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John Hiskes

PARTIAL DIFFERENTIAL EQUATIONS

1, -Introdnction

The following material is devoted to the solution of partial differential
equations by the iteration and relaxation methods Spec1ficaily, the.partial
differential equations to be considered are

(a) Laplace's equation in two dimensions,

azu -
&x-&y ' ‘

(b) Laplace's‘equation'in three dimensions,

+ﬁ%+au:o ;
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3 _ (¢c) Poisson's equation,
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(d)_'Laplace's equation in cylindrical coordinates, -
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Othér.eqdations can be solved by these methods if it is possible. to replace L0
the derivatives in thé equation by finite differences. The solution‘then will
be immediately apparent from the speci'al ‘cases that are considered in this

paper,

2. The Itera’tion Method .

The iteration method will be explained by solving Laplace's equation

in two dimensions, i 32U + = 0.
92 '3 y |
First, a square mesh of increment size A 1is constructed,

PEE-IEN

. , " U(x,y+ AD)

JU(x=2,y)l Ulx,y)  JU(x+4,5) :

iu.(x;Y‘ A)

. Then thefolloiving -differencéa are computed:

. Ulx +A - U(x
X A_

First 'forwa'rd difference: ' U

" First backward difference:

Ulx,y) -AU(x -4, ‘zz B
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Second difference: . U

* and similarly: u. =y
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Now the differential equation is replaced by the difference equation

Ut U = 0
X ¥y

Solving for U(x, y),

UGy = B [UGHa,T) Uy #8) + Ulx -B,7) + Uy -]

This equation, together with the specified boundary values, is used

. for determing U(x, y) at interior points.

For example, consider a simple boundary with the following specified

" boundary values:
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mly

The center point is first détermined by averaging the four boﬁndéry

values on the corners of the square.

b2

Uy = % [o.o t 8.5+ 2.5+ 5...5_]
' Thé remaining first approximations are similarly determined.

1,67

3 [o.o-l— 0.0+ 2.5 + a.o.] | |

<
Lo
tH

3.39 ) etp.

i [L,z + 8.5+ 5.5+ 7«5]
‘“ Thesé values are then corrected by using the'équation for_ U(x, y)
and‘the functional values most recently computed. This computafion is

called the first iteration cycle.

The First Iteration cycle:

Uy = BLL+ 0.0+ U, + u)

.Uz

5(2.5'4-_,0]'_'!7 Us,+ U3) ,'ete,

It is to be noted that in case of error, the me£hpd is seifucorrectingf
- As soon és the first iteration’cycles produce no change in the
functional values, tﬁe mesh size,is refined, as is indicated in the diagram
‘bj ihe dashed lines.’ . - B
o Now the first gpproximationsffor the new values of the finer mesh

are comnuted. .

. o - £
Upp = 5[0.04— 1.1+ 0.0+ Uy 1
_ £ o
Upg = k[l.u- Uy + 2.5+ 02]-
Ul? = * [Ull+ Ulf + UplB + lel] -9 etc.._.

°
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where Uf indicates the-final functional value obtained by the first

iteration cycle.

This iteration technique is continued until a specified degree of

'vaccuracy is obtained

3. _The Relaxation Method

A somewhat faster method of solv1ng this type of problem is provided'

, by the relaxation method This method involves calculations with residuels

in the mesh rather than with the functional values,

The residual‘at a mesh point U, 4is defined as follows:

The procedure is outlined as follows:

2__ Conatruct a mesh with specified boundary values and initial

.interior functional ‘values as before.

g&_‘ Gompute residuals at every point in the mesh according to the
above formula, o | | 1

3.3 Starting at the largest residual, change the functional value
by h ) add h to all four neighboring residuals, add -4h to the residual
in question.

This last calculation may be verified by considering a mesh. with

specified functional values.

Re
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Uy Uy U3 ' Uy Us
Ug U, Ug U U
Uy Uy Up3 Uy, Us
Uig U1y Us 8 Uig Uso

Increa.eing UB by AUe increases the residual by A R

| Rgt ARy = Up Uyt U13+ Ug = L(Ug+ ATg)

R7 = U6+ U12+ US+ U‘2- 1+U7 '

Rp+ ARy = Ugt Ut (Ug+ AUg) + U, - b Uy

‘°°° AR.?,: AUB .

This process of modifying the functional values in order to make
the residuals as small ‘as possible is called relaxation.

The relaxatiqn is cont.inued until there ceases to be a considerable

change in the-lr-esiduals. Then the mesh 1s refined and the relaxation continued,

Whe'n,: the relaxation procedure is ‘fim‘.shed, all mesh points must be

@«

8

'~‘e
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checked by the finite difference eguation approkimating the partial

-differential equation since the method is not self-correcting.

l,. Block Relaxation
' If iﬁ a certain region of the lattice all the residuals are of the

same sign, thenAthe residuals can be made ﬁo converge much more rapidly

by resorting to block relaxation. This technique may be outlined as follows:

E;l Ail functibnal values within the block are changed by.am °

‘amount h .

L.2 Residuals within the block are unchanged.

