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ABSTRACT 

Building thermal load prediction informs the optimization of cooling plant and thermal energy storage. 
Physics-based prediction models of building thermal load are constrained by the model and input complexity. 
In this study, we developed 12 data-driven models (7 shallow learning, 2 deep learning, and 3 heuristic 
methods) to predict building thermal load and compared shallow machine learning and deep learning. The 
12 prediction models were compared with the measured cooling demand. It was found XGBoost (Extreme 
Gradient Boost) and LSTM (Long Short Term Memory) provided the most accurate load prediction in the 
shallow and deep learning category, and both outperformed the best baseline model, which uses the previous 
day’s data for prediction. Then, we discussed how the prediction horizon and input uncertainty would 
influence the load prediction accuracy. Major conclusions are twofold: first, LSTM performs well in short-
term prediction (1h ahead) but not in long term prediction (24h ahead), because the sequential information 
becomes less relevant and accordingly not so useful when the prediction horizon is long. Second, the 
presence of weather forecast uncertainty deteriorates XGBoost’s accuracy and favors LSTM, because the 
sequential information makes the model more robust to input uncertainty. Training the model with the 
uncertain rather than accurate weather data could enhance the model’s robustness. Our findings have two 
implications for practice. First, LSTM is recommended for short-term load prediction given that weather 
forecast uncertainty is unavoidable. Second, XGBoost is recommended for long term prediction, and the 
model should be trained with the presence of input uncertainty.  
 
Keywords: building cooling load; prediction; weather forecast uncertainty; XGBoost; deep learning; 
LSTM 
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1. Introduction 

The building sector is a major energy consumer and carbon emitter in modern society [1]. To reduce building 
energy usage and its associated carbon emissions, building thermal load prediction could play an important 
role. It has wide applications in HVAC control optimization [2], thermal energy storage operation [3], energy 
distribution system planning [4], and smart grid management [5] among others.  

1.1 Previous work 

Because of its wide application, much research has been conducted to predict building thermal load, and 
those studies date back to the 1980s [6]. The approaches to forecasting building thermal load could be 
generally classified into three categories: white-box physics-based models, gray-box reduced-order models, 
and black-box data-driven models,1 as shown in Figure 1. 

 

Figure 1. Building thermal load prediction methods 

White-box models predict building loads with detailed heat and mass transfer equations. Some mature 
software tools (such as EnergyPlus, Dest, and TRNSYS) are commercially available to set up white-box 
models [7]. To develop a detailed physics-based model, many detailed inputs are needed, and it is time-
consuming to collect that information. More important, the uncertain and inaccurate inputs lead to a marked 
gap between the model results and reality [10]. 

Gray-box models simplify the building thermal dynamics to reduced order Resistance and Capacity (RC) 
models. Typically, the parameter values (Rs and Cs) are inferred from measured data (a.k.a. parameter 
identification) by minimizing the prediction errors, rather than from the specification of building physical 
parameters, as in the white-box model [11]. With new data available, the inferred parameters might change 
to reflect different building operations (window closing/opening) or material deterioration. In this regard, 
the gray-box model can be self-adaptive [12]. Models with different orders (how many Rs and Cs to represent 

                                                   
1 Strictly speaking, the studies reviewed in this section include cooling load prediction, heating load 

prediction, and building electricity usage prediction. In this review section, we focus more on the methods 

used, rather than strictly distinguish which variable is being predicted. This is a common practice in previous 

literature review articles like Li and Wen, 2014 [7], Zhao and Magoulès, 2012 [8], Amasyali and El-Gohary, 

2016 [9], as building thermal load and electricity usage are highly correlated. Also, the task to predict 

building load and electricity usage share similar characteristics and implications. 



the thermal zone or building envelope) have been proposed and studied, ranging from 1R1C [13], 2R2C [14], 
3R2C [14], 3R3C [15], and 5R4C [15]. 2  Harb et al. compared RC models with different orders, and 
recommended the 4R2C model configuration [16]. A key shortcoming of a gray-box model is it only 
considers external heat gains, and overlooks internal heat gains. The gray-box models lack ways to identify 
and reflect the schedule and intensity change of occupant, lighting, and plug loads. As indicated in [17], the 
internal heat gains account for an increasingly higher proportion in modern buildings with a high-efficiency 
level of envelope. 

Black-box models are purely data-driven; they predict building thermal load using historical data. As 
increasing amounts of data are monitored and collected, it becomes possible to learn the load patterns from 
historical data and use these learned patterns to make predictions. Early load forecast models were statistics-
based models. For instance, in the 1980s, linear regression [18] (1984) and autoregressive integrated moving-
average (ARIMA) [6] (1989) were applied to forecast building load. In subsequent years more complicated 
methods have been used. Some popular choices include support vector machine (SVM) [19]; artificial neural 
networks (ANN) [20]; extreme learning machine [21]; regression tree [22]; random forest [23]; and 
Hierarchical Mixture of Experts [24]. 

With the rapid development of deep learning in recent years, deep neural networks have been introduced as 
tools for load prediction. The major distinction between “shallow” and “deep” machine learning models lies 
in the number of linear or non-linear transformations the input data experiences before reaching an output. 
Deep models typically transform the inputs multiple times before delivering the outputs, while shallow 
models usually transform the inputs only one or two times. As a result, deep models can learn more 
complicated patterns, allowing end-to-end learning without manual feature engineering, and they perform 
well in tasks such as computer vision and sequential data analytics.  

The most straightforward deep model is multilayer perceptron (MLP). MLP adds multiple hidden layers to 
an ordinary neural network to enhance its capability to learn more complicated patterns. Massana et al. 
applied MLP to predict the load for non-residential buildings [25]. However, MLP is not specially designed 
for time series data analytics, as it fails to capture and retain sequential information. Contrarily, a recurrent 
neural network (RNN), as a special form of the deep neural network, is specially designed to deal with time-
series data. RNN is suitable for building load forecasts, as building load is essentially a time series. The long 
short term memory (LSTM) is a special form of RNN, which is designed to handle long sequential data. 
LSTM has been used successfully to forecast internal heat gains [17] or building energy usage [26]. However, 
to the best of the authors’ knowledge, LSTM has not been used for building thermal load prediction. 

