 1 LASTX - Xt2 
lASTX pel 89 * RCl 98 
+ * t RCl 15 + 
RCl 87 + RTH 

165*LBL 8B 
STO 38 RDN STI) 18 
:~EQ 89 RCl 1 e :~EQ 99 
RTH 

! n*lBl 69 
1 E-4 + STO 86 STC 11 
PDt-! XEf,t d RTN 

lS1+lBL E 
RCl 91 PRX PCl 86 Rey 

PCl 26 RCX PRBUF END 

43 registers 

189 steps 

298 bytes 

.\. ..... 

(\ 
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0 1 2 3 4 5 6 7 8 9 

Index 7.1 13.1 f(y' ) f(y") x' .. ex b x c x 
004.024016 T to to 

g g 

10.1 20.1 

. 10 11 12 13 14 15 16 17 18 19 

x' x" 6Ht/R 6St/R dx 
b x 

h 
b x 

s c x 
h 

c x 
s 

20 21 22 23 24 25 26 27 28 29 

f(x' ) f(x") y'tt ey b y 
g c Y g 

30 31 32 33 34 35 36 37 38 39 

y' y" -6HO /R f,2 -6S0 /R f,l dy bh
Y b Y s chY c y 

s 
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