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SHORT COMMUNICATION

Dynamic coordination of plastid morphological change by cytoskeleton for
chloroplast-nucleus communication during plant immune responses
Eunsook Park a,b, Jeffrey L. Caplan c,d, and Savithramma P. Dinesh-Kumar b

aDepartment of Plant Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea; bDepartment of Plant Biology and
the Genome Center, College of Biological Sciences, University of California, Davis, CA, USA; cDepartment of Plant and Soil Sciences, College of
Agriculture and Natural Resources, University of Delaware, Newark, DE, USA; dDelaware Biotechnology Institute, University of Delaware, Newark, DE,
USA

ABSTRACT
Considering their sessile life, plantsmust efficiently coordinate their resources and energy formaintaining their
presence in normal living conditions and for defending themselves against environmental threats.
Collaboration betweenmultiple subcellular compartments is a common strategy in several biological processes
to modify cells’ architecture for their growth and development and to respond to acute changes in the
environment. When plants defend themselves against microbial pathogens, chloroplasts generate tubular
structures – so-called stromules- to facilitate chloroplast movement towards nuclei during innate immunity.
Morphological changes and movements of stromules are directed by interactions with microtubule and actin
cytoskeleton. Microtubules provide a direction for the stromule extension, while actin filaments restrict
stromule retraction which provides a driving force for repositioning of chloroplast near nucleus during plant
immune responses. These findings implicated a critical role for stromules in signal transduction fromchloroplast
to the nucleus in plant defense.
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Text

Eukaryotic cells contain sophisticated subcellular compartmental
organization that includes the nucleus, the endomembrane system
and small and large organelles encompassing endosymbiotic com-
partments such as chloroplasts and mitochondria in plants.1 This
compartmentation efficiently coordinates complex intracellular
metabolic processes by imposing a physical barrier to sequester
metabolites and macromolecules, for controlling their flux
between organelles.2 Several recent studies proposed that orga-
nelles can dynamically interact, and in doing so, contribute to the
plant’s physiological responses to environmental changes.3–5

Under stress conditions, various organelles undergo a change in
their morphology and inter-organellar communication, possibly
to exchange metabolites, proteins, or lipids to coordinate various
signal transduction cascades.6–8 Stroma-filled tubular protrusions
of chloroplast called stromules provide proximity between the
chloroplast and the nucleus for transferring molecules such as
reactive oxygen species (ROS) and defense proteins during
immune responses.3

Stromules protrude from all types of plastids and observed in
several plant tissues, including leaf, shoot, roots, and fruits
(reviewed in9). Stromules have been observed for more than
80 years, but in-depth studies of their dynamics began after the
advent of green fluorescent protein (GFP) to visualize protein
location in plant cells by confocal microscopy.10 The biological
function of stromules remains mostly speculative, with initially
proposed function in plant stress responsive signaling by

observations that stromule induction is correlated with stress
responses.11–15 We demonstrated in 2015 a potential function of
stromules in plant immunity for the first time.3 In Nicotiana
benthamiana, stromules are induced when N immune receptor
together with a chloroplastic N Receptor Interacting Protein 1
(NRIP1) recognizes p50 effector from Tobacco Mosaic Virus
(TMV).3 Interestingly, stromules provide a conduit to transfer
defense protein, such as NRIP1, and pro-defense signaling mole-
cule, such as hydrogen peroxide (H2O2) into the nucleus.3

Remarkably, stromule induction is a common immune response
to various pathogens.3 In addition, stromules can be induced by
exogenous treatment of pro-defense molecules, such as salicylic
acid (SA) andH2O2

3, implicating that stromulesmight be involved
in a general defense mechanism. Stromules rarely allow exchange
of stromal components between plastids16,17 and frequently
associate with the plasma membrane, endoplasmic reticulum,
nuclei, and mitochondria,4,18,19 suggesting the role of stromule in
inter-organellar communication.

