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Calculations of Composition Boundaries of Saturated Phases

Leo Brewer and Susie Hahn

ABSTRACT

A program for the HP-41CV calculator is presented for
calculating the equilibrium composition boundaries of pairs
of saturating solids, liquids, or a combination of a solid
and liquid. The activity coefficients must be represented in
the form 1ln Y, = (bh/T - bs)xg + (ch/T - cs)xg where h refers
to an enthalpy contribution and s refers to an excess entropy
contribution. For solid-liquid equilibria, enthalpies and
entropies of fusion are required. For all equilibria, provi-
sion is made for use of hypothetical standard states such as
the Henry's Law standard states. For example, in treating
solid solutions of molybdenum in face-centered cubic metals
such as Ni, Rh, or Pt, it is sometimes convenient to use a
hypothetical fcc standard state of Mo which represents the
limiting Henry's Law behavior of Mo in the fcc metal and has

much different properties than a real fcc molybdenum solid.



Calculation of Composition Boundaries of Saturating Phases

Such calculations require that Gibbs energy of solution be expressed
in analytical form as a function of temperature and composition. The
functional form of the regular solution equation is the most practical for
most systems. ‘

The regular solution derivatignl’ 2 giVes the Gibbs energy in terms
of volume fraction. If the volume fraction is expanded as a truncated power
series in mole fraction, one obtains ’

A@E/RT = ngg + chg | and AGS/RT = [bg*%cg]x§ - chf
A§§'is the.excess partial molal Gibbs energy of compénent 1 and V; is the
molal volume of component 1. As the regular solution equation is derived
under constant volume éonditions, an excess entropy term arises from the
volume change upon mixing: In addition, since bg=(Vg/Vl)[AEl/Vl)%L(AE2/V2)%]Q/RT,
the temperature coefficients of the molal volume and of the energy of
vaporization, AE, also result in an excess entropy.l The enthalpy and
excess entropy can be expressed as similar functions of mole fraction.

Their combination to give the partial molal Gibbs energy equation yields

for each component in its standard state dissolving in the solution

lny; = A@f/RT = (bh/T-bs)xg + (ch/T—cs)xg = leg
loy, = AGH/RT = [bh/T-bs*%(ch/T-cs)JXf - (ch/T-cs)xf = ngf

where the signs of the by, ¢, bg and cg terms are the same as the signs
of the corresponding enthalpy and entropy terms in the Gibbs energy

equation._ Thus, bgT at a temperature T equals bp-bgT, ete. These equations

‘ average ouﬁ the contributions of ACp values to the Gibbs energy by using

the average enthalpy and entropy values over the_temperature range of
interest. Analytical equations of this form are found to reproduce,
within the range of experimental uncertainty, the thermodynamic properties
of many metallic solutions over a considerable range of temperature and
composition. ' _

When a miscibility gap exists in the solution at a given temperature,
the partial molal Gibbs energies of both components are equal in both
saturating phases. If the mole fractions are expressed as x3 = 1l-y and

X2 = ¥y in the phase with excess component 1 and as xj = x and Xp = 1-X



in the phase with excess component 2, the equilibrium condition can be
expressed as i
lnx + b(l—x)2 + c(l--x)3 = 1n(l-y) + by2 + cy
lny + (b+§c)(l—y)2 - c(l—y)3"= In(1-x) + (b+§c)x2 - ¢ox

vhere b = (by/T-bg) and similarily for c. When the same values of b and c

3
3

are not applicable for both phases, the equations become
2 .
1nx + bx(l-x)2 + cx(l-x)3 + ey = 1n(l-y) + (by+%cy)y - cyy3 = -dy
2 . 2
Loy + by(1)% + ey (1)° + oy = 1n(1-x) + (grdeg)x” - e = gy
The subscript x indicates the constants apply in the phase region for which

xj} is small and y indicates applicability in the phase region for which

]

b 4
xp is small. These general equations may be reduced to the first set

y
if by = b, by = bHjc, cx = c, and ¢y = -c.  When the solubilities are small,

the cubic terms can be dfbpped with the constants of the guadratic terms being
f2x = bytcx and Qy = by+Cy. The ey and ey terms are discussed below. ‘

For a symmetrical immisecibility gap when the molal volumes of the two
components are closely the same, ¢ = 0 and by = by resulting in equal values
of x and y. The two equations reduce to 1n[x/(1-x)] + b(1-2x) = 0, which is
readily solved by Prgm. IM, with €=0. If the excess entropy is neglected,
b will be inversely proportional to T and the calculations can be repeated
at a new temperature Tp by multiplying b by Tl/TQ. This can be done by
Tyt T,/ STo¥3 STO%a% XEAS to obtain the value of x = y at Tp. The
temperature that brings b down to 2 will be the critical temperature. For
b < 2, the system will be miscible.

