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Generation of coherent structures in electron

magnetohydrodynamics by modulational instability

S. Dastgeer®
Institute of Geophysics and Planetary Physics (IGPP),
University of California,

Riverside, CA 92521. USA.

Abstract
Nonlinear coherent vortices of two dimensional electron magnetohydrodynamics (EMHD) have
been investigated in a flow in which curl of generalized electron momenta is frozen into electron
component of flow against immobile ions background. The vortices are found to be generated
through nonlinear self interaction of relatively fast whistler modes, when they are subject to mod-
ulational instability. Conditions of existence of whistler vortices are identified for the length scales

bigger and smaller than collisionless skin depth length.
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I. INTRODUCTION

Nonlinear coherent structures have long been a subject of active research in ordinary fluids
as governed by Navier-Stockes or Euler equation of motion, as well as in conducting fluid such
as plasmas. The fact that these structures emerge intermittently, in time and space, in the
nonlinear turbulent fluids, makes them increasingly complex. Their occurrence have been
demonstrated in a number of analytic theories, numerical simulations and experiments in
the context of a variety of relevant physical phenomena. In the present paper, we specifically
concentrate upon the generation of coherent structures through nonlinear processes within
the paradigm known as electron magnetohydrodynamics (EMHD) [1]. The EMHD is a
single fluid description of quasi-neutral plasma phenomena in which the characteristic time
scales are smaller than ion- and greater than electron-gyroperiods, and length scales are
longer than electron gyroradius and smaller than ion gyroradius. Under these conditions
plasma dynamics is essentially governed by electron species only and ions being immobile,
merely provide a neutralizing background. The EMHD paradigm has been found useful in
describing a variety of observed plasma phenomena such as Fast plasma opening switches
(POS), Z-pinch, and plasma focusing devices etc. The whole whistler wave dynamics in the
ionosphere and magnetosphere is also basically governed by EMHD theory. Similarly the
physics of solar flares and reconnection of magnetic field lines in astrophysical plasmas is
another set of topics where the EMHD model is being applied lately.

Although nonlinear features of the EMHD model have been relatively less explored as
compared to its counter part MHD model (relatively low frequency and large length scale
so as to involve ion motion), there has been recently some work on exploration of various
nonlinear features of this model [2-8] (and references therein). These studies show that
collisionless skin depth is an important length scale in EMHD, since this is where wave
dispersion effects are strong [5-8]. Earlier Flippov et al [9] have analytically studied the
stability of EMHD vortices in presence of homogeneous as well as inhomogeneous plasma
density and observed that density inhomogeneity in the plasma does not alter the stability
of EMHD vortices. Later Isichenko et al [10] have obtained, analytical conditions for the
existence of exact nonlinear localized solutions of EMHD equations in two as well as three
dimensions and shown that monopolar as well as dipolar structures are stable solutions

of EMHD equations. Numerical simulations of Das [11] demonstrate various collisional



interaction of EMHD vortices in 2D, which are understood on the basis of point vortex
model. Interestingly, Urrutia et al [12] experimentally observe that 3D EMHD vortices
propagating along an external magnetic field interact very much linearly as long as whistler
vortex field doesn’t exceed ambient dc field, which is unlikely in Alfvén or sound waves.
Jovanovi¢ et al [13] constructed tripolar, quadrapolar and vortex chain in 2D EMHD by
taking into account local shear in the ambient magnetic field. In compressible 2D EMHD,
wherein electron density perturbations are finite, Kuvshinov et al [14] have investigated
propagating dipole and spherical electron vortices and considered their mutual interactions.
It has been shown by Abdalla et al [15] that strong localized heating of nonuniform plasma
on EMHD time scales can give rise to magnetic structures. Often such nonlinear structures
are sought through analytic method whose various dynamical features are then understood
by their governing equations. However it is rather important to understand how such entities
are generated through physical mechanism and this is what the prime objective of the present
work is, purely within the context of EMHD phenomena.

The present work deals with the generation of electromagnetic electron fluid vortices
in purely two dimensional, incompressible, EMHD flows for which electron fluid velocity
is divergence free. The coherent vortices are shown to be excited through nonlinear self-
interaction of whistler modes, when they are driven modulationally unstable. The whistler
waves are fundamental oscillatory electromagnetic modes of EMHD system. Conditions for
the existence of nonlinearly generated whistler vortices have been identified for the mod-
ulationally unstable length scales that are smaller as well as larger than collisionless skin
depth. In section II, assumptions of EMHD, basic equations and related linear dispersion
relation are described. Section III deals with the nonlinear excitation of whistler vortices,
while section IV considers modulation of whistler wave packets that can give rise to whistler

vortices. Finally section V contains discussion on the results.

