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Abstract 

Much research has documented learners’ ability to segment 
auditory and visual input into its component units. Two types 
of models have been designed to account for this phenomena: 
statistical models, in which learners represent statistical 
relations between elements, and chunking models, in which 
learners represent statistically coherent units of information. 
In a series of three experiments, we investigated how adults’ 
performance on a visual sequence-learning task aligned with 
the predictions of these two types of models. Experiments 1 
and 2 examined learning of embedded items and Experiment 
3 examined learning of illusory items. The pattern of results 
obtained was most consistent with the competitive chunking 
model of Servan-Schreiber and Anderson (1990). 
Implications for theories and models of statistical learning are 
discussed. 

Keywords: statistical learning; transitional probability; 
chunking; implicit learning 

Introduction 
The means by which humans acquire and represent 
knowledge is fundamental to cognitive science. One 
important mechanism shown to support learning across 
domains is learners’ ability to detect statistical associations 
among elements in a sensory array (e.g., Fiser & Aslin, 
2001, 2002; Saffran, Newport, & Aslin, 1996a). Notably, 
this statistical learning (SL) ability has been demonstrated 
across the lifespan (e.g., Saffran, Aslin, & Newport, 1996b) 
and even across species (e.g., Toro & Trobalón, 2005).  

Despite the scope of SL, the processes underlying SL 
remain unclear. Traditionally, SL has been conceptualized 
as sensitivity to statistical relations among elements. For 
instance, in their seminal studies of statistical word 
segmentation, Saffran et al. (1996a,b) exposed participants 
to a continuous stream of speech in an artificial language. 
After very limited exposure, participants showed evidence 
of segmenting the stream into its component words. Saffran 
et al. proposed that this ability might have resulted from 
computation of transitional probabilities (TPs) between 
syllables in the stream. Transitional probability (TP) is 
defined as the probability of event Y given event X, and is a 
measure of the strength with which X predicts Y. Saffran et 
al. hypothesized that learners could track TPs between 
adjacent syllables, using peaks in TP to group syllables into 
words, and dips in TP to identify breaks between words.  

The view that SL occurs via computations has prevailed 

in literatures on auditory artificial language learning (e.g. 
Saffran et al., 1996a,b) and visual sequence (e.g., Fiser & 
Aslin, 2002) and scene learning (e.g., Fiser & Aslin, 2001). 
Models instantiating such computational approaches to 
segmentation are typically SRNs (e.g., Elman, 1990), which 
learn and represent statistical relations between elements, 
but do not represent the units they segment.  

Recently, there have been attempts to account for word 
segmentation with a different type of model: chunking 
models (e.g., Frank, Goldwater, Griffiths, & Tenenbaum, 
2010; Orbán, Fiser, Aslin, & Lengyel, 2008; Perruchet & 
Vinter, 1998), which propose that learners do represent the 
statistically coherent “chunks” of information from the 
input. Perruchet and Vinter’s (1998) PARSER model, for 
instance, assumes that elements perceived within one 
attentional focus are “chunked” into a new, larger 
representation. Representations of chunks presented 
repeatedly are strengthened in memory; chunks presented 
rarely are forgotten. Applied to Saffran et al.’s (1996a,b) 
task, PARSER claims that representations of chunks within 
words are strengthened (because they are repeated more 
frequently), while chunks spanning word boundaries are 
forgotten. Thus, chunking models like PARSER predict that 
segmentation operates according to very different means 
(representing units) than those proposed by statistical 
models (representing statistical relations, not units).  

It is unclear which type of model best accords with how 
learners process and represent information. Recent studies 
have been designed to distinguish between these models by 
examining situations in which chunking and statistical 
models make contrasting predictions. These studies examine 
learning of (1) embedded items and (2) illusory items.  

Embedded items are features that occur only within larger 
features (Fiser & Aslin, 2005). Statistical models assume 
learners represent statistical relations between all pairs of 
adjacent elements such that, as learners become familiar 
with a unit, distinguishing components embedded in that 
unit improves relative to random configurations of elements 
(see Giroux & Rey, 2009). Many chunking models, in 
contrast, assume that as learners become familiar with a 
unit, they become less able to distinguish components 
embedded in that unit from random configurations of 
elements (see Giroux & Rey, 2009). That is, representations 
of embedded items and their larger units compete in 
memory. Over time, memory for the unit gets strengthened 
while competing representations of embedded items vanish. 
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These contrasting predictions concerning embedded items 
have been empirically tested with adults in auditory 
artificial language learning tasks (Giroux & Rey, 2009) and 
in visual scene learning tasks (Fiser & Aslin, 2005). Results 
from both studies align with the predictions of chunking 
models: while learners distinguish units (e.g., words) from 
random configurations of sounds or shapes, they are unable 
to distinguish embedded units from random configurations.  

