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Abstract

The Pulse of Sleep: Sleep and Cardiometabolic Health

by

Vyoma D Shah

Doctor of Philosophy in Psychology

University of California, Berkeley

Professor Matthew Walker, Chair

Two of the top killers of the human race are cardiovascular disease and type 2
diabetes. These diseases, which have shared etiology, collectively form the domain of
cardiometabolic health. Multiple functions of cardiometabolic health are perturbed by
impaired sleep, and conversely, restored by increased sleep quantity and/or improved
sleep quality. That is, impairments in sleep are closely related to impairments in
cardiometabolic health. This leads to the proposition that specific features of sleep act
as biomarkers for specific features of cardiometabolic health. This thesis aims to
determine the impact of sleep on three major domains of cardiometabolic health: 1)
atherosclerosis (arterial plaque accumulation), 2) dyslipidemia (unhealthy blood lipids),
and 3) hyperglycemia (high blood sugar). Accordingly, three key findings emerge that
comprise the three chapters of this report. 1) The quality of human sleep, specifically
the degree of fragmentation, raises inflammatory-related white blood cells, thereby
conferring an increased risk for atherosclerosis. This was true of sleep fragmentation
assessed across a week or a single night, which predicted increasingly higher CAC
scores through a mediating association with increased neutrophils. 2) Unique features
of an individual’s sleep (duration, efficiency, timing, regularity) predict aspects of
triglyceride metabolism under fasting (homeostatic) and post-food intake (allostatic)
conditions. First, later sleep timing predicts higher fasting triglycerides, emphasizing a
unique relation with triglyceride homeostasis (not allostasis). Second, this homeostatic
link is mediated by increased systemic inflammation (GlycA levels). Third, and
conversely, declining sleep efficiency negatively impacts post-food lipid clearance,
reflecting allostatic regulation. Fourth, these effects are replicated in a second
independent cohort. 3) The coupling of NREM sleep spindles and slow oscillations the
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night prior is associated with improved next-day peripheral glucose control. Further,
this sleep-associated glucose pathway may influence glycemic status through altered
insulin sensitivity, rather than through altered pancreatic beta cell function. Moreover,
these associations are replicated in an independent dataset of over 1900 adults. Of
therapeutic significance, the coupling between slow oscillations and spindles was the
most significant sleep predictor of next-day fasting glucose, even more so than
traditional sleep markers, relevant to the possibility of an EEG index of hyperglycemia.
Collectively, beyond these scientific insights, these results support a
sleep–cardiometabolic homeostasis framework, such that unique features of sleep act
as biomarkers for unique aspects of cardiometabolic health. Importantly, these findings
help reinform public health sleep-related guidelines to reduce the mortality and
economic burden of cardiometabolic disease globally.
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General Introduction

Two of the top causes of human mortality are cardiovascular disease and type 2
diabetes 1. Every year, cardiovascular disease (ischemic heart disease and stroke) is
responsible for over 1 in 4 deaths globally, claiming over 14 million lives 1–3.
Concurrently, diabetes is an increasingly concerning worldwide epidemic. The number
of deaths resulting from diabetes is steadily increasing, up 70% over the last two
decades. Every year, diabetes costs the global economy over 6.7 million lives 4 and
$966 billion 5. Importantly, cardiovascular disease and diabetes mellitus are not
completely independent. Rather, they are often co-morbid, with a subset of shared
underlying risk factors and core pathological mechanisms 6,7, and can influence and
exacerbate each other 8. Indeed, hyperglycemia causes 1 in 5 cardiovascular deaths 9.
Taken together, these diseases form the broader, multifaceted disease category of
cardiometabolic disease - a leading cause of death, and grave public health concern.
A deeper, nuanced understanding of the different aspects of cardiometabolic health is
crucial to developing effective therapeutic interventions and minimizing preventable
deaths.

Today, there is a plethora of causal and associational studies implicating poor sleep as
a contributing factor to ill cardiometabolic health 10. Ill cardiometabolic health is
multifaceted, with numerous intermingling components. Of these components, three
cornerstones are: 1) atherosclerosis - the build-up of plaque in the walls of arteries, 2)
lipemia - abnormal levels of lipids in the bloodstream, a contributing factor to
atherosclerosis, and 3) irregular glucose metabolism - principal to maintaining blood
sugar homeostasis in the bloodstream, and a causal factor for cardiovascular disease.
Sleep has been associated with each of these three pillars of ill cardiometabolic health.
However, given the multifactorial nature of sleep, as well as the high dimensionality of
cardiometabolic health, multiple fundamental questions remain unanswered.

First, poor sleep quality leads to atherosclerosis. Yet, the potential pathways explaining
this association remain a mystery. Previous studies have linked poor sleep to impaired
immune function 11, and inflammation to increased risk of cardiovascular events 12,13.
Therefore, one candidate pathway through which fragmented sleep causally triggers
cardiovascular disease is via the up-regulation of inflammatory-associated white blood
cells, which incite atherosclerosis. Yet, this proposition remains untested in humans.

Second, varied macro aspects of sleep such as short sleep duration and obstructive
sleep apnea are linked to impaired lipid profiles 14,15, and resultantly, myocardial
infarction, heart failure, stroke, and atherosclerosis A common etiology that is a
pathway to these cardiovascular diseases, is that of elevated triglycerides. However,
the underlying mechanisms, and the specific features of an individual’s objective sleep,
that impair triglyceride metabolism remain to be understood. Current studies examining
the associations between sleep and triglyceride regulation are cross-sectional and do
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not control for multiple major risk factors already known to influence lipid profiles, such
as meal content, meal timing, and genetic contributions. Furthermore, despite the
understanding that different mechanisms regulate fasting versus post-meal lipid
profiles 16, it remains untested which specific features of sleep govern the homeostatic
regulation of lipid metabolism in the fasted state, versus the allostatic regulation of lipid
metabolism in the postprandial state.

Third, a lack of sleep impairs glucose control and increases the risk of diabetes in
humans 17, but why? Despite the broad clinical, therapeutic, and public health
implications, the underlying sleep-related central brain mechanism explaining this
impaired glucose regulation remains unknown. Specifically, examining the role of
macro sleep features in regulating metabolism, and how electrical brain oscillations
during sleep are associated with metabolic glucose homeostasis in humans is currently
untested.

Despite these overarching links between sleep and cardiometabolic health, at least
three key unanswered questions have yet to be addressed, focused on 1)
atherosclerosis (arterial plaque accumulation), 2) dyslipidemia (unhealthy blood lipids),
and 3) hyperglycemia (high blood sugar). Building on these data, this thesis sought to
address these three fundamental issues, formulated in three independent hypotheses,
each assessed in three independent studies:

● Hypothesis 1 (Study 1): The impact of fragmented sleep on atherosclerotic
pathology is governed, in part, through the novel mediating influence of
increased inflammation (as measured by neutrophil and monocyte levels).
Furthermore, this sleep-related disease pathway is robust when multiple
alternate cofactors (disease mechanisms) known to impact cardiovascular health
are being controlled for (Chapter 1).

● Hypothesis 2 (Study 2): Sleeping at a later time is associated with the
homeostatic dysregulation of fasted triglyceride levels. Lower sleep efficiency
predicts the allostatic dysregulation of post-meal triglyceride levels. Further,
these sleep-related associations hold true for VLDL cholesterol (high in
triglyceride composition), and remain robust after accounting for risk factors
known to influence lipid metabolism (Chapter 2).

● Hypothesis 3 (Study 3): A function of synchronized (i.e., temporally coupled)
NREM slow oscillation—sleep spindle events in humans is the brain-body
regulation of optimal glucose homeostasis. More specifically, both the extent
and quality of coupled NREM slow oscillations—spindle events in humans
predict optimal next-day regulation of peripheral blood glucose levels (Chapter
3).
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Chapter 1. The heart of the matter: Broken sleep predicts
hardened blood vessels

Introduction

Sleep disruption is associated with atherosclerosis. Why is this? One potential pathway
through which fragmented sleep causally triggers cardiovascular disease is via the
upregulation of inflammatory-associated white blood cells, which incite atherosclerosis
18,19. However, the proposition that sleep fragmentation in humans is associated with
atherosclerosis through the mediating influence of increased neutrophil and monocyte
counts remains unexplored 20–22. Moreover, that such a pathway is evident even when
accounting for common contributing factors leading to atherosclerosis in humans, such
as age, sex, ethnicity, BMI, smoking status, blood pressure, use of antihypertensive
medication, sleep apnea, and insomnia, is untested.

Here, we address these unresolved questions. Specifically, we tested the hypothesis
that the impact of fragmented sleep on atherosclerotic pathology is governed, in part,
through the novel mediating influence of increased neutrophil and monocyte levels, and
furthermore, that this sleep-related disease pathway remains robust when controlling
for multiple alternate cofactors (disease mechanisms).

To do so, we examined the association between sleep fragmentation (measured using
two independent sources of objective data: polysomnography (PSG) and multiple
nights of wrist-based actigraphy), white blood cell count, and in vivo measures of
subclinical atherosclerosis in a diverse sample of the population (n=3305).

The characteristics of the cohort, stratified by atherosclerosis severity category, are
shown in Table 1, with the sleep parameters of the cohort, presented in S1 Table. The
unadjusted bivariate correlation described in the next paragraphs are shown in S1 Fig.

Results

Actigraphy

Focusing first on direct associations (prior to testing the mediation hypothesis and the
inclusion of cofactors), actigraphy-measured sleep fragmentation positively and
significantly predicted CAC score (r=0.18, p<0.001; Fig 1A and S1 Fig). Second, this
same objective measure of sleep fragmentation positively predicted higher neutrophil
count (r=0.08, p<0.01), and was not significantly correlated with monocyte count
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(r=0.04, p=0.17). Third, both neutrophil and monocyte counts were positively
associated with the CAC score (r=0.12, p<0.001 and r=0.14, p<0.001, respectively).

Having established each individual direct association, we next tested the hypothesis
that the relationship between sleep fragmentation and atherosclerosis pathology (CAC
score) was not direct, but instead, statistically influenced through the indirect mediating
impact of fragmented sleep on raised neutrophil count, which in turn, predicted CAC
score. Supporting this proposed pathway, the impact of sleep fragmentation on CAC
scores was significantly mediated through the indirect pathway of raised level of
neutrophils (n=1110, 𝛽=0.71, 95% CIs=0.18-1.65).

Thus, sleep fragmentation was associated with atherosclerosis risk, yet this relationship
was, in part, indirectly contributed to through the influence of fragmented sleep quality
on increased neutrophil count. Consistent with the lack of a significant pairwise
association between sleep fragmentation and monocytes, there was no indirect effect
with monocyte count (𝛽=0.35, 95% CIs=-0.11-1.14), potentially suggesting a greater
mediating role of neutrophil activity.

Numerous factors to date have been demonstrated to increase atherosclerotic risk,
including age, sex, ethnicity and BMI 23–25 as well as sleep-related features, including
the presence of sleep apnea 26 and insomnia 27. Importantly, the above mediation effect
remained significant when controlling for the factors of age, sex, ethnicity, BMI,
smoking status, blood pressure, use of antihypertensive medication, as well as sleep
apnea and insomnia diagnoses (𝛽=0.44, 95% CIs=0.02-1.27; Fig 1A and
Supplementary Methods). The mediation also remained significant when excluding
participants with a CAC score of zero (n=746, 𝛽=1.05, 95% CIs=0.27-2.52), and in this
more select cohort, again showed a significant mediation after controlling for all the
above-mentioned covariates (𝛽=0.85, 95% CIs=0.11-2.36). Related, the mediation
similarly remained significant when excluding 104 participants diagnosed with sleep
apnea (𝛽=0.64, 95% CIs=0.11-1.71, controlled for all above covariates).

While in the same direction, the mediation effect was not statistically significant when
adjusting for sleep apnea using the apnea-hypopnea index (AHI) estimated from the
PSG night (𝛽=0.35, 95% CIs=-0.02-1.18). This indicates that sleep apnea cannot be
excluded as a contributing factor in the mediation. However, post-hoc analysis using
AHI instead of sleep fragmentation as the exposure variable did, however, demonstrate
that there was no indirect effect of AHI on CAC via an increase in monocyte/neutrophil
counts (neutrophil: 𝛽=0.12, 95% CIs=-0.02-0.44; monocytes: 𝛽=-0.05, 95%
CIs=-0.27-0.04). That is, sleep fragmentation, beyond AHI, appears to have a specific
relationship with inflammatory-related increases in atherosclerosis.
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Polysomnography

Having quantified the association between atherosclerosis and home-based sleep,
measured using wrist-actigraphy, we further tested these same relationships using
PSG-recorded sleep. Congruent with the actigraphy findings, the severity of
PSG-measured fragmentation (arousals during NREM sleep), directly and positively
predicted CAC score severity (r=0.14, p<.001). Once again, this association was
indirect. Specifically, the impact of the PSG-measured arousal index in NREM
fragmentation on CAC scores was mediated through raised levels of neutrophils
(n=1046, 𝛽=0.42, 95% CIs=0.13-0.94) and raised monocytes (n=1046, 𝛽=0.32, 95%
CIs=0.07-0.75). This effect was specific to NREM sleep, with no such significant
associations with the arousal index measured during REM sleep (r=0.003, p=.92).

The PSG-based mediation effect with neutrophils remained significant after controlling
for age, sex, ethnicity, smoking status, and blood pressure (𝛽=0.19, 95%
CIs=0.01-0.61; Fig 1B). However, unlike the actigraphy-based measures, the effect did
not remain significant after adjusting for BMI, sleep apnea, insomnia, and use of
antihypertensive medication. One interpretation is that one week of wrist-based
actigraphy sleep measurement, relative to a single night of PSG sleep recording, is
more capable of detecting the sleep-dependent link between neutrophils and
atherosclerosis when considering relevant co-factors.

The indirect mediation effect with monocytes did remain significant after controlling for
age and ethnicity (𝛽=0.16, 95% CIs=0.01-0.49), but not after adjusting for sex,
suggesting that the atherosclerotic impact of sleep fragmentation on monocytes (but
not neutrophils) is partially regulated by sex.

It is noteworthy that the sleep-atherosclerosis measured using PSG was significant for
both neutrophil and monocyte counts, while actigraphy-measured sleep only showed a
significant mediation effect with neutrophils (𝛽=0.36, 95% CIs=-0.11-1.14). This may
suggest greater sensitivity of PSG measures in quantifying this atherosclerosis disease
pathway with multiple inflammatory-related factors, while still appreciating the above
PSG results concerning co-morbidities.

Subjective sleep

Having tested the association between atherosclerosis and objective measures of
sleep, we tested for an equivalent relationship using subjective reports of sleep
fragmentation. Self-reported sleep fragmentation was not associated with neutrophil
count (r=0.009, p=0.77), monocyte count (r=-0.056, p=0.08), or CAC score (r=-0.042,
p=0.11), and provided no indirect mediation effect of the association between white
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blood cells and atherosclerosis (neutrophils: 𝛽=0.73, 95% CIs=-4.5-6.3, monocytes:
𝛽=-4.3, 95% CIs=-10.7-0.11). In addition, there was no direct or indirect effect of
habitual daytime sleepiness (measured by the Epworth sleepiness scale, 28) on CAC
score. These findings suggest that, unlike objective assessments, self-reported sleep
quality and daytime sleepiness do not offer statistically sensitive measures in the
predictive mediation pathway between sleep, inflammation, and atherosclerosis.

Exploratory analyses

Finally, we tested whether other objective sleep parameters, beyond sleep
fragmentation, were similarly associated with atherosclerosis via an elevation in
neutrophil and/or monocyte counts. Specifically, we looked at both actigraphy and
PSG measures of sleep quantity and quality.

Consistent with the above findings, PSG-defined WASO was indirectly associated with
increased CAC through an increase in monocyte count (𝛽=0.05, 95% CIs=0.01-0.13).
Similarly, higher sleep efficiency (averaged across 7 days of actigraphy) negatively
predicted a lower CAC score via a reduction in neutrophil count (𝛽=-1.12, 95%
CIs=-2.83--0.13). However, neither of these relationships remained significant after
controlling for the above-mentioned cofactors. Thus, fragmented sleep, more than
other sleep features, appears to be a particularly sensitive predictor of white-blood-cell
mediated atherosclerosis.

Discussion

Together, these findings affirm a pathway in which the quality of human sleep,
specifically the degree of fragmentation, raises inflammatory-related white blood cells,
thereby conferring an increased risk for atherosclerosis. This was true of sleep
fragmentation assessed across a week or a single night, which predicted increasingly
higher CAC score through a mediating association with increased neutrophils.

To the best of our knowledge, these data are the first to report such an association with
sleep fragmentation and subclinical atherosclerosis in humans. Our findings confirm
recent seminal work in mice demonstrating that experimentally induced sleep
fragmentation, associated with increases in blood levels of monocytes and neutrophils,
results in larger atherosclerotic lesions 18,19. Furthermore, these rodent data provide
added mechanistic insight, such that sleep fragmentation reduced hypocretin levels in
the hypothalamus, signaling bone marrow-related increases in the production of
monocytes and neutrophils.
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Advancing this research, we establish a sleep fragmentation—white blood
cell—atherosclerosis association in a population-based sample of human adults, and
demonstrate these effects remained robust when accounting for multiple other
common atherosclerosis risk factors present in humans: age, sex, ethnicity, BMI,
smoking status, blood pressure, use of antihypertensive medication, as well as sleep
apnea and insomnia diagnoses. Finally, we show that this indirect pathway can be
quantified with objective sleep metrics, either using one week of wristwatch actigraphy,
or a single night of PSG recording.

Importantly, however, we demonstrate that this same disease sensitivity is not
observed when using self-reported subjective sleep fragmentation or other metrics of
sleep quantity and/or quality. This may be pertinent for clinicians and researchers in
determining which sleep measures should be focused on in this context.

Though our statistical models remained significant after adjusting for age (in addition to
other cofactors), this does not challenge the well-established and independent links
between i) aging and increases in monocytes and neutrophils 29,30, ii) increases in
atherosclerosis risk 31, and iii) decreases in sleep quantity and quality 32. Rather, our
findings simply indicate that the mediation relationship between sleep fragmentation,
white blood cells and atherosclerosis persists when chronological age is considered.

Decreasing sleep duration and fragmented sleep are independently associated with an
increased risk of atherosclerosis 33,34. However, the pathways through which the impact
of sleep impairment operates have remained largely unknown. Building on rodent
models 18, our findings suggest that one candidate pathway through which sleep
fragmentation can raise atherosclerotic risk in humans may be through raised levels of
inflammatory-associated neutrophil and monocyte counts. This proposal is consistent
with findings that insufficient sleep (acute and prolonged) triggers low-grade
inflammation 11, decreases and increases in discrete immune factors, and enhances
upstream signaling mechanisms of inflammation, including those regulated by
monocytes 11. Moreover, both monocytes and neutrophils have a recognized role in
atherosclerosis, including the modulation of proatherogenic reactive oxygen species
and neutrophil extracellular traps that encourage monocyte accumulation to the plaque
site 12,13,35–38.

What it is about sleep fragmentation that triggers this inflammatory blood cell pathway
continues to be defined, though it is known that sleep fragmentation inhibits hypocretin
production in the hypothalamus, thereby promoting neutrophil production in the bone
marrow 18. Additionally, sleep fragmentation results in hypercortisolemia 39,40, which can
prevent the inhibition of granulocyte macrophage colony-stimulating factor (GCSF) that
otherwise limits neutrophil levels 41, and may therefore further increase neutrophil
production 42,43.
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In the broader context of public health, these data suggest that improved sleep
continuity (i.e., lowering of sleep fragmentation) may offer a novel preventative strategy
for lowering inflammatory status, and thus lowering relative atherosclerosis risk. More
broadly, these findings could help inform public health guidelines that focus on societal
sleep health, one benefit of which may be lowering atherosclerotic burden.