II. BASIC EQUATIONS

The basic assumptions under which EMHD model [1] is invoked are as follows; (i) The
characteristic frequency lies between electron and ion gyrofrequency i.e., wy; <K w <K Wee,
where w,; and w,, are ion and electron gyrofrequencies respectively (ii) characteristic length

scale lies between electron gyroradius and ion gyroradius i.e., p. < £ < p;, (iii) Electrons



being massless compared to ions, their current velocity is greater than mass flow velocity,
(iv) ions are stationary and form neutralizing background, and (v) ideally magnetic field
is frozen into electron component of flows. The basic equations describing the evolution of
electromagnetic perturbations in EMHD thus comprise of only electron’s fluid equations,

Maxwell’s relations, and can be cast into two dimensions as follows;

(% +2x V- v) (6= V20)+2x Vi V(i — V) + QCO%V% =uvie (1)

and

0 0
(2% 90 9) - v -0, 3

All the variations are restricted only to 2D plane i.e, xy-plane, and no variations are

= uV>y (2)

assumed in the third direction, hence 9/0z = 0. Here Q., = eBy/m.c, where By is a constant
equilibrium magnetic field oriented along y-direction. Eqs. (1) & (2) represent evolution
of out of plane (axial) and in plane (poloidal) components of perturbed magnetic field
respectively. The two components are associated with the total magnetic field as B = z x
Vi(x,y,t)+¢(x,y,t)z. The perturbed magnetic field represented by flux functions ¢(x, y, t)
and ¢ (z,y,t) in Egs. (1) & (2) retain all the three components along three directions (x,y,z),
but they depend upon only two co-ordinates viz x and y. The transport parameter, pu,
proportional to electron ion collision frequency causes the magnetic field perturbations to
diffuse on account of finite resistivity effects. We normalize length by inertial electron skin
depth (d. = ¢/wpe), time by w.', and magnetic field by typical field magnitude By. The

linearized dispersion relation about constant magnetic field By yields,

k,kQe
W = O'k(lka;) (3)

where k% = k2 + k2. This is the whistler wave dispersion relation, and o = %1 corresponds
to forward and backward propagation of the wave. Inclusion of p in the linear dispersion
relation will merely cause damping of the whistler waves. Furthermore, it is worth noting
here that inertial electron skin depth (d. = ¢/w,.) has been absorbed in the normalization

of modes k throughout the analysis, as k = k'd,.



III. EXCITATION OF COHERENT STRUCTURES

We now investigate the generation of two dimensional whistler vortices in the EMHD
plasmas. The reductive perturbation method [17, 18] has been applied to the set of coupled
nonlinear 2D EMHD Egqs. (1) & (2). The variables can be represented in terms of an

expansion as shown below;

0=y 0@, (4)

with

0@ — Z @ﬁa) (z,&,7) explil(kyy — wt),
‘

where © corresponds to the dynamical in-plane (¢) and out of plane (1) variables, ¢ is the
parameter characterizing smallness of the amplitude of variables associated with the field
quantities (¢,v) and z = x,§ = e(y — ut),7 = £%t. Here u is the phase velocity of the
whistler waves. The transport coefficient (u) orders as ~ (£2). The boundary conditions
are O (0,¢,7) = O@W(L,&,7) = 0 where L is the system dimension along z-direction.
The amplitudes are subject to the reality condition as @ﬁa) = @(f})*. We thus consider the
nonlinear modulation of a quasi-monochromatic EMHD whistler mode, thus @&” # 0 only
for ¢ = £1.

On substituting the expansion of Eq. (4) in the governing equations of 2D EMHD i.e.,
Egs. (1) & (2), the first order ! equation in the expansion then readily yields

Dy(w, k) =0 (5)
where ) g xs
D -1 —¥4¥"°
E(wa k) w2(1 — A%)Za (6)

is the dispersion relation operator. Here A} = 9%/02* — °k,. Considering sinusoidal varia-

tion of the perturbed variable as follows,

Y (€,7) = U (€, 7) sin ki (7)
where k,, = m(2r/L) with m = 1,2,..., we can easily obtain the dispersion relation for
¢ =1 mode as follows. .

W=+ kkaAC() .
(14 k2)



This is consistent with the linear dispersion relation of whistler waves as given by Eq. (3)
in earlier section. Here k? = k2, + k2.
To the next order i.e., €2, on substituting Eq. (4) into Egs. (1) & (2) and carrying out
further algebra, we obtain
ovy”
o¢
As ¢§2) varies as sin k,,z, and Dy (w,k) — 0 for £ = 1, hence u = u, as 8@/}9/85 # 0 which

iDy(w, )Y + (u — uy) = 0. (8)

consequently leads to the expression for the group velocity (u = Ow/0k,) of the whistler
modes in EMHD as follows,
+ k) - 2k§fc} .
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The slowly varying component of magnetic flux functions can be obtained by substituting
¢ =01in Egs. (9) & (10),

@ _ 59,02 1

QSO axhz)l | ) ( )

@ _ @0 1,0 19
The field components as depicted by Eqs. (11) & (12) represent essentially large scale, zero

frequency convective cell structures or whistler vortices of 2D EMHD which are nonlinearly
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excited through the ponderomotive forces that are proportional to ~ |z/)§1) |>. The coefficients

in Egs. (11) & (12) are as follows,

2k2(1 + k2,) — 2uk,(1+ k%) (1/2 — k%)
Qeoh?, — £ (1 + k?)

