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Objective: Cross-sectional HIV incidence surveillance, using assays that distinguish
‘recent’ from ‘nonrecent’ infections, has been hampered by inadequate performance
and characterization of incidence assays. In this study, the Consortium for the Evalu-
ation and Performance of HIV Incidence Assays presents results of the first independent
evaluation of five incidence assays (BED, Limiting Antigen Avidity, Less-sensitive Vitros,
Vitros Avidity and BioRad Avidity).

Design: A large repository of diverse specimens from HIV-positive patients was
established, multiple assays were run on 2500 selected specimens, and data were
analyzed to estimate assay characteristics relevant for incidence surveillance.

Methods: The mean duration of recent infection (MDRI, average time ‘recent’ while
infected for less than some time cut-off T) was estimated from longitudinal data on
seroconverters by regression. The false-recent rate (FRR, probability of testing ‘recent’
when infected for longer than T) was explored by measuring the proportions of ‘recent’
results in various subsets of patients.

Results: Assays continue to fail to attain the simultaneously large MDRI and small FRR
demanded by existing performance guidelines. All assays produce high FRRs amongst
virally suppressed patients (>40%), including elite controllers and treated patients.

Conclusions: Results from this first independent evaluation provide valuable infor-
mation about the current performance of assays, and suggest the need for further
optimization. Variation of ‘recent’/‘nonrecent’ thresholds and the use of multiple
antibody-maturation assays, as well as other biomarkers, can now be explored, using
the rich data generated by the Consortium for the Evaluation and Performance of HIV
Incidence Assays. Consistently high FRRs amongst those virally suppressed suggest that
viral load will be a particularly valuable supplementary marker.
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Introduction

Reliable measurement of HIV incidence (the rate of new
infections) is essential for monitoring the epidemic,
assessing interventions and planning studies. Tradition-
ally, incidence is measured by counting the number of
new infections acquired in a cohort of patients followed
up over time. However, such longitudinal studies are
often costly, time-consuming, and unrepresentative.
Therefore, the estimation of incidence from cross-
sectional surveys, using ‘incidence assays’ that distinguish
‘recent’ from ‘nonrecent’ infection, has attracted wide
interest [1–4].

Cross-sectional surveillance is founded on the heuristic
that a high prevalence of ‘recent’ infection indicates a high
incidence. However, current incidence assays that provide
a reasonably enduring state of ‘recent’ infection also tend
to produce substantial ‘false-recent’ results at large times
after infection. As the methodology matured, a general
theoretical framework was developed that supports the
consistent analysis of ‘false-recent’ results [5]. However,
there have not been independent assessments of candidate
assays, or consensus metrics of an assay’s utility for
incidence estimation.

In 2010, the Bill & Melinda Gates Foundation supported
the establishment of the Consortium for the Evaluation
and Performance of HIV Incidence Assays (CEPHIA) [6].
Over the past 3 years, CEPHIA has entered into
collaborations and material transfer agreements to
establish a large repository of precious plasma specimens
with sufficient clinical background data. Test developers
can apply for access to a small ‘qualification panel’ of
specimens, and, if the assay is suitably promising, the assay
can be independently applied (by a CEPHIA laboratory)
to a much larger ‘evaluation panel’.

In this study, results are presented for the first five
assays that have successfully passed through the full
evaluation: Limiting Antigen Avidity (LAg) [7], BED [8],
Less-sensitive/Detuned Vitros [9], Vitros Avidity [9]
and BioRad Avidity [10]. In principle, a test for recent
infection can be arbitrarily complex in design, and
can be optimized by tuning numerous parameters.
The present evaluation is of tests for recent infection
which are each based on a single incidence assay,
applied according to the developers’ test conditions
and interpretive guidelines. Test optimization, by the
application of alternative thresholds in the interpretation
of results, and using the assays in combination with one
another or with supplemental markers (such as viral load),
is ongoing.