Limitations

A first limitation is that our analyses were constrained by the use of cross-sectional
data, which precludes definitive assessment of the directionality of associations. For
example, it could be that cardiovascular disease (or associated treatments) may also
drive sleep fragmentation in addition to, or rather than, the other way around. Although
post-hoc sensitivity analyses (Supplementary Results) indicated that the incorporation
of measures of cardiovascular disease did not substantively alter the significance of
mediation effects in our cohort, this possibility remains. Prospective longitudinal
controlled studies will be needed to directly address the issue of reverse causality.

Second, it is important to note that while the indirect mediation pathways were
statistically significant, the effect sizes of the pairwise associations were overall small.
This suggests that raised inflammation (our a priori study focus) is likely one of several
potential pathways through which insufficient sleep contributes to atherosclerosis.
Other potential pathways include altered autonomic nervous system activity, increased
oxidative stress, impaired glucose metabolism, and endothelial dysfunction 40,44–46.
While we were unable to explore each of these pathways, post-hoc analyses revealed
that the mediation pathway was also significant when using heart rate variability (HRV)
during sleep as the exposure variable in the mediation pathway—a well-established
marker of the autonomic nervous system, instead of sleep fragmentation (see
Supplementary Results). Sleep disruption is also associated with raised levels of
apolipoprotein(Apo) B — a strong predictor of cardiovascular disease 47; though see 48.
Still, our findings indicate that one potential atherosclerotic pathway in humans
involves the influence of fragmented sleep on raised inflammatory-associated
neutrophil and monocyte count.

The observed associations were not significant when adjusting for the AHI measured
by PSG. Sleep apnea is well known to cause sleep fragmentation, and thus, these
results are consistent with sleep apnea as a factor contributing to sleep fragmentation.
While our post-hoc analyses suggest that AHI per se (independently of sleep
fragmentation) is not significantly associated with the inflammatory-related increases in
atherosclerosis, it is likely that apnea-induced cortical and autonomic arousals play a
mechanistic role in this indirect association between sleep, leukocytes, and
atherosclerosis.
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Our reported mediation effect was stronger for neutrophils, relative to monocytes, and
is consistent with a recent report demonstrating significant indirect associations
between overnight heart rate, neutrophil counts and obstructive sleep apnea 46.
However, another limitation is that the current study was not powered or designed to
differentiate these individual cell contributions. We propose three speculative,
non-mutually exclusive, explanations for this stronger neutrophil relationship that may
warrant future investigation. First, sleep disruption is linked to a larger relative increase
in neutrophils as compared to monocytes 49. Neutrophils may therefore be the more
sleep-sensitive, and thus important, disease-related immune cell factor of this
particular pathway. Second, neutrophils are more numerous than monocytes, making
up 60 to 70 percent of the total white blood cell count. As such, a perturbation of white
blood cells (for example, by sleep disruption) may lead to their influence being more
pronounced. Third, the measure of neutrophil count is encoded as a continuous
variable, whereas monocyte count is encoded as a quasi-categorical variable (see
Supplementary Figure 2), which may reduce monocyte sensitivity.

While the current study accommodated for common comorbidities and co-factors (e.g.,
insomnia and sleep apnea diagnoses, obesity, sex, age, ethnicity, smoking status,
blood pressure, and hypertensive medication), it must be recognized that this does not
exclude the contribution of all possible comorbidity influences that may nevertheless
be influential, and remain unaccounted for. We also cannot rule out the possibility that
our findings may be influenced by selection bias. The original cohort consisted of
individuals free of known cardiovascular disease. This may have led to an
underrepresentation of individuals with early-onset cardiovascular disease. A small
proportion (~2%) of individuals were excluded from the MESA sleep exam due to
regular CPAP, oral appliance or oxygen use, thus, potentially reducing the
representation of those with clinically significant sleep apnea. However, the
participation rate in the MESA sleep study subset was high (~44%), and health profiles
were generally similar between the participants who did enroll in the sleep study versus
those who did not 24.

Taken together, our findings are consistent with the emerging idea of a pivotal role of
neutrophils in atherogenesis 50, and establish that this association is in part mediated
by sleep quality.

Methods

Ethics Statement

Institutional Review Board approval was obtained at each study site and written
informed consent was obtained from all participants.
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Procedure

The data were derived from the Multi-Ethnic Study of Atherosclerosis (MESA) Exam 5,
51, using information from its Exam 5 clinic exam and the MESA Sleep Ancillary Study,
which included one night of home polysomnography (PSG), seven consecutive days of
wrist actigraphy (Actiwatch Spectrum, Philips Respironics, Murrysville, PA), and a sleep
questionnaire. All participants in the main MESA were invited to participate in the
additional Sleep study at Exam 5, with the exception of those regularly using CPAP or
an oral device for sleep apnea. The demographic characteristics of this subset of
individuals in the sleep study relative to those of the overall full study cohort have been
described elsewhere (see Table S1 in 24).

The Multi-Ethnic Study of Atherosclerosis (MESA) is a multi-center prospective study of
more than 6,000 ethnically diverse men and women aged 45-84 from six communities
in the United States. MESA was designed to investigate the prevalence and
progression of subclinical cardiovascular disease (CVD) as well as to identify CVD risk
factors predicting the development of clinically overt CVD in an ethnically diverse
population 51.

There have been four follow-up exams to date since the initial exam, in the years
2003-2004 (Exam 2), 2004-2005 (Exam 3), 2005-2007 (Exam 4), and 2010-2012 (Exam
5). The MESA 5 Core exam occurred from April 2010 to February 2012, 10 years after
the initial exam. Similar to the prior follow-up exams, Exam 5 collected interval medical
history, anthropometrics, blood pressure readings, fasting venipuncture, spot urine
collection, nutrition and physical activity surveys, smoking history, ankle/arm index,
retinal photography, and ECG. In addition, cardiac MRI was repeated in participants
who underwent cardiac MRI at exam 1, and cognitive function testing was newly
performed in all MESA Exam 5 participants. Randomly selected participants were
invited to participate in the MESA ancillary study (70% of the MESA cohort), which
performed cardiac CT imaging for measurement of CAC and carotid ultrasound for IMT
measurement.

All MESA participants were also invited to participate in the MESA Sleep ancillary study
at MESA Exam 5 (2010-2013). Sleep exams were scheduled to occur after the MESA 5
core exam. The purpose of MESA Sleep was to obtain quantitative measures of sleep
and sleep-disordered breathing (SDB) to better characterize specific sleep traits and
sleep disorders and their CVD risk associations across ethnic groups, as well as to
determine the association of sleep indices with incident CVD. The sleep protocol
included one night of home polysomnography (PSG), seven consecutive days of wrist
actigraphy (Actiwatch Spectrum, Philips Respironics, Murrysville, PA), and a sleep
questionnaire.
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In-home polysomnography (PSG) was performed using the Compumedics Somte
System (Compumedics LTd., Abbostville, Australia. The recording montage consisted
of cortical electroencephalograms (C4-M1, Oz-Cz, and Fz-Cz leads), bilateral EOG,
chin EMG, thoracic and abdominal respiratory inductance plethysmography (by
auto-calibrating inductance bands); airflow (by nasal-oral thermocouple and pressure
recording from a nasal cannula); ECG; leg movements, and finger pulse oximetry. EEG,
EOG, EMG and ECG were all sampled at 256 Hz. Nocturnal recordings were
transmitted to the centralized reading center at Brigham and Women’s Hospital and
data were scored by trained technicians using current guidelines 59,60.

Actigraphy was performed using the Actiwatch Spectrum wrist actigraph (Philips
Respironics, Murrysville, PA) worn on the participant’s non-dominant wrist. Output was
sent to the Sleep Reading Center at Brigham and Women’s Hospital where records
were scored with the use of the corresponding sleep diary. Specifically, actigraphy data
were aggregated in 30-second epochs and automatically scored as sleep or wake by a
validated algorithm implemented in the Actiware-Sleep v.5.59 analysis software (Mini
Mitter Co., Inc.), after manually editing the sleep period using sleep diary data and
event and light markers. Two scorers scored MESA actigraphy studies. Intra-scorer
reliability for average sleep duration, sleep efficiency, and WASO were 0.91, 0.97, and
0.91, respectively. Sleep fragmentation was defined as the sum percent mobile epochs
and percent immobile bouts less than 1-minute duration to the number of immobile
bouts, for the given interval. This is also known as the restlessness index or movement
and fragmentation index.

White blood cells (WBC) were assessed in blood samples collected at Exam 5 at a
central laboratory. Blood assays included total WBC count, and leukocyte subsets
(basophils, eosinophils, neutrophils, lymphocytes, and monocytes) were determined as
complete blood count with differential analysis.

Mediation models were adjusted for factors known to affect cardiovascular risk,
specifically age, sex, race/ethnicity, body mass index (BMI; in kg/m2), smoking status,
use of antihypertensive medication, blood pressure as well as medical diagnosis of
sleep apnea and insomnia. Information on doctor-diagnosed sleep apnea/insomnia
was obtained from the sleep questionnaire survey: “Have you been told by a doctor
that you have any of the following:? a) Sleep Apnea (or obstructive sleep apnea, OSA)
b) Insomnia”. Those who answered ‘yes’ were defined as having doctor-diagnosed
sleep apnea and/or insomnia, respectively. Smoking was defined as never, former (no
smoking within the past 30 days), or current. Resting blood pressure was measured
three times in the seated position and the average of the second and the third served
as systolic and diastolic blood pressure.

Briefly, the subset of participants who enrolled in the sleep study were more likely to be
younger, of non-White ethnicity, non-smoker, and normotensive as compared to the
MESA participants who did not enroll. Self-report doctor-diagnosed sleep apnea and
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other health characteristics (e.g. diabetes, obesity, myocardial infarction, asthma) were
equivalent in both groups. White blood cell counts were assayed from blood from a
morning blood draw the Exam 5 visit. Coronary Artery Calcification (CAC) imaging from
Exam 5 provided an in vivo assessment of atherosclerosis, resulting in a standard
Agatston score 52. In-depth details of the study design, sleep evaluations, blood
evaluations and CAC imaging can be found elsewhere 24,51–53.

Three validated markers of fragmented sleep were used as a priori predictor variables:
1) fragmentation index, which reflects the proportion of total sleep epochs
characterized by movement, calculated separately for each night and then averaged
across the seven nights of actigraphy, 2) the number of arousals per hour of NREM
sleep (the arousal index, a measure that correlates with autonomic markers of arousal
54), estimated during the PSG night 55, and 3) the participant self-reported sleep
fragmentation (“Overall, was your typical night’s sleep during the past 4 weeks”: 0 =
very sound to 4 = very restless). Second, we conducted exploratory analyses with other
sleep parameters, such as actigraphy- and PSG-defined measures of sleep quality and
quantity (e.g. overall duration, wake after sleep onset (WASO), and, for the PSG night,
percent time in each sleep stage and arousal index in REM sleep).

After removing participants with absent values on either the main predictor variables
(i.e. objective and subjective measures of sleep fragmentation) and/or the main
outcome variable (CAC score, or atherosclerosis Agatston score), the final sample size
was 1630 participants (752 males, mean ± SD age=68.5 ± 9.2 yrs, Body Mass Index
(BMI)=28.9 ± 5.5 kg/m2) of diverse ethnicities (602 White, 451 Black, 393 Hispanic and
184 Asian). This sample represents 34.6% of all the participants included in MESA 5
core exam (n=4716), and 72.1% of all participants that also took part in the MESA 5
sleep exam (n=2261, of which 2060 participants had successful PSG data, 2156 had
actigraphy data, and 2240 completed sleep questionnaires). For mediation analyses,
the sample size was further reduced by removing participants with absent values on
the mediator variable (e.g. the neutrophil count, final sample size, n=1110).

The hypothesis was tested using a formal mediation analysis with sleep fragmentation
as the independent variable, monocyte and neutrophil counts as the mediator
variables, and CAC score as the dependent variable. Specifically, the goal was to
statistically determine whether monocyte and neutrophil counts could be deemed
mediators of the effect of sleep fragmentation on CAC score. The relevant outcome of
a formal mediation analysis is the indirect effect, which quantifies the difference
between the effect of the independent variable on the dependent variable when the
mediator is accounted for versus when it is not. Since both the mediators and
dependent variables were continuous (Supplementary Figure 1), ordinary least
squares regression was used to model direct and indirect associations. Mediation
analysis was performed using the mediation_analysis function of the Pingouin
statistical package for Python 56, modeled on the mediation R package 57. As
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recommended for mediation analysis reporting 58, all effects were considered
significant only if the 95% bias-corrected bootstrap confidence interval (CIs; of the
indirect effect) was entirely above or below zero. CIs were derived from 10,000
bootstrap samples. Consistent with current guidelines, we do not report the ratio of the
indirect effect over the total effect as a measure of effect size, as this ratio can be any
real number and is not bounded by 0 and 1 58.

Figures & Tables

Table 1. Participants characteristics by atherosclerosis severity (CAC category).

Very low
(CAC=0)

Low
(CAC=1-100)

High
(CAC=101-400)

Very high
(CAC>401)

p-value

Count 367 333 210 200 -

Age 64.4 ± 8.0 68.3 ± 9.2 71.6 ± 8.8 73.5 ± 8.0 <.001

BMI 29.7 ± 5.7 29.2 ± 5.5 30.0 ± 4.9 29.4 ± 5.4 0.397

Male sex 29.7% 50.8% 51.9% 64.0% <.001

Race, White 31.9% 35.4% 45.2% 52.0% <.001

Race, African
American

36.2% 29.4% 22.9% 18.5% <.001

Race, Hispanic 31.3% 34.2% 31.4% 28.5% 0.580

Race, Chinese 0.5% 0.9% 0.5% 1.0% 0.873

Smoking, Never 43.6% 44.4% 35.2% 30.0% 0.002

Smoking, Former 48.2% 48.3% 55.2% 62.5% 0.004

Smoking, Current 8.2% 6.6% 9.5% 7.5% 0.656

Any hypertension
medication

43.9% 56.8% 66.2% 69.5% <.001

SBP 122.0 ± 21 122.4 ± 19 126.1 ± 24 125.4 ± 20 0.045

13



DBP 68.4 ± 9.7 68.6 ± 9.4 68.3 ± 11.2 67.7 ± 10.1 0.769

WBC count 5.8 ± 1.7 5.8 ± 1.5 6.4 ± 2.0 6.6 ± 4.1 <.001

Neutrophils count 3.4 ± 1.4 3.4 ± 1.2 3.8 ± 1.5 3.9 ± 1.6 <.001

Monocytes count 0.4 ± 0.2 0.4 ± 0.2 0.5 ± 0.2 0.5 ± 0.2 <.001

Sleep apnea 7.9% 6.9% 7.1% 5.0% 0.703

Insomnia 5.2% 3.9% 3.8% 3.5% 0.745

Data are shown as mean ± SD for continuous variables, and as percentages for categorical
variables. P-values were calculated using one-way ANOVA for continuous variables and
chi-square test of independence for categorical variables. BMI=body mass index (kg/m2);
SBP=seated systolic blood pressure (mmHg); DBP=seated diastolic blood pressure;
WBC=white blood cells. Only the characteristics of the participant included in the
complete-case mediation analysis (n=1110) are reported.
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Fig 1. Results. (A) Actigraphy-measured sleep fragmentation is positively associated with
coronary artery disease risk (Very low = 0 Agatston units, Low = 1-100, High = 101-400, Very
high > 401). Mediation analysis demonstrated a significant association between actigraphy
measured sleep fragmentation and increased absolute neutrophils count, which consequently
predicts higher CAC scores. Thus, the link between fragmented sleep and atherosclerosis risk
is, in part, governed by the impact of fragmented sleep on elevated neutrophils. (B) PSG
measured sleep fragmentation (arousal index in NREM sleep) and the positive association with
coronary artery disease risk. Here again, mediation analysis revealed that the association
between PSG measured sleep fragmentation in NREM and increased absolute neutrophils
count, which in turn, predicts higher CAC scores. Cofactors controlled for in the mediation
models included age, sex, ethnicity, BMI, smoking status, blood pressure, use of
antihypertensive medication, as well as sleep apnea and insomnia diagnosis, described in the
main text.

Supplementary Materials

Supplementary Methods

The Multi-Ethnic Study of Atherosclerosis (MESA) is a multi-center prospective study of
more than 6,000 ethnically diverse men and women aged 45-84 from six communities
in the United States. MESA was designed to investigate the prevalence and
progression of subclinical cardiovascular disease (CVD) as well as to identify CVD risk
factors predicting the development of clinically overt CVD in an ethnically diverse
population 51.

There have been four follow-up exams to date since the initial exam, in the years
2003-2004 (Exam 2), 2004-2005 (Exam 3), 2005-2007 (Exam 4), and 2010-2012 (Exam
5). The MESA 5 Core exam occurred from April 2010 to February 2012, 10 years after
the initial exam. Similar to the prior follow-up exams, Exam 5 collected interval medical
history, anthropometrics, blood pressure readings, fasting venipuncture, spot urine
collection, nutrition and physical activity surveys, smoking history, ankle/arm index,
retinal photography, and ECG. In addition, cardiac MRI was repeated in participants
who underwent cardiac MRI at exam 1, and cognitive function testing was newly
performed in all MESA Exam 5 participants. Randomly selected participants were
invited to participate in the MESA ancillary study (70% of the MESA cohort), which
performed cardiac CT imaging for measurement of CAC and carotid ultrasound for IMT
measurement.

All MESA participants were also invited to participate in the MESA Sleep ancillary study
at MESA Exam 5 (2010-2013). Sleep exams were scheduled to occur after the MESA 5
core exam. The purpose of MESA Sleep was to obtain quantitative measures of sleep
and sleep-disordered breathing (SDB) to better characterize specific sleep traits and
sleep disorders and their CVD risk associations across ethnic groups, as well as to
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determine the association of sleep indices with incident CVD. The sleep protocol
included one night of home polysomnography (PSG), seven consecutive days of wrist
actigraphy (Actiwatch Spectrum, Philips Respironics, Murrysville, PA), and a sleep
questionnaire.

In-home polysomnography (PSG) was performed using the Compumedics Somte
System (Compumedics LTd., Abbostville, Australia. The recording montage consisted
of cortical electroencephalograms (C4-M1, Oz-Cz, and Fz-Cz leads), bilateral EOG,
chin EMG, thoracic and abdominal respiratory inductance plethysmography (by
auto-calibrating inductance bands); airflow (by nasal-oral thermocouple and pressure
recording from a nasal cannula); ECG; leg movements, and finger pulse oximetry. EEG,
EOG, EMG and ECG were all sampled at 256 Hz. Nocturnal recordings were
transmitted to the centralized reading center at Brigham and Women’s Hospital and
data were scored by trained technicians using current guidelines 59,60.

