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ABSTRACT Xenorhabdus species are bacterial symbionts of entomopathogenic 
Steinernema nematodes, in which they produce diverse secondary metabolites 
implicated in pathogenesis. To expand resources for natural product prospecting and 
exploration of host-symbiont-pathogen relationships, the genomes of Xenorhabdus 
cabanillasi, Xenorhabdus ehlersii, Xenorhabdus japonica, Xenorhabdus koppenhoeferii, and 
Xenorhabdus mauleonii were analyzed.
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S pecies of the genus Xenorhabdus (Bacteria, Pseudomonadota, Gammaproteobacte
ria, Enterobacterales, and Morganellaceae) (1) are Gram-negative bacteria that form 

symbiotic relationships with entomopathogenic nematodes of the genus Steinernema 
(2). During the Xenorhabdus–Steinernema life cycle, insect larvae are infected and killed, 
including species with significant ecological and economic impacts, such that some 
Steinernema have been employed as biocontrol agents (2). The pathogenicity of the 
nematode host is dependent on secondary metabolite production by the Xenorhab
dus symbiont (3), making these bacteria a target for prospecting for novel bioactive 
compounds. With 27 validly published species to date (1), there is great genetic diversity 
in the genus Xenorhabdus (4), and the genomes described here expand resources for 
bioprospecting and exploration of complex symbiont-host-pathogen relationships.

Xenorhabdus cabanillasii DSM17905 was originally isolated from the nematode 
Steinernema riobrave in the US (Texas), Xenorhabdus ehlersii DSM16337 was isolated 
from Steinernema serratum in China, Xenorhabdus japonica DSM16522 from Steinernema 
serratum kushidai in Japan, Xenorhabdus koppenhoeferii DSM18168 from Steinernema 
serratum scarabaei in the US (New Jersey), and Xenorhabdus mauleonii DSM17908 from 
an unidentified Steinernema species in St. Vincent (Caribbean) (5). All isolates were 
supplied by the Leibniz Institute DSMZ (6). Cultures were grown aerobically at 28°C 
in DSMZ medium 1 (https://mediadive.dsmz.de/) (7), with the exception of DSM16522, 
which was grown in DSMZ medium 535. Genomic DNA from X. ehlersii was isolated using 
MasterPure Gram Positive DNA Purification Kit (Epicentre MGP04100). DNA from other 
species was isolated using Jetflex Genomic DNA Purification Kit (GENOMED 600100). 
DNA is available from DSMZ through the DNA Bank Network (7).

Genomes of X. cabanillasii and X. ehlersii were analyzed at JGI using Pacific Biosciences 
(PacBio) sequencing technology (8). DNA (2 ug) was treated to remove single-stranded 
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ends and repair damage, followed by A-tailing and ligation with PacBio adapters using 
SMRTbell Template Prep Kit 1.0. Final size selection for 6–10 kb templates used the 
Sage BluePippin system. PacBio Sequencing primer was annealed to the SMRTbell 
template library, and Version P6 sequencing polymerase was bound to them. Libraries 
were sequenced on a PacBio RSII sequencer using Version-C4 chemistry and 1 × 120 
sequencing movie run times. Reads were assembled using HGAP (smrtanalysis/2.3.0 p5, 
HGAP3) (9). Read N50 was 5,289 bp for X. cabanillasii and 5,660 bp for X. ehlersii.