Translating survey counts (of HIV-negative, ‘recently’
HIV-positive and ‘nonrecently’ HIV-positive patients)
into incidence estimates [5] requires knowledge of two
test properties:
(1) T
he mean duration of recent infection (MDRI) – the

average time spent alive and ‘recently’ infected, while

infected for less than some time cut-off, denoted by T.
(2) T
he false-recent rate (FRR) – the probability that a

randomly chosen patient, infected for longer than T, will

produce a ‘recent’ result.
A ‘target product profile’ (TPP) for tests for recent

infection has been developed and attracted some attention
[3,4,11], providing a number of objectives that incidence
assays should meet to be of utility for incidence
estimation. To achieve usefully precise incidence esti-
mates, in real-world household surveys in high-incidence
settings, an incidence assay should have a sufficiently
enduring MDRI (on the order of 1 year) and small FRR
(clearly less than 2%, and ideally zero). Furthermore, for
feasible widespread use of the assay, results should be
highly reproducible, and the training, equipment and
sample type requirements should be modest.

In this study, we evaluate each assay’s MDRI and FRR. As
the performance of incidence assays may vary across
subpopulations, the characteristics of the incidence assays
in various specimen sets are also explored.
Methods

The CEPHIA specimen repository and the
evaluation panel
The CEPHIA repository is housed at the Blood Systems
Research Institute (San Francisco, California, USA) and
currently consists of more than 5000 plasma specimens
obtained from over 1200 patients. The specimens were
obtained through collaborations with blood banks, and
clinical research studies enrolling and following patients
over time: American Red Cross [12]; Blood Centers of
the Pacific [13]; South African National Blood Service
[14]; Hemocentro do São Paulo [15]; the University of
California, San Francisco, Options study [16]; San
Francisco Men’s Health Study [17]; the San Diego
Primary Infection Cohort [18]; the multicenter
AMPLIAR cohort [19]; the multicenter International
AIDS Vaccine Initiative (IAVI) African Early Infection
Cohort (Protocol C) [20]; and the University of
California, San Francisco, Study of the Consequences
of the Protease Inhibitor Era (SCOPE) [21].

Two ‘panels’ of specimens were created for the present
purpose: a 250-member ‘qualification panel’ for pre-
liminary assessments (see [22] for results), and a 2500-
member ‘evaluation panel’ for the full assessments of
assays showing suitable promise, which forms the basis of
this study.

The evaluation panel specimens were drawn from 928
patients, with 60% of patients contributing multiple
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specimens over time (2–13 specimens, median of 3
specimens per patient). Follow-up after infection ranged
from 1 week to more than 10 years, with a median follow-
up of 3 years (for patients with estimable infection dates,
discussed below).

Laboratory procedures and interpretation of
assay results
Each of the five assays measures an aspect of an individual’s
immune response, with measurements below some
threshold interpreted as indicative of ‘recent’ infection.

BED [8,23] and LAg [7,24] (Sedia Biosciences Corpor-
ation, Portland, Oregon, USA) were developed specifi-
cally as incidence assays by the Centers for Disease
Control and Prevention (CDC). The immunoglobulin G
(IgG) capture BED enzyme immunoassay (EIA) measures
the proportion of IgG that is specific to HIV, with a
normalized optical density (ODn) below 0.8 indicating
‘recent’ infection. The single-well LAg EIA is responsive
to the avidity of HIV-1-specific IgG, as it presents
marginally low concentrations of a multisubtype recom-
binant HIV-1 antigen, typically affording just a single
binding site to the multivalent IgG or IgM antibodies.
Whereas a ‘recent’/‘nonrecent’ threshold of 1.0 ODn was
initially proposed, this was recently revised to 1.5 [24,25],
following a review of the assay in which CEPHIA
participated.