Program IM carries out the simultaneous solution of these two equations
for x and y to yield the compositions of the saturating phases. The
iterative solution using the secant method is based in part on a portion of

3

Prgm. SD-11 of the HP-67 Standard Pac. Program IM first assumes that

the solubilities are small enough to neglect dy and dy and to approximate
e (bx+cx)

1-x by 1. This yields as the first approximation x' = x' is
used to calculate the first approximation of dy.
2 3
Iny + by(1l-y)~ + cy(l—y) +dy, +ey = 0 )
is then solved by iteration to yield y". If flag O is set, the value of

y obtained by each iteraction is flashed. The process continues until the

fractional change in y in the last iterative step rounded to the number of
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places after the decimal designated in step 2 is displayed as zero. The
same process is then used in step 7 to calculate x". The value of x" is
used to calculate a new value of dy and the equation for.y is solved again
to obtain y"f Steps 6 and 7 are alternately repeated until the values of
x and y show no'additional change. To speed convergence, step 2 should
be set initially at FIX 2 and no change in x and y will be noted after

Ax/x or Ay/y < 0.005. For x and y ~0.1, the values of x and y will be
accurate to 0.0005 and can be read to 4 places by keying FIX 4. If it is
desired to calculate x and y more accurately, steps 7 and 6 can be repeated
with FIX 3 or k. If there is no interest in the progress of the iteration
at each step, CFO will stop the flashing of successive x or y values.

SFO will change back to flashing.

If the same standard states are not used for both phdases, a constant
term would be added to dy or dy or both corresponding to the Gibbs energy
difference between the standard states divided by RT. The equilibrium
between the solidus and liquidus portions of a phase diagram will be
considered as an example. For solid with largely component 1 in
equilibrium with the liquid phase, then ey = AG%,l/RT = AHg’l/RT - Asg,l/R
and ey = -AG§’2/RT = -AH§’2/RT + AS§’2/R, where AHY and ASR are the average
enthalpies and entropies of fusion of the two components over the temperature
range of interest. In the equations given on the previous page, b, and by
will be considerably different, in general, for the example of solid-liguid
equilibria.

Program IM provides for insertion of the enthalpy and entropy terms
to allow calculation of by, cy, ey, by, Cy and ey at various temperatures
and then to solve for x and y values for the saturating phases at the given
temperature, When the b, ¢ and e values are already known for the desired

temperature, the enthalpy values are inserted as zero and the b, c and e

values are inserted with reversed sign for the entropyterms as illustrated

in one of the test examples.
For mutual solubilities of two liquid phases or two solid phases for
which there are no ey or ei terms due to differences in standard states,
Q o) : :
AH%;PAsgébAHf,g and AS% , are entered as zero. When the difference in

standard states corresponds to the solid phase transition, then AHY and



AS% are replaced by the corresponding values for the transition. For
liquid immiscibility with small enough solubilities for the approximation
lny; = (bx+cx)y2 and lnyo = (bx+—;-cx)(l-y)2 in the phase rich in component
2, the regular solution theory predicts (bytcy)/(byticy) = (Vg/Vi)u'

This is sometimes useful, but, in practice, the wvalue of c is often more
dependent upon change in character of the bonding across thé solution range than
upon the volumes of the pure materials, especially with change in electronic
configuration upon solution. One can sometimes obtain é useful value of ¢ by
comparison of (thl)/xg = b+c at large xo with_(lnyz)/xf = b+%c at large xj.

If ¢ = 0 is used in Prgm. IM, (lnYl)/xg and (lnYz)/xi are taken equal for a
given solution, but their value can be greatly different on opposite sides of
the miscibility gap. )
Directions:

(1) 1Insert Prgm. ImM

(2) "X n, usually n=2 initially

-~

' X < Displa
(=} o
(3) AHZ 1/R + AS3 1/R ¢ by 4 bg A AHZ /R
(4) -8HZ o/R + -ASE /R + b} + B R/S (or &)  -AH} ,/R
(5) ci AR cﬁ 4 cg R/S (or b) _ c%
(6) T B (or t° D) - , x', ¥ ... y"
(1) ¢ Repeat T and 8 alternately until X" e x'"
X and y show no change in succes~ " m
(8) R/S sive steps; read final values AR y
with FL% n+l
1) € Prumt Out
T
xm y‘"l
If vy is known; after step 7, F{X n to desired accuracy followed by
(8') y STO a6 4 dx -
("{l) C D S xfina.l V
If x is known; after step 6, RiX n to desired accuracy followed by
(7") x STO % 4 dy
(8") C y" ......... yfinal

NOTE 1: The alternatives a and b for R/S in steps 3 and 4 allows alteration
of part of the data without need to reinsert all of the data. For
step 6, temperature in °C can be inserted followed by D to convert
to °K and initiate the calculations.



NOTE 2: The display control of step 2 can be changed at any time, but is best
started with only two places. If higher than three place accuracy 1is
desired, n can be increased at each successive repeat of steps 7 and
8.  For each new T, start at step 6 following step 8. If step 7 was
the last step, key RCLOO REGSWAP RDN before starting again at step 6.

NOTE 3: C can be used in place of R/S for step 8, but alternating between C
for the x calculation and R/S for the y calculation helps one keep
track of which value is being calculated.