Illusory items are items that are never presented to 
participants, but have the same statistical structure as other 
items that are presented. For example, if tazepi, mizeru, and 
tanoru,are words presented in a speech stream, and TPs are 
.50 between syllables within these words (e.g., between ta 
and ze and between ze and ru), a statistically matched 
illusory word would be tazeru (Endress & Mehler, 2009). If 
learners only represent statistical relations between 
elements, words and illusory words should be 
indistinguishable. If learners chunk and represent entire 
words, however, they should fail to recognize illusory 
words. In an auditory artificial language learning task 
Endress and Mehler (2009) found that, while participants 
distinguished words from lower-TP “part-sequences,” they 
did not distinguish words from illusory words, suggesting 
that they represented statistical relations, rather than chunks. 

Thus, studies of embedded and illusory items have 
yielded conflicting evidence regarding whether learners 
represent statistical relations or chunks. However, these 
studies employed widely varying methods, making it 
difficult to determine whether differences in performance 
across tasks were due to different underlying processes, or 
simply to methodological differences between studies.  

The goal of the present series of experiments was to 
overcome this limitation and to extend previous work by 
investigating learning of both embedded (Experiments 1 and 
2) and illusory (Experiment 3) items in a visual sequence-
learning (VSL) task. There are three main contributions of 
this work: (1) we contribute a variety of new human data 
about VSL under a range of experimental conditions; (2) we 
examine learning of both embedded and illusory items using 
highly comparable methods across tasks; and (3) we 
consider how the data fit with a variety of statistical and 
chunking models. 

Experiment 1 

Method 
Participants Thirty-six undergraduate students were 
recruited from Psychology classes at the University of 
California, Los Angeles. Participants were randomly 
assigned to participate in either a 10-minute (N = 18; 15 
females; M age 20.2 years; range = 18.6 to 21.9) or 20-
minute (N = 18; 14 females; M age 20.9 years; range = 18.5 
to 29.1) familiarization condition. Data from an additional 
16 participants were excluded from the final sample due to 
poor calibration or insufficient eye tracking data (n = 10), 
eye tracker failure (n = 1), or sleepiness (n = 5). All 
participants earned course credit for their participation. 

Apparatus and Stimuli An Eyelink 1000 eye tracker with a 
55.9-cm color monitor displayed stimuli and collected eye-
tracking data. A PC computer running Experiment Builder 
software controlled stimulus presentation and sent markers 
stored with eye tracker data, allowing us to coordinate 
participants’ eye movements with the stimuli. The eye-
tracking system recorded point-of-gaze (POG) coordinates 
(spatial resolution within 1.0° visual angle) at 500 Hz.  

Stimuli were 10 colored shapes on a black background 
(Figure 1). Each shape loomed for 750 ms within one of 10 
grid locations on the monitor. Shapes were randomly 
organized for each participant into four units: two triplets 
and two pairs (e.g. triplet 1: star, diamond, square; triplet 2: 
hourglass, circle, heart; pair 1: plus, arrow; pair 2: triangle, 
banner). For simplicity, the 10 shapes will be referred to by 
the letters ABCDEFGHIJ, where ‘ABC’ and ‘DEF’ are the 
two triplets and ‘GH’ and ‘IJ’ are the two pairs. Shape-
location pairings were randomized across participants, but 
consistent throughout the experiment for each participant.  

 

 
 

Figure 1: Sample stimulus array used in Experiment 1. Only 
one shape appeared on the screen at a time. 

 
The familiarization stimulus was a continuous sequence 

of pseudo-randomly ordered shape units. Units could not 
repeat and there were no breaks or delays between shapes or 
units such that TPs were 1.0 between shapes within units 
and .33 between shapes spanning unit boundaries. 

Test stimuli were 10, 2-shape sequences. Two sequences 
were pairs from the familiarization sequence (GH, IJ), two 
were embedded pairs (BC from ‘ABC’, EF from ‘DEF’), 
and six were part-sequences composed of the last shape of 
one unit and the first shape of a different unit (e.g., FA).  
 