Actigraphy was performed using the Actiwatch Spectrum wrist actigraph (Philips
Respironics, Murrysville, PA) worn on the participant’s non-dominant wrist. Output was
sent to the Sleep Reading Center at Brigham and Women’s Hospital where records
were scored with use of the corresponding sleep diary. Specifically, actigraphy data
were aggregated in 30-second epochs and automatically scored as sleep or wake by a
validated algorithm implemented in the Actiware-Sleep v.5.59 analysis software (Mini
Mitter Co., Inc.), after manually editing the sleep period using sleep diary data and
event and light markers. Two scorers scored MESA actigraphy studies. Intra-scorer
reliability for average sleep duration, sleep efficiency, and WASO were 0.91, 0.97, and
0.91, respectively. Sleep fragmentation was defined as the sum percent mobile epochs
and percent immobile bouts less than 1-minute duration to the number of immobile
bouts, for the given interval. This is also known as the restlessness index or movement
and fragmentation index.

White blood cells (WBC) were assessed in blood samples collected at Exam 5 at a
central laboratory. Blood assays included total WBC count, and leukocyte subsets
(basophils, eosinophils, neutrophils, lymphocytes, and monocytes) were determined as
complete blood count with differential analysis.

Mediation models were adjusted for factors known to affect cardiovascular risk,
specifically age, sex, race/ethnicity, body mass index (BMI; in kg/m2), smoking status,
use of antihypertensive medication, blood pressure as well as medical diagnosis of
sleep apnea and insomnia. Information on doctor-diagnosed sleep apnea/insomnia
was obtained from the sleep questionnaire survey: “Have you been told by a doctor
that you have any of the following:? a) Sleep Apnea (or obstructive sleep apnea, OSA)
b) Insomnia”. Those who answered ‘yes’ were defined as having doctor-diagnosed
sleep apnea and/or insomnia, respectively. Smoking was defined as never, former (no
smoking within the past 30 days), or current. Resting blood pressure was measured

16



three times in the seated position and the average of the second and the third served
as systolic and diastolic blood pressure.

Supplementary Results

Importantly, our analyses were limited by the use of cross-sectional data, and while a
causal mediation framework was used, this precludes a definitive assessment of the
directionality of associations. The rationale for interpreting our findings in the specific
direction of sleep leading to atherosclerosis is twofold. First, the present article was
principally motivated by directionally specific findings in rodents. In those models, the
authors used the causal manipulation of fragmented sleep in otherwise healthy animals
without pre-existing atherosclerosis, which resulted in raised inflammatory blood cell
markers that, in turn, led to the development of atherosclerotic plaques 18. Second, our
analyses focused on CAC, and not cardiovascular disease (CVD), as the outcome
variable. While CAC is one of the most well-established predictors of future
cardiovascular disease, a high CAC score per se is not deterministic of present-state
CVD and/or associated treatments. In the current study, we therefore wanted to test
the experimental hypothesis by looking at CAC relationships in the early inception
stages of CVD (i.e., subclinical atherosclerosis) in an effort to minimize the issue of
reverse causality to a degree.

To empirically address this point in a more direct manner, we conducted mediation
analyses that specifically excluded participants with a history of cardiovascular events,
whilst adjusting for the same covariates that were included in our full cohort analysis.
The main mediation between actigraphy-defined sleep fragmentation, neutrophil
counts and atherosclerosis remained significant when excluding participants with
history of congestive heart failure (𝛽=0.44, 95% CIs=0.03-1.34), peripheral vascular
disease (𝛽=0.41, 95% CIs=0.002-1.26), stroke (𝛽=0.39, 95% CIs=0.03-1.23; and with
trend significance when removing participants with history of myocardial infarction:
𝛽=0.36, 95% CIs=-0.004-1.08). Furthermore, two-sided Welch’s t-test comparing the
actigraphy and PSG sleep fragmentation of participants with or without history of
cardiovascular events yielded no significant differences for any of the outcomes
considered (all p’s > 0.3). Altogether, this set of post-hoc analyses tentatively suggests
that a history of cardiovascular events is a less parsimonious factor driving sleep
fragmentation in this specific cohort. Parenthetically, data has also indicated that
reductions in sleep fragmentation (by means of CPAP treatment in apnea patients) are
associated with decreased atherosclerosis (Drager et al. 2007), suggesting at least a
partial mechanistic and directionally specific role of sleep fragmentation in
atherosclerosis risk.

We also conducted post-hoc analyses to determine whether additional markers of
autonomic arousal during sleep could be associated with increased subclinical
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atherosclerosis via higher counts of neutrophil/monocyte. We specifically focused on
well-established measures of heart rate variability (HRV). After adjusting for the same
covariates that were included in our main mediation analysis, we indeed found that
worse HRV outcomes (reflecting lower parasympathetic tone), both in the time and
frequency domains, were significantly associated with an increase in neutrophil counts,
which in turn predicted a higher CAC score.

First, we found that a lower log-transformed absolute spectral power of all
normal-to-normal (NN) intervals between 0.003 and 0.04 Hz (i.e. very low frequency
power, or VLF), calculated across the entire night of polysomnography-recorded sleep,
predicted a higher CAC score, via an increase in neutrophil counts (n=932, 𝛽=-4.56,
95% CIs=-12.6--0.70). Similarly, a lower percentage of differences between adjacent
NN intervals greater than 10 and 20 ms (pNN10 and pNN20, respectively), calculated
across the entire night of polysomnography-recorded sleep, was significantly
associated with higher CAC, via a raise in neutrophil counts (n=932, pNN10: 𝛽=-0.24,
95% CIs=-0.59--0.05; pNN20: 𝛽=-0.16, 95% CIs=-0.41--0.03).

Decreased VLF power has been associated with higher levels of inflammation and
higher cardiac mortality 61. The pNNx family is a well-known marker of parasympathetic
activity, with higher values being associated with lower cardiovascular disease risk 62.
These additional post-hoc analyses therefore help support the proposal that one
potential pathway through which sleep fragmentation may raise inflammatory-related
white blood cells and thus atherosclerosis risk is autonomic dysfunction. Such data
lead to the testable hypothesis that the measurement of HRV during sleep e.g., by
using wearable photoplethysmography sensors, is sensitive enough to detect this
inflammatory-related increased risk for atherosclerosis.

Finally, to determine whether our main mediation pathways between sleep
fragmentation, neutrophils/monocytes, and atherosclerosis were sex-specific, we
conducted post-hoc analysis specifically for males and females. While not adequately
powered, we did not find any significant mediation effect between sleep fragmentation,
neutrophils/monocytes, and atherosclerosis for either sex when adjusting for all the
covariates (excluding sex). Interestingly, unadjusted models did reveal a significant
mediation in females only between the average actigraphy fragmentation, neutrophil
count, and CAC score (n=595, 𝛽=0.81, 95% CIs=0.13-2.15), suggesting that the
neutrophil-related association between sleep fragmentation and CAC might be
somewhat stronger in females than in males.
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Very low
(CAC = 0)

Low (CAC =
1 - 100)

High (CAC =
101 - 400)

Very high
(CAC > 401)

p

Actigraphy

Fragmentation (%) 18.5 ± 6.2 19.9 ± 6.4 21.0 ± 6.8 21.7 ± 7.4 <.001

Efficiency (%) 90.1 ± 3.4 89.8 ± 3.3 89.4 ± 4.0 89.7 ± 3.8 0.047

Total Sleep Time (min) 393.2 ± 72.1 387.9 ± 78.3 378.0 ± 91.2 402.5 ± 86.2 0.002

WASO (min) 36.4 ± 15.8 37.2 ± 15.6 37.9 ± 17.6 39.3 ± 17.6 0.106

Polysomnography

Total Sleep Time (min) 371.5 ± 80.2 367.3 ± 81.0 340.4 ± 80.2 360.8 ± 77.7 <.001

Sleep Efficiency (%) 78.0 ± 13.2 76.8 ± 12.6 72.5 ± 14.5 74.7 ± 13.2 <.001

N1 sleep (%) 12.5 ± 8.4 14.1 ± 8.1 15.1 ± 9.6 17.5 ± 10.4 <.001

N2 sleep (%) 57.3 ± 10.0 56.9 ± 9.8 57.6 ± 10.9 58.4 ± 10.5 0.289

N3 sleep (%) 11.3 ± 9.2 10.0 ± 8.8 10.2 ± 9.7 7.6 ± 7.7 <.001

REM sleep (%) 18.9 ± 6.6 19.0 ± 6.6 17.0 ± 6.9 16.5 ± 6.5 <.001

WASO (min 82.5 ± 62.5 92.1 ± 60.6 109.1 ± 74.9 104.0 ± 66.1 <.001

AI (all) 20.2 ± 11.2 21.9 ± 11.6 23.3 ± 12.6 24.5 ± 12.5 <.001

AI (REM) 17.0 ± 11.2 18.0 ± 11.8 17.9 ± 12.7 17.4 ± 11.7 0.580

AI (NREM) 20.8 ± 12.0 22.7 ± 12.3 24.3 ± 13.4 25.8 ± 13.5 <.001

AHI 20.0 ± 17.4 24.5 ± 20.3 25.3 ± 19.0 26.8 ± 19.4 <.001
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REM latency 105.7 ± 72.9 103.8 ± 74.7 119.1 ± 82.8 110.4 ± 76.2 0.039

S1 Table. Participants sleep parameters by atherosclerosis severity (CAC category). Data
are shown as mean ± SD. P-values were calculated using one-way ANOVA for continuous
variables and chi-square test of independence for categorical variables. WASO = wake after
sleep onset (min); AI = arousal index (number of events per hour); AHI = All Apneas +
Hypopneas With >=3% Desat Or Arousal - Index (AHI). Statistical significance, p-value < 0.05.

Supplementary Figure 1. Distribution (kernel density estimation) plots of the main variables.
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Supplementary Figure 2. Bivariate regression plots.
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Chapter 2. Counting Z’s and calories: Unique features of sleep
predict different profiles of dyslipidemia

Introduction

More humans die of heart disease than any other single disease cause 1. Currently,
cardiovascular disease (ischemic heart disease and stroke) is responsible for more than
1 out of every 4 deaths in the world, claiming over 14 million lives annually 1–3. In the
United States alone, the annual associated cost of cardiovascular disease is estimated
to be $320 billion 63.

What accounts for heart disease? To date, numerous factors, including impaired lipid
profile, hypertension, diabetes mellitus, physical inactivity, unhealthy diet, smoking,
and abdominal obesity, have been recognized as associations with, many of them
causally, heart disease 64. One common central pathway through which such factors
contribute to heart disease is lipid dysregulation, including high triglyceride
concentration, as well as the imbalance of high-density lipoproteins (HDL), low-density
lipoproteins (LDL), and very low-density lipoproteins (VLDL). Specifically, high levels of
VLDL and LDL, are causally associated with increased build-up of plaque in the
arteries. The composition of VLDL in particular is majorly triglycerides. Therefore, an
increase in VLDL levels can signal excessive levels of triglycerides being transported
from the liver to tissues around the body, which in turn is related to both increased
inflammation and atherosclerosis.

Triglycerides are a type of fat (lipid) in the blood. When an individual eats, any calories
not needed are converted to triglycerides. Therefore, assessing triglyceride levels offers
critical insight into an individual’s lipid metabolism. Triglyceride levels themselves can
be measured in a fasted state and/or postprandially (after a meal). Fasted triglyceride
levels and postprandial triglyceride levels each represent a different aspect of lipid
regulation, and when impaired, dyslipidemia 16,65. One metric of the homeostatic
regulatory state of an individual's lipid metabolism is their fasted triglyceride levels.
Moreover, triglyceride levels when fasted have long been predictors of cardiovascular
disease, including nonfatal myocardial infarction, nonfatal ischemic stroke, coronary
revascularization, and cardiovascular death. However, the responsivity of the body
regarding raised levels of triglyceride in response to standardized food challenges
provides a distinctly different metric, one that evaluates the dynamic allostatic ability of
an individual's metabolic system to manage lipid levels. Indeed, this measure of
allostatic management measures is an even stronger predictor of cardiovascular events
(nonfatal myocardial infarction, nonfatal ischemic stroke, coronary revascularization, or
cardiovascular death), than fasted triglycerides.
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Beyond classical factors linked to cardiovascular disease, such as diabetes mellitus,
physical inactivity, unhealthy diet, smoking, and abdominal obesity 66,67, a more recent
disease-related role has been identified for sleep. Experimental studies in humans and
animals have begun to suggest that poor sleep predicts cardiovascular disease,
including emerging links with lipid metabolism. For example, in humans, short sleep
duration and the condition of obstructive sleep apnea, are both associated with
increased dyslipidemia and impaired lipid metabolism. Specifically, short sleep
duration is associated with high triglycerides and low HDL 14,15. Similarly, the presence
of obstructive sleep apnea is associated with increased total triglycerides, low HDL,
high LDL, and high total cholesterol 14,15. However, experimental studies to date have
examined sleep across just one night of sleep and averaged cross-sectionally. While
having many merits, such studies understandably fail to capture the real-world fact that
sleep differs markedly across individuals, and even within an individual, there are
marked differences in sleep duration, timing, efficiency, and consistency from night to
the next. Micro-longitudinal studies employing multiple nights of sleep data for each
individual provide one solution to addressing both of these current limitations, allowing
for the ability to test distinctly different hypotheses from those evaluated to date.

Another key barrier to a deeper characterization of the associations between sleep and
lipid metabolism in humans has been the logistical difficulty of controlling for multiple
known risk factors for dyslipidemia in small cohorts. These include disambiguating the
effects of genetic influences on cardiovascular risk, carefully quantifying and tracking,
day-to-day, what an individual eats, and when they eat it across the 24-hour circadian
clock face, all of which have known impacts on lipid management 68–70.

Another methodical challenge to more accurately understand the relationship between
sleep and triglyceride metabolism is that both sleep and triglyceride regulation
themselves are multifaceted, and can be characterized in numerous ways. Broadly, four
macro pillars of sleep, that each represent a unique asleep of sleep, are: sleep duration,
sleep timing, sleep consistency, and sleep efficiency. Currently, the specificity with
which each of these fundamental sleep factors is associated with triglyceride
metabolism, either fasted or postprandially, remains unknown. Regarding triglyceride
metabolism, different mechanisms underlie the regulation, and clinical implications, of
fasted versus postprandial triglycerides. Raised levels of fasted triglycerides represent
impaired homeostatic regulation of triglyceride levels, whereas raised levels of
postprandial triglycerides represent an allostatic impairment in metabolizing post-meal
triglyceride levels from the bloodstream. The association of sleep with the homeostatic
versus allostatic regulation of triglycerides remains unknown.

Addressing the above gaps in the literature, this study untangles the complex
relationship between each of the fundamental pillars of sleep (sleep duration, sleep
timing, sleep consistency, and sleep efficiency) with triglyceride metabolism, in a highly
controlled context. First, the dataset includes non-twins, as well as a significant
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percentage of identical and fraternal twins, allowing to control for the influence of
genetic makeup on lipid metabolism. Second, this is the first such large-scale study in
a cohort that includes 10-14 nights of sleep data per individual, carefully defined
standardized meal composition, meal context (e.g. exercise, sleep, meal ordering, time
of day), with fasted and postprandial measurements at multiple timepoints. Finally, the
sleep-related measures derived themselves are more robust and accurate than those
employed in traditional studies, as they utilize multiple nights of data.

Specifically, and based on previous work, this study tests three key predictions. First,
sleeping at a later time is associated with the homeostatic dysregulation of fasted
triglyceride levels. Second, lower sleep efficiency predicts the allostatic dysregulation
of post-meal triglyceride levels. Third, a shorter sleep duration is associated with higher
triglyceride levels in both the fasted and postprandial states. Further, all these
sleep-related associations hold true for VLDL cholesterol (high in triglyceride
composition), and remain robust after accounting for risk factors known to influence
lipid metabolism.

Results

Sleep and Homeostatic Lipid Regulation

Analyses first tested the prediction that the apriori feature of later sleep timing, and a
shorter sleep duration, are associated with elevated (worse) total triglyceride levels
under the fasted state, more reflective of the current lipid homeostatic condition of the
body. Supporting the hypothesis, later sleep timing significantly predicted higher
fasting total triglyceride levels (composed of a glycerol backbone esterified with three
fatty acids) in Cohort 1. That is, participants with a later average sleep timing (indexed
by sleep midpoint) displayed significantly elevated total triglycerides levels in the fasted
state, most reflective of current homeostatic status, absent a food provocation (n =
959, p < 0.001, r = 0.11; Figure 3A). Also consistent with the experimental hypothesis,
neither sleep efficiency nor sleep consistency were associated with fasting
triglycerides.

However, contrary to the hypothesis, and prior single night sleep measure
cross-sectional data 71, sleep duration did not predict fasting total triglyceride levels.
Expounding in the Discussion, one possible explanation is that the current data reflect
the first longitudinal study with repeated sleep measurements to quantity an
individual’s sleep signature robustly, or at least, in a way that single, one-time sleep
assessments are less sensitive to. This, plus the fact that the current study controls for
the other sleep-related cofactors in the same a priori analysis (i.e., controlled for sleep
timing, sleep efficiency, and sleep consistency.)
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Taken together, these results suggest a statistically independent contribution of sleep
midpoint to fasting triglyceride levels and do so separately from previously recognized
risk factors known to influence fasting triglyceride levels.

These first analyses establish the longitudinal within-person relationships between late
sleep timing and fasted triglyceride levels. However, multiple other factors have been
identified that influence lipid metabolism, including age, sex, race, body mass index
(BMI), education, smoking, physical activity, and even the sleep features identified here
(sleep duration, sleep efficiency, sleep timing, and sleep consistency). A next series of
analyses therefore sought to factor in all these covariates and test whether or not the
original associations were robust and remained significant, performed using a
multilevel regression model fitted to adjust for all these known co-risk factors, including
the sleep factors themselves.

With all factors included in the analysis model (age, sex, race, body mass index (BMI),
education, smoking, physical activity, family ID as a random effect, sleep duration,
sleep efficiency, and sleep consistency), the relationship between sleep timing and
fasting triglycerides remained significant (β = 0.05, p = 0.045).

Having determined that the timing of each individual’s sleep phase (midpoint index) is
associated with their own respective basal lipid status (fasted) in the first cohort, the
next set of analyses sought to determine whether or not this association replicates in
the second independent cohort (PREDICT2), using the same methodological approach.
Here in Cohort 2, a later timing of an individual’s sleep was again associated with
higher fasted basal levels of triglycerides, representing their current homeostatic lipid
state. As with Cohort 1, this association remained robust after adjusting for age, sex,
race, BMI, education, smoking, physical activity, and the three remaining sleep factors
(sleep duration, sleep efficiency, and sleep consistency), also noted in Cohort 1 (β =
0.04, p= 0.011). Thus, across two independent cohorts, later sleep timing statistically
and significantly predicted progressively elevated levels of fasting triglyceride levels.
Importantly, this association (fitting the body’s homeostatic lipid status) was
independent of how much that individual sleeps, the efficiency of their sleep, as well as
the night-to-night consistency of their sleep. That is, sleep timing is unique in this
regard.

Sleep and Allostatic Lipid Regulation

The former analysis established an association between sleep that is timed later into
the night and fasted triglycerides, more reflective of the stable basal, or homeostatic,
state of circulating lipids. The next series of analyses explored an orthogonal
experimental hypothesis. Specifically, unique sleep features predicted one’s metabolic
ability to dynamically manage a standardized food bolus provocation, representing an
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allostatic triglyceride challenge or provocation i.e., the ability to appropriately regulate
the shift out of lipid homeostasis caused by food intake, resulting in an allostatic load
to be managed (assessed using postprandial circulating blood measures of
triglycerides levels unfolding across several hours). Analyses focused on the a priori
(see introduction) target of sleep quality.