NOTE 4: If it is desired to repeat step 7' to obtain a value to a larger
number of places, change FIX n and repeat steps 8' and 7'. Similarly,
if x is known, repeat steps 7" and 8".

NOTE 5: At any time after step 6 has been carried out, registers 7-9 and 27-29
can be recalled to check the values of e, b, and ¢,. Immediately

after steps 6 or 8, e¥, ng, and c¢_* will be in R7=9 and the
corresponding y values in"R27-29. After step 7, the registers are

reversed, After step 7, RCL15 will give the value of dy = -ln a, and
RCL35 will give the value of d, = -1n a,. After step 8 with the x
values in the low-numbered reg¥sters, tﬁe order is reversed.

NOTE 6: Step 6 assumes X and y are small, If they are not, follow step 6 by
x' *+ y' XEQ8, where x' and y' are estimates of the solution. Then
continue with steps 7 and 8.

TEST:

(2) FIX 2 GTO IM;
(3) 5127 + 1.774 4 4X103 + .3 A 5127.00;
(4) -1371 + -.762 + 8x103 + .2 R/S -1371.00;
(5) 500 4+ .1 + 500 + .1 R/S 500.00;
(6) 2x103 B (or 1726.85 D) x=.07, y=.02, .02, .02, .02, .02;
(7) € x=.10, .10, .10, .10;
(8) R/S y=.02, .02, FIX 4, .0190;
(7) C x=.1014, .1014, .10l4, .10l4, FIX 5, .10138;
(8) R/S y=.01902, .01902, .01902, FIX 6, .019022.
(9) E Print Out
2000.000000
0.101381  0.019022
y = .019022 known
Steps 2-7 the same as above; (8') FIX 4, .019022 STO 26; d, d=.0177;
(7') ¢ .1014, .1014, .1014, FIX 5, .10138
x = ,10138 known
Steps 2-6 the same as above; (7") FIX 4 .10138 STO 06; d, dy=.0873;
(8") ¢ .0190, .0190, .0190, .0190, FIX 6, .019022




(3)
(4)
(5)
(6)
(7)
(7)

B eLaL

BzZeLBL A

-6=

ey T €

o

0, bg = 2.5 by =3, ¢

T

g = .5, ¢

<

040404 -2.5A0.00
04040+ -3R/S0.00
0+-.140+%-.5R/S 0.00

1 B x=.05, y=.0Lk, .06,.06,.06,.0

6

c .08, .08, .08, FIX 3, .075; (8) R/s .062, .062, .062, FIX. L4, .0618

¢ .0755, .0755, 0755, .0755

BeelZl d

T RCL 89
RCL B8+
H B g2 o« | ROL

LASTE 1.5 #

- "RCL a6

a6 - LK

§TD 17 RDHM ST0 15 FRIM
372 14 RDN ST 13
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570 @9 REGSHAP  RIN

- PRCL @& PEGSHAP RIM

5T0 15 RTH

{A2+LBL &1

RTH

-

15
=E

+LBL
A

9

2EeLBL
570 at
AEQ AR

34+ BL
7T 4 cT
T el bR}
cT0 a2
2ED an

CRE ETX

1.5
RIM

SdelBL
REL 1
570 @6
2ER 4

GTo L

eeLEL

273,15

RCL 11 REL 1
- 5T 12 2
: §T0 18 RTH
RTH
{174LBL 82
b , RCL 11 ¥EG e
RDN STD I3 RTH oy
121#LBL 93
g RCL 85 &7 84
YEQD 9@ XED d
BT L 1240LBL 85
BCL 11 YEQ e

oz 13l

1234LEL 4

REL 18

so-

570 8%

X oPs RCL 18 RCL i1 =
3T g6 570 11 RCL A5 RCL B4 - -
5T+ {1 RCL 1! FS7 8@
PSE / RND ¥ed?
¢ AT0 @5 ROL 11 RN
Y0 67 YEG 82
YD B1 RCL 96
RCL 26 RIN
14741 BL &
] LN 1 LASTY - w2
! LRSTY RCL A9 = RCL 8%
+ LTCE s & 4+ BOL 1T 4

RCL #7 + RN

RTeLEL 6f

RCL IND @2

RCL @1
156 43

155 92

. 165¢LBL A3
7R e R 5T0 38 RIH
- ET0 G4 YEQ @9 ROL 18
RTH RTH

&

5T 14

ZER B3

{73¢LBL &9
I E-4 + 570 &6
RDH XER 4 RTH

131eLEL E
RCL 81 PRY

REL 26 ACK PREUF EMD

43 registers
189 steps
298 bytes

BN

RCL 85 Af¥
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0 1 2 3 4 5 6 7 8 9
Index 7.1 13.1 £(y') £y x'" e, b et
004.024016 T  to to
10.1  20.1
10 11 12 13 14 15 16 17 18 19
" 0 0 X X X
x' x AHf,l/R Asf,l/R d, by bg ch cg
20 21 22 23 24 25 26 27 28 29
) ” () Y y
f£(x')  £(x") vy ey by cq
30 31 32 33 34 35 36 37 38 39
- v -8H) /R -8s) /R dy  byY bg” ey’ cg”
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