Procedure Participants sat 60 cm from the computer 
monitor. POG was calibrated using Experiment Builder 
software. Participants viewed the familiarization sequence 
for either 10 (80 repetitions of each unit presented) or 20 
(160 repetitions of each unit) minutes, depending on their 
assigned condition. Participants were not given instructions 
other than to watch what appeared on the screen. 

Following familiarization, participants completed a brief 
training session to familiarize them with a two-alternative 
forced-choice (2AFC) task. The training session consisted 
of 4 trials and employed the same procedure as the test 
phase, except that letters were presented rather than shapes.  

The test phase consisted of 12, 2AFC trials. In each trial, 
participants viewed two 2-shape sequences presented 
successively with a 750 ms pause between sequences. 
Participants were instructed to choose which was more 
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familiar by clicking one of two corresponding mouse 
buttons. Half the test trials were “part vs. pair” trials that 
contrasted a part-sequence with a pair, and half were “part 
vs. embedded” trials that contrasted a part-sequence with an 
embedded pair. Part-sequences had no shapes in common 
with the pairs and embedded pairs against which they were 
contrasted. We presented test types in alternation, 
randomizing which we presented first and counterbalancing 
whether the part-sequence appeared first or second across 
trials. Table 1 provides a full example of the test sequences.  

 
Table 1: Sample test sequences contrasted in Expt. 1.  

 
Part vs. Pair Contrasts Part vs. Embedded Contrasts 
Part-Sequence Pair Part-Sequence Embedded Pair 

FA GH FA BC 
JD GH JD BC 
FI GH FI BC 

CD IJ CD EF 
HA IJ HA EF 
CG IJ CG EF 

Results and Discussion 
Saccade Latencies Saccade latencies during familiarization 
were analyzed to assess implicit learning of sequence 
structure. Latencies were calculated as the time from shape 
onset until the initiation of the first eye movement that 
resulted in a fixation to that shape. Learning can be inferred 
if mean saccade latency to the first shapes of units – whose 
locations are not predictable from preceding shapes – are 
greater than mean saccade latency to the latter shapes of 
units (second shape of pairs, second and third shapes of 
triplets) – whose locations are predictable.  
 

 
 

Figure 2. Mean saccade latency to the first and latter shapes 
of units in Expts 1 (A) and 2 (B) by familiarization duration, 

and in Expt 3 (C). Error bars represent standard error. 
 

A 2 (familiarization duration: 10 vs. 20 mins.) x 2 (unit 
type: pair vs. triplet) x 2 (shape number: first vs. latter) 
repeated-measures ANOVA revealed only a main effect of 
shape number: F(1,34) = 15.25, p < .001, partial η2 = .31; 
see Figure 2A. Saccade latencies were significantly greater 
to the first shapes, relative to the latter shapes, of units, 
suggesting that participants were sensitive to the unit 
structure of the sequence in both familiarization conditions.  
Button Responses: Predictions Both statistical and 

chunking models predict that successful VSL should be 
indicated by participants’ choosing pairs as more familiar 
than part-sequences on part vs. pair trials. Statistical models 
also predict that participants should choose (high TP) 
embedded pairs as more familiar than (low TP) part-
sequences in part vs. embedded trials. In contrast, chunking 
models predict that participants may initially form chunks of 
all 2-shape sequences, but that representations of pairs and 
triplets will be strengthened as familiarization increases, 
even as representations of part-sequences and embedded 
pairs within triplets are weakened due to competition with 
units. Thus, chunking models predict that participants 
should fail to distinguish between embedded pairs and part-
sequences, particularly after the longer (20 minute) 
familiarization (see Giroux & Rey, 2009). 

 
Button Responses: Results Mean percentage of pair 
selections on part vs. pair trials, and embedded pair 
selections on part vs. embedded trials, were computed for 
the two familiarization conditions (Figure 3A). A 2 (test 
type) x 2 (familiarization duration) ANOVA revealed only a 
main effect of test type (F[1,34] = 8.61, p < .01, partial η2 = 
.20). Participants chose pairs as more familiar than part-
sequences more often then they chose embedded pairs as 
more familiar than part-sequences, regardless of 
familiarization condition. This finding may suggest that 
participants represented pairs more strongly than embedded 
pairs, as predicted by chunking models. Nevertheless, one-
sample t-tests (this and all other t-tests reported were two-
tailed) revealed that participants chose both pairs (t[35] = 
9.21, p < .0001) and embedded pairs (t[35] = 4.93, p < 
.0001) as more familiar than part-pairs significantly more 
often than chance (50%), as predicted by statistical models. 