Because many different algorithms are used to develop black-box load prediction models, a natural question 
is: “Is there a particular algorithm that is superior to others?” Li et al. compared SVM and ANN and found 
SVM performed better [27]. Guo et al. compared multivariable linear regression, SVM, ANN, and extreme 
learning machine and found extreme learning machine outperformed others [21]. Fan et al. compared seven 
machine learning algorithms (multiple linear regression, elastic net, random forests, gradient boosting 
machines, SVM, extreme gradient boosting, and deep neural network) and found extreme gradient boosting 
combined with deep auto-coding performed best [28]. Wang et al. compared LSTM and ARIMA and found 

                                                   
2 The model order might refer to different building components in different studies, and strictly speaking, 

are not comparable. For instance, the 2R2C and 3R2C model in reference [14] refer to internal thermal 

mass and external envelope, while the R3C3 and R5C4 mode in reference [15] refer to the whole thermal 

zone. 



LSTM performs better than ARIMA in plug load prediction [29]. Rather than selecting the best predictor, 
ensembling multiple different predictors into one model could provide better generalization performance 
[23].  

In addition to the prediction algorithms, determining what features should be used plays an important role 
in determining black-box model prediction accuracy. Time-related variables (hour of day, day type) are 
usually used, as they could reflect occupancy pattern, internal heat gains, and building usage schedule (like 
temperature set point) [28]. Outdoor weather variables (temperature and relative humidity) are also widely 
selected as features because weather conditions markedly influence the fresh air thermal load [30] and heat 
transfer through the building envelope. Some studies [21] used the return chilled water temperature as a 
predicting variable, as the return chilled water temperature could indicate real-time cooling demand and 
thermal mass of the current time step. However, the return chilled water temperature can only be used for 
short-term load prediction (on the scale of hours); it is not suitable for long-term forecasting (on the scale of 
days).  

1.2 Research gap and objectives 

As a rapidly developing area, new machine learning algorithms are being developed consistently. Though 
various literature has compared different algorithms, it is always worthwhile to investigate and reflect which 
algorithm performs best under the context of building load prediction. Additionally, to the best of the authors’ 
knowledge, some cutting-edge machine learning techniques (such as Extreme Gradient Boosting [XGBoost] 
and LSTM) have not been applied to forecast the building thermal load. To address this research gap, we 
aimed to predict building cooling load with two cutting-edge machine learning techniques—XGBoost and 
LSTM—which represent shallow machine learning and deep learning, respectively. XGBoost and LSTM 
were implemented with the XGBoost library [31] and Keras [32] in Python. These two tools are powerful, 
as most Kaggle competition3 winners used either the XGBoost library (for shallow machine learning) or 
Keras (for deep learning) [33]. The first objective of this study was to compare the performance of shallow 
and deep learning under the context of building load prediction. 

The second research gap in past studies is how the input uncertainty would influence the performance and 
selection of machine learning algorithms. Under the context of building load prediction, weather data is one 
of the inputs that might be associated with uncertainty. For instance, to predict building load, we need to 
input weather forecast, which unavoidably has forecast uncertainty. The influence of weather forecast 
uncertainty is overlooked in previous studies. Given the existence of input uncertainty, for instance weather 
forecast uncertainty, which machine learning algorithm performs better and how to make the prediction 
model more robust is the second research question to be answered in this study.  

 

2. Methodology 

This study’s research roadmap is illustrated in Figure 2. The feature and the algorithm are two pillars of any 
data-driven models, and these will be discussed in Section 2.1 and Section 2.2. Section 2.3 details how we 
established the baseline models and introduced the evaluation index for model comparison. Prior to 
presenting the results, we introduce the case study building and the associated data collection process in 
Section 2.4.  

                                                   
3 See https://www.kaggle.com. This is the most popular and well-recognized competition in the machine 

learning community.  

https://www.kaggle.com/


 

Figure 2. Research roadmap 
 

2.1 Algorithms  

In this study, we compared shallow machine learning and deep learning for building load prediction. Deep 
learning involves multiple levels of representation and multiple layers of non-linear processing units, which 
is developing very fast in recent years and has successful applications in areas including computer vision 
and natural language processing. By contrast, all non-deep learning approaches can be classified as shallow 
learning. Both deep and shallow learning can deal with time-series data prediction, as in this case cooling 
load prediction. In deep learning, Recurrent Neural Network is designed to deal with sequential information, 
which is capable to extract and pass sequential information to the next time step. For shallow learning, 
sequential information is usually represented by time-related proxy variables such as hour of the day and 
day of the week.  

For shallow machine learning, we compared Linear Regression, Ridge Regression, Lasso Regression, Elastic 
Net, Support Vector Machine (SVM) Random Forest, and Extreme Gradient Boosting (XGBoost); for deep 
learning, we compared vanilla Deep Neural Network and Long Short Term Memory (LSTM). 

Linear Regression is the simplest machine learning algorithm. Ridge Regression adds regularization for 𝜄𝜄2 
norm of the weight vector to the cost function, and Lasso Regression adds regularization for 𝜄𝜄1 norm. Elastic 
Net simultaneously adds 𝜄𝜄2 and 𝜄𝜄1 norm regularization terms to the cost function. SVM is a powerful and 
versatile machine learning algorithm that is capable of performing classification and regression tasks. 
Random Forest is an ensemble learning technique which is trained via the bagging method, i.e., building 
decision trees in a parallel way. In the deep learning category, we selected the vanilla Deep Neural Network, 
which inputs historical load and weather data for prediction without considering the sequential information. 

As XGBoost and LSTM are more advanced algorithms, which have not been widely used for building load 
prediction, we introduced these two algorithms in greater detail in this section: including the major ideas 
behind these two algorithms and how these ideas are implemented mathematically. The detailed hyper-



parameter tuning process for XGBoost and LSTM is presented in the appendix.  

XGBoost 

XGBoost is an ensemble learning technique, i.e., a predictor built out of many small predictors. XGBoost 
dominates recent machine learning and Kaggle competitions for structured or tabular data. As shown in [23], 
combining multiple predictors in a systematic way could enhance a model’s prediction accuracy and 
generalization capacity. Unlike random forest, which adds multiple predictors in a parallel way, XGBoost 
adds models sequentially; new models (𝑓𝑓𝑡𝑡  at iteration t) are built by focusing on the mistakes of the 

predictors that come before it (the difference between the true label 𝑦𝑦𝑖𝑖 and the predicted label 𝑦𝑦𝚤𝚤
(𝑡𝑡−1)�  till 

iteration (𝑡𝑡 − 1)), aiming at minimizing the loss function 𝑙𝑙(𝑦𝑦𝑖𝑖 , �𝑦𝑦𝚤𝚤
(𝑡𝑡−1)� + 𝑓𝑓𝑡𝑡(Χ𝑖𝑖)�), just as shown in Equation 

(1). Through the mechanism of always trying to fix the prediction errors of prior models, XGBoost could 
improve its prediction accuracy. 