Recently, using extensive time-lapse imaging we showed that
stromules are very dynamic and they maintain their lengths by
constant repetition of the extension and the retraction through
coordinated function of microtubules (MT) and actin
cytoskeleton.19 In N. benthamiana leaf epidermis, 5–20% of
chloroplasts have stromules under normal growth conditions.3,19

However, this frequency fluctuates significantly since the time-
lapsed image sequences revealed that even stromules from indi-
vidual chloroplast under normal growth conditions in a cell
repeatedly extend and retract.19 Stromules in normal growth
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condition are morphologically diverse, and range from short to
long and thin to wide. Recent evidence indicates that MTs and
actin filaments (AFs) differentially organize stromule dynamics
in plant cells.19 Previously, AF inhibitor treatments in non-green
plant tissues resulted in the reduction of stromule frequency.20

Additionally, myosin inhibitor 2,3 butanedion 2-monoxime
(BDM) treatment affected stromule movement and length,
implying that AFs might have a regulatory role for stromules.21

However, treatment with MT inhibitor amiprophosmethyl
(AMP) also reduced stromules20 suggesting that both MTs and
AFsmight regulate stromulemorphology andmotility.However,
detailed mechanisms of movement were not studied. In Kumar
et al. (2018), contribution of MTs and AFs was revisited with
comprehensive live cell image analyses using N. bethamiana
leaves during normal growth conditions as well as during plant
immune responses.19 Surprisingly, co-visualization of the stro-
mule marker and cytoskeleton marker over time revealed that
MTs but not AFs provide tracks for stromule extension.19 Non-
invasive MT inhibition treatment with minimal effect to the AF
organization reduced stromule length dramatically by increasing
stromule retraction rate. Furthermore, stabilization of MTs
through silencing of γ-tubulin complex protein 4 (GCP4) homo-
log in N. benthamiana resulted in increased stromule frequency
and stromule length by reduced extension and retraction
velocities.19 On the other hand, AFs provide anchor points to
stromules and the body of chloroplasts. Remarkably, some of the
chloroplast movement occurs in a stromule-dependent manner.
Time-lapsed image analysis revealed that stromules anchored to

the AF directs chloroplast movement to the anchor points by
retraction events.19

During plant immune responses, chloroplasts cluster around
the nucleus.3,19 InN. benthamiana leaf epidermal cells, more than
half of observed cells contain nuclei which are surrounded by
more than 4 chloroplasts during immune response.19

Interestingly, this perinuclear clustering of chloroplasts during
plant immunity is dramatically affected by the disruption of AFs
by cytochalasin D drug treatment but not by MT inhibitor
Oryzalin treatment.19 These findings suggested that stromule-
directedmovement of chloroplast bodieswas predominantly regu-
lated by AF during plant immune responses, providing the proxi-
mity between chloroplast and nucleus for efficient communication
during plant defense. It is possible that previously a role for MTs
was not uncovered due to the timing of the inhibitor treatment and
future researchwill need to be conducted to determine ifMTs play
an initial role in guiding stromules to nuclei.

Organelle-organelle interactions have been observed in
plant cells under different stress conditions (reviewed in1).
Extremely high light irradiation generates extensions from
peroxisomes, called peroxules, which might connect to other
organelles, although the roles of these connections remain
unknown.22 Biochemical studies have shown that mitochon-
dria and chloroplasts exchanged lipid contents under phos-
phate starvation conditions, with no visual evidence of real
interaction between mitochondria and chloroplast.23

Interestingly, ROS translocation from the chloroplast body
to the nucleus without stromule induction has been observed
in cells exposed to high light.5 These reports indicate that
plant organelles might follow well-orchestrated mechanisms
to change their morphology and motility in response to envir-
onmental perturbations. Identification and characterization of
regulatory components that mediate induction of change in
organelle morphology is required for better understanding of
dynamic contribution of organelles in plant responses to the
environmental stresses.
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Figure 1. Schematics of stromule-directed perinuclear clustering of chloroplast
controlled by microtubules and actin filaments.
In Tobacco Mosaic virus (TMV) infected cell (shaded), chloroplasts generate long
stromules by constant extension and retraction events. These stromules extend
along microtubules (green lines) and anchored (open arrowhead) to actin
filaments (magenta lines). Microtubules become longer, less curved, and more
parallel to each other in infected cells compared to uninfected cells (white). The
anchor point (black arrowhead) restricts the stromule retraction providing a
driving force for chloroplast body movement (motion arrows for direction).
Actin filaments around the nucleus anchor the tip of stromule at the proximity
of the nucleus and then stromules retract along the microtubule, resulting in
chloroplasts’ bodies cluster around nucleus. This clustering might provide the
close location between chloroplasts and nucleus, allowing the efficient inter-
organellar communication during plant immune responses.
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