-

03 Residuals at border poiﬁts are changed by -n h, where n is

the number of adjacent points outside the block.,
bk Residuals‘at points just outside the block are changed by an
amount h . |

4.5 A good value of .h may be obtained from the formula,

h = 2R = Sum of block residuals
' . n ~ number of adjacent points

As an example, consider the following where the block consists of

poiﬁts on the dashed line. -

0.0 | | ko0 8.00 12.00 16.00. 20,00
+2.00 +2.001 . _ +2.00 T $2.00 ‘
R | li '
0.0 +2.001 2.00  _ +8.00} 4.00 _ +6.00°| 8.00_ +4.00 | 14.00 20.00
+2.00  -4.00) 4.00 ~ #4.00 [-6.00 ~ ¥2,00 [16.00° ~-2.00 | 16.00  #2.00
(a) |’ ! . @]t ()
0.0 +4.00] 2.00 +1.06 ] 6700 41.00 [10.00  +4.00 | 14.00 20.00
+6.00 +3.00 T 43.00 +6.00 +2.00
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In this case,
pY
h = 2R _ 420 = +2.00 C |
‘ n - "10 : ' : ' ®

Points (a) and (d) each have three adjacent outside points° tfheir residuals
~ are dhanged by 'f—6.00. 'PointS'(b)vand (c)»each-have two adjacént‘ontaide
points Their residuals nfe changea by. ~4,00. Heré we have no . points
.within the block, 1. e., every point of- this block has adjacent points out~"
side the block. '

5, Special Equations.

5.1 Poisson's Equation
‘ "2 2 : .
—_— + jijz =
- dx 3y
" Replacing this by a difference form and solving for U(k,_y),n

Ux, ) = % [U(x+A, P+ Ux-A, 7)+Ux, y+A)+Ux, 5=~ 4)
. . ! 2 L . .
- A f(x) y) ]
If the value of f(x, y) is known at Qadh point, then this probiem
can be solved by the previous methods. '

. It is to be noted that the value of U(k; y) iésnot independent

of the mesh parameter -/\ . o . T R y

-

5.2 Lablace'é Equation in three dimennions,

9% 3U+6U'-":0
2 -
5x" 8y Gﬂg
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In difference form this becomes ' o -
U(x, vy, z) = % [U(X+A’ ) z)+U(x,'y+A, z)+U(x, Y, 2 +A)

+Ux-4,y, 2) + U(x, ¥y ."'A)A z) + U(x::’y,;'z 'A)

This case requires a three-dimen31onal mesh; or it can be handled

)

by starting at an initial value of z and working across the corresponding

’ X - y plane, then taking the next value of z and working across the next
X -y plane, etc., until the .entire three-dimensional mesh has been covered.,

This technique is repeated until the functional values converge,as before

5.3 Laplace's Equafion in eylindrical coordinates : ‘

’!Ii—'

ﬁ—Z% §%+§3“2+;12i7” =0 .

or z a9

This form can SOmetimes be treated in two dimensions. . An intereeting

application is the determination of the electric potential distribution in

the region between two coaxial eylinders. In this case there is no 1)

variation and the equation becomes

__af_+1_§_ _L o_i-,'

In difference form,

1 |+, DU -4, D) - 26, ) |4 1| v A ) -ue- A
ZSZ ' T | ~ _ o 2r¢§ . o

+ _15 .U(r,-z +A) +'U(r,le_- Z)) - 2u(r, z) - O .

s 2) |
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Solving for U(r, z),

. &

-

U(r, z) = % '1'+é Ur+A, 24 [1-A v -4, 2
: 2r . . 2r .

-i-u(r,'z+A)+u(r, z‘-—A)‘

-

This expression is similar to the two-dimensional'Laplaciah except

for the coefficients 1+ z& appearing‘on the right. Thus, this

cyllndrlcal form of the - Laplacian can be treated as a two-d1mensional
problem prov1ded the coefficlents can be evaluated at the partlcular
.value of r at which the 1teration or relaxatlon is being performed,
Moreover, the. re51duals obtalned when relaxlng a mesh are also functions

of the coeff1c1ents 1+ A .
2r

6. »Modificatiéns for Special Boundaries.

If the boundary is not rectangular or if the various sides of the .
| boundary are not commensurable, then the functional values near the boundary
- can not be 6btained by the previous procedures. To obviate this difficulty,

~fictitious points are introduced outside the boundary‘in such a manner thatf

the distance from a fictitious point to the nearest point of the mesh is equal
to the mesh parameter A . The functional value at a fictitious point is
computed by linear interpolation with respéct to the distance from the hearby Y

boundary value and the nearest point of the mesh. Iteration or ‘relaxation

Al

can then be continued in the same manner as before.
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7. Errors.

' No systematic method hés been deveioped for estimatipg the errors
o which arise by approximatinglthe pértialndifferential,gguatibh by thg finite
difference’ equation. Howevef; the computed functional values come closer - )
‘and closer . to ﬁhe truevvalues-as the mesh parameter D is reduced in‘size;
Thus;'refinement of phe mesh is continued uptii nofchaﬁge occurs in the
functional values withinjthe degréé of‘accurac&'required}
8. Bibliography. . ‘ ’
§i¥ Scarboroughg J; B;,hNumepical Mgthematical Analysis, 2nd edition.
'8.2. Southwell, R..V., Relaxation Methods.. ‘ ]
t