Together these results do not clearly support either 
statistical or chunking models. However, because pairs and 
embedded pairs were not directly contrasted, it is difficult to 
draw strong conclusions about whether or not these 
sequences were represented differently. Experiment 2 was 
designed to address this issue. Test trials in Experiment 2 
contrasted pairs and part-sequences as in Experiment 1, but 
also directly contrasted embedded pairs and pairs. If 
participants are equally familiar with pairs and embedded 
pairs, this suggests they primarily represent statistical 
relations between shapes. However, if participants choose 
pairs as more familiar than embedded pairs, this suggests 
participants represent some combination of both chunks and 
statistical relations (as embedded pairs were chosen as more 
familiar than part-sequences in Experiment 1).  

Experiment 2 

Method  
Participants Thirty-six undergraduate students were 
recruited and randomly assigned to a 10-minute  (N = 18; 16 
females; M age 20.6 years; range = 18.6 to 24.1) or 20-
minute (N = 18; 13 females; M age 20.3 years; range = 19.0 
to 22.2) familiarization condition, as in Experiment 1. Data 
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Figure 3. Mean percentage of button responses for the various test types in Experiments 1 (A) and 2 (B) by familiarization 
duration condition, and in Expt. 3 (C). Error bars represent standard error. The dashed line indicates chance performance. 
 

from an additional 5 participants were excluded from the 
final sample due to sleepiness (n = 4) or failure to complete 
the experiment (n = 1). 

 
Apparatus, Stimuli, and Procedure The apparatus, 
stimuli, and procedure were identical to that of Experiment 
1, with the following exceptions: (1) only two part-
sequences were used: FA and CD, and (2) the test phase 
consisted of only 8, 2AFC trials. Half were “part vs. pair” 
trials, and half were “pair vs. embedded” trials (Table 2).  
 

Table 2: Sample test sequences contrasted in Expt. 2.  
 

Part vs. Pair Contrasts Pair vs. Embedded Contrasts 
Part-Sequence Pair Pair Embedded Pair 

FA GH GH BC 
CD GH GH EF 
FA IJ IJ BC 
CD IJ IJ EF 

Results and Discussion 
Saccade Latencies A 2 (familiarization duration) x 2 (unit 
type) x 2 (shape number) ANOVA revealed a main effect of 
shape number (F[1,34] = 9.63, p < .01, partial η2 = .22), and  
interaction of shape number and exposure duration (F[1,34] 
= 4.54, p < .05, partial η2 = .12); see Figure 2B. There were 
no other significant main effects or interactions. Post-hoc t-
tests revealed that saccade latencies were significantly 
greater to the first shape of units in the 20-minute (t[17] = 
3.43, p < .01), but not in the 10-minute (t[17] = 0.75, p = 
.46)  familiarization condition. Saccade latencies to the first 
and latter shapes of units were not significantly different in 
the 10- and 20-minute conditions (ts[34] < 1.71, ps > .05).  

These data suggest that participants were sensitive to the 
unit structure of the familiarization sequence after 20 
minutes, but not 10 minutes, of exposure. It is unclear why 
this was the case, given that the familiarization phase was 
identical to that of Experiment 1, in which participants did 
show evidence of sensitivity to sequence structure after only 
10 minutes. It could be that there was a ceiling effect among 
the participants in the 10-minute condition of Experiment 2. 
Previous research suggests that it typically takes a minimum 

of 150 ms for an adult to program an eye movement 
(Fischer, Biscaldi, & Gezeck, 1997). Participants may have 
already been near ceiling, with saccade latencies to the first 
shapes of units being only 169 ms on average (see Figure 
2B), such that they were unable to show significantly 
reduced saccade latencies to the latter shapes. 
 
Button Responses Figure 3B shows the mean percentage of 
pair selections on part vs. pair and pair vs. embedded trials. 
A 2 (test type) x 2 (familiarization duration) ANOVA 
revealed only a main effect of test type (F[1,34] = 10.53, p 
< .01, partial η2 = .23). Participants chose pairs as more 
familiar on significantly more trials when contrasted with 
part-sequences compared to when contrasted with 
embedded pairs, regardless of familiarization condition. 
Moreover, one-sample t-tests revealed that participants 
chose pairs as more familiar than part-sequences 
significantly more often than chance (t[35] = 5.02, p < 
.0001), but did not choose pairs as more familiar than 
embedded pairs significantly more often than chance (t[35] 
= 0.68, p = .50). These findings suggest participants 
represented pairs and embedded pairs similarly, as predicted 
by the statistical approach. 