Both Less-sensitive Vitros (LS-Vitros) and Vitros Avidity
[9] are based on the VITROS ECi/ECiQ Immuno-
diagnostic System – a chemiluminescence assay that gives
a quantitative measure of HIVantibodies (Ortho-Clinical
Diagnostics, Inc., Rochester, New York, USA). For LS-
Vitros, a reported signal-to-cut-off (S/C) below 20, for a
diluted specimen, is interpreted as a ‘recent’ result. For
Vitros Avidity, the ratio of the S/C in an aliquot treated
with a chaotropic agent (guanidine) to the S/C value in
an aliquot not thus treated yields an avidity index (AI). A
‘recent’/‘non-recent’ threshold of 60% on the AI is used
to classifiy the infection.

The BioRad Avidity test [10] is based on a modification
of the Genetic Systems HIV-1/HIV-2 plus O EIA (Bio-
Rad Laboratories, Inc., Hercules, California, USA), and
involves the testing of each specimen in the presence and
absence of a chaotropic agent (diethylamine). The ratio of
the reactivity of the treated to untreated aliquot produces
an AI, with values below 40% indicating ‘recent’
infection.

All assays were applied according to developers’ standard
operating procedures and package inserts [7–9,23,24],
and protocols are available on the CEPHIA project
website [6]. Testing was performed independently in
CEPHIA laboratories, by technicians trained by the
test developers and blinded to specimen background
information. Three large-volume ‘control’ specimens
(obtained from blood donations, and chosen to represent
a range of serological responses) were supplied to
laboratory technicians with each panel, for regular
confirmation of reproducibility and stability of assays.

Data analysis
All data captured within CEPHIA are stored in a
(MySQL) relational database. Database queries linked
assay results to the background information on patients
and specimens for data analysis (performed in Matlab
R2013b, the MathWorks Inc.).

Test properties were evaluated in specimen sets defined
by stratifying on treatment history, viral load, CD4þ

T-cell count, time from infection to specimen draw,
and HIV subtype (based on country, for the 48% of
specimens which lack explicit laboratory subtype
confirmation). The performance of assays in ‘elite
controllers’, broadly defined as patients who maintain
undetectable or very low HIV viral loads without
antiretroviral therapy (ART), is of particular interest. As
the SCOPE study purposefully recruited elite controllers,
these data were analyzed separately. These patients were
ART-naive (or without ART for at least 6 months), with
all off-treatment viral load measurements (HIV-1 RNA)
below 200 copies/ml and at least 50% of these
measurements below 75 copies/ml.

The definitions of the MDRI and FRR rely on the
previously mentioned construct of a postinfection time
cut-off T [5]. If T is chosen to be too short, this limits the
possible MDRI and typically raises the FRR. If T is
chosen to be too long, it becomes difficult to obtain
sufficient data to characterize the test with sufficient
precision over this time after infection, and the MDRI
will also develop variation by time and place (properties
inevitable for the FRR) rather than capture stable
biological properties of the test. A cut-off value of Tequal
to 2 years is used throughout this study.

In practice, the notion of ‘infection’ implicit in the test
property definitions refers to ‘detectable infection’, which
depends on the particular HIV diagnostic test used in
the incidence study. In this analysis, ‘detectable infection’
was defined as the time of seroconversion on an HIV viral
lysate-based western blot assay. On the basis of a
methodology described by the authors elsewhere (manu-
script in preparation, by CEPHIA), infection dates were
estimated for the 56% of patients who had recorded dates
of last HIV-negative and first HIV-positive tests (not more
than 120 days apart) and descriptions of the diagnostic
assays used. Average durations of Fiebig stages [26,27]
were used to estimate times at which patients serocon-
verted (corresponding to entering Fiebig stage 5). Patients
with unambiguous acute retroviral syndrome (ARS)
symptom onset dates [28–31] between their last HIV-
negative and first HIV-positive test dates were estimated
to seroconvert 17 days after ARS onset (on the basis of the
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observation that the incubation period of ARS symptoms
is about 14 days [32–35], and that the time from exposure
to Western blot seroconversion averages 31 days [26,27]).