Here, analyses tested the hypothesis that worse sleep efficiency predicted significantly
elevated post-meal provocation levels of total triglycerides. Importantly, given that
fasting and postprandial triglyceride levels are often correlated, all postprandial values
(T=6 hours) were adjusted for each individual’s baseline triglyceride values in the fasted
state, thus resulting in a person-normalized relative change in lipid allostasis. In
accordance with the experimental hypothesis, decreased sleep efficiency predicted
greater elevated (baseline-adjusted) postprandial triglyceride levels in Cohort 1
(PREDICT1; r = -0.065, p = 0.059, n = 842; Figure 3B). That is, lower sleep efficiency
appears to be a biomarker for impaired allostatic regulation of postprandial triglyceride
levels.

Importantly, and similar to the previous association between sleep timing and fasted
total triglycerides, this sleep efficiency--postprandial total triglycerides association
remained robust after accounting for the aforementioned risk factors (age, sex, race,
BMI, education, smoking, physical activity, sleep timing, sleep duration, and sleep
consistency) (β = -1.47, p = 0.049). Thus, the efficiency with which an individual
maintains sleep is reliably associated with the body’s ability to manage triglyceride
levels following a food provocation, above and beyond the influence of sleep timing,
sleep duration, sleep consistency, age, sex, race, BMI, education, smoking, and
physical activity. However, and contrary to the experimental hypothesis, the duration
(rather than efficiency) of an individual sleep was not similarly predictive of postprandial
triglyceride levels. Therefore, when assessed in a longitudinal within subjects, the
qualitative measure of sleep efficiency, rather than the quantity of sleep, was correlated
to the individual’s capacity to manage an allostatic load caused by a standardized food
challenge.

Collectively, these results suggest a double dissociation in which the sleep timing of
one’s sleep on the 24-hour clockface most accurately predicts the metabolic state of
lipid homeostasis (fasted), while the qualitative metric of sleep efficiency is, in contrast,
related to how the body manages triglyceride levels after a meal that is more reflective
of allostatic lipid regulation.

Lipid Homeostasis vs. Allostasis: Double Dissociation

The hydrolysis of multiple types of triglyceride-rich lipoproteins can each result in an
atherogenic profile 72,73. Specifically, increased levels of triglyceride-rich lipoproteins are
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a strong predictor of future atherosclerotic cardiovascular disease 73. Of these
lipoproteins, very low-density lipoprotein (VLDL) in specific, is a cholesterol-related
metabolite that is high in triglyceride composition, and therefore a key candidate for
reflecting the same specificity of sleep features with the homeostatic versus allostatic
regulation of triglyceride metabolism. Therefore, having established a double
dissociation for specific features and triglyceride regulation, the next set of analyses
tested the prediction that VLDL cholesterol would specifically reflect this same double
dissociation of sleep timing versus sleep efficiency.

Concordant with the earlier results, later sleep timing predicted worse VLDL cholesterol
(r = 0.10, n = 906, p = 0.002; Figure 3C) in Cohort 1. Importantly, this association
remained robust when accounting for risk factors known to influence fasted VLDL
outcomes - specifically, age, sex, race, BMI, education, smoking, physical activity,
sleep duration, sleep efficiency, and sleep consistency (β = 0.02, p = 0.017). Therefore,
more than the efficiency of an individual’s sleep, or the amount of sleep they obtain, or
also the regularity of their sleep, instead, it is the timing of an individual's sleep on the
24-hour clockface that is most associated with the fasted lipid state, specifically basal,
unfed levels of circulating VLDL cholesterol. However, these data do not address how
the four main a priori sleep factors (timing, quantity, efficiency, regularity) are linked to
lipid particle profiles in response to the allostatic challenge of a standardized meal,
which the next series of analyses address.

Specifically, having assessed fasted lipid particle levels, more indicative of an
individual’s homeostatic lipid status, the next set series of analyses sought to test the
hypothesized sleep association between postprandial triglyceride level following the
standardized food meal provocate, evaluating an individual’s allostatic response-ability.
Congruent with the experimental hypothesis, it was the worsening quality of an
individual's sleep, as measured by sleep efficiency that predicted a higher rise in
Cohort 1 (r = -0.07, n = 828, p = 0.04; Figure 3D). Of note, this association remained
statistically significant (β = -0.20, p = 0.034) after accounting for the aforementioned
risk factors (age, sex, race, BMI, education, smoking, physical activity, and even sleep
factors themselves (sleep timing and sleep duration) known to influence postprandial
VLDL outcomes. Therefore, a lower quality (efficiency) of sleep that an individual has
been suffering predicts higher postprandial VLDL levels in response to a standard food
challenge, reflecting a less capable ability to manage an allostatic load. Moreover,
sleep efficiency expresses this significant association beyond the influence of
traditional cardiac risk factors, as well as other sleep factors previously linked with
dyslipidemia. Taken together, these results further support a double dissociation
framework such that later sleep timing impairs metabolic lipid (especially triglyceride,
fasted) homeostasis, whereas lower sleep efficiency blunts meal-reactive allostasis.

LDL is a principal carrier of cholesterol in the bloodstream, and therefore atherogenic, it
has traditionally been a key target in lipid-lowering therapies 74,75. HDL, also a carrier of
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cholesterol, helps remove cholesterol from the bloodstream and is associated with a
reduced risk of cardiovascular disease 76. Recently, increasing epidemiological
evidence suggests that triglyceride-rich lipoproteins such as VLDL are strong,
independent predictors of atherosclerotic cardiovascular disease 73. Reflecting that
VLDL is majorly a carrier of triglycerides, in Cohort 1, the levels of total triglycerides
and VLDL cholesterol were highly correlated in both the fasted state (r = 0.76, p <
0.001; Supplementary Figure 2A) and postprandial state (r = 0.66, p < 0.001;
Supplementary Figure 2B). Importantly, in the current cohort, and in contrast to VLDL,
measures of LDL were not significantly associated with any of the four sleep measures,
either in the fasted or postprandial state. This suggests a specificity of the
interrelationship between sleep and homeostatic, as well as allostatic, lipid metabolism.
Specifically, the sleep associations appear to be specific to fat-related lipid pathways
(reflected in the relationships with VLDL), rather than cholesterol-related lipid pathways
(reflected in the relationships with LDL), something we return to in the Discussion.
Notably, increased sleep efficiency (but not sleep duration, timing, or consistency) was
associated with higher HDL cholesterol in the fasted state (β = 0.57, p = 0.028),
whereas increased sleep consistency (but not sleep duration, timing, or efficiency)
predicted improved (higher) HDL cholesterol in the postprandial state (β = 0.02, p =
0.034). This suggests that different mechanisms of sleep regulate reducing
atherosclerotic burden (as measured by VLDL cholesterol) versus increasing
atheroprotective reserve (as measured by HDL cholesterol).
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Figure 3: A double dissociation in Cohort 1. A) A later sleep timing was significantly associated with
higher total triglycerides in the fasted state. B) Independently, higher sleep efficiency predicted an
increased baseline-adjusted rise in postprandial total triglycerides. C) A later sleep timing was
significantly associated with higher VLDL cholesterol in the fasted state. D) Independently, higher sleep
efficiency predicted an increased baseline-adjusted rise in postprandial VLDL cholesterol. Translucent
bars represent 95% bootstrapped confidence intervals.

Inflammation Mediation

Recent studies have shown that shorter sleep duration, later sleep timing, and irregular
sleep are all predictors of increased inflammation 77. However, it remains unknown if
sleep timing-dependent inflammation further contributes to triglyceride-related
hyperlipidemia. The final series of analyses sought to test the hypothesis that the
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above-reported association between sleep timing and fasted triglyceride levels is
mediated by increased inflammation (using the composite systemic inflammation
biomarker, glycoprotein acetylation; GlycA), offering insight into a potential mechanistic
pathway.

First, and in Cohort 1, later sleep timing predicted increased inflammatory levels of
GlycA (r = 0.13, p < 0.001; Supplementary Figure 3). This relationship remained
significant when other sleep features (duration, consistency, and efficiency), as well as
the aforementioned covariates (age, sex, race, BMI, education, smoking, and physical
activity), were controlled for (β = 0.01, p = 0.007). Second, increased inflammation
status was significantly associated with higher (worse) fasting triglyceride levels - an
association that also remained robust after controlling for the above covariates (age,
sex, race, BMI, education, smoking, physical activity, sleep duration, sleep
consistency, and sleep efficiency (β = 2.98, p < 0.001). Finally, and consistent with the
experimental interaction-path hypothesis the relationship between an individual’s later
sleep timing and higher next-day fasted triglycerides was not simply direct, but also
indirectly mediated through higher inflammation, which in turn, significantly predicted a
higher fasting triglycerides state within the body (n = 816, 𝛽 = 0.03, 95% CIs =
-0.01-0.06, p = 0.008; Figure 4A).

To assess the replicability of this mediation, the same analysis was conducted in
Cohort 2. Here again, the relationship between later sleep timing and higher fasted
triglyceride status was indirectly mediated through higher inflammation (n = 816, 𝛽 =
0.03, 95% CIs = -0.01-0.06, p = 0.008; Figure 4B), which was significantly associated
with higher fasting triglycerides state within the body. The mediation in Cohort 2
similarly remained significant after controlling for the aforementioned risk factors (age,
sex, race, body mass index (BMI), education, smoking, physical activity, family ID as a
random effect, sleep duration, sleep efficiency, and sleep consistency; 𝛽 = 0.02, 95%
CIs = 0.00-0.04, p = 0.026; Figure 4B).

Figure 4: Later sleep timing predicts higher fasted triglycerides (TGs) via an indirect, mediating
effect of inflammation, as measured by glycoprotein acetylation (GlycA). A) Fully adjusted regression
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model for Cohort 1 (the PREDICT1 dataset.) B) Fully adjusted regression model for Cohort 2 (the
PREDICT2 dataset.)

Discussion

Together, these data support a novel sleeping-brain-triglycerides metabolism
framework, suggesting that selective and specific sleep features are related to unique
and different homeostatic and allostatic markers of dyslipidemia, and were replicated in
two independent cohorts. Specifically, the later an individual’s timing of sleep, the
greater the fasted total triglyceride levels, the more indicative of basal, homeostatic
lipid state. In contrast, the lower the quality of an individual’s sleep, notably the
efficiency of sleep, the worse the allostatic capability to clear lipids from the
bloodstream following a food challenge, resulting in higher levels of postprandial
triglycerides. Finally, aspects of the relationship between sleep and hyperlipidemia
were, in part, mediated by sleep-associated increases in systemic inflammation.

Sleep and Homeostatic Lipid Regulation

Later timing of sleep was associated with significantly greater fasted total triglyceride
levels, yet there was no such sleep-timing relationship with the allostatic lipid
postprandial response following a standardized food provocation. Later timing of sleep
has been linked to a variety of factors, most notably a late chronotype (‘night owls’, or
‘evening types’). Although causal mechanisms between being a late chronotype and ill
health are not well understood, being a late chronotype is associated with higher BMI,
worse metabolism, and unhealthier eating habits 78,79. Specifically, late chronotypes are
likely to have increased difficulty falling asleep on time, circadian misalignment, more
likely to skip breakfast, have increased late-evening food consumption, and poorer
quality diet (higher consumption of processed and ultra-processed foods) 78–80.
Regarding food intake, later chronotypes tend to distribute a higher proportion of
macronutrient content later in the day which in turn, is related to worse metabolic
health 81 even after controlling for total calories and macronutrient composition; 81.
Additionally, late chronotypes are more insulin resistant, such that their bodies both 1)
require more insulin than early chronotypes to lower glucose levels, and 2) their bodies
favor carbohydrates as an energy source, over fats 82. Taken together, these findings
suggest that later chronotypes may have chronic circadian misalignment, which in turn
is associated with impaired homeostatic lipid metabolism 83. One parsimonious
explanation of the current findings linking later sleep timing and hyperlipidemia is that
later schedules promote frequently eating more, and more unhealthy foods, at a later
phase of the 24-hour circadian clock, which is a time linked to worse metabolic
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regulation of both glucose and lipids. If causal manipulations support this thesis it
would suggest that therapeutic interventions aimed at shifting bedtimes earlier would
meaningfully augment superior management of lipids across individuals with such later
sleep timing.

Interestingly, and rejecting the hypothesis prediction, the total amount of sleep an
individual obtained (rather than how that sleep was timed), did not predict fasted levels
of triglyceride. Previous findings have described a relationship between sleep quantity
and worse lipid metabolism 84,85, or self-reported sleep quality. Of possible explanatory
relevance, these studies were all cross-sectional. However, within individuals, from one
night to the next, sleep varies non-trivially 86 including the quantity, efficiency,
physiology EEG quality, consistency, and timing. To the best of our knowledge, the
current study is the first to utilize a micro-longitudinal design, allowing the
characterization of individual-specific features of sleep across numerous nights, rather
than a single-night snapshot (with both approaches being meaningful). This dissonance
in results highlights the importance of a micro-longitudinal study design with multiple
nights of sleep data to accurately represent an individual’s sleep. Additionally, this is
the first study to control for the influence of other fundamental sleep factors (sleep
timing, sleep efficiency, sleep consistency) on triglyceride regulation. One explanation
of these differences is that associations observed in prior studies linking sleep duration
to triglyceride metabolism did not include other related sleep factors, namely sleep
timing (for fasted triglycerides) and sleep efficiency (for postprandial triglycerides) into
the statistical models, and if included, sleep duration would no longer remain
significant. Importantly, these results suggest that in the fasted state, the influence of
sleep timing is beyond, and statistically independent of, that of sleep duration.
Conversely, in the postprandial state, the influence of sleep efficiency is greater than
that of sleep duration. One potential interpretation of this is that sleeping later primarily
impairs triglyceride homeostasis through a pathway of increasing insulin resistance
(and thereby dysregulating triglyceride clearance 87, whereas fragmented sleep causally
increases oxidative stress and sympathetic overactivity 88, which in turn delays
post-meal triglyceride clearance. This suggests that different features of sleep, at least
partially, independently regulate different aspects of triglyceride metabolism through
different mechanistic pathways.

Third, and returning to sleep timing and the homeostatic fasted lipid status, the later
that an individual’s sleep occurred into the night, the higher their daytime VLDL
cholesterol. Given that VLDL is primarily a carrier of triglycerides, in which higher levels
are associated with worse cardiovascular outcomes, the signature of increased
circulating VLDL levels reflects a lowered ability of the body to clear and thus manage
triglyceride lipid metabolism. Regarding sleep, one mechanistic pathway that could
explain the result of the current study concerns insulin. Specifically, the recognized
impact of later sleep in reducing the body’s sensitivity to insulin (i.e., insulin resistance,
which in turn, results in known overproduction of VLDL, and dysregulation of VLDL
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synthesis and clearance 87. If demonstrated, such a link would impress the relevance of
clinically inquiring or measuring) the timing of sleep in patients with diabetic
dyslipidemia. Should the sleep be of a later timed profile, therapeutically targeting early
sleep schedules may aid in clinically significant improvements in atherogenic lipid and
lipoprotein abnormalities, both of which are metabolically interrelated and emerge from
VLDL overproduction 87. That is, for optimal homeostatic lipid status, the timed
decision to terminate the waking period and initiate earlier sleep is less about
demarkating the end of the prior day, but instead, represents a metabolic influence that
begins the next day.

Sleep and Allostatic Lipid Regulation

The association of later sleep timing and increased total triglyceride levels was
exclusive to the fasted state, reflecting the (unfed) basal homeostatic lipid state. Yet
when an individual was then metabolically challenged with a standardized meal probe
(providing an allostatic lipid load that the body must dynamically manage), sleep again
was significantly linked with postprandial triglyceride levels. However, the feature of
sleep associated with this allostatic lipid regulation was not timing. Instead, the quality
of their sleep (reflected in the efficiency of sleep) was linked to the allostatic,
postprandial capability of an individual to clear triglycerides from the bloodstream
associated with food intake. Prior animal models have established that factors causing
lower sleep efficiency will prolong the clearance of triglycerides from the bloodstream,
postprandially, suggesting a sleep-efficiency—metabolic-inefficiency pathway 88.
Moreover, this pathway is mechanistically explained, in part, by the impact of worse
sleep efficiency on increased oxidative stress, which accelerates the progression of
dyslipidemia 88. Given that elevated postprandial triglycerides are a stronger predictor
of future cardiovascular disease than fasted triglycerides, our results suggest focusing
on sleep interventions that improve sleep efficiency, and continued emphasis on CPAP
treatments in sleep apnea patients, to improve allostatic lipid metabolism, and reduce
preventable cardiovascular mortality. Previous studies assessing associations between
subjective reports of sleep quality and postprandial triglycerides in humans have not
found robust associations 89. Our results suggest that multiple nights, and the objective
assessment of sleep efficiency, are more sensitive prognostic tools for predicting
postprandial triglyceride values, than a single night, or subjective sleep of quality data.

Lipid Homeostasis vs. Allostasis: Double Dissociation

Importantly, the absence of a significant association of postprandial triglyceride levels
with sleep timing highlights that different features of sleep specifically govern the
mechanism of homeostatic regulation of triglycerides in the fasted state, versus the
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allostatic regulation of triglycerides in the postprandial state. Specifically, there exists a
double dissociation, such that when an individual sleeps is associated with the
homeostatic process of downstream regulation of triglyceride metabolism, whereas
sleep efficiency is specifically associated with the allostatic process of regulating
postprandial triglyceride metabolism. That is; different features of sleep govern different
regulatory mechanisms of triglyceride metabolism, such that sleeping later impairs the
usage of triglycerides to be mobilized for energy, whereas low sleep efficiency
influences the transport and storage of triglycerides. Notably, the association between
sleep timing--homeostatic lipid metabolism, and sleep efficiency--allostatic lipid
metabolism, was specific to measures of triglyceride-rich lipoprotein (VLDL cholesterol)
and not LDL or HDL cholesterol. This suggests that the pathway by which sleep helps
regulate lipid metabolism is: 1) specific to triglycerides (not cholesterol or proteins), and
2) by way of reducing atherosclerotic burden, rather than increasing atheroprotective
reserve. Of clinical relevance, this double dissociation helps reinform public health
sleep-related guidelines to mitigate dyslipidemia and reduce the mortality and
economic burden of cardiovascular disease. Specifically, these findings support
steering the emphasis of public health guidelines away from increasing sleep duration,
to interventions focused on earlier sleep timing to lower fasted triglyceride outcomes,
and increasing sleep efficiency to improve the postprandial clearance of triglycerides
from the bloodstream.

Critically, and of clinical relevance, these associations remained significant when
controlling for key risk factors that themselves influence lipid metabolism - age, sex,
race, BMI, education, smoking, physical activity, genetic influence (family ID), and even
other sleep measures themselves, such as sleep duration, and sleep consistency. That
is, the association between the late timing of sleep and impaired homeostatic
regulation of increased fasted triglycerides is independent of other co-factors known to
influence fasted triglyceride levels. Moreover, the influence of sleep efficiency on
allostatic postprandial triglyceride regulation is statistically independent of risk factors
already known to influence lipid metabolism. These findings establish the measure of
sleep timing as a biomarker of the homeostatic regulation of triglycerides, and
independently, sleep efficiency as a biomarker of the allostatic regulation of
triglycerides. Notably, these associations were validated in an independent, larger
replication dataset, suggesting that the effects are less likely to be driven by single
cohort-specific idiosyncrasies. Rather, these replications offer increased support and
robustness to the framework of sleep timing and sleep efficiency as biomarkers of
metabolic homeostatic versus allostatic regulation of triglyceride levels.