ℒ<𝑡𝑡> = ∑ 𝑙𝑙(𝑦𝑦𝑖𝑖 , �𝑦𝑦𝚤𝚤
(𝑡𝑡−1)� + 𝑓𝑓𝑡𝑡(Χ𝑖𝑖)�)𝑛𝑛

𝑖𝑖=1 + Ω(𝑓𝑓𝑡𝑡)         (1) 

Where, 𝑖𝑖 denotes the i-th sample to be predicted, 𝑛𝑛 is the total number of samples; 

       𝑡𝑡  denotes the t-th iteration; 𝑙𝑙(𝑦𝑦𝑖𝑖 ,𝑦𝑦𝚤𝚤�)  is the loss-function between the true label 𝑦𝑦𝑖𝑖  and the 
predicted label 𝑦𝑦𝚤𝚤� ; 

       𝑓𝑓𝑡𝑡(Χ𝑖𝑖) is the base learner added at the t-th iteration, Χ𝑖𝑖 denotes the features for the i-th sample; 

       Ω(𝑓𝑓𝑡𝑡) is the regularization term to avoid over-fitting; 

       ℒ<𝑡𝑡> denotes the objective function at the t-th iteration   

However, the technique of repetitively building new models to focus on the mislabeled samples is likely to 
raise a concern of overfitting. XGBoost’s approach to solving this problem is to ensemble weak predictors 
rather than strong ones. A weak predictor is a simple prediction model that performs better than a random 
guess. A simple decision tree, with limited depths, is a good choice of individual predictors inside an 
ensemble learner, which is always found to outperform other options (multivariable regression, SVM, or 
even a decision tree with great depth). Additionally, a regularization term Ω(𝑓𝑓𝑡𝑡) is added to the objective 
function ℒ<𝑡𝑡> to reject those base learner functions (𝑓𝑓𝑡𝑡) that might result in over-fitting.  

Another key component of the ensemble learning algorithm is how the base learners (𝑓𝑓1 ~ 𝑓𝑓𝑡𝑡) are selected. 
XGBoost applies second-order Taylor Expansion to approximate the value of loss functions, and uses the 
first order derivative and the second order derivative to help select the base learner 𝑓𝑓𝑡𝑡 [34]. 

To conclude, XGBoost is a decision tree-based ensemble machine learning algorithm that uses a gradient 
boosting framework. In this study, XGBoost is implemented using the XGBoost Library [31]. 

LSTM  

LSTM is a special form of RNN, designed for handling long sequential data. Basic RNN architecture (Eq. 2 
and Eq. 3) suffers from the problem of a vanishing or exploding gradient when the number of time steps (t) 
is large; however, this was successfully addressed by LSTM. Additionally, LSTM improves the information 
flow by introducing three additional gates: an update gate (Eq. 5), a forget gate (Eq. 6), and an output gate 
(Eq. 7); as well as two more cells: a candidate memory cell (Eq. 4) and a memory cell (Eq. 8) [35]. 



𝑎𝑎<𝑡𝑡> = 𝑔𝑔(𝑊𝑊𝑎𝑎[𝑎𝑎<𝑡𝑡−1>,𝑥𝑥<𝑡𝑡>] + 𝑏𝑏𝑎𝑎)         (2) 

𝑦𝑦<𝑡𝑡> = 𝑔𝑔′�𝑊𝑊𝑦𝑦𝑦𝑦𝑎𝑎<𝑡𝑡> + 𝑏𝑏𝑦𝑦�     (3) 

Where, 𝑔𝑔(𝑥𝑥) and 𝑔𝑔′(𝑥𝑥) are two activation functions; 𝑎𝑎<𝑡𝑡> is the activation value at time step t; 𝑥𝑥<𝑡𝑡> is 
input at time step t; 𝑦𝑦<𝑡𝑡> is the output at time step t; 𝑊𝑊𝑎𝑎 and 𝑊𝑊𝑦𝑦𝑦𝑦 are weight matrices; 𝑏𝑏𝑎𝑎 and 𝑏𝑏𝑦𝑦 are 
bias vectors; and [𝑎𝑎<𝑡𝑡−1>,𝑥𝑥<𝑡𝑡>] denotes concatenate 𝑎𝑎<𝑡𝑡−1> and 𝑥𝑥<𝑡𝑡> vertically. 

In basic RNN, the memory passed to the next time step equals to the activation of the present time step 
(𝑎𝑎<𝑡𝑡−1>), as shown in Eq. 2. LSTM separates the memory cell from the output cell, and purposely adds a 
forget gate to calculate the update rate to determine how much memory needs to be passed to the next time 
step, adding flexibility to determine what and how much information should be passed to the next time step.  

𝑐̃𝑐<𝑡𝑡> = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊𝑐𝑐[𝑎𝑎<𝑡𝑡−1>,𝑥𝑥<𝑡𝑡>] + 𝑏𝑏𝑐𝑐)  (4) 

Γ𝑢𝑢 = 𝜎𝜎(𝑊𝑊𝑢𝑢[𝑎𝑎<𝑡𝑡−1>,𝑥𝑥<𝑡𝑡>] + 𝑏𝑏𝑢𝑢)   (5) 

Γ𝑓𝑓 = 𝜎𝜎�𝑊𝑊𝑓𝑓[𝑎𝑎<𝑡𝑡−1>,𝑥𝑥<𝑡𝑡>] + 𝑏𝑏𝑓𝑓�   (6) 

Γ𝑜𝑜 = 𝜎𝜎(𝑊𝑊𝑜𝑜[𝑎𝑎<𝑡𝑡−1>,𝑥𝑥<𝑡𝑡>] + 𝑏𝑏𝑜𝑜)   (7) 

𝑐𝑐<𝑡𝑡> = Γ𝑢𝑢 ∗ 𝑐̃𝑐<𝑡𝑡> + Γ𝑓𝑓 ∗ 𝑐𝑐<𝑡𝑡−1>   (8) 

𝑎𝑎<𝑡𝑡> = Γ𝑜𝑜 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑐𝑐<𝑡𝑡>)   (9) 

𝑦𝑦<𝑡𝑡> = 𝑔𝑔′�𝑊𝑊𝑦𝑦𝑦𝑦𝑎𝑎<𝑡𝑡> + 𝑏𝑏𝑦𝑦�   (10) 

Where, 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑥𝑥) is hyperbolic tangent function, as defined in Eq. 11; 𝜎𝜎(𝑥𝑥) is sigmoid function, as defined 
in Eq. 12; 𝑐̃𝑐<𝑡𝑡> is the memory candidate at time step t; 𝑐𝑐<𝑡𝑡> is the memory value at time step t; Γ𝑢𝑢 is the 
update gate; Γ𝑓𝑓  is the forget gate; Γo  is the output gate; 𝑊𝑊𝑐𝑐 , 𝑊𝑊𝑢𝑢 , 𝑊𝑊𝑓𝑓 , and 𝑊𝑊𝑜𝑜  are weight matrices to 
calculate the memory candidate, update gate, forget gate, output gate, respectively; 𝑏𝑏𝑐𝑐, 𝑏𝑏𝑢𝑢, 𝑏𝑏𝑓𝑓 , and 𝑏𝑏𝑜𝑜 are 
bias vectors to calculate the memory candidate, update gate, forget gate, output gate, respectively. 

𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑥𝑥) = 𝑒𝑒2𝑥𝑥−1
𝑒𝑒2𝑥𝑥+1

  (11) 

𝜎𝜎(𝑥𝑥) = 𝑒𝑒𝑥𝑥

𝑒𝑒𝑥𝑥+1
   (12) 

 

2.2 Features 

Cooling load of a building is caused by internal heat gains and external heat gains [17]. Internal heat gains 
include the heat emission from occupants, miscellaneous electric loads, lighting, etc., which are influenced 
by the building operation schedule. Like in university campus buildings, internal heat gains are largely 
determined by the university calendar, such as class hours and school holidays. In this study, we selected 
time-related features – the hour of day, the day of week, and holiday – to predict internal heat gains. External 
heat gains include the cooling load to handle the ventilation air, and the heat transfer through external walls, 
roofs, windows, infiltration, etc., which are influenced by the outdoor weather condition. In this study, we 
selected outdoor air temperature and relative humidity to predict external heat gains.  

Table 1 presents and compares the input features for shallow and deep learning. Different algorithms have 
different inputs because they take different approaches to encode the time-related information. For shallow 
machine learning, time-related information is represented by the dummy variables of day of week and hour 



of day. Contrarily, deep learning (e.g., LSTM) inputs historical data directly to reflect the sequential 
information. As shown in Table 1, LSTM consumes more input variables, and accordingly requires a longer 
training time. 

Table 1. Input features 

  Shallow Machine Learning  Deep Learning  

Time-related Day of week Dummies: Mon., Tue., Wed., 
Thu., Fri., Sat., Sun. (7 variables) 

Binary: weekend or not (1 
variable) 

Hour of day Dummies: 0, 1, …, 23 (24 
variables) 

/ (0 variables) 

Holiday  Binary: holiday or not (1 
variable) 

Binary: holiday or not (1 variable) 

Weather  Temperature Numerical: forecasted (1 
variable) 

Numerical: historical & forecasted 
(25 variables) 

RH (relative 
humidity) 

Numerical: forecasted (1 
variable) 

Numerical: historical & forecasted 
(25 variables) 

Building 
cooling load 

Cooling load / (0 variables) Numerical: historical (24 
variables) 

Total number of 
input variables 

 7+24+1+1+1+0 = 34 1+0+1+25+25+24 = 76 

 

As shown in Table 1, the weather forecast is needed to make a load prediction. Weather forecasts could not 
be exactly accurate for two reasons. First, the weather forecast itself is associated with prediction error and 
uncertainty. Second, the local climate of the target building and weather stations may be different. In most 
cases, the weather forecast is acquired by using the public API of online weather forecasting services such 
as Weather Underground (https://www.wunderground.com/) or Dark Sky (https://darksky.net), which predict 
the weather in the weather station location. It is unlikely that the target building is exactly at the same location 
as the weather station, which leads to another uncertainty.  

Figure 3 compares the forecast and real weather of a typical week. The weather forecast is from the API of 
Dark Sky, and the real weather data are measured by a local weather station placed in the target building. A 
difference can be observed in both the dry-bulb temperature and relative humidity forecast.  

 

https://www.wunderground.com/


 

(a) Dry-bulb temperature 

 

(b) Relative humidity 

Figure 3. Comparison between the weather forecast and ground truth of a typical week 
 

Figure 4 plots the key statistics and distribution of temperature and humidity forecast error of one-year data, 
comparing the weather forecast from Dark Sky to the ground truth measured by the local weather station. 
Though we presented both the mean and standard deviation of the forecast error, we only care about the 
standard deviation. Systematic bias of the prediction could be easily offset by adding or deducting a constant 
value, which could be easily learned by machine learning algorithms. However, the standard deviation of 
prediction error is associated with a random noise, which is unpredictable and poses additional uncertainty 
to the machine learning model. As shown in Figure 4, the forecast uncertainty, illustrated by the standard 
deviation of prediction error, increases with the prediction horizon. It could be observed that the mean error 
of temperature forecast is very small (less than 0.4oC) and would not increase with the prediction time 
horizon. However, the prediction is highly variant, and the prediction uncertainty would increase with a 
longer prediction time horizon. 



  

       (a) mean of temperature forecast error     (b) standard deviation of temperature forecast error 

  

    (c) mean of relative humidity forecast error  (d) standard deviation of relative humidity forecast error  

 

  (e) distribution of temperature forecast error         (f) distribution of relative humidity forecast error  

Figure 4. Key statistics and distribution of temperature and humidity forecast error 

 

As observed in Figure 4(e) and 4(f), though the prediction error is skewed to the left for the temperature 
forecast and skewed to the right for the humidity forecast, the overall pattern is similar to the Gaussian 
distribution. We used three commonly used statistical test approaches to verify the null hypothesis that the 
prediction error follows Gaussian distribution: the Shapiro–Wilk test [36], D'Agostino's K-squared test [37], 
and the Anderson–Darling test [38]. The three tests were conducted with Python’s scipy.stats [39] Library. 
The p-values of both the temperature and humidity forecast under all three tests are very close to 0 (less than 
10-10), indicating that we could not reject the null hypothesis that the prediction error follows the Gaussian 
distribution. Therefore, we proposed the weather forecast uncertainty model as shown in Eq. 13 and the 
coefficients shown in Table 2. As shown in Figure 4e and 4f, the forecast errors generated by Eq. 13 fit well 



to the actual weather forecast errors.   

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥) = 1
√2𝜋𝜋𝜎𝜎2

𝑒𝑒−
(𝑥𝑥−𝜇𝜇)2

2𝜎𝜎2          (13) 

Table 2. Key statistics for the weather forecast error model 
 Temperature prediction Relative humidity prediction 
μ 0.6 4% 
σ 1.5 12% 

We did not distinguish different prediction horizons and utilized one set of (μ,σ) values because the forecast 
uncertainty does not vary significantly with the prediction horizon, as shown in Figure 4. To simulate the 
weather forecast uncertainty, we randomly sampled a value from Eq. 13 with coefficients from Table 2 and 
added this sampled noise to the ground truth of outdoor air temperature and humidity.  