A number of methods can reasonably be used to estimate
the MDRI, each with its own accuracy, precision and
complexity – as explored in a separate, detailed
benchmarking exercise (manuscript in preparation, by a
working group operating on behalf of the ‘HIV
Modelling Consortium’ [36]). In this analysis, binomial
regression, an approach found to be robust across a
number of scenarios in this benchmarking project, and
previously used for this purpose [37], has been applied.
The model form is g(PR(t))¼ f(t), where PR(t) is the
probability of testing ‘recent’ at time t after infection, g is
the chosen link function and f(t) contains the model
parameters, which are estimated by a maximum like-
lihood approach. Results from a 4-parameter model form
are presented, where g is the logit link, and f(t) is a cubic
polynomial in t (model A). Data points more than 1.1�T
after infection were discarded before model fitting (data
exclusion rule I), with the aim of achieving the best fit of
the model over [0, T] after infection, while avoiding
diluting the data around the boundary at T. Sensitivity of
results when increasing the data exclusion cut-off to 2�T
(data exclusion rule II) was also considered. Variation in
results was explored when fitting two other model forms,
namely a more restrictive 2-parameter model, where g is
the log-log link and f(t) is a linear function of ln(t) (model
B); and a flexible 7-parameter model, where g is the logit
link and f(t) is a linear function of the natural cubic spline
basis functions with interior knots occurring every 3
months after infection, between 0 and T after infection
(model C). In all cases, the MDRI, expressed math-
ematically as

R T
0 PRðtÞdt, was estimated using the fitted

PR(t)¼ g�1( f(t)).

To correctly account for the structure of the data, in the
absence of explicit patient-level clustering in the fitted
models, bootstrapping was performed by sampling
patients (not observations) with replacement. The
2.5th and 97.5th percentiles of 10 000 MDRI estimate
replicates provided 95% confidence interval (CI) limits
[38].

A population-level FRR is inherently dependent on the
epidemiological and demographic history of a study
population [5], and so a set of specimens, such as in the
CEPHIA repository, can only be used to estimate the
FRR in well-defined subpopulations. Therefore, speci-
mens from long-infected patients were identified (speci-
mens drawn at least T after the patient’s first recorded
HIV-positive visit), and the proportion of ‘recently’
infected patients estimated in each of the specimen sets
described above. To capture patient-level clustering,
when a patient provided more than one result to any
FRR estimate, the most frequent classification was used.
Exact Clopper–Pearson 95% CIs [39] are provided.
Results

The incidence assay dynamics, excluding specimens from
treated patients and SCOPE elite controllers, are shown
in Figs 1–3. The evolution of assay readings by time since
infection is shown in Fig. 1. The distribution of results for
specimens drawn more than T¼ 2 years after infection is
shown in Fig. 2. In Fig. 3, the proportion of ‘recent’
results (assay measurements below the ‘recent’/‘non-
recent’ threshold) is plotted by time since infection, also
stratified by HIV subtype (A1, B, C and D). Note that
there is natural variability in biomarker maturation,
leading to a significant number of patients reaching the
standard ‘recent’/‘nonrecent’ threshold more than 1 year
but less than 2 years after infection, and there is significant
delay or failure to achieve maturation to ‘nonrecent’ status
among specimens of subtypes A1 and D.

Table 1 provides estimated test properties for the various
specimen sets. LAg has an estimated MDRI of 188 days
(95% CI 165–211), whereas the remaining assays
have MDRI estimates of 285–333 days (CIs spanning
254–363 days). Results were insensitive (less than a 2%
change in results) to whether ARS symptoms onset dates
were used to adjust estimated infection dates, a change to
data exclusion rule II, and the use of alternative model C.
MDRI estimates increased by 2–4% when changing to
model B, which was the most sensitive to the data
exclusion rules (4–10% increase in estimates when
changing to data exclusion rule II).