Overall, the results of Experiments 1 and 2 investigating 
adults’ representation of embedded pairs in visual sequences 
suggest that participants represented statistical relations 
between items rather than chunks, a finding that contrasts 
with previous studies of embedded items conducted with 
auditory sequences (Giroux & Rey, 2009) and visual scenes 
(Fiser & Aslin, 2005). This difference is all the more 
striking given that our VSL task was designed to be as 
similar as possible to Giroux and Rey’s auditory SL task.  

It may be that learners represent both statistical relations 
and chunks (even proponents of the statistical approach 
argue that SL produces some kind of psychological units; 
e.g., Saffran, 2001), raising questions as to the relation 
between statistical and chunking processes (see Perruchet & 
Pacton, 2006). Another possibility, however, is that the 
assumption made by some chunking models – that higher-
order chunks always compete with and replace lower-order 
chunks – may be incorrect. If learners were able under 
certain circumstances to maintain representations of various 

10-min. familiarization 

20-min. familiarization 
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orders of chunks simultaneously, such as chunks and the 
smaller embedded chunks they contain, this might help to 
explain participants’ performance in Experiments 1 and 2.  

Servan-Schreiber and Anderson’s (1990) ‘competitive 
chunking’ model proposes that (1) learners may be able to 
represent both lower-order chunks and the higher-order 
chunks that contain them, and (2) the familiarity of a 
sequence depends on the number of stored chunks needed to 
describe it. Thus, when participants viewed pairs and 
embedded pairs at test in Experiment 2, these sequences 
may have seemed equally familiar because pairs and 
embedded pairs were each represented by a single chunk, 
not because participants represented their underlying TPs. 
Similarly, when participants viewed part-sequences and 
embedded pairs in Experiment 1, embedded pairs may have 
seemed more familiar because they were represented by a 
single chunk whereas part-sequences were not, since their 
component shapes did not occur together consistently. The 
data from Experiments 1 and 2 cannot distinguish between 
these two interpretations – that learners represented 
statistical relations, or represented both embedded chunks 
and their larger (triplet) chunks.  

Thus, Experiment 3 employed an illusory sequence design 
to: (1) examine how adults represent illusory visual 
sequences, and (2) distinguish between the statistical and 
competitive chunking explanations of Experiments 1 and 2. 
An illusory design can achieve this second aim because 
statistical and competitive chunking models make different 
predictions concerning the fate of illusory items.  

Experiment 3 

Method 
Participants Eighteen undergraduate students (N = 18; 14 
females; M age 19.6 years; range = 15.6 to 28.5) were 
recruited as in Experiments 1 and 2. Data from an additional 
4 participants were excluded from the final sample due to 
poor calibration (n = 1), eye tracker failure (n = 1), or 
sleepiness (n = 2).  

 
Stimuli Stimuli were 9 colored shapes that each loomed 
within one of 9 grid locations. Shapes were organized into 
six triplets, with each shape appearing in two triplets. The 
familiarization stimulus was a continuous sequence of 
pseudo-randomly ordered triplets. Triplets could repeat such 
that TPs were .50 between shapes within triplets and .33 
between shapes spanning triplet boundaries. Triplets were 
organized such that two illusory triplets were created that 
had the same TP structure as triplets, but were never 
presented during familiarization (Figure 4). Hereafter, the 9 
shapes will be referred to by the letters ABCDEFGHI, 
where the six triplets are ABF, DBC, AEC, GHF, DHI, GEI,  
and the two illusory triplets are ABC and GHI.  

Test stimuli were 10, 3-shape sequences. Six sequences 
were triplets, two were illusory triplets, and two were part-
sequences composed of the last shape of one triplet and the 
first shape of a different triplet. 

 
 

Figure 4. Sample triplets and illusory triplets used in Expt. 
3. Numbers above arrows indicate TPs between shapes.  

 
Apparatus and Procedure The apparatus and procedure 
were identical to Experiments 1 and 2, with the following 
exceptions: (1) participants viewed the familiarization 
sequence for 18 minutes  (80 repetitions of each triplet 
presented), and (2) half of the test trials were “triplet vs. 
part,” and half were “triplet vs. illusory” trials (Table 3).  