2.3 Baseline models 

This section discusses our use of three conventional load forecast approaches as baseline models to evaluate 
how machine learning techniques could improve load prediction accuracy. The baseline models are selected 
based on the common practice in building operations.  

Models 1 and 2: Persistence Daily and Weekly Algorithms  

The persistence algorithm, which is also called the “naïve” forecast, utilizes the load of the previous time 
step (t) as the prediction for the next time step (t+1). To optimize the cooling plant and thermal storage tank 
through model predictive control (MPC), the load prediction horizon should be at least 24 hours ahead, so 
that the charging and discharging schedule of thermal storage can be optimized. Therefore, the first baseline 
model used the load of the previous day (given the same day type, working or non-working) as the prediction. 
This was named the persistence_daily model. 

Considering the weekly periodicity of a building load, a natural idea is to utilize the load value of the previous 
week as the prediction for the next. To distinguish the second load prediction baseline model from the 
persistence_daily model, it was named the persistence_weekly model. 

Model 3: Rolling Window Algorithm 

The rolling window forecast involves calculating a statistic, most likely the mean or the mode, of a fixed 
contiguous block of prior observations and using it as a forecast. In this study, the third baseline model we 
proposed used the mean of the load of the same hour and day of the week of the previous four weeks as the 
prediction. By averaging a couple of same-hour-same-day loads of previous weeks, random variations could 
be smoothed out, to enhance prediction robustness. 

Comparison metrics 

Another important step before comparing different forecasting models is to select a comparison index. In 
this study, we selected the coefficient of variation of the root mean square error (CVRMSE), defined in 
Eq. 13, which normalized the root mean square error by the mean value. CVRMSE is selected for two 
reasons. First, CVRMSE is a dimensionless indicator, which could facilitate cross-study comparisons 
because it filters out the scale effect. Second, CVRMSE is recommend by ASHRAE guideline 14 [40]. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = �∑ (𝑦𝑦𝚤𝚤� −𝑦𝑦𝑖𝑖)2𝑖𝑖 /𝑁𝑁
∑ 𝑦𝑦𝑖𝑖𝑖𝑖 /𝑁𝑁

   (13) 



Where 𝑦𝑦𝚤𝚤�  and 𝑦𝑦𝑖𝑖 are the predicted and ground-truth values at time step i, and N is the number of total time 
steps. 

It is worthwhile to point out that some other evaluation indices are used in the existing literature, such as 
mean root mean square error (MRMSE) in Eq. 14 (used in studies [41], [27]) and mean absolute percentage 
error (MAPE) in Eq. 15 (used in studies [22], [25]). Those error evaluation indices are all presented in the 
form of percentages, and have similar definitions. However, they are not comparable. Given the same 
prediction, the error values reported in the form of MRMSE or MAPE would be less than the error value 
reported by CVRMSE.  

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = �∑ (𝑦𝑦𝚤𝚤�−𝑦𝑦𝑖𝑖
𝑦𝑦𝑖𝑖

)2𝑖𝑖 /𝑁𝑁   (14) 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = �∑ �𝑦𝑦𝚤𝚤� −𝑦𝑦𝑖𝑖
𝑦𝑦𝑖𝑖

�𝑖𝑖 /𝑁𝑁   (15) 

 

2.4 Building used for the case study 

In this study, we selected a university campus building located in California as our testbed. This building is 
mixed-used and provides laboratories, laboratory support spaces, teaching laboratories, and offices. This 
building has a floor area of about 175,000 square feet (16,000 square meters) and was awarded LEED-NC 
Gold. For privacy reasons, no more detailed information is provided. 

In the testbed building, we collected the chilled water supply temperature, chilled water return temperature, 
and the chiller water supply flowrate, to calculate the building cooling load. Additionally, we collected the 
outdoor dry-bulb temperature and relative humidity from the weather station located on the building roof. 
Figure 5 plots the two-year cooling load, which is used in this study, from June 15, 2017 to June 15, 2019. 

 

Figure 5. Cooling load of the testbed building 

 



3. Results 

3.1 Performance of baseline models 

We compared the three baseline models and selected the one that performed the best for later comparison 
with the two machine learning models. As shown in Table 3 and Figure 6, the most naïve approach—using 
the load of the previous day as the forecast of the coming day—outperforms the other two baseline models. 
Therefore, the persistence_daily approach was selected as the baseline model of this study. 

Table 3. CVRMSE of baseline models 

 persistence_daily persistence_weekly rolling_window 

CVRMSE 29.9% 44.8% 43.5% 

 

Figure 6. Distribution of prediction error of baseline models 

Considering the daily periodical behavior of the occupant, lighting, and plug-load schedules, the value of the 
previous day is a good estimation for the internal heat gains of the coming day. As internal heat gains account 
for more than half of the building load in modern buildings [17], this naïve approach delivers a satisfactory 
prediction. However, another piece of information missed in the baseline model is the local weather, which 
is highly associated with the fresh air and external load through the envelope. Therefore, we used the 
forecasted weather as input features through machine learning techniques to enhance prediction accuracy. 
This process is described in the following sections. 

 

3.2 Algorithm comparison 

In this section, we compared different shallow machine learning and deep learning algorithms under the 
assumption that we have perfect knowledge about the weather data, i.e., the weather forecast is 100% 
accurate. In addition to the two algorithms introduced in Section 2.1, we compared seven more machine 
learning algorithms. In the shallow machine learning category, we compared Linear Regression, Ridge 
Regression, Lasso Regression, Elastic Net, Support Vector Machine (SVM) and Random Forest. Linear 
Regression is the simplest machine learning algorithm. Ridge Regression adds regularization for 𝜄𝜄2 norm 
of the weight vector to the cost function, and Lasso Regression adds regularization for 𝜄𝜄1 norm. Elastic Net 
simultaneously adds 𝜄𝜄2  and 𝜄𝜄1  norm regularization terms to the cost function. SVM is a powerful and 



versatile machine learning algorithm that is capable of performing classification and regression tasks. 
Random Forest is an ensemble learning technique which is trained via the bagging method, i.e., building 
decision trees in a parallel way. In the deep learning category, we compared vanilla Deep Neural Network, 
which inputs historical load and weather data for prediction without considering the sequential information.  