Excluding treated patients and SCOPE elite controllers,
and analyzing all remaining specimens drawn more than
T¼ 2 years after infection, the measured FRR ranges
from 1% (95% CI 0.3–3%) for LAg to 6–10% (95% CIs
spanning 3–14%) for the remaining assays.

When stratifying by time since infection, the varying
persistence of ‘recent’ classifications across assays is
evident, with LAg exhibiting the leanest tail of persistence
of ‘recent’ infection.

The FRR amongst elite controller specimens is high for
all assays, and averages 25% (minimum of 13% to a
maximum of 48% across assays). The FRR amongst
treated patients is even higher, averaging 65% (minimum
of 50% to a maximum of 76% across assays). Further
stratifying treated patients by time from infection to
treatment initiation, the FRR decreases as the time to
treatment initiation increases: for early treatment
initiation (within 6 months of infection) the average
FRR is 84% (64–93%), whereas for later treatment
initiation (more than 6 months after infection) it is 41%
(27–57%).

The FRR for patients with low viral loads – here defined
as below 75 copies/ml – is high, averaging 55%
(41–69%). This is consistent with the results above, as
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Fig. 1. Incidence assay measurements as a function of time since infection, excluding treated patients and elite controllers (1376
data points from 418 patients), for (a) LAg, (b) BED, (c) LS-Vitros, (d) Vitros Avidity and (e) BioRad Avidity. A spaghetti plot (left)
shows patients’ trajectories, and box-and-whisker plots (right) show percentiles of measurements in 6-monthly intervals after
infection (central 50% and median of measurements captured by box and dividing line, whiskers and ‘þ’ symbols capture
remaining measurements and outliers, respectively; 40–450 data points per group). ‘Recent’/‘nonrecent’ thresholds are shown by
horizontal solid lines. AI, avidity index; LAg, Limiting Antigen Avidity; LS-Vitros, Less-sensitive Vitros; ODn, normalized optical
density; S/C, signal-to-cut-off.
92% of this specimen set is made up of specimens from the
identified elite controllers and treated patients (and 94%
of specimens from SCOPE elite controllers and treated
patients have a low viral load).

Lastly, the FRR amongst patients with low CD4þ T-cell
counts, namely less than 200 cells/ml and acting as a proxy
for AIDS identification, was relatively low, averaging 2%
(0–4%). Further stratifying this group by CD4þ T-cell
count (not shown) did not reveal any patterns.

Table 2 lists MDRI and FRR by subtype. The most
significant pair-wise differences in the MDRIs were
between subtype A1 and any other, on the Vitros
platform. With one exception, notably small P values for
pair-wise subtype differences in the FRRs involve A1
or D and a non-A1, non-D subtype, dominated by
LS-Vitros, Vitros Avidity and BioRad Avidity results.
Whereas these initial results highlight potential subtype
differences, a more definitive analysis (beyond the present
scope) should be based on a large number of subtype D
and A1 specimens, and estimation procedures specifically
adapted to this stratification.
Discussion

The application of cross-sectional HIV incidence
surveillance, utilizing tests for recent infection, has been
hampered by the lack of high-performance incidence
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Fig. 2. Empirical distribution of incidence assay measure-
ments for specimens drawn greater than T U 2 years after
infection, excluding treated patients and elite controllers
(665 data points from 316 patients), for (a) LAg, (b) BED, (c)
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maximum possible S/C on the equipment used. AI, avidity
index; LAg, Limiting Antigen Avidity; LS-Vitros, Less-sensitive
Vitros; ODn, normalized optical density; S/C, signal-to-cut-off.
assays and the lack of independent, rigorous and
consistent evaluations of candidate assays [2–4]. Over
the past 3 years, CEPHIA [6] has developed a substantial
repository of precious specimens, and begun using these
specimens to evaluate the most promising incidence
assays. Results for LAg, BED, LS-Vitros, Vitros Avidity
and BioRad Avidity are presented above.