For X. japonica, X. koppenhoeferii, and X. mauleonii, Illumina (10) 300 bp insert shotgun 
libraries were constructed from 100 ng of DNA that had been sheared using the Covaris 
LE220, and size was selected using SPRI beads (Beckman Coulter). Library construction 
used the KAPA Library Preparation Kit (KAPA Biosystems) for the Illumina platform, which 
includes end-repair, A-tailing, and ligation of Illumina compatible adapters (IDT, Inc) as 
recommended by the manufacturer. Libraries were quantified using KAPA Biosystem’s 
Library Quantification Kit for Illumina platforms (Roche) and run on a Roche LightCy
cler480 real-time PCR instrument. Quantified libraries were multiplexed and prepared for 
sequencing on the Illumina HiSeq 2500 platform utilizing a TruSeq paired-end cluster 
kit, v4, and Illumina’s cBot instrument to generate a clustered flow cell for sequencing. 
Sequencing was performed using HiSeq TruSeq SBS sequencing kits, v4, following a 2 
× 150 indexed run recipe. Raw reads were filtered using BBDuk (11). Reads with more 
than one “N,” quality scores averaging <8 (before trimming), or lengths <51 bases (after 
trimming) were discarded. The remaining reads were mapped to masked versions of 
human, cat, and dog references using BBMAP and discarded if identity exceeded 95%. 
Filtered Illumina reads were assembled using SPAdes (version 3.6.2) (12). Parameters for 
the SPAdes assembly were —cov–cutoff auto —phred–offset 33 –t 8 –m 40 —careful 
–k 25,55,95 —12. Assembled contigs <1 kb were discarded. Using CheckM2 (13), all 
genomes were 100% complete. The final assemblies were annotated by the JGI genome 
annotation pipeline (14).

Final genome statistics and links to NCBI genome and sequencing data archives 
for the five Xenorhabdus species are summarized in Table 1. Data and detailed reports 
can also be downloaded from the JGI Genome portal and the JGI Integrated Microbial 
Genomes with Microbiomes (IMG/M) system (15).

AntiSMASH 7.0 was used to survey genomes for biosynthetic gene clusters (BGCs) 
potentially involved in the synthesis of bioactive secondary metabolites (16). At least one 

TABLE 1 Xenorhabdus genome assembly statistics and accessions

X. cabanillasii DSM17905 X. ehlersii DSM16337 X. japonica DSM16522 X. koppenhoeferii
DSM18168

X. mauleonii DSM17908

Sequencing 
platform

Pacific Biosciences RS2 Pacific Biosciences RS2 Illumina HiSeq 2500 Illumina HiSeq 2500 Illumina HiSeq 2500

# reads used in 
assembly

148,449 130,742 10,000,000 10,000,000 9,878,486

Coverage 87.6 × 90.3 × 428 × 477 × 349 ×
# assembled 

scaffolds(>1 kb)
1 9 92 92 95

Total scaffold 
sequence length

4,335,622 bp 4,058,264 bp 3,561,198 bp(0.01% gaps) 3,182,127 bp(0.02% gaps) 5,119,810 bp (0.04% gaps)

Contig N50 4,335,622 bp 941,920 bp 80,906 bp 70,143 bp 178,279 bp
Largest Contig 4,335,622 bp 1,272,290 bp 220,581 bp 188,443 bp 440,959 bp
GC content (%) 42.9 43.8 42.7 43.0 43.9
# predicted CDS 3,754 3,701 3,228 2,794 4,393
GenBank accession 

number
NZ_RAQI00000000.1 NZ_QTUB00000000.1 NZ_FOVO00000000.1 NZ_FPBJ00000000.1 NZ_NITY00000000.1

NCBI SRA accession 
number

SRX3886576 SRX3785650 SRX2156714 SRX2156721 SRX2156707

JGI IMG/G taxon ID 2778260932 2772190835 2684622846 2684622845 2684622849
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non-ribosomal peptidyl synthase (NRPS) BGC most similar to that involved in synthesis of 
xenoamicins A and B (17) was conserved in all five genomes. Also common were BGCs 
encoding, for example, NRPS-like systems for assembly of the antibiotics nematophin 
(18) and safracin (19), a Type II polyketide synthase for the synthesis of aryl polyenes (20), 
and siderophores of the putrebactin/avaroferrin class (21). Each genome also contained 
unique BGCs whose products are yet unknown.
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