Inflammation Mediation

Impaired sleep is robustly associated with inflammation 11,90,91. Independent of sleep,
increased inflammation has been associated with impaired triglyceride levels 92.
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However, that sleep dysregulation-related hyperlipidemia is in part, explained through
the intermediary influence on inflammation has yet to be investigated or reported. This
previously unexamined link, which we show exists in the current study, is important.
Specifically, it would suggest that there is at least one potential new therapeutic
target—reducing sleep-impairment-related inflammation—that could potentially
mitigate some of the harm that an individual's dysregulated sleep is causing to their
dislipidemia state. Pharmacological methods for blunting or suppressing the
inflammatory response are well known, and many are largely safe and may represent
an easier first intervention target than the (still required and important) goal of
optimizing sleep (using methods such as cognitive behavioral therapy for insomnia.

Importantly, the current study needs to be understood within the context of numerous
limitations. First, this prospective longitudinal study is simply associational, and thus
cannot determine causality. The causal mechanisms by which sleep timing impacts the
homeostatic regulation of triglycerides, and by which sleep efficiency regulates the
allostatic metabolism of triglycerides, need further exploration. Yet, this study does
utilize a micro-longitudinal design in a highly controlled setting, and allows critical
insight into the association of specific sleep features with unique aspects of lipid
metabolism. These findings motivate the design of longitudinal studies capable of
testing bidirectional causality. For instance, interventions of sleep timings and sleep
fragmentation to alter the homeostatic versus allostatic metabolism of triglycerides;
and conversely, altering meal nutritional content and timing to potentially alter sleep
factors, would help test the double dissociation framework suggested by these results.
Additionally, the sleep assessments from this study are accelerometer-based. Future
studies using polysomnography would help gain a deeper understanding of the neural
underpinnings of triglyceride regulation, at the level of brainwave activity across the
duration of sleep. Additionally, this study lacks insight into triglyceride metabolism
across the day. Future studies assessing the relationship between these same sleep
features and meals later in the day would provide valuable insight into the allostatic
regulation of postprandial triglycerides measured across the day.

Methods

Study population and experimental design

Cohort 1: PREDICT1 study

The hypotheses were first tested in cohort 1, which was the Personalized Responses to
Dietary Composition Trial 1 (or “PREDICT 1”). The PREDICT studies are registered
clinical trials designed to quantify and predict individual variations in postprandial
responses to standardized meals in a real-world setting, while also testing the impact
of lifestyle factors such as sleep and physical activity. The PREDICT1 study is a
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single-arm, single-blind micro-longitudinal intervention study, the methodology of
which (described below) affords the ability to characterize glucose, insulin, lipid, and
added postprandial responses to foods based on individual-specific characteristics,
including molecular biomarkers, nutritional composition of the food and lifestyle
factors. The official start and end dates for the study were 5 June 2018 and 8 May
2019, respectively. The first participant was enrolled on 4 August 2018 and the last
clinical visit was completed on 24 April 2019, with the primary cohort based at King’s
College London in the UK and a second cohort (that underwent the same profiling as in
the UK) assessed at Massachusetts General Hospital in Boston, MA, USA. In the UK
subset, participants (target enrollment, 1,000 participants) were recruited from the
TwinsUK cohort, a prospective cohort study, and online advertising. In the USA,
participants (target enrollment, 100 participants) were recruited through online
advertising and research participant databases. Of the 1041 total participants, a total of
969 individuals had robust quality sleep actigraphy data and fasting and postprandial
lipid profile measurements. Within this dataset, 60% of the participants were fraternal
and/or identical twins. The written informed consent and ethical committee approvals
covered all analyses reported in the current study in addition to the key primary
outcomes described in 93.

The trial was registered on ClinicalTrials.gov (registration number: NCT03479866, first
posted on March 27, 2018) as part of the registration for the PREDICT program of
research, which also includes two other study protocol cohorts. The trial was run in
accordance with the Declaration of Helsinki and Good Clinical Practice. The study was
approved in the UK by the Research Ethics Committee and Integrated Application
System (IRAS 236407) and in the US by the Institutional Review Board of Partners
Healthcare (Protocol # 2018P002078). Participants did not receive financial
compensation for taking part in the study.

Study participants were healthy individuals aged 18–65 years who were able to provide
written informed consent. Exclusion criteria included ongoing inflammatory disease;
cancer in the last three years (excluding skin cancer); long-term gastrointestinal
disorders including irritable bowel disease or Celiac disease (gluten allergy), but not
including irritable bowel syndrome; taking immunosuppressants or antibiotics as daily
medication within the last three months; capillary glucose level of >12 mmol l–1 (or
216 mg dl–1), or type 1 diabetes mellitus, or taking medication for type 2 diabetes
mellitus; currently experiencing acute clinically diagnosed depression; heart attack
(myocardial infarction) or stroke in the last 6 months; pregnant; and vegan or
experiencing an eating disorder or unwilling to consume foods that are part of the
study 93.
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Replication cohort: PREDICT2 study

The PREDICT2 study, with 928 participants, is a single-arm mechanistic
micro-longitudinal intervention study that aimed to further understand lipid responses
to dietary intake as well as their modulation by meal sequence and time of day. The
trial was registered on ClinicalTrials.gov (NCT03983733, first posted in June 2019), with
data collected between June 2019 and March 2021. The study design is roughly similar
to the PREDICT1 study. The full description of the study is available on
ClinicalTrials.gov. For this particular study, only the fasting lipid profile measurements
were available.

The experimental protocol of the PREDICT1 and PREDICT2 studies is very similar
(Figure 1), and included a baseline day with comprehensive metabolic profiling,
followed by a 14-day home phase during which participants wore a wrist-watch
actigraphy to measure their sleep/wake patterns. Demographics and descriptive
statistics of the two cohorts are reported in Table 1. Of note, participants in the
replication cohort were significantly younger, with higher BMI, education, and levels of
physical activity.

Figure 1: Study design.
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Table 1: Participants’ characteristics

Metric PREDICT1 PREDICT2 p

No. of participants n=1041 n=928

Twin status 460 MZ / 170 DZ 0 MZ / 0 DZ

Age 45.44 ± 12.15 43.75 ± 11.62 <0.001

Sex 27% male 27% male -

BMI 25.68 ± 5.09 26.57 ± 5.97 <0.001

Waist-hip ratio 0.84 ± 0.08 0.85 ± 0.09 0.089

Race White 81% 82% -

Triglycerides (fasted) 1.06 ± 0.54 1.07 ± 0.63 0.669

ApoB (fasted) 0.89 ± 0.22 0.97 ± 0.22 <0.001

Non-HDL-c (fasted) 3.56 ± 0.91 3.98 ± 0.94 <0.001

GlycA (fasted) 0.86 ± 0.11 0.82 ± 0.13 <0.001

Sleep duration 7.72 ± 0.77 7.74 ± 0.88 0.641

Sleep midpoint 3.31 ± 0.85 3.20 ± 1.11 0.016

Sleep efficiency 0.89 ± 0.04 0.89 ± 0.04 0.072

Sleep consistency 0.01 ± 0.47 -0.01 ± 0.53 0.240

PSQI score 6.02 ± 2.86 6.03 ± 2.99 0.949

Sleep measurements

Raw accelerometer processing

In addition to the self-report Pittsburgh Sleep Quality Index (PSQI) 94, sleep/wake
patterns were measured using a triaxial accelerometer (AX3, Axivity, Newcastle Upon
Tyne, UK). The accelerometer was fitted by clinical practitioners at the baseline clinic
visit on the non-dominant wrist and worn for the duration of the study (except during
water-based activities, including showers and swimming), after which they were
removed on the last day and mailed back to the study staff. The accelerometer was
programmed to measure acceleration at 50 Hz with a dynamic range of ±8 g (where g
refers to the standard acceleration of gravity, i.e., approximately 9.81 m/s2). Non-wear
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periods were defined as windows of at least 1 hour with less than 13 mg for at least 2
out of 3 axes, or where 2 out of 3 axes measured less than 50 mg 95.

Raw accelerometer data was analyzed using the `GGIR` R package version 1.10-7 96.
Sleep/wake detection was then quantified using the validated algorithm described in 97,
which uses the variance in the accelerometer z-axis angle together with a set of
heuristic rules to determine sleep periods. This algorithm does not require a sleep diary
and has been validated against gold-standard polysomnography in both healthy
individuals and patients with sleep disorders, with a mean concordance statistic of
0.86 and 0.83, respectively 97. For each night, the following sleep metrics were
calculated: sleep onset, sleep midpoint, sleep offset, sleep duration (defined as the
elapsed time from sleep onset through sleep offset, or sleep period time [SPT]), wake
after sleep onset (WASO), total sleep time (TST; = SPT - WASO), sleep efficiency (SE; =
TST / SPT). Sleep efficiency was calculated using the SPT and not the more common
total time in bed as the denominator because the absence of sleep diary data
precludes the accurate estimation of bedtime prior to sleep. For the same reason, the
algorithm is unable to characterize sleep onset latency (the time between going to bed
and falling asleep). The GGIR algorithm is not able to detect naps and therefore only
nighttime sleep parameters were included in subsequent analyses.

A set of thresholds was then applied to remove invalid nights or participants,
consistent with typical practices 98. First, any nights with a TST outside the range of 2.5
to 12 hours were excluded. Second, nights with more than 30% of epochs classified as
invalid by the GGIR algorithm were excluded. Third, nights with a sleep onset outside
of 7 pm to 6 am or a sleep offset before 2 AM were excluded, as well as nights with a
sleep offset occurring exactly at noon (indicating cropping by the GGIR algorithm).
Finally, participants with less than 4 days of valid sleep data were removed.

Derivation of traits sleep factors

For each participant, a set of four unique sleep factors were derived from the above
longitudinally measured sleep metrics and used as the main predictors of interest in all
statistical models below. Importantly, these four sleep parameters all cover a unique
aspect of sleep, as indicated by their relatively weak relationships (Figure 2). These
are:

1. The average sleep duration, expressed in hours, defined as the individual’s
typical sleep duration across the micro-longitudinal 10-14 day study.

2. The average sleep efficiency, is defined as the percentage of the sleep period
time that was spent sleeping.
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3. The average midpoint of sleep, expressed as a deviation from midnight in hours
and defined as (waketime – bedtime) / 2. Sleep midpoint is a standard metric to
estimate chronotype 99.

4. The average sleep consistency, expressed in standardized units, which
measures whether a given participant is consistent or not in the amount and
timing of their sleep. Sleep consistency was created by taking the first
component of a principal component analysis (PCA) on the standard deviation of
sleep midpoint and the standard deviation of sleep duration.

Figure 2: Estimation of sleep traits in Cohort 1 (the PREDICT1 dataset). A) For each
participant, four sleep factors were derived from the longitudinal wrist-worn actigraphy
recordings: sleep duration, efficiency, midpoint, and consistency (see Methods). These four
sleep parameters all cover a unique aspect of sleep, as indicated by the relatively weak linear
relationships. B) Actograms showing representative participants with short sleep duration
(upper left), long sleep duration (upper right), inconsistent sleep (lower left), and stable sleep
(lower right). Dark and light blue periods indicate sleep and wake, respectively.

Lipid profile measurements

Participants ate standardized nutrient-controlled meals twice across a 4-hour period:
the first measure reflecting the food-intake administration (time 0 hour, or the T=0 hour
time point), the second consumed 4 hours later (i.e., T=4 hours). As in prior studies of
lipid assessment 16,100, lipid status was assessed twice, the first measurement taken at
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T=0 hours, but importantly, before the first meal, reflecting the baseline lipid state. The
second was taken 6 hours later (T=6 hours, i.e. 6 hours after the first meal, and 2 hours
after the second meal). Standard nuclear magnetic resonance (NMR) spectroscopy was
used on blood samples (plasma) to perform a full lipid panel. NMR was applied on the
blood samples at both T=0 and T=6hrs. Triglyceride and VLDL cholesterol levels were
measured at T=0 (fasting) and T=6hrs following a first standardized metabolic
challenge meal at T=0 and then a second meal at T=4hrs. For each of the postprandial
triglyceride measures, the difference (rise) between postprandial and fasting levels was
calculated. The 6-hour time point was selected having been established as a
meaningfully accurate physiological-response index to the allostatic load challenge that
a standardized meal induces 100. In such protocols, triglyceride levels peak 3-5 hours
after a meal in metabolically healthy individuals 16,101, and return to baseline
approximately 6 hours after a meal. This profile is considered an adaptive response to
the allostatic food overload, one that returns the system back into lipid homeostasis.
However, metabolically unhealthy individuals do not respond in the same dynamic way,
resulting in persistently higher relative levels of triglycerides, indicative of impaired lipid
management and allostatic overload 16,102,103. Of clinical relevance, postprandial
triglyceride levels are a stronger biomarker of cardiovascular illness than fasting
triglyceride levels 16,65.

Statistical Analysis

Standard linear regression models were used to measure the statistical association
between sleep and lipid outcomes. Unless specified otherwise, all models were
adjusted for age, sex, body mass index (BMI), race, education, smoking, and physical
activity. Since Cohort 1, PREDICT1, included twins from the same family, a multilevel
regression was used with family identifier as a random effect. All regression analyses
were conducted in R.

For all regression models, the variance inflation factor (VIF) was used to check for
multicollinearity. Diagnostic plots were used to assess the validity of the fitted models.
For each model, these included scatterplots of standardized residuals by fitted values
and observed versus fitted values. Normal quantile plots (Q–Q plots) were used to
check the assumption of normality of the residuals and random effects.

Mediation analyses were conducted with the `mediation` R package 57 and default
parameters.
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Supplementary Materials

Supplementary Figures

Supplementary Figure 1: Sleep and cholesterol metabolite associations from NMR data. A later
sleep timing was significantly associated with worse VLDL outcomes in the fasted state. However, higher
sleep efficiency predicted a lower rise in postprandial VLDL outcomes. Grayed cells are not significant.
Beta and p-values calculated from a fully adjusted multilevel model.
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Supplementary Figure 2: Triglyceride levels are positively correlated with VLDL cholesterol levels.
A) Total triglyceride levels in the fasted state are significantly associated with total VLDL cholesterol
levels in the fasted state. B) The baseline-adjusted postprandial rise in total triglyceride levels is
significantly associated with the baseline-adjusted rise in VLDL cholesterol levels.

Supplementary Figure 3: Sleep timing is positively correlated with inflammation in the fasted state.
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Chapter 3. Sweet slumber: Coordinated human sleeping
brainwaves map peripheral body glucose homeostasis

Introduction

Diabetes—a condition of marked glucose dysregulation—is a major cause of death
globally. The World Health Organization estimates that over 420 million people are
suffering from the condition, which carries a direct societal cost of $760 billion each
year 104. These preventable mortality and financial costs are projected to increase
markedly over the next decade 104,105.

Experimental studies in humans and animals have demonstrated that one causal factor
impairing blood glucose equilibrium is insufficient sleep 10,17. Both acute and chronic
partial sleep restriction, including that of non-rapid eye movement (NREM) slow-wave
sleep, impair glucose tolerance and insulin sensitivity 106–109. Conversely, sleep
extension improves glucose metabolism 110.

But why? Currently, the mechanism(s) through which sleep optimally governs next-day
glucose homeostasis in humans remains unknown. A recent seminal study in rodents
has offered one candidate pathway 111. Specifically, hippocampal sharp-wave ripples
— which are temporally coupled with NREM slow oscillations and sleep spindles 112–114

— were associated with the top-down regulation of peripheral blood glucose through
activation of the hypothalamus (which itself provides autonomic control of peripheral
circulating hormones, including insulin) 111,115.

Collectively, these findings lead to the hypothesis that one function of synchronized
(i.e., temporally coupled) NREM slow oscillation—sleep spindle events in humans is the
brain-body regulation of optimal glucose homeostasis. More specifically, that both the
extent and quality of coupled NREM slow oscillations—spindle events in humans
would predict optimal next-day regulation of peripheral blood glucose levels.

Results

In short (see STAR Methods and Table S1), a total of 647 humans with overnight
polysomnography data and next morning glucose and insulin measurements were
analyzed. Together with electrophysiological analysis of sleep oscillations and
circulating morning measures of glucose, insulin resistance and pancreatic beta cell
function were further quantified using the validated homeostasis assessment models
(HOMA-IR and HOMA-B respectively; see STAR Methods and Figure S1 for details).
Using these evaluations, we tested the prediction that coupled NREM slow
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oscillations—spindles the night prior are associated with improved next-day peripheral
blood glucose levels. To examine the robustness of these findings, we then validated
the associations between NREM slow oscillation—spindle coupling and peripheral
blood glucose levels in an independent, larger replication cohort of 1996 humans with
the same sleep and glucose indices.

Focusing first on the cohort of 647 participants, and as expected, NREM slow
oscillations (SO, <1 Hz) were functionally coupled with sleep spindles (mean: 87.6%,
SD: 3.35, Table S1), such that the phase of the slow oscillation modulated the
amplitude of the spindle-related frequency band (12-16 Hz), hereafter referred to as
slow oscillation—spindle coupling (for conciseness). The strongest coupling between
slow oscillation and spindle-related activity occurred ~0.4 sec after the negative peak
of the slow oscillation (Figure 1A, Table S1). For most individuals, the maximum
coupling occurred near the up-phase of the slow oscillation (-12.15º ± 28.32, Figure
1B, Table S1).
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Figure 1: Slow oscillations are functionally coupled with sleep spindles.

A) In human NREM sleep, slow oscillations (SO, <1 Hz) are functionally coupled with sleep spindles,
such that the phase of the slow oscillation modulates the amplitude of the spindle-related frequency
band (12-16 Hz). This plot shows the average peak-locked slow oscillation calculated across all the
participants (black thick line) and the associated time-frequency representation of the coupling strength
116. Warmer color indicates higher phase-amplitude coupling. The strongest coupling between slow
oscillation and spindle-related activity occurs ~0.4 sec after the negative peak of the slow oscillation. B)
Histogram of the average slow oscillations—spindle coupling strength across all participants. The
coupling strength is calculated using the ndPAC method 117. The circular plot shows the histogram of the
preferred phase of the coupling. For most individuals, the maximum coupling occurs near the up-phase
of the slow oscillation (0º). C) Example of a coupled slow oscillation (SO). The thick black line shows the
SO-filtered signal (0.3-1.5 Hz), whereas the orange lines show the associated spindle-filtered (12-16 Hz)
signal, scaled by a factor of 4 for illustrative purposes. D) Example of an uncoupled slow oscillation (SO)
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from the same individual as in C). No statistical SO—spindle coupling was detected for this SO (see
STAR Methods).

Next, we tested the prediction that the degree of such coupling of NREM sleep
oscillations was associated with glycemic control the following day. Supporting the
hypothesis, greater slow oscillation—spindle coupling at night predicted lower
next-day fasting blood glucose levels (partial correlation adjusted for age, r=-0.20,
n=631, p<0.001; Figure 2A). Beyond the simple quantity of synchronized slow
oscillation—spindle events, the strength of the temporal synchrony (meaning, the
precision of the timing of the coupling) between slow oscillations and spindle activity
was similarly associated with lower subsequent fasting blood glucose levels (partial
r=-0.17, n=631, p<0.001; Figure 2B).

Figure 2: Slow oscillation—spindle coupling predicts lower next-day fasting glucose in the CFS
dataset.