Assays can be evaluated against a TPP [3,4,11]: not only
should the technology be affordable, practical and
transferable to other laboratories, but the MDRI should
be sufficiently long (of order 1 year) and FRR small
(ideally zero, and less than 2%). Results suggest that
incidence assays continue to struggle to simultaneously
achieve these two test property goals, with no single assay
unequivocally meeting the criteria set out in the TPP.
Compared to the increasingly used LAg assay, the other
assays provide larger MDRIs, but also higher FRRs.

While a stable, high-performance incidence assay should
ideally produce a consistently small FRR, regardless of
the study population, data from this work help to
understand some of the reasons why an assay’s perform-
ance could be unstable and FRRs may be large. All assays
produce particularly high FRRs amongst elite controllers
(>10%) and treated patients (>50%), and the size of these
subpopulations will vary by region and time. In a
surveillance study, identifying these patients is proble-
matic, as there is no universal definition of or test for elite
controllers, and self-reported treatment status may be
unreliable. Furthermore, earlier initiation of treatment is
associated with a higher FRR, in line with varying
impacts of treatment on immune responses by treatment
timing [41,42]. Context strongly affects when patients
begin treatment: for example, in some states in the USA,
patients are offered treatment immediately following HIV
diagnosis [43], whereas in South Africa, most HIV-
positive patients are unable to access treatment until
CD4þ T-cell counts drop below 350 copies/ml [44]. In
this study, 94% of specimens from elite controllers and
treated patients also had a low viral load (<75 copies/ml),
and so viral load testing provides a potential tool to screen
for these high-FRR patients – specimens with viral loads
below an optimized threshold would be classified as
‘nonrecent’. Note that such a change in the ‘recent’
infection classification rule will also impact (reduce) the
MDRI. Surveys could also directly test for the presence of
antiretroviral drugs to identify treated patients [45].

Properties for each assay have been estimated here on
the standardized basis of a Western blot being used to
identify HIV-positive patients. However, other diag-
nostic screening tests are likely to be used in incidence
studies, and the time between HIV exposure and
reactivity on these tests can differ by several weeks
[26,27,46]. Therefore, for application to incidence
studies, the base case MDRI reported here would need
to be increased or decreased – depending on the
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Fig. 3. The proportion of ‘recent’ results (%) as a function of time since infection, excluding treated patients and elite controllers
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particular screening test or algorithm used in the study to
classify a specimen as HIV-positive, and hence eligible for
‘recent’ infection testing.

The results presented here should not be viewed as
discouraging, as they provide a consistent, independent
characterization of these candidate incidence assays. Large
FRRs continue to limit the utility of single incidence
assays, and subtype-specific test behavior should be further
explored. This study provides the basis for exploring
optimization through such adjustments as variation of
‘recent’/‘nonrecent’ thresholds, inclusion of supplemental
tests (in particular, viral load), and the use of multiple
incidence assays, all of which is the subject of ongoing work
within and beyond CEPHIA [2,4,37,47,48]. Optimization
should also consider the time cut-off T, to distinguish ‘true-
recent’ from ‘false-recent’ results. Although T should be
not be too large, the value of Twas increased from 1 year, as
used in preliminary analyses [49], to 2 years in this study, to
better capture the tails of persisting ‘recent’ results and
thus reduce FRRs. Ongoing analyses also include the
evaluation of tests for recent infectionusing the precision of
the incidence estimator as a summary performance metric
[50]. In addition, efforts are being made to capture more
detailed information on cohorts’ diagnostic testing proto-
cols and more complete testing histories of patients –
providing the required data to further refine estimated
infection dates for later analyses of assay results.

The repository of specimens and data assembled by
CEPHIA provide a unique opportunity to further
advance the investigation and refinement of markers of
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Table 1. Estimated test properties (and 95% confidence intervals) for each assay, for various specimen sets.