 
Table 3: Sample test sequences contrasted in Expt. 3.  

 
Triplet vs. Part Contrasts Triplet vs. Illusory Contrasts 
Triplet Part-Sequence Triplet Illusory Triplet 
ABF IAE ABF ABC 
DBC FDH DBC ABC 
AEC IAE AEC ABC 
GHF FDH GHF GHI 
DHI FDH DHI GHI 
GEI IAE GEI GHI 

Results and Discussion 
Saccade Latencies Saccade latencies to the first and latter 
shapes of triplets were not significantly different: t[17] = 
0.94, p = .36 (see Figure 2C). Thus, participants showed no 
oculomotor evidence of implicit learning of sequence 
structure. This was likely due to TPs between shapes within 
units being .50 in Experiment 3 (compared to 1.0 in 
Experiments 2 and 3), such that the latter shapes of units 
were not completely predictable from the previous shape, 
even if the triplet structure had been learned.  
 
Button Responses: Predictions Both statistical and 
chunking models predict that successful VSL should results 
in triplets being more familiar than part-sequences. 
Statistical models also predict that triplets and statistically-
matched illusory triplets should seem equally familiar, 
whereas chunking models predict that triplets should seem 
more familiar because they are represented by a single 
higher-order chunk (e.g., ‘ABF’), whereas illusory triplets 
are represented by two lower-order chunks (e.g., ‘AB’, 
‘BC’; Servan-Schreiber & Anderson, 1990) or no chunks at 
all (e.g., Fiser & Aslin, 2005). Even if illusory triplets are 
represented by two lower-order chunks, illusory triplets 
should seem relatively unfamiliar simply because a greater 
number of stored chunks are needed to describe them 

2222



(Servan-Schreiber & Anderson, 1990). 
 
Button Responses: Results A paired- samples t-test 
revealed that the percentage of trials on which participants 
chose triplets as more familiar (see Figure 3C) did not differ 
significantly when triplets were contrasted with illusory 
triplets versus part-sequences (t[17] = 0.24, p = .81). 
Moreover, one-sample t-tests revealed that participants 
chose triplets as more familiar than both part-sequences and 
illusory triplets significantly more often than chance: ts(17) 
> 2.81, ps < .02. These findings suggest that learners 
represent visual sequences in terms other than statistical 
relations between items, as predicted by chunking models. 

General Discussion 
The present series of experiments investigated processes of 
VSL. Specifically, we examined whether adults represent 
sequences in terms of chunks or statistical relations. We 
used highly comparable methods to examine performance 
on embedded and illusory item tasks that, in previous 
research, have suggested different underlying mechanisms. 

Participants in Experiments 1 and 2 provided evidence of 
representing embedded pairs, contrary to the predictions of 
typical chunking models (e.g., Orbán et al., 2008), but 
consistent with both statistical and competitive chunking 
models. Experiment 3 examined participants’ endorsement 
of illusory items to distinguish between statistical and 
competitive chunking explanations. Participants 
distinguished triplets from statistically-matched illusory 
triplets, suggesting that they represented sequences in terms 
of chunks rather than statistics. Only the Servan-Schreiber 
and Anderson (1990) competitive chunking model is able to 
account for the data obtained across all three experiments.  

Yet, the present data contrast with findings from previous 
studies of embedded (Fiser & Aslin, 2005; Giroux & Rey, 
2009) and illusory (Endress & Mehler, 2009) items. This 
may mean that current models of SL are inadequate, as no 
single model can account for performance across tasks and 
domains. However, it is also possible that the 
representations resulting from SL are task-dependent such 
that representations vary depending on characteristics of the 
information to be learned. Adults may, for instance, 
represent units and their embedded chunks when the 
quantity of information or complexity of the task is 
relatively low (e.g., Experiments 1 and 2), but may represent 
only the highest order of chunks when a greater quantity or 
complexity of information puts additional demands on 
attention and memory systems (e.g., Fiser & Aslin, 2005). 
Further research is needed to examine these possibilities.  

Regardless, the present experiments have important 
implications for theories and models of SL. Studies of 
chunking have a long history in the implicit learning 
literature, but have only recently been introduced to 
statistical learning research (Perruchet & Pacton, 2006). The 
present data suggest that our understanding of SL will profit 
from researchers continuing to consider the role chunking, 
particularly competitive chunking, may play in SL. 
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