A) Partial correlation adjusted for age between the extent of slow oscillation—spindle coupling (i.e. the
proportion of slow oscillations that are significantly coupled, see STAR Methods) and next-day fasting
blood glucose levels. B) Partial correlation adjusted for age between slow oscillation—spindle coupling
strength and next-day fasting blood glucose levels. Translucent bars represent 95% bootstrapped
confidence intervals. Fasting glucose levels were normalized using a square-root transformation (see
STAR Methods). Of note, both coupling measures remained significantly correlated with fasting glucose
levels when removing fasting glucose values above 12 (= 144 mg/dL; r=-0.20, p<0.001 and r=-0.15,
p<0.001, respectively).
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To date, multiple other factors have been identified that influence glycemic control
beyond sleep. Prima facie examples include age, gender, race, body mass index (BMI),
hypertension, and even certain sleep features, such as apnea-hypopnea index (AHI),
the quantity of sleep, and specific sleep stages 118,119.

To ensure that the relationship between slow oscillation—spindle coupling and blood
glucose levels was robust, multilevel regression models were fitted to adjust for these
known co-risk factors. With all factors included in the analysis model (age, gender,
race, BMI, hypertension, AHI, sleep duration, sleep efficiency, and family as a random
effect), the relationships between higher slow oscillation—spindle coupling and lower
next-day fasting blood glucose levels remained significant (p=0.001 and p=0.020
respectively; Tables S2 and S3). This suggests a statistically independent contribution
of coordinated sleep oscillations to the mapping of next-day blood glucose control
beyond these other classic factors known to govern glycemic state.

An additional sensitivity analysis was conducted adjusting for diabetes status as an
additional covariate, to check if this association is different in normoglycemic versus
diabetic individuals. The association between coupling quantity and lower fasting
blood glucose levels remained at trending significance when including diabetes status
as an additional covariate in the regression analysis (β = -1.79, p = 0.063). However,
the association between coupling strength and fasting glucose did not remain
significant (β = -2.59, p = 0.133).

Two other important risk factors for metabolic health are smoking status and education
level 120,121. These two factors were not included in the main regression model because
of a high missingness of data, which resulted in the exclusion of ~30% of participants
from the analysis. However, the association between coupling quantity and lower
fasting blood glucose levels remained significant when including smoking status and
education level as additional covariates in the regression analysis (β=-4.22, p=0.002).
This was not true of the coupling strength (β=-2.65, p=0.29). Based on in vivo cellular
recordings in animal models, the proportion of slow oscillation—spindle coupling may
be a better metric of hippocampal sharp-wave ripple density, which is causally
associated with peripheral blood glucose levels via a hypothalamic signaling pathway
111, than the strength of that brainwave coupling 114. Taken together, such selectivity
may suggest that the proportion of coupled slow oscillation—spindle events represents
the most sensitive sleep biomarker of glucose homeostasis.

Beyond the predictive relationships with fasted blood glucose levels, similar
associations were observed with two-hour postprandial glucose values following an
oral glucose tolerance test (OGTT). To assess whether overnight sleep was associated
with next-day OGTT glucose levels at all, we re-ran the models reported for fasting
blood glucose and slow oscillation—spindle coupling, similarly adjusted for known risk
factors including age, gender, race, BMI, hypertension status, AHI, sleep duration, and
efficiency. Here again, both the proportion (β = -5.36, p = 0.037) and strength (β =
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-9.31, p = 0.044) of slow oscillation—spindle coupling were significantly associated
with lower (superior) next-day OGTT values. Therefore, slow oscillation—spindle
coupling demonstrated interrelationships both with the fasted condition of the glucose
state, and further, the body’s dynamic reaction to a metabolic glucose challenge,
requiring a regulatory glycemic response.

The next series of analyses sought to test the replicability and robustness of the slow
oscillation—spindle coupling reflecting a marker of glucose homeostasis in a larger,
independent cohort. For this purpose, we examined the Multi-Ethnic Study of
Atherosclerosis (MESA 51; see STAR Methods, Figure 3A and Table S4) of over 1900
participants who had fasting glucose measurements and overnight polysomnography
data.

Consistent with the results in the first dataset, slow oscillation—spindle coupling during
NREM sleep once again predicted superior fasting peripheral blood glucose (partial
correlation adjusted for age, r=-0.103, n=1968, p<0.001; Figure 3B). Moreover, the
strength of the temporal synchrony between slow oscillation—spindle coupling was
similarly associated with lower fasting blood glucose levels (partial r=-0.130, n=1968,
p<0.001 respectively; Figure 3C).

As in the first cohort, both the proportion and strength of slow oscillation—spindle
coupling remained significantly associated with fasting blood glucose after adjusting
for assessed risk factors (age, gender, race, BMI, hypertension, AHI, and the quantity
and quality of sleep; p=0.034 and p=0.011, respectively, Tables S5 and S6).

Figure 3. SO-spindle coupling during sleep is a prominent marker of glucose homeostasis, in an
independent (MESA) dataset

A) Histogram of the average slow oscillations—spindle coupling strength across all participants in the
MESA dataset. The coupling strength is calculated using the ndPAC method 117. The circular plot shows
the histogram of the preferred phase of the coupling. For most individuals, the maximum coupling occurs
near the up-phase of the slow oscillation (0º). B) Partial correlation adjusted for age between the extent
of slow oscillation—spindle coupling (i.e. the proportion of slow oscillations that are significantly
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coupled, see STAR Methods) and next-day fasting blood glucose levels, in the MESA dataset. C) Partial
correlation adjusted for age between slow oscillation—spindle coupling strength and next-day fasting
blood glucose levels. Translucent bars represent 95% bootstrapped confidence intervals, in the MESA
dataset. Fasting glucose levels were normalized using a square-root transformation (see STAR
Methods).

Taken together, these results replicate the association between slow
oscillation—spindle coupling and fasting blood glucose levels from the first dataset,
and in a larger cohort, support the association of slow oscillation—spindle coupling as
a central brain marker of peripheral body glycemic status.

Glucose homeostasis is governed by several independent mechanisms, key among
them being the function ability of pancreatic beta cells, which initially sense increases
in glucose and lead to the release of insulin, and separately, the sensitivity of cells in
the body to the signal of insulin (the impairment of which results in insulin resistance).
Having established the association between coupled NREM sleep oscillations and
peripheral body glucose state, we next sought to determine whether this sleep
biomarker was mapping one or both of these glucose homeostasis pathways within the
first main cohort. This was accomplished using the added measures of HOMA-IR,
offering a representation of insulin resistance/sensitivity, and HOMA-B, an index of
insulin secretory function 122–124.

Lower slow oscillation—spindle coupling predicted higher (i.e., worse) next-day insulin
resistance the following day, quantified using the validated metric of HOMA-IR
(r=-0.213, n=634, p<0.001; Figure 4A). However, suggesting a mechanistic
dissociation, no such sleep associations were identified with next-day pancreatic beta
cell secretory function, evaluated with the metric of HOMA-B (r=-0.072, n=626,
p=0.074).

Furthermore, both the proportion and strength of slow oscillation—spindle coupling
remained significantly associated with HOMA-IR after adjusting for all aforementioned
risk factors (p=0.005 and p=0.016, respectively, Tables S7 and S8).

Beyond the simple number (quantity) of synchronized slow oscillation—spindle events,
the quality of coupling (indexed by the strength of temporal synchrony between slow
oscillations and spindle activity) was similarly associated with improved next-day blood
glucose homeostasis, as assessed by fasted glucose levels (r=-0.170, n=634, p<0.001;
Figure 2B), as well as next-day insulin sensitivity as measured by HOMA-IR (r=-0.197,
n=634, p<0.001; Figure 4B). Once again, there was no such association with the
pancreatic beta cell function measure of HOMA-B (r=-0.066, n=626, p=0.097).

Such results further support the proposal that the association between NREM sleep
oscillations and next-day glucose homeostasis is best understood through altered
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insulin sensitivity within the body, rather than changes in pancreatic beta cell function
and corresponding insulin release.

One candidate pathway explaining the association between slow oscillation—spindle
coupling and next-day glucose homeostasis is an alteration in heart rate variability
(HRV) during sleep, an indirect measure of autonomic parasympathetic activity.
Accordingly, we conducted a mediation analysis, which revealed that HRV (see STAR
Methods), significantly mediated the association between both proportion and
strength of slow oscillation—spindle coupling and next-day fasting glucose levels in
the MESA dataset (indirect effect: p = 0.0014 and p = 0.0008 respectively; Figures S2A
and S2B). Specifically, the greater the proportion of coupled slow oscillations during
sleep, the higher the HRV (indicative of greater parasympathetic dominance) during
sleep (p = 0.001; adjusted for all aforementioned cofactors; see also 1) that, in turn,
was linked to superior (i.e. lower) next-day fasting blood glucose levels (p < 0.001). In
the CFS dataset, a similar effect was observed for HRV during sleep mediating the
association between the proportion of slow oscillation—spindle coupling and insulin
resistance, with trending significance (indirect effect: p = 0.076; Figure S4A), such that
a higher proportion of coupled slow oscillation—spindle events was associated with
higher HRV (p = 0.037), through the statistical mediation pathway, further predictive of
lower insulin resistance (p = 0.022). However, HRV in the CFS cohort did not
significantly mediate the association between the proportion (indirect effect: p = 0.135;
Figure S3A) or strength (indirect effect: p = 0.66; Figure S3B) of slow
oscillation—spindle coupling and next-day fasting glucose levels.

Figure 4: Insulin resistance is significantly correlated with the coupling between slow oscillations
and spindle-related activity in the CFS dataset.
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A) Partial correlation adjusted for age between the extent of slow oscillation—spindle coupling (i.e. the
proportion of slow oscillations that are significantly coupled, see STAR Methods) and next-day
HOMA-IR. B) Partial correlation adjusted for age between slow oscillation—spindle coupling strength
and next-day HOMA-IR. Translucent bars represent 95% bootstrapped confidence intervals.

Since impaired glucose function has been associated with broad, macro-level sleep
features, such as sleep apnea severity, sleep duration, and certain stages of sleep
118,119, we next examined the predictive sensitivity of our a priori micro-sleep measures
of slow oscillation—spindle oscillation coupling, and how it ranked relative to all other
sleep metrics. Notably, after adjusting for known risk factors for glucose homeostasis
(specifically, age, gender, BMI, hypertension, and family as a random effect), slow
oscillation—spindle coupling was the single strongest sleep predictor of next-day
fasting glucose levels and insulin resistance relative to all other traditional sleep metrics
(Figure 5). This included the amount of time (number of minutes and percentage) in
each sleep stage (N1, N2, N3, and REM), sleep duration and sleep efficiency, wake
after sleep onset (WASO), the arousal index, sleep apnea severity as measured with the
AHI, individual morphological features of either slow oscillations or spindles (density,
frequency, amplitude), and spectral band power in REM or NREM sleep (slow delta,
fast delta, total delta, theta, alpha, sigma, beta; see Figure 5 and Methods). Together,
these findings indicate that slow oscillation—spindle coupling is a predominant sleep
marker associated with next-day glucose homeostasis.

For a purely ecological context setting, we examined the effect-size association
between superior to inferior slow oscillation—spindle coupling and next-day glucose
homeostasis balance. Going from the 1st percentile of the proportion of coupled slow
oscillations (77%) to the 99th percentile (94%) represented a decrease of 13.2 mg/dL in
fasting blood glucose levels (holding all other covariates constant). Similarly, going
from the 1st percentile to the 99th percentile value of the coupling strength represented
a decrease of 9.9 mg/dL in fasting glucose levels. For reference, the current CDC
guidelines indicate that a difference of ~15 mg/dL in fasting glucose levels reflects the
difference between an individual in a normoglycemic zone to being prediabetic (e.g.
from 95 to 110 mg/dL), or from a prediabetic state to being diabetic (e.g. from 115 to
130 mg/dL).
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Figure 5: Slow oscillation—spindle coupling is the top sleep predictor of next-day glucose
homeostasis.

A) Top sleep predictors of lower next-day fasting glucose, ranked in descending order of significance
(negative log10 p-value). B) Top sleep predictors of lower next-day insulin resistance (HOMA-IR), ranked
in descending order. The proportion of SO with significant coupling was the best sleep predictor of both
fasting glucose and insulin resistance. Unadjusted two-tailed P-values were obtained by fitting, for each
sleep predictor separately, a multilevel regression model adjusted for age, gender, BMI, race/ethnicity,
hypertension, and family ID. A total of 47 sleep parameters were included in the rank analysis. NREM
refers to N2 + N3 sleep (N1 excluded). A full description of these parameters is provided in Tables S9
and S10.
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Discussion

Taken together, these findings support a NREM sleep-oscillation-body framework of
glucose homeostasis in humans; one that describes a mapped association between
prior slow oscillation—spindle coupling and next-day glucose homeostasis.

Prior observations in rodents have demonstrated that hippocampal ripples during sleep
decrease peripheral blood glucose levels, in part through a hypothalamic signaling
pathway 111. Considering that coupled slow oscillation—spindle activity coincides
subcortically with hippocampal sharp wave ripples 112,114, our results indicate the
presence of a similar sleeping-brain—glycemic association observable in humans.
Furthermore, Tingley et. al. reported that isolated ripples did not show an association
with peripheral glucose levels, whereas bursts of hippocampal ripples did. There is also
evidence, in humans, that the nesting of ripples in spindle troughs during slow
oscillation—spindle coupling, is stronger associated with ripple bursts, as compared to
isolated ripples 112–114,125. These findings indicate the possibility that the slow
oscillation—spindle coupling-glucose homeostasis association is driven by collective
burst trains of hippocampal sharp wave ripples, as opposed to isolated ripples. Such
oscillation trains may therefore underlie part of the mechanistic pathway accounting for
the associations reported here in humans.

The above-noted NREM sleep-oscillation-body framework of glucose homeostasis can
be considered across at least two different time scales, though they may not be
mutually exclusive. The first, as we describe here in humans, involves a temporally
longer, feed-forward association such that NREM slow oscillation—spindle coupling
predicts superior next-day glucose homeostasis. The second, previously observed in
rodents 111, involves a short-term feedback loop between hippocampal sharp-wave
ripple activity and concurrent changes in circulating glucose during sleep. Both
processes, either independently, or interactively (e.g., moment-to-moment changes in
glucose across the night cumulatively determine next-morning glucose status), may aid
in generalized glycemic homeostasis. These pathways may further offer disease
insights into the brain(sleep)-body(glucose) mechanisms that help explain the
well-characterized sleep between short and disrupted sleep, hyperglycemia, and type 2
diabetes 17.

Moreover, and critical from a clinical and public health perspective, we further establish
that these associations remained significant when controlling for prototypical factors
that themselves are known to impact blood glucose, including age, gender, race, BMI,
hypertension, and even sleep measures, such as the apnea-hypopnea index (AHI), and
the quantity and quality of sleep. That is, an association between slow
oscillation—spindle coupling and glucose homeostasis that is independent of other
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co-factors influencing glycemic control—both in measures of fasted blood glucose
assessment and following the standard metabolic challenge of an oral glucose
tolerance test (OGTT).

Importantly, the association between slow oscillation—spindle coupling and peripheral
glucose homeostasis was also validated in an independent, larger replication dataset,
suggesting that the effects are less likely to be driven by single cohort-specific
idiosyncrasies. Rather, the replication of the association between slow
oscillation—spindle coupling and fasting blood glucose levels offers added support to
the framework of slow oscillation—spindle coupling metric in a predictive or
supervisory role of glucose homeostasis 111, above and beyond other traditional sleep
metrics.

Adding to these insights, slow oscillation—spindle coupling predicted next-day
improved (enhanced) insulin sensitivity, but not pancreatic beta call function. Our
findings thus indicate a potential dissociation between two key glycemic control
mechanisms: 1) the sensitivity of pancreatic beta cells to the glucose status of the
body, which can release insulin in the presence of sensed high glycemic load, and 2)
the sensitivity of cells within the body to that consequential signal of insulin released by
the pancreas, resulting in the cellular uptake of glucose from the blood 118. The results
reported here suggest that the link identified between slow oscillation—spindle
coupling and glucose homeostasis is not one associated with a dual-action regulation
of glycemic control. Rather, relationships were observed only for the measure of
HOMA-IR (indexing cellular insulin sensitivity), and not HOMA-B, reflecting pancreatic
beta cell sensing. Therefore, the association with blood glucose stasis appears to be
most parsimoniously explained by a link between NREM sleep oscillations and a select
alteration in insulin sensitivity 126,127, rather than regulating pancreatic beta cell function
or insulin synthesis/secretion 124,128.

Alterations in fasting glucose levels and impairments in OGTT, as we identify in the
current study, each reflect different aspects of insulin resistance. The former has been
linked to hepatic insulin resistance, while the latter is primarily associated with impaired
muscle insulin resistance 129. It is important to note, however, that the OGTT findings
were only assessed in normoglycemic individuals. Future examinations in
hyperglycemic cohorts are needed to explore whether this sleep-associated allostatic
response is different in diabetes.

One proposed mechanism explaining the recognized link between deficient sleep and
impaired blood glucose control is an alteration of autonomic sympathovagal balance
resulting in a biased state of sympathetic activity over parasympathetic activity 130,
which may chronically lead to insulin resistance and metabolic dysfunction 131.
Addressing this question, we conducted a mediation analysis to test whether coupled
NREM oscillations and superior glycemic status were mediated through an association
with increased parasympathetic autonomic activity during sleep. HRV, a measure of
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autonomic parasympathetic activity, significantly mediated the association between
both, the proportion of slow oscillation—spindle coupling and next-day fasting glucose
levels, in the MESA dataset, but not in the CFS dataset. Parasympathetic activity may
be only one partial pathway linking slow oscillation—spindle coupling with next-day
glucose homeostasis. It further indicates that other such pathways may exist that
account for the additional variance in mediation that is not explained by
parasympathetic activity in this sleep-glycemic relationship.

To date, associations between sleep loss, blood glucose status, and diabetes risk have
productively focused on traditional sleep statistics, including sleep duration, sleep
efficiency, amount of each sleep stage (particularly the loss of deep NREM sleep 108,109),
and markers of sleep disorders (e.g. AHI) 17,132. However, exactly what it is within sleep
that accurately maps glycemic control in humans has remained unknown. Addressing
this issue, we demonstrate that slow oscillation—spindle coupling is not only a
sensitive glycemic index, but of all sleep features, including sleep stages, and all other
sleep electrical oscillation spectra, such coupling offers the highest predictive
sensitivity of next-day glucose homeostasis. Indeed, this predictive relationship with
glucose status exceeded that of all other sleep measures assessed, including total
sleep amount, sleep efficiency, NREM slow wave sleep, as well as sleep apnea severity
(AHI score). Our findings in no way challenge these now robust links between those
aforementioned sleep measures and diabetes risk and/or blood glucose status 17,133.
Rather, our results establish the measure of slow oscillation—spindle coupling as an
additional, independent contributing feature of sleep, one that offers insights into
potential disease pathways associated with diabetes considering recent rodent data
causally linking slow oscillation—spindle coupling with momentary glucose regulation.

In conclusion, our findings suggest a sleeping-brain—body framework of
insulin-associated glucose homeostasis in humans, and re-emphasize the importance
of sleep in the clinical management of hyperglycemia.