Number of patients
(data points) LAg BED LS-Vitros

Vitros
Avidity

BioRad
Avidity

‘Recent’/‘nonrecent’
threshold (unit)

1.5 (ODn) 0.8 (ODn) 20 (S/C) 60 (AI as %) 40 (AI as %)

MDRI (days)a

All specimensb 400 (1032) 188 (165–211) 302 (274–331) 306 (274–338) 285 (254–316) 333 (302–363)
FRR (%)a

All specimensb 316 (665) 1.3 (0.3–3.2) 7.4 (4.8–10.9) 9.7 (6.6–13.5) 6.5 (4.0–9.8) 6.2 (3.8–9.4)
By time since infection (years)b

(2, 3) 140 (208) 2.5 (0.6–6.6) 12.5 (7.5–19.1) 17.5 (11.6–24.8) 12.5 (7.5–19.1) 12.5 (7.5–19.1)
(3, 4) 77 (110) 0.6 (0.0–5.9) 7.1 (2.5–15.4) 14.9 (7.8–24.9) 14.3 (7.4–24.1) 6.5 (2.1–14.5)
(4, 5) 35 (45) 0.0 (0.0–8.2) 7.1 (1.2–21.1) 5.7 (0.7–19.2) 5.7 (0.7–19.2) 8.6 (1.8–23.1)
>5 112 (193) 0.0 (0.0–2.6) 6.7 (2.8–13.0) 3.1 (0.8–8.3) 1.3 (0.1–5.6) 0.0 (0.0–2.6)

Elite controllersc 31 (89) 12.9 (3.6–29.8) 19.4 (7.5–37.5) 48.4 (30.2–66.9) 29.0 (14.2–48.0) 12.9 (3.6–29.8)
Treated patientsd 113 (185) 58.8 (49.2–68.0) 65.9 (56.4–74.6) 76.1 (67.2–83.6) 72.6 (63.4–80.5) 50.0 (40.4–59.6)
By time from infection to treatment (years)d

(0, 0.5) 53 (90) 84.9 (72.4–93.3) 86.8 (74.7–94.5) 92.5 (81.8–97.9) 92.5 (81.8–97.9) 64.2 (49.8–76.9)
�0.5 53 (88) 27.4 (16.0–41.3) 40.6 (27.3–54.9) 56.6 (42.3–70.2) 49.1 (35.1–63.2) 31.1 (19.1–45.3)

Low viral loade 154 (273) 47.1 (39.0–55.3) 56.5 (48.3–64.5) 68.5 (60.5–75.7) 62.7 (54.5–70.3) 40.6 (32.8–48.8)
Low CD4þ T-cell countf 124 (214) 0.0 (0.0–2.4) 4.0 (1.3–9.2) 2.4 (0.5–6.9) 0.0 (0.0–2.4) 1.6 (0.2–5.7)

AI, avidity index; FRR, false-recent rate; LAg, Limiting Antigen Avidity; LS-Vitros, Less-sensitive Vitros; MDRI, mean duration of recent infection;
ODn, normalized optical density; S/C, signal-to-cut-off.
aUsing an HIV viral lysate-based Western blot assay to identify HIV-positive patients, and T¼2 years.
bExcluding treated patients and SCOPE elite controllers.
cIdentified as elite controllers in the SCOPE cohort (virally suppressed in the absence of treatment).
dNo previous treatment interruptions and treated for at least 3 months.
eViral load at draw below 75 copies/ml.
fCD4þ T-cell count at draw below 200 cells/ml.
‘recent’ HIV infection. Specimens and datasets are well
maintained, sample sizes are large, specimen background
information is recorded, and multiple incidence assays
and potential supplemental tests have been measured on
the same specimens.