We first split the two-year hourly data into a training set and a testing set, with a ratio of 80 to 20. Then, we 
used the grid search tool provided by scikit-learn [42] , GridSearchCV, for hyper-parameter tuning. To avoid 
information leak, we put the 20% testing data aside, using the training dataset alone for the hyper-parameter 
tuning. After we found the best hyper-parameters with the grid search cross validation technique, we trained 
our model with the whole training dataset, and finally validated it on the test dataset. The hyper-parameter 
tuning process and the selected hyper-parameters are presented in the Appendix. The comparison result is 
shown in Table 4. 

Table 4. CVRMSE of different models for 1h ahead load prediction 

 Training set Test set 

Shallow 
machine 
learning 

Linear Regression 33.2% 38.2% 

Ridge Regression 33.2% 37.8% 

Lasso Regression 33.3% 37.5% 

Elastic Net 33.2% 37.7% 

SVM Regression 22.1% 25.0% 

Random Forest 22.0% 23.7% 

XGBoost 14.2% 21.1% 

Deep 
Learning 

Vanilla DNN 23.6% 24.6% 

LSTM 17.9% 20.2% 

Baseline persistence_daily 29.9% 29.9% 

persistence_weekly 44.8% 44.8% 

rolling_window 43.5% 43.5% 

 

As observed from Table 4, linear regressions with regularization terms (Ridge, Lasso and Elastic Net) have 
lower prediction errors in the test dataset. Adding regularization terms (either on 𝜄𝜄2 and 𝜄𝜄1) indeed enhances 
the model’s capability to generalize to unseen datasets. Compared with baseline models, algorithms of linear 
regression family perform better than persistence_weekly and window, but worse than persistence_daily. 
Two more advanced shallow machine learning algorithms, SVM and Random Forest, improve the prediction 
accuracy compared with linear regression family algorithms and the best baseline. In the shallow machine 
learning algorithms, XGBoost performs the best, especially in the training set, which could be ascribed to 
the way how XGBoost was developed, i.e., new predictors are built to correct the mistakes of existing ones. 
However, similar to other sophisticated machine learning techniques, XGBoost is confronted with the 
overfitting problem. Its prediction accuracy on the test dataset is not as good as on the training dataset. In 
the deep learning category, LSTM outperforms vanilla DNN on both the training and the test datasets, by 



taking better use of sequential information. Compared with complicated machine learning algorithms, 
baseline heuristic prediction models perform not too bad, considering its simplicity and the limited amount 
of data it requires.  

Because XGBoost and LSTM are the best load prediction algorithm for shallow and deep learning 
respectively, we selected XGBoost and LSTM as the representative of each category for later analysis.  

 

3.3 Prediction horizon 

In this section, we selected XGBoost and LSTM as representative algorithms to discuss how the prediction 
horizon would influence the performance of shallow and deep learning. To facilitate prediction-based control, 
24 hours ahead prediction is always needed. For instance, to optimize the operation of thermal energy storage, 
it is necessary to predict the cooling load of the next day.  

For deep learning, as historical data (weather and building load) are needed as inputs, 1h ahead prediction is 
different from 24h ahead prediction. In 1h ahead prediction, we use historical trajectory 𝑞𝑞𝑡𝑡−23,𝑞𝑞𝑡𝑡−22,⋯ , 𝑞𝑞𝑡𝑡 
and weather forecast 𝑇𝑇𝑡𝑡+1,𝑅𝑅𝑅𝑅𝑡𝑡+1 to predict cooling load 𝑞𝑞𝑡𝑡+1; in 24h ahead prediction, we use historical 
trajectory 𝑞𝑞𝑡𝑡−23,𝑞𝑞𝑡𝑡−22,⋯ ,𝑞𝑞𝑡𝑡  and 𝑇𝑇𝑡𝑡+24,𝑅𝑅𝑅𝑅𝑡𝑡+24  to predict cooling load 𝑞𝑞𝑡𝑡+24 . Contrarily, for shallow 
machine learning, historical data are not needed. We use weather forecast to predict load: 𝑇𝑇𝑡𝑡+1,𝑅𝑅𝑅𝑅𝑡𝑡+1 for 
𝑞𝑞𝑡𝑡+1, and 𝑇𝑇𝑡𝑡+24,𝑅𝑅𝑅𝑅𝑡𝑡+24 for 𝑞𝑞𝑡𝑡+24. In this section, we assume we have perfect knowledge of the weather. 
Therefore, for shallow machine learning, 1h ahead prediction is the same as 24h ahead prediction. In Figure 
7, we differentiate 1h ahead prediction from 24h ahead prediction only for LSTM, but not for XGBoost.   

 

(a) Load forecast by XGBoost 



 

(b) Load forecast by LSTM - 1h ahead 

 

(c) Load forecast by LSTM - 24h ahead 

 



 

(d) Forecast on a typical week from the test dataset  

Figure 7. load forecasting results by LSTM and XGBoost for the whole time horizon and a typical 
week 

Table 5. CVRMSE of different models 

 Training set Test set 

XGBoost 14.2% 21.1% 

LSTM_1h 17.9% 20.2% 

LSTM_24h 23.4% 31.9% 

Best Baseline 29.9% 29.9% 

 

As shown in Figure 7(a) - 7(c), both the XGBoost and LSTM could track the general trend of the building 
load. If we zoom in on one-week data (figure 7(d)), it can be observed that LSTM delivers a smoother load 
curve. For 1h ahead prediction, XGBoost and LSTM both outperform the best baseline model by a large 
margin. However, for 24h ahead prediction, LSTM delivers a less accurate prediction compared with 
XGBoost and even the simple heuristic baseline model.  

LSTM (and other sequential deep learning models such as RNN) uses the so-called ‘iterative approach’ to 
make 24h ahead prediction, i.e. using the historical data at time step 𝑡𝑡 − 23, 𝑡𝑡 − 22,⋯ , 𝑡𝑡 to predict the time 
step 𝑡𝑡 + 1 ; and then using historical data 𝑡𝑡 − 22,⋯ , 𝑡𝑡  and the predicted value at 𝑡𝑡 + 1  to make a 
prediction at the time step 𝑡𝑡 + 2; and iterate this process until the time step 𝑡𝑡 + 24 [28]. As we are using 
predicted information to make further predictions, the prediction error accumulated and propagated when 
the prediction horizon increases. As a result, LSTM performs better than XGBoost in short term (1h ahead) 
prediction, but worse in long term (24h ahead) prediction, as shown in Figure 7(d) and Table 5. This 
performance degradation could also be interpreted in another way. For 𝑡𝑡 + 1  prediction, the sequential 
information at time step 𝑡𝑡 − 23, 𝑡𝑡 − 22,⋯ , 𝑡𝑡 is very relevant and therefore helpful. Contrarily, for 𝑡𝑡 + 24 
prediction, the sequential information at time step 𝑡𝑡 − 23, 𝑡𝑡 − 22,⋯ , 𝑡𝑡  might be not so relevant and 



therefore less helpful. As a result, 24ℎ ahead load prediction has a larger prediction error. 