Limitations

Our study must be appreciated within the context of important limitations. First, though
our findings describe a temporal association between sleep the night before and
peripheral glucose homeostasis, the results do not establish causality. The
mechanism(s) by which slow oscillation—spindle coupling impacts next-day glucose
homeostasis in humans needs further exploration. Given that our data are non-invasive
and only measure next-day glucose, we are unable to gain causal and temporal insight
into the association between hippocampal sharp-wave ripple activity and slow
oscillation—spindle coupling and glucose homeostasis. Future studies in intracranial
patients, along with continuous glucose monitoring, would help provide further
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mechanistic insight. However, multiple studies have shown that hippocampal
sharp-wave ripples are temporally coupled with NREM slow oscillations and sleep
spindles 112–114, making slow oscillation—spindle coupling a promising non-invasive
marker of hippocampal sharp-wave ripple bursts. Our findings motivate the design of
studies capable of testing bi-directional causality e.g., manipulating slow
oscillation—spindle coupling in humans 134 to alter glucose regulation or vice versa.
Second, the effect sizes observed in this study are, as expected, in the
small-to-moderate range, and similar to those recently reported in rodents 111.
Expected, considering that an individual’s blood glucose level is determined by
multiple factors including genetics, food intake/diet, and gut microbiome 135–137.
Sleep—an indirect lifestyle factor, is therefore anticipated to account for a modest, yet
still clinically meaningful, proportion of between-person variability in glucose levels 138,
as noted above regarding the difference between those in the upper and lower
quartiles of slow oscillation—spindle coupling activity. Future studies that provide
longitudinal repeated assessment will help examine how potential individual differences
in baseline general health could contribute to differences in slow oscillation-spindle
coupling and metabolic deficiencies. Finally, measures of glucose in the main dataset
(CFS) were assessed in the morning for closest proximity to sleep, affording a test of
the sleep-dependent hypothesis. Nevertheless, these measures do not provide insight
into glucose regulation across the entire day, although it should be noted that there is a
significant correlation between blood glucose levels measured across the day 139. Still,
temporal knowledge of glycemic status across the day can have important benefits to
understanding metabolic dysfunction, requiring continuous glucose monitoring across
the 24-hour period as an ideal next experimental step 140,141.

Methods

Experimental model and subject details

Two independent cohorts were used to test the hypothesis. The first (main cohort) was
the Cleveland Family Study data set (CFS; 142,143), and the second (replication cohort)
was the Multi-Ethnic Study of Atherosclerosis (MESA; 51) data set. Both the CFS and
the MESA datasets followed the guidelines of the National Sleep Research Resource
(NSRR), and Institutional Review Board (IRB) approval was obtained at each study site.

The former Cleveland Family Study (CFS) data set is a longitudinal family-based
epidemiological study of sleep apnea with over 2400 participants. Families were
selected based on the presence of a proband diagnosed with Obstructive Sleep Apnea
(OSA; 144). Neighboring families without a diagnosis of OSA were used as controls. A
subset of 728 participants was selected for a study that involved collecting sleep,
cardiovascular and metabolic measures, between July 2001 and June 2005 (visit 5).
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Prepubertal children were excluded from subsequent analyses by using 15 years old as
the cut-off age (n=73, 655 participants remaining). The protocol was approved by the
institutional review boards of the local hospitals from where the participants were
recruited. All participants provided informed written consent.

The latter Multi-Ethnic Study of Atherosclerosis (MESA 51;) data set is a multi-center,
longitudinal investigation of factors associated with the development of cardiovascular
disease. There have been five follow-up visits to date, approximately once every two
years. All participants provided written informed consent and all MESA activities were
approved by the institutional review boards of the participating institutions. All
subsequent analyses are based on the MESA Exam 5, which was collected from
2010-2013.

Method details

Measurement of glycemic levels, insulin sensitivity and health covariates

CFS

Fasting glucose and insulin values were derived from all individuals (n=728) using blood
samples collected via venipuncture at 7 AM on the morning after PSG (Sulit et. al.,
2006). In non-diabetic participants (n=596), this was followed by the administration of
an oral glucose tolerance test (OGTT). During the oral glucose tolerance test,
participants orally consumed 75 grams of anhydrous glucose, and glucose levels were
measured 2 hours later via venipuncture. OGTT values were measured as 2-hour post
glucose serum load (in mg/dl). Impaired glucose tolerance criteria were defined by
self-reported use of diabetes medication, as fasting glucose ≥ 110 mg/dl, or as 2 hours
post glucose serum load ≥ 140 mg/dl. A square root transformation was used to
reduce skewness in fasting and postprandial glucose levels and thus minimize the
influence of outliers, consistent with prior assessment measures 137.

Insulin resistance and pancreatic beta cell function were quantified using the
standardized homeostasis assessment model (HOMA-IR and HOMA-B respectively)
scores. HOMA-IR was calculated as   fasting serum insulin multiplied by fasting plasma
glucose (in mg/dL), divided by 405, as described previously 122,123,145. HOMA-B was
calculated as fasting serum insulin multiplied by 360, divided by fasting plasma
glucose (in mg/dL) minus 63 122,124. HOMA-IR and HOMA-B values were then log
transformed to reduce skewness, consistent with standard practices 146,147. High scores
indicate low insulin sensitivity or high insulin resistance.

Before coming in for their PSG session, all participants completed the Cleveland Health
and Sleep Questionnaire, which is a standardized and validated questionnaire
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assessing sleep habits and symptoms, medical history, health habits, and medication
use, including diabetic and antihypertensive medications. BMI was measured as the
ratio of weight to the square of height (kg/m2). Weight was measured to the nearest 0.1
kg using a calibrated scale. Height was measured to the nearest centimeter using a
wall-mounted stadiometer.

MESA

Fasting glucose was measured during the MESA Exam 5 clinic visit. Participants fasted
for 12 hours and avoided smoking and heavy physical activity for 2 hours before the
examination. Fasting blood samples were drawn between 7:30 and 10:30 AM. Fasting
blood glucose (serum) was measured by the glucose oxidase method on the Vitros
analyzer (Johnson & Johnson Clinical Diagnostics, Rochester, New York) 148. As in CFS,
fasting glucose values outside the range of 60 to 250 mg/dl were masked (n=8). Then,
a square root transformation was used to further reduce skewness in fasting glucose
levels and minimize the influence of outliers, consistent with prior assessment
measures 137. Age, gender, race/ethnicity, smoking status, education, and income were
collected at MESA Exam 5 via self-report questionnaires.

EEG analysis

Sleep recording and sleep staging

CFS: Fourteen-channel overnight PSG recordings were collected using Compumedics
E Series System, at a dedicated clinical research facility. Details about the montage
and sampling rate can be found here. Sleep scoring was performed by trained research
technologists, using R&K rules 149. For subsequent analyses, NREM stages 3 and 4
were collated into a single stage (N3) to conform with the most recent guidelines 59.

MESA: Sleep studies were scheduled to occur after the MESA Exam 5 clinic visit. The
average gap between the MESA sleep study and MESA Exam 5 clinic visit was 341
days, with a standard deviation of 200 days. At-home full overnight PSG recordings
were collected in 2237 participants from the parent cohort (age range = 54-95 years)
using the Compumedics Somte System (Compumedics Ltd., Abbotsford, Australia).
The recording montage consisted of three cortical EEG (central C4-M1, occipital
Oz-Cz, and frontal Fz-Cz leads), bilateral EOG, chin EMG, as well as several other
sensors to measure heart rate, respiration, and leg movements.
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Quantification and statistical analysis

Spectral analyses

EEG power in specific bands were calculated separately for NREM sleep (excluding N1)
and REM sleep, using a Welch periodogram with a 4-sec hamming window. Spectral
bands were defined as: slow delta (0.5-1.25 Hz), fast delta (1.25-4 Hz), total delta (i.e.
slow wave activity [SWA], 0.5-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), sigma (12-16 Hz),
beta (16-30 Hz). EEG powers were expressed as a proportion of the total power
summed across all bands. The correlation analyses also included the total summed
power in NREM and REM (expressed in microVolts-squared).

Slow oscillations event-locked phase-amplitude coupling

All EEG analyses for the CFS dataset were conducted on the C3-M2 channel, after
downsampling to 100 Hz and inverting the polarity (to fix a known issue, see here). All
EEG analyses for the MESA dataset were conducted on the C4-M1 channel. PSG data
were sampled at 256 Hz and a hardware low-pass filter with a cutoff frequency of 100
Hz was applied during recording. Nocturnal recordings were transmitted to the
centralized reading center at Brigham and Women’s Hospital and data were scored by
trained technicians using current guidelines.

Slow oscillations (SO) detection was performed on NREM sleep (excluding N1 sleep)
using the YASA Python library 150. The algorithm uses amplitude and duration
thresholds 151,152 to detect SO on the bandpass-filtered signal (0.3-1.5 Hz), coupled with
an outlier removal step to remove invalid events. Based on previous findings showing
that the standard amplitude threshold of 75 µV is not adequate for older adults 153, a
more liberal amplitude threshold of 60 µV for peak-to-peak amplitude and 32 µV for the
negative peak amplitude was chosen. For each PSG night, the average SO density (=
number of SO per min of NREM), frequency (Hz), and amplitude (µV) were calculated.

To calculate event-locked cross-frequency coupling 112, first, each detected SO was cut
to 1 sec before and after the negative peak of the SO event. For each event-locked
2-sec window, Hilbert transforms were used to extract the instantaneous phase of the
SO band (0.3-1.5 Hz) and the instantaneous amplitude of the sigma band (12-16 Hz),
which is highly correlated to spindle amplitude and density 154, and has been previously
used to measure SO-spindle coupling 155. To avoid filter edge artifacts, the
instantaneous phase and amplitude time-series were calculated on the entire signal
before running the SO detection. The strength of the coupling between the SO phase
and the sigma amplitude was calculated, for each SO, using the normalized direct PAC
(ndPAC) method 117. The ndPAC is conceptually similar to the traditional mean vector
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length method 156, with two exceptions. First, the amplitude signal is z-scored to help
eliminate distortions in the PAC estimate due to direct current components in data.
Second, ndPAC includes a statistical thresholding to reject false estimates arising from
distortions of non-coupled oscillation powers. As such, and unlike other PAC methods,
the ndPAC does not require a permutation-based surrogate normalization. The ndPAC
coupling value ranges from 0 (no coupling) to 1 (perfect coupling). Formally, the ndPAC
is defined as:

𝑛𝑑𝑃𝐴𝐶 = 1
𝑁

𝑛=1

𝑁

∑ 𝑎(𝑛)𝑒𝑖ϕ(𝑛)||||

||||
 

Where is the normalized (mean removed and variance made unity) amplitude𝑎(𝑛)
signal and is the phase from high- and low-bandpass filtered signals with dataϕ(𝑛)
length , respectively. The closed-form statistical threshold is given by:𝑁

𝑥
𝑡ℎ

= 2 × 𝑁 × 𝑒𝑟𝑓−1(1 − 𝑝)[ ]
2

With the confidence level, and the inverse error function 117. Every value of𝑝 𝑒𝑟𝑓−1

coupling exceeding the threshold is considered reliable, at the given confidence𝑥
𝑡ℎ

level. Otherwise, coupling is considered unreliable and values are set to zero. The
proportion of SO that are coupled with the spindle-related sigma band therefore
represents a simple metric of the coupling quantity. Noteworthy, another approach that
has been used to estimate the quantity of SO events that are coupled is to apply an
automatic spindle detection on the signal and then find spindles that occur within a
certain range of the negative peak of the SO. However, the ndPAC approach has the
advantage of being data-driven and as such does not rely on arbitrary thresholds for
the spindle detection and events co-occurrence.

A single summary value of coupling strength per participant was obtained by averaging
all the valid ndPAC values, that is, all the SO-spindle coupling values that were not
rejected by the statistical thresholding. In addition, the proportion of SO that had a
valid (= significant) SO-spindle coupling was calculated for each participant. A value of
1 therefore indicates that all the detected SO have a significant phase-amplitude
coupling with the sigma band, whereas a value of zero indicates that none of the
detected SO show a functional coupling with the sigma band. Lastly, the preferred
phase (in radians) of the SO at the maximum sigma amplitude within each 2-sec
window was extracted as a measure of coupling directionality. To this end, the
amplitude values were first binned according to 18 phase slices (360 deg / 18 bins = 20
degrees each). The preferred phase was then defined as the phase bin for which the
distribution of amplitude is maximum.
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An outlier removal step was applied which consisted of masking the coupling values
with an absolute z-score above 4 for either the coupling strength or the coupling
quantity (n=8 in CFS, n=9 in MESA).

For illustrative purposes, a time-frequency representation of the SO-spindle coupling
was calculated using the event-related phase-amplitude coupling (ERPAC) method 116.
ERPAC is based on a circular-linear correlation that evaluates, across all detected SO
for a given night/individual, the instantaneous amplitude at each specific frequency
with the sine and cosine of the instantaneous phase. As with a traditional Pearson
correlation, values can range between -1 to 1, with higher positive values indicating a
strong coupling at that specific event-locked time between the amplitude and phase
time series. All coupling analyses were performed in Python using the Tensorpac
package 157.

Heart rate variability

Heart rate variability (HRV) across the night was calculated from the ECG channel using
non-overlapping windows of 5 minutes. The ECG was first high-pass-filtered at 0.5 Hz
using a 5th-order Butterworth filter and the R-peaks were detected and corrected for
each 5-min window using the default parameters in the neurokit2 Python toolbox 158.
Windows with less than 175 NN intervals were excluded. Based on the experimental
hypotheses, the analyses were focused on the root mean square of successive
differences between normal heartbeats (RMSSD) — a widely-used HRV metric that
reflects vagally-mediated short-term variability in heart rate 61. Of note, although HRV
metrics are widely used as a marker of parasympathetic activity, heart rate variability is
also impacted by endocrine and reproductive factors, including but not limited to
growth hormone 159, luteinizing hormone 160, and thyroid hormones 161. Formally, given a
time-series of beat-to-beat interval RR of length N, the RMSSD is defined as:

𝑅𝑀𝑆𝑆𝐷 =  𝑖=1

𝑁−1

∑ (𝑅𝑅
𝑖
−𝑅𝑅

𝑖+1
)2

𝑁−1

The median RMSSD across all 5 min epochs was calculated to get a single RMSSD
value per participant. The resulting values were then log-transformed to reduce
skewness, consistent with standard practices 61.

Statistical analyses

A strict inner merge was used to combine the health data (demographics and glucose)
with the SO-spindle coupling variables. In other words, only participants with
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non-missing glucose and coupling data were included in subsequent analyses (n=647
participants). A more liberal left merge was then used to combine the EEG spectral
power data with the main dataframe.

Correlations between dependent variables were calculated using the Pearson
correlation coefficient. Partial correlations were performed in Python using the Pingouin
package 56. All regression analyses were performed using the `lmer` R function 162.
Models were adjusted for age, gender, race/ethnicity 163, BMI, hypertension status,
apnea-hypopnea index (AHI), sleep period time (SPT), and sleep efficiency (SE,
calculated as total sleep time divided by sleep period time 24). Since the CFS study
includes participants from the same family, multilevel models were used with family ID
as a random effect. P-values for the regression models were obtained from two-tailed
Wald tests. Marginal effects were calculated using the `ggeffect` R function 164.

The preprocessing and analysis steps were identical between the CFS main cohort and
the MESA replication cohort. One notable exception is that MESA does not include
participants from the same families and therefore a standard (non-multilevel) linear
regression was used to test associations between predictors of interest and glucose
outcomes. A total of 1996 unique MESA participants were remaining after combining
the health data and EEG coupling data. There was no participant under the age of 15 in
MESA.

Assessment of the ranking of the sleep predictors was performed by extracting,
independently for each sleep predictor, the p-value of that predictor in a multilevel
regression model adjusted for age, gender, race/ethnicity, BMI, and hypertension
status. AHI, SPT and SE were not included as covariates in the model since all three
were included, as predictors, in the ranking analysis. The unadjusted p-values from all
sleep predictors were then log-transformed with base 10 and negated for illustrative
purposes.
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Key resources table

REAGENT or
RESOURCE

SOURCE IDENTIFIER

Deposited data

Cleveland Family
Study data

Zhang et al.
2018 142,143

Redline et al.
1995 142,143

https://sleepdata.org/datasets/cfs

Multi Ethnic Study of
Atherosclerosis data

Zhang et al.
2018 24,143;
Chen et al.
2015 67

https://biolincc.nhlbi.nih.gov/studies/mesa/

Software and algorithms

YASA Vallat and
Walker 2021
150

https://github.com/raphaelvallat/yasa

Tensorpac Combrisson
et al. 2020
157

https://github.com/EtienneCmb/tensorpac

Pingouin Vallat 2018 56 https://pingouin-stats.org/

Code for all data
preprocessing and
analysis

This paper https://github.com/raphaelvallat/vallat2023_coupling_g
lucose
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Supplementary Materials

Supplementary Tables

Table S1. Demographics of the Cleveland Family Study (CFS; visit 5). Related to STAR Methods.

Variables Statistics

No. unique participants 647

No. unique families 144

Age (yrs) 44.73 ± 17.39 (range = 15-89)

Sex 359 F / 288 M

BMI (kg/m2) 33.47 ± 9.17 (range = 17-85)

Race/ethnicity 350 African / 280 Caucasian / 17 Other

Smoking status 324 No / 169 Yes / 154 Missing

Hypertension status 428 No / 211 Yes

Diabetes status 530 No / 115 Yes

Fasting glucose (mg/dl) 100.56 ± 25.65 (range = 66-246)

log(HOMA-IR) 0.99 ± 0.77 (range = -1-4)

log(HOMA-B) 4.81 ± 0.63 (range = 3-8)

Apnea-hypopnea index (AHI) 13.78 ± 20.17 (range = 0-125)

% of participants with AHI >30 13.6%

Sleep efficiency (SE, %) 81.18 ± 12.74 (range = 27-99)

Sleep period time (SPT, min) 459.13 ± 82.01 (range = 52-660)

Total sleep time (TST, min) 369.83 ± 74.26 (range = 40-576)

N1 (% of TST) 5.32 ± 4.72 (range = 0-63)

N2 (% of TST) 58.55 ± 12.41 (range = 21-100)

N3 (% of TST) 17.71 ± 10.99 (range = 0-57)

REM (% of TST) 18.41 ± 7.61 (range = 0-44)

SO density (per min of NREM) 2.50 ± 1.98 (range = 0-11)

Spindles density (per min of NREM) 3.28 ± 1.37 (range = 0-7)

Proportion of SO with significant coupling 87.60 ± 3.35 (range = 72-100)

SO—spindle coupling strength 0.32 ± 0.02 (range = 0.25-0.39)

SO—spindle preferred phase (º) -12.15 ± 28.32
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SO = slow oscillations.

Table S2. Slow oscillation—spindle coupling quantity significantly predicts next-day fasting blood
glucose in the CFS dataset. Related to Figure 2.

Predictors β Standardized β 95% CI p

Proportion of NREM SO with
significant coupling

-3.88 -0.12 -6.16 – -1.60 0.001

Age 0.01 0.15 0.00 – 0.01 <0.001

Male 0.41 0.19 0.26 – 0.57 <0.001

Race/ethnicity [Black] 0.15 0.14 -0.04 – 0.34 0.128

Race/ethnicity [Other] 0.18 0.16 -0.34 – 0.69 0.502

BMI 0.03 0.28 0.02 – 0.04 <0.001

Hypertension 0.44 0.19 0.25 – 0.62 <0.001

Apnea-hypopnea index (AHI) -0.00 -0.06 -0.01 – 0.00 0.158

Sleep efficiency -0.01 -0.07 -0.01 – 0.00 0.105

Sleep period time -0.01 -0.02 -0.07 – 0.05 0.686

The number of participants with complete data included in the multilevel regression analysis was 623.
Family ID was set as a random effect (n=144 unique groups). The dependent variable, fasting blood
glucose, was transformed using a square root transformation to reduce skewness. The reference
category for race/ethnicity was White. Age, sex, BMI, and hypertension were all significant predictors of
fasting blood glucose levels. Being a male, older, having a higher BMI, and having hypertension were all
associated with higher levels of next-day fasting blood glucose. Race, sleep duration, sleep efficiency,
and AHI were not significant predictors of next-day fasting blood glucose.
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Table S3. Slow oscillation—spindle coupling strength significantly predicts next-day fasting blood
glucose in the CFS dataset. Related to Figure 2.