CEPHIA has begun testing the ‘evaluation panel’ using
other assays, with the aim of evaluating ten incidence
Table 2. Estimated test properties (and 95% confidence intervals) for ea

Number of patients
(data points) LAg BED

‘Recent’/‘nonrecent’
threshold (unit)

1.5 (ODn) 0.8 (O

MDRI (days)a,b,c

All specimens 400 (1032) 188 (165–211) 302 (274
Subtype A1 80 (166) 211 (156–275) 363 (288
Subtype B 90 (246) 153 (117–196) 255 (208
Subtype C 181 (454) 177 (150–206) 287 (248
Subtype D 38 (131) 273 (170–387) 328 (227

FRR (%)a,b,d

All specimens 316 (665) 1.3 (0.3–3.2) 7.4 (4.8
Subtype A1 37 (106) 2.7 (0.1–14.2) 18.9 (8.0
Subtype B 190 (388) 0.5 (0.0–2.9) 4.7 (2.2
Subtype C 75 (144) 1.3 (0.0–7.2) 7.3 (2.6
Subtype D 11 (18) 9.1 (0.2–41.3) 18.2 (2.3

AI, avidity index; FRR, false-recent rate; LAg, Limiting Antigen Avidity; LS-V
ODn, normalized optical density; S/C, signal-to-cut-off.
aUsing an HIV viral lysate-based Western blot assay to identify HIV-positi
bExcluding treated patients and SCOPE elite controllers.
cIn a test for pair-wise differences in MDRIs by subtype, using a z-test, the fol
and B; LS-Vitros – A1 and B, A1 and C, A1 and D; Vitros Avidity – A1 and B, A
of the MDRI estimators are used as proxies for true values, and therefore t
dIn a test for pair-wise differences in FRRs by subtype, using the Fisher-Bosch
A1 and B; LS-Vitros – A1 and B, A1 and C; Vitros Avidity – A1 and B, A1 and
assays in its first phase. A second phase of CEPHIA,
known as CEPHIA II and also funded by the Bill &
Melinda Gates Foundation (BMGF), was launched in the
beginning of 2013. Under CEPHIA II, the repository is
being expanded to include nonplasma specimens (such as
linked whole blood, oral fluid, urine and stool) that are
being prospectively collected through collaborations with
various study sites. CEPHIA is also supporting biomarker
ch assay, by subtype.

LS-Vitros
Vitros

Avidity
BioRad
Avidity

Dn) 20 (S/C) 60 (AI as %) 40 (AI as %)

–331) 306 (274–338) 285 (254–316) 333 (302–363)
–442) 473 (387–560) 451 (362–539) 364 (289–442)
–308) 232 (173–299) 210 (157–270) 299 (233–371)
–328) 265 (221–311) 240 (202–280) 298 (262–338)
–433) 264 (190–339) 276 (194–357) 467 (354–581)

–10.9) 9.7 (6.6–13.5) 6.5 (4.0–9.8) 6.2 (3.8–9.4)
–35.2) 35.1 (20.2–52.5) 35.1 (20.2–52.5) 12.2 (3.8–27.1)
–8.8) 4.7 (2.2–8.8) 1.3 (0.2–4.2) 2.1 (0.6–5.3)
–15.7) 8.7 (3.4–17.5) 4.0 (0.8–11.2) 6.7 (2.2–14.9)
–51.8) 18.2 (2.3–51.8) 18.2 (2.3–51.8) 54.5 (23.4–83.3)

itros, Less-sensitive Vitros; MDRI, mean duration of recent infection;

ve patients, and T¼2 years.

lowing pairs provided P values below 0.05: LAg – B and D; BED – A1
1 and C, A1 and D; BioRad Avidity – B and D, C and D. Estimated SDs
ests are anticonservative (particularly when sample sizes are small).
loo test [40], the following pairs provided P values below 0.05: BED –
C, B and D; BioRad Avidity – A1 and B, A1 and D, B and D, C and D.
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discovery projects funded by the BMGF and US National
Institutes of Health (NIH), with a focus on earlier steps in
the development pathway. Further updates on CEPHIA
activities can be found on the project website (http://
www.incidence-estimation.com/page/cephia).
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