Generally speaking, deep learning does not perform as well as shallow machine learning, especially for long 
term prediction. A possible explanation is the sequential information that deep learning could leverage might 
be sufficiently captured by the time-related features (hour of day, and day type) and already reflected in 
XGBoost. The advantage of LSTM comes from its capability to capture sequential information, while the 
advantage of XGBoost comes from ensemble learning. In this case, the sequential information is no longer 
valuable as it could be captured by the time-related features. The advantage of deep learning might be less 
significant than the advantage of ensemble learning that XGBoost could leverage. 

 

3.4 Effect of weather forecast uncertainty 

The prediction results presented in the previous section utilized actual weather data for load prediction, 
which is a common practice in previous studies. However, actual weather data are not available when 
predicting building load for HVAC or thermal storage control. In this case, forecasted weather data, rather 
than actual weather data, are used for load prediction. The uncertainty of a weather forecast is seldom 
considered in previous studies. A natural question is how the weather forecast uncertainty would influence 
building load prediction accuracy, and which approach is more robust to weather forecast uncertainty. To 
answer those questions, we added a random noise (following the normal distribution of Eq. 13 and the 
parameters listed in Table 2) to the actual weather data to simulate the weather forecast uncertainty, and used 
the forecast weather data for load prediction.  

As shown in Figure 8(a), XGBoost is more sensitive to weather forecast uncertainty than LSTM. The 
presence of weather forecast uncertainty (1.5oC for temperature and 12% for relative humidity) markedly 
deteriorates XGBoost’s performance, making it less accurate than LSTM. Contrarily, LSTM is more robust 
to weather forecast uncertainty. The presence of weather forecast uncertainty only increases its CVRMSE 
by 1%. As a special form of recurrent neural network, the sequential information presented in LSTM helps 
to stabilize its prediction, making it less sensitive to weather forecast uncertainty. However, this sequential 
information is missing in shallow models such as XGBoost. 

The next research question to answer is: given the existence of weather forecast uncertainty, should we train 
our model with the predicted weather or the real weather? As shown in Figure 4b, the model trained with the 
predicted weather outperforms the model trained with the real weather. Exposing the model to uncertain 
weather data at the training stage could make the model aware of the data uncertainty and gradually figure 
out a way to deal with this uncertainty during the training process. As shown in Table 6, training on the 
forecast weather data could reduce CVRMSE by 4.4%. Training the XGBoost model with predicted weather 
data makes the model less sensitive to weather forecast uncertainty.  
 



 

(a) load prediction error with and without weather forecast uncertainty: model trained with real weather data and 
tested on forecasted weather data 

 

(b) train XGBoost with forecast weather data 

Figure 8. Load forecasting with forecast weather data 

Table 6. CVRMSE of prediction models 

 Weather forecast 
uncertainty not considered 

(%) 

Weather forecast uncertainty considered 

Train on real, test on 
forecasted weather (%) 

Train on forecast, test on 
forecasted weather (%) 

XGBoost 21.1 27.7 23.3 

LSTM 20.2 21.2 21.0 

Best Baseline 29.9 29.9 29.9 

 

4. Discussion 

4.1 Algorithm comparison 

In this paper, we compared 12 approaches for load prediction: three heuristic methods, seven shallow 
machine learning algorithms, and two deep learning algorithms. XGBoost delivers the most accurate 
prediction in the shallow machine learning category, and LSTM performs the best in the deep learning 



category. Support Vector Machine, Random Forest, and vanilla Deep Neural Network provide similar 
prediction accuracy. The above five algorithms outperform the best baseline model developed from heuristic 
approaches. 

It is worthy to point out that the simple baseline algorithm actually performs pretty well, especially when the 
weather forecast uncertainty exists. The model simplicity and data efficiency of the heuristic baseline model 
make it easy to be implemented and maintained. Such a load prediction method might be adequate for 
projects with small scales and a limited budget.  

4.2 Contribution and limitation 

This study targeted building level cooling load prediction, which could be used widely to improve building 
efficiency, reduce operational cost, and enhance building-grid interaction. The major contributions of this 
study are twofold. First, we compared 12 algorithms from three load prediction approaches: heuristic method, 
shallow and deep learning, which has not been done systematically in previous studies. Second, we explored 
how the prediction horizon and input uncertainty influence load prediction accuracy and algorithm selection, 
which has been overlooked in existing literature. We documented the hyper-parameter tuning process and 
the selected hyper-parameters in the appendix to make the result reproducible and to save future researchers’ 
time. 

A limitation of this study is that we did not include solar radiation in model inputs. Though solar radiation 
is correlated to and partially reflected by ambient temperature, adding solar radiation might enhance load 
prediction accuracy, especially for those buildings with a large window-to-wall ratio. In this study, solar 
radiation was not considered due to the absence of data. A comprehensive study on the selection of weather-
related features, including but not limited to dry-bulb temperature, relative humidity (or dew point 
temperature, wet-bulb temperature), solar radiation intensity, and wind velocity, is needed for future studies. 
Additionally, in this study we used the Gaussian random noise to model the weather forecast error, which 
might not reflect the real behavior of weather forecast errors. Because even though the weather forecast 
errors follow Gaussian distribution, as shown in Figure 4(e) and Figure 4(f), the independent, identically 
distributed (i.i.d.) assumption of random noise might not hold. To find a better mathematical representation 
of weather forecast errors is worth more investigation. 

Future studies will further test and refine the machine learning models to predict cooling loads of more 
buildings across different climate zones. 

 

5. Conclusions 

Building load prediction has wide applications in the fields of HVAC control, thermal storage operation, 
smart grid management, and others. There are three approaches for building load prediction: white-box 
physics-based models, gray-box reduced-order models, and black-box data-driven models. However, a 
white-box model requires a huge amount of input parameters, which could degrade with time and might be 
challenging to measure. A gray-box model overlooks the variation of internal heat gains. In this study, we 
applied a black-box model to predict building load. Twelve load prediction models have been developed and 
compared with the data collected from a campus building located in California. 