Predictors β Standardized β 95% CI p

SO—spindle coupling strength -4.90 -0.08 -9.04 – -0.77 0.020

Age 0.01 0.16 0.00 – 0.02 <0.001

Male 0.41 0.18 0.25 – 0.56 <0.001

Race/ethnicity [Black] 0.16 0.15 -0.03 – 0.35 0.102

Race/ethnicity [Other] 0.18 0.16 -0.34 – 0.69 0.502

BMI 0.03 0.29 0.03 – 0.04 <0.001

Hypertension 0.44 0.19 0.25 – 0.62 <0.001

Apnea-hypopnea index (AHI) -0.00 -0.05 -0.01 – 0.00 0.164

Sleep efficiency -0.00 -0.05 -0.01 – 0.00 0.198

Sleep period time -0.01 -0.01 -0.07 – 0.05 0.746

The number of participants with complete data included in the multilevel regression analysis was 623.
Family ID was set as a random effect (n=144 unique groups). The dependent variable, fasting blood
glucose, was transformed using a square root transformation to reduce skewness. The reference
category for race/ethnicity was White. Age, sex, BMI, and hypertension were all significant predictors of
fasting glucose levels. Being a male, older, having a higher BMI, and having hypertension were all
associated with higher levels of next-day fasting blood glucose. Race, sleep duration, sleep efficiency,
and AHI were not significant predictors of next-day fasting blood glucose.
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Table S4. Demographics of the MESA sleep study. Related to STAR Methods.

Variables Statistics

No. unique participants 1996

Age (yrs) 68.43 ± 9.17 (range = 54-93)

Sex 359 F / 288 M

BMI (kg/m2) 28.64 ± 5.49 (range = 17-56)

Race/ethnicity 729 Caucasian / 550 African / 478 Hispanic / 239
Asian

Smoking status 930 Never / 912 Former / 142 Current

Gap between PSG and glucose
Measures (days)

341 ± 200 (range = 0-1024)

Hypertension status 1130 Yes / 866 No

Diabetes status 1197 Normal / 409 Impaired / 356 Treated / 34
Untreated

Fasting glucose (mg/dl) 100.46 ± 21.81 (range = 62-249)

log(HOMA-IR) 0.99 ± 0.77 (range = -1-4)

log(HOMA-B) 4.81 ± 0.63 (range = 3-8)

Apnea-hypopnea index (AHI) 19.73 ± 18.54 (range = 0-111)

% of participants with AHI >30 21.8%

Sleep efficiency (SE, %) 78.53 ± 13.44 (range = 10-99)

Sleep period time (SPT, min) 462.20 ± 91.48 (range = 94-1084)

Total sleep time (TST, min) 359.89 ± 82.15 (range = 32-601)

N1 (% of TST) 14.18 ± 9.16 (range = 0-79)

N2 (% of TST) 58.00 ± 11.05 (range = 19-100)

N3 (% of TST) 9.98 ± 9.05 (range = 0-51)

REM (% of TST) 17.84 ± 6.92 (range = 0-59)

SO density (per min of NREM) 1.48 ± 1.18 (range = 0-13)

Spindles density (per min of NREM) 2.68 ± 1.43 (range = 0-12)

Proportion of SO with significant coupling 86.34 ± 4.44 (range = 67-100)

SO—spindle coupling strength 0.32 ± 0.02 (range = 0.23-0.41)

SO—spindle preferred phase (º) -12.15 ± 28.32

SO = slow oscillations.
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Table S5. Slow oscillation—spindle coupling quantity significantly predicts next-day fasting blood
glucose in the MESA dataset. Related to Figure 3.

Predictors β Standardized β 95% CI p

Proportion of NREM SO with
significant coupling

-1.04 -0.05 -2.00 – -0.08 0.034

Age 0.00 0.02 -0.00 – 0.01 0.390

Male 0.22 0.11 0.13 – 0.30 <0.001

Race/ethnicity [Black] 0.02 0.02 -0.09 – 0.13 0.688

Race/ethnicity [Asian] 0.37 0.38 0.23 – 0.51 <0.001

Race/ethnicity [Hispanic] 0.36 0.37 0.25 – 0.47 <0.001

BMI 0.04 0.20 0.03 – 0.04 <0.001

Hypertension 0.23 0.12 0.14 – 0.32 <0.001

Apnea-hypopnea index (AHI) 0.00 0.03 -0.00 – 0.00 0.201

Sleep efficiency 0.00 0.01 -0.00 – 0.00 0.698

Sleep period time -0.00 -0.02 -0.00 – 0.00 0.380

The number of participants with complete data included in the multilevel regression analysis was 1966.
The dependent variable, fasting blood glucose, was transformed using a square root transformation to
reduce skewness. The reference category for race/ethnicity was White. Sex, race BMI, and hypertension
were all significant predictors of fasting blood glucose levels. Being male, being Asian, being Hispanic,
having a higher BMI, and having hypertension were all associated with higher levels of next-day fasting
blood glucose. Age, sleep duration, sleep efficiency, and AHI were not significant predictors of fasting
blood glucose.
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Table S6. Slow oscillation—spindle coupling strength significantly predicts next-day fasting blood
glucose in the MESA dataset. Related to Figure 3.

Predictors β Standardized β 95% CI p

Proportion of NREM SO with
significant coupling

-2.57 -0.06 -4.56 – -0.59 0.011

Age 0.00 0.02 -0.00 – 0.01 0.464

Male 0.22 0.11 0.13 – 0.30 <0.001

Race/ethnicity [Black] 0.02 0.02 -0.09 – 0.13 0.710

Race/ethnicity [Asian] 0.37 0.38 0.23 – 0.51 <0.001

Race/ethnicity [Hispanic] 0.36 0.37 0.25 – 0.47 <0.001

BMI 0.03 0.19 0.03 – 0.04 <0.001

Hypertension 0.23 0.12 0.14 – 0.32 <0.001

Apnea-hypopnea index (AHI) 0.00 0.03 -0.00 – 0.00 0.210

Sleep efficiency 0.00 0.01 -0.00 – 0.00 0.691

Sleep period time -0.00 -0.02 -0.00 – 0.00 0.387

The number of participants with complete data included in the multilevel regression analysis was 1966.
The dependent variable, fasting blood glucose, was transformed using a square root transformation to
reduce skewness. The reference category for race/ethnicity was White. Sex, race BMI, and hypertension
were all significant predictors of fasting blood glucose levels. Being male, being Asian, being Hispanic,
having a higher BMI, and having hypertension were all associated with higher levels of next-day fasting
blood glucose. Age, sleep duration, sleep efficiency, and AHI were not significant predictors of fasting
blood glucose.
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Table S7. Slow oscillation—spindle coupling quantity significantly predicts next-day HOMA-IR in
the CFS dataset. Related to Figure 4.

Predictors β Standardized β 95% CI p

Proportion of NREM SO with
significant coupling

-2.20 -0.10 -3.73 – -0.68 0.005

Age -0.0 0.02 -0.00 – 0.00 0.660

Male 0.17 0.11 0.07 – 0.27 0.001

Race/ethnicity [Black] 0.14 0.19 0.02 – 0.27 0.025

Race/ethnicity [Other] 0.13 0.17 -0.21 – 0.47 0.458

BMI 0.04 0.44 0.03 – 0.04 <0.001

Hypertension 0.23 0.14 0.11 – 0.35 <0.001

Apnea-hypopnea index (AHI) 0.00 0.01 -0.00 – 0.00 0.826

Sleep efficiency -0.00 -0.01 -0.01 – 0.00 0.797

Sleep period time -0.03 -0.05 -0.07 – -0.01 0.141

The number of participants with complete data included in the multilevel regression analysis was 626.
Family ID was set as a random effect (n=144 unique groups). The dependent variable, HOMA-IR, was
log-transformed to reduce skewness. The reference category for race/ethnicity was White.
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Table S8. Slow oscillation—spindle coupling strength significantly predicts next-day HOMA-IR in
the CFS dataset. Related to Figure 4.

Predictors β Standardized β 95% CI p

SO—spindle coupling strength -3.39 -0.08 -6.14 – -0.64 0.016

Age 0.00 0.02 -0.00 – 0.00 0.580

Male 0.17 0.11 0.06 – 0.27 0.002

Race/ethnicity [Black] 0.15 0.19 0.03 – 0.27 0.018

Race/ethnicity [Other] 0.14 0.18 -0.20 – 0.48 0.428The

BMI 0.04 0.44 0.03 – 0.04 <0.001

Hypertension 0.23 0.14 0.11 – 0.35 <0.001

Apnea-hypopnea index (AHI) 0.00 0.01 -0.00 – 0.00 0.829

Sleep efficiency 0.00 0.00 -0.00 – 0.00 0.973

Sleep period time -0.03 -0.05 -0.07 – -0.01 0.170

The number of participants with complete data included in the multilevel regression analysis was 626.
Family ID was set as a random effect (n=144 unique groups). The dependent variable, HOMA-IR, was
log-transformed to reduce skewness. The reference category for race/ethnicity was White.
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Table S9. Multilevel regression between sleep features and next-day fasting blood glucose in the
CFS dataset. Related to Figure 5.

Sleep predictors Std. beta n p

Proportion of coupled SO -0.109 639 0.002

REM alpha 0.097 626 0.01

NREM theta -0.088 647 0.013

SO–spindle coupling strength -0.079 639 0.026

REM delta -0.059 626 0.107

NREM delta (SWA) 0.058 647 0.1

N1 -0.057 647 0.11

REM sigma 0.056 626 0.161

NREM slow delta 0.056 647 0.11

TIB -0.055 647 0.112

SO density 0.055 647 0.23

Arousal index -0.049 640 0.197

REM theta 0.049 626 0.171

%N1 -0.047 647 0.2

SME -0.047 647 0.231

REM fast delta -0.046 626 0.233

N2 latency -0.044 647 0.214

NREM alpha -0.041 647 0.245

REM slow delta -0.039 626 0.266

SOL -0.039 647 0.274

WASO 0.037 647 0.333

NREM -0.034 647 0.354

Spindles frequency -0.033 647 0.346

N2 -0.033 647 0.349

N3 latency 0.032 617 0.37

TST -0.032 647 0.392

N3 0.029 647 0.483

N1 latency -0.028 640 0.438

%N3 0.027 647 0.502

AHI -0.027 647 0.491

SO frequency -0.021 647 0.601
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NREM beta -0.02 647 0.56

SO amplitude -0.02 647 0.664

NREM power 0.019 647 0.58

%REM 0.017 647 0.614

%NREM -0.017 647 0.616

%N2 -0.015 647 0.696

Spindles power 0.013 647 0.736

REM power -0.013 626 0.718

NREM fast delta -0.011 647 0.75

REM -0.008 647 0.823

REM beta -0.007 626 0.851

SE -0.007 647 0.86

REM latency 0.004 626 0.918

Spindles density -0.004 647 0.921

NREM sigma -0.003 647 0.927

SPT 0.001 647 0.988

All regressions were adjusted for age, sex, BMI, race/ethnicity, hypertension and family ID. Regressions
are sorted in descending order of significance. NREM refers to N2 + N3 sleep (N1 excluded). Sleep
features that significantly predict higher levels of fasting glucose = worse outcome) are highlighted in
red. A total of 47 sleep parameters were included in the correlation analysis. Two-sided p-values were
not corrected for multiple comparisons. The spectral frequency bands are: slow delta (0.5-1.25 Hz), fast
delta (1.25-4 Hz), delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), sigma (12-16 Hz), beta (16-30 Hz), and
total power (in microvolts-squared, 0.5-30 Hz). AHI = Apnea–hypopnea index, SE = sleep efficiency, SO
= slow oscillations, SME = sleep maintenance efficiency, SOL = sleep onset latency, SPT = sleep period
time, TST = total sleep time, WASO = wake after sleep onset.
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Table S10. Multilevel regression between sleep features and next-day insulin resistance
(HOMA-IR) in the CFS dataset. Related to Figure 5.

Sleep predictors Std. beta n p

SO density 0.11 647 0.012

Proportion of coupled SO -0.096 639 0.004

SO–spindle coupling strength -0.084 639 0.014

REM alpha 0.083 626 0.022

NREM fast delta -0.081 647 0.017

NREM slow delta 0.079 647 0.019

Spindles density -0.072 647 0.039

NREM theta -0.072 647 0.035

REM theta 0.068 626 0.047

SO amplitude 0.067 647 0.124

REM delta -0.059 626 0.099

%N1 -0.059 647 0.095

N1 -0.058 647 0.095

%N3 0.056 647 0.145

SPT -0.052 647 0.123

REM -0.05 647 0.147

REM fast delta -0.05 626 0.178

TST -0.049 647 0.182

SOL 0.047 647 0.175

N3 0.045 647 0.256

SO frequency -0.041 647 0.297

NREM delta (SWA) 0.039 647 0.252

NREM power 0.039 647 0.246

N3 latency 0.039 617 0.274

REM slow delta -0.037 626 0.285

N1 latency 0.036 640 0.297

N2 -0.036 647 0.292

REM latency 0.035 626 0.314

SE -0.033 647 0.356

NREM -0.028 647 0.436

N2 latency 0.027 647 0.427
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NREM beta -0.022 647 0.511

AHI 0.022 647 0.561

Spindles frequency -0.022 647 0.526

SME 0.021 647 0.571

WASO -0.02 647 0.583

REM sigma 0.02 626 0.605

REM power 0.017 626 0.615

TIB -0.017 647 0.616

NREM alpha -0.014 647 0.677

%NREM 0.013 647 0.703

%REM -0.013 647 0.706

Spindles power 0.012 647 0.738

%N2 -0.011 647 0.752

REM beta -0.008 626 0.812

NREM sigma 0.004 647 0.9

Arousal index -0.001 640 0.978

All regressions were adjusted for age, sex, BMI, race/ethnicity, hypertension and family ID. Regressions
are sorted in descending order of significance. NREM refers to N2 + N3 sleep (N1 excluded). Sleep
features that significantly predict higher HOMA-IR values (= worse outcome) are highlighted in red. A
total of 47 sleep parameters were included in the correlation analysis. Two-sided p-values were not
corrected for multiple comparisons. The spectral frequency bands are: slow delta (0.5-1.25 Hz), fast
delta (1.25-4 Hz), delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), sigma (12-16 Hz), beta (16-30 Hz), and
total power (in microvolts-squared, 0.5-30 Hz). AHI = Apnea–hypopnea index, SE = sleep efficiency, SO
= slow oscillations, SME = sleep maintenance efficiency, SOL = sleep onset latency, SPT = sleep period
time, TST = total sleep time, WASO = wake after sleep onset.
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Supplementary Figures
Figure S1. Assessment of insulin resistance (IR) and pancreatic beta cell function (B) using the
standardized homeostasis assessment model (HOMA). A) HOMA-IR is positively correlated with
fasting glucose. B) HOMA-B is negatively correlated with fasting glucose. Related to STAR Methods.
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Figure S2. Mediation analysis demonstrated that the link between SO-spindle coupling and
improved next-day fasting glucose is, in part, explained by increased heart rate variability, in the
MESA dataset. A) A significant association between the proportion of SO-spindle coupling and
increased heart rate variability (HRV), which in turn predicted lower (improved) fasting glucose values. B)
A significant association between the strength of SO-spindle coupling and increased HRV, which in turn
predicted lower (improved) fasting glucose values. Related to Figure 3.
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Figure S3. Mediation analysis demonstrated that the link between SO-spindle coupling and
improved next-day fasting glucose is not, in part, explained by increased heart rate variability, in
the CFS dataset. A) A significant association between the proportion of SO-spindle coupling and lower
(improved) fasting glucose values is not mediated by HRV. B) A significant association between the
strength of SO-spindle coupling and lower (improved) fasting glucose values is not mediated by HRV.
Related to Figure 2.

79



Figure S4. Mediation analysis demonstrated that the link between SO-spindle coupling and
next-day insulin resistance is modestly explained by increased heart rate variability, in the CFS
dataset. A) A trending significant association between the proportion of SO-spindle coupling increased
heart rate variability (HRV), which in turn predicted lower (better) insulin resistance values. B) A significant
association between the strength of SO-spindle coupling and lower (better) insulin resistance values is
not mediated by HRV. Related to Figure 2.
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General Conclusions

Taken together, this thesis provides strong support for the hypothesis that impairments
in sleep are closely associated with impairments in cardiometabolic health.
Cardiovascular disease and metabolic disease have shared etiology and interrelated
pathophysiology. Cardiometabolic disease exists on a continuum 64,165, starting from
the presence of risk factors and ending in complete organ failure and death. The
presence of sleep as a biomarker, as well as a modifiable intervention, at any stage
during this continuum is of therapeutic value, as it can disrupt the pathophysiology of
fatal events, and confer cardiometabolic resilience.

Both, the domains of sleep and cardiovascular health, are multi-faceted. This thesis
sheds light on the specificity of unique features of sleep as biomarkers for specific core
metrics of cardiometabolic health. First, sleep fragmentation, a macro metric of sleep
quality, is a biomarker for the build-up of plaque in one’s arteries (Chapter 1). Second,
unique features of an individual’s sleep over a period of many days, are a biomarker for
abnormal lipid profiles, which in turn lead to atherosclerosis. As discussed (Chapter 2),
late clock timing for sleep is a biomarker for the homeostatic process of regulating
fasting total triglycerides and VLDL cholesterol levels. Sleep efficiency is a biomarker
for the allostatic process of regulated post-prandial total triglycerides and VLDL
cholesterol levels. Last, and delving into more micro brainwave oscillation metrics and
their coupling, both the amount and strength of NREM slow oscillation--spindle
coupling are biomarkers for glucose homeostasis (Chapter 3). Therefore, different
features of sleep provide a lens into the pathophysiology of unique aspects of the
pathophysiology of cardiometabolic health, and act as specific biomarkers for different
metrics of cardiometabolic health.

Given that cardiometabolic disease is a top killer of the human race, and having
established sleep as a biomarker of cardiometabolic health, has significant implications
for therapeutic interventions. First, sleep is a modifiable risk factor for cardiometabolic
health, which could help inform public health guidelines that focus on societal sleep
health, to lower cardiometabolic burden. Second, the multidimensionality of sleep as a
biomarker for specific aspects of cardiometabolic health can be leveraged to develop
personalized sleep interventions for patients with diabetes and/or dyslipidemia.

Insufficient sleep has long been linked with increased inflammation 11. One mutual
potential pathway through which poor sleep impaired two of the key cardiometabolic
outcomes examined - that of glucose homeostasis, and fasting triglycerides - is
increased inflammation. Collectively, this thesis supports the hypothesis that poor
sleep increases inflammation, which in turn has multiple downstream effects on
cardiometabolic health. Interventions with modifiable lifestyle changes such as dietary
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changes can help decrease inflammation 166, and provide increased cardiometabolic
protection.

In conclusion, this thesis strongly supports a sleeping-brain—body framework of
inflammation-associated cardiometabolic homeostasis in humans, and re-emphasizes
the importance of sleep in the clinical management of cardiometabolic health.
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