It was found that Extreme Gradient Boosting (XGBoost) and Long Short Term Memory (LSTM) are the 
most accurate shallow and deep learning model, respectively. The CVRMSE of load prediction on the test 
dataset is 21.1% for XGBoost and 20.2% for LSTM. Both XGBoost and LSTM outperform the best baseline 



model, which has a CVRMSE of 29.9%. Compared with results in the existing literature, XGBoost is also 
among the best for building load prediction. 

We then discussed how the prediction horizon and input uncertainty influenced the load prediction accuracy 
and algorithm selection. LSTM performs better for short-term prediction and is more robust to input 
uncertainty. The sequential information retained by LSTM could help to insulate its prediction from an 
inaccurate weather forecast. XGBoost performs better for long-term prediction, because sequential 
information captured by LSTM might be less relevant, and accordingly less helpful for long time horizon 
prediction.  

Our findings have three implications for practice. For projects with limited budgets and resources, the 
heuristic load prediction method is recommended due to its simplicity and data efficiency. For short term 
prediction, LSTM is recommended as it is more robust to input uncertainty. For long term prediction, 
XGBoost is recommended; it is suggested to train the XGBoost model with the predicted but not the real 
weather data, as exposing the model to input uncertainty at the training stage could enhance the model’s 
robustness. 
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Appendix. Input features and hyper-parameter tuning for XGBoost and LSTM 

One shortcoming of XGBoost is that there are so many hyper-parameters that need to be tuned, and a 
carefully tuned model could outperform the model with default settings by a large margin. We used the Grid 
Search Cross Validation technique to tune the XGBoost. Table A1 illustrates the searched and the selected 
hyper-parameters for XGBoost. 

Table A1. Grid search hyper-parameter tuning for XGBoost 

Hyper-parameters Description Searched Selected 

objective Objective or loss function  reg:squarederror 

n_estimators Number of estimators [100, 150, 200, 250] 200 

gamma Minimum loss reduction required to make 
a further partition on a leaf node of the tree 

[0.02, 0.05, 0.1, 
0.15, 0.2, 0.25, 0.3] 

0.02 

learning_rate Step size shrinkage used in update to 
prevent overfitting 

[0.02, 0.04, 0.06, 
0.08, 0.1] 

0.04 

max_depth Maximum depth of a tree [5, 6, 7, 8, 9, 10] 8 

min_child_weight Minimum sum of instance weight 
(hessian) needed in a child 

[2, 3, 4, 5, 6] 3 

subsample Subsample ratio of the training instances [0.4, 0.5, 0.6, 0.7, 
0.8, 0.9, 1.0] 

0.5 

colsamle_bytree Subsample ratio of columns when 
constructing each tree 

[0.6, 0.7, 0.8, 0.9, 
1.0] 

1.0 

lambda L2 regularization term on weights [0.1, 0.2, 0.5, 0.8, 
1.1] 

0.1 

 
For LSTM, the number of tunable hyper-parameters is less than XGBoost. The searched and selected 
parameters are presented in Table A2. 

Table A2. Grid search hyper-parameter tuning for LSTM 

Hyper-
parameters 

Description Searched  Selected 

𝑛𝑛[𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙] Number of neurons in the LSTM layer [50, 100, 150] 100 

𝑛𝑛[𝑓𝑓𝑓𝑓] Number of neurons in the fully connected 
layer 

[10, 20, 30, 40, 
50] 

20 

𝑘𝑘 Number of epochs  200 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 Loss function  Mean Square Error 

𝑜𝑜𝑜𝑜𝑜𝑜 Optimization method  Adam 

𝑔𝑔() Activation function  relu 



For Ridge Regression, the searched and selected parameters are presented in Table A3. 

Table A3. Grid search hyper-parameter tuning for Ridge Regression 

Hyper-
parameters 

Description Searched  Selected 

α Regularization coefficient for 𝜄𝜄2 norm of 
the weight vector 

[1, 2, 5, 10, 20, 
50, 100, 200] 

50 

 

For Lasso Regression, the searched and selected parameters are presented in Table A4. 

Table A4. Grid search hyper-parameter tuning for Lasso Regression 

Hyper-
parameters 

Description Searched  Selected 

β Regularization coefficient for 𝜄𝜄1 norm of 
the weight vector 

[0.1, 0.2, 0.5, 1, 
2, 5, 10, 20] 

2 

 

For Elastic Net, the searched and selected parameters are presented in Table A5. 

Table A5. Grid search hyper-parameter tuning for Elastic Net 

Hyper-
parameters 

Description Searched  Selected 

α Regularization coefficient for 𝜄𝜄2 norm of 
the weight vector 

[1, 3, 10, 30, 100] 1 

β Regularization coefficient for 𝜄𝜄1 norm of 
the weight vector 

[0.1, 0.3, 1, 3, 10] 1 

 

For SVM Regression, the searched and selected parameters are presented in Table A6. 

Table A6. Grid search hyper-parameter tuning for SVM Regression 

Hyper-
parameters 

Description Searched  Selected 

kernel The kernel type used in the algorithm [‘linear’, ‘poly’, 
‘rbf’, ‘sigmoid’] 

‘rbf’ 

C Regularization parameter [0.1, 1, 10, 100, 
1000] 

100 

epsilon Specifies the epsilon-tube within which no 
penalty is associated in the training loss 
function with points predicted within a 
distance epsilon from the actual value 

[0.01, 0.1, 1, 10] 1 



 

For Random Forest, the searched and selected parameters are presented in Table A7. 

Table A7. Grid search hyper-parameter tuning for Random Forest 

Hyper-parameters Description Searched  Selected 

n_estimators Number of decision trees in the RF [10,30,100,300] 100 

max_depth The maximum depth of the tree [3, 4, 5, 6] 5 

min_samples_split The minimum number of samples required 
to split an internal node 

[2, 3, 4, 5] 4 

max_features The number of features to consider when 
looking for the best split 

[‘auto’, ‘sqrt’] ‘auto’ 

 

For vanilla Deep Neural Network, the searched and selected parameters are presented in Table A8. 

Table A7. Grid search hyper-parameter tuning for Deep Neural Network 

Layer Hyper-
parameters 

Description Selected 

1 𝑛𝑛[𝑓𝑓𝑓𝑓] Number of neurons  300 

𝑔𝑔() Activation function relu 

2 𝑛𝑛[𝑓𝑓𝑓𝑓] Number of neurons  100 

𝑔𝑔() Activation function relu 

3 𝑛𝑛[𝑓𝑓𝑓𝑓] Number of neurons  50 

𝑔𝑔() Activation function relu 

/ 𝑘𝑘 Number of epochs 50 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 Loss function Mean Square Error 

𝑜𝑜𝑜𝑜𝑜𝑜 Optimization method Adam 
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