Y

Qco
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The terms associated with the diffusive coefficient (1) in the governing equations of EMHD
Egs. (1) & (2) do not appear in the Eqs. (9) & (10) as they are higher order terms, and
hence neglected. While arriving at Eqs. (9) & (10), the nonlinear interaction mechanism
tends to generate a few more terms corresponding to the fluxes in the in plane and out of
plane components of the magnetic field perturbations. These nonlinear fluxes are expected
to be balanced by the corresponding sources or sinks in the respective equations.

The excitation mechanism of large scale coherent vortices adapted here has been previ-
ously used in many other two dimensional systems such as hydromagnetic flows [16], drift
waves [17, 18], and interchange mode turbulence [19]. However, generation of these nonlin-
ear vortices are subject to certain critical conditions, and shall be considered in the next

section.

IV. MODULATIONAL INSTABILITY IN EMHD

The Eqs. (9) & (10) can further be manipulated algebraically to put into a well known
nonlinear Schrédinger (NLS) like equation by substituting the zero frequency components
in them and using the linear dispersion relation to yield

02 w("
o¢?

outH
or

iP +Q +RIUV e = o, (13)

The coefficients of the Eq. (13) are as follows;

P = Qeokyk + (1+E?),

k, -  3k.k u .
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where the terms F' and G have already been defined in the previous section. We are now
basically interested in generation of large scale whistler vortices, as identified by the Eqgs.
(11) & (12). These coherent structures are localized along y direction due to modulational
instability mechanism and in x due to imposed boundary conditions. It has been seen in the
previous section that the coherent structures described by the Eqgs. (11) & (12) are excited
by self-interaction of fast whistler modes as a result of nonlinear forcing imparted by the
ponderomotive force, |z/)§1)|2, whose evolution is primarily governed by the NLS Eq. (13).
Under certain circumstances, the NLS equation is known to exhibit an instability which
is explicitly driven by modulation of the wave packets [18]. The problem then basically
refrains to exploring the conditions under which Eq. (13) exhibits modulational instability.
The well known criteria for Eq. (13) to be driven modulationally unstable is the one when
the product of the coefficients Q and R associated respectively with the linear and nonlinear
terms takes on real positive values such that F = QR > 0 [18]. Thus when Q-R > 0, a
plane whistler wave is unstable for modulation. The condition F > 0 appears to be rather
restrictive and is complicated to analyze theoretically. We therefore resort to its numerical
solution to locate the region where the NLS equation can become modulationally unstable.

In the regime where EMHD excitation length scales are larger than the skin depth (i.e.
k < 1), the function F has been plotted in Fig (1). The figure shows constant contour
lines of F(kn, k,) for a given value of an external magnetic field By. The positive region
(Q-R > 0) in the figure has been indicated. It can be seen here that the function F(k,,, k)
spans certain region where the characteristic wavenumbers in EMHD exhibit modulational
instability. There exists certain wavenumbers that are fairly stable and can be categorically
seen as the region where F(k,, k,) takes negative values in k,-k,, spectrum in Fig (1). These
modulationally stable wavenumbers may not be responsible for the generation of coherent
structures. On the other hand, it can be seen from Fig (2) that the spectrum of wavenumbers
demonstrating modulational instability in the regime where EMHD length scales are smaller
than d. (i.e. k& > 1 modes) is shifted towards higher mode number. This is unlike & < 1
regime. It can be then realized from Fig (1) and Fig (2) that the wavenumbers exhibiting
modulational instability in £ < 1 and £ > 1 regimes acquire entirely different attributes in
the Fourier spectrum. For example, the largest length scales (or smallest Fourier modes)
in the regime &k < 1 are most susceptible to the modulational instability, while relatively

smaller length scales (or larger modes) in k£ > 1 regime are more prone to the instability.



Hence there exists a wider spectral gap between the modulationally unstable wavenumbers
in the whole spectrum around £ ~ 1 due to the two regimes. It thus means collisionless skin
depth d. is an important inherent length scale in the EMHD phenomena and the modes in
the close vicinity of the domain £ ~ 1 exhibit entirely different features as compared with
the domain far from it. It is to be noted here that the wave numbers (k,, k,,) are normalized
to inertial electron skin depth (d.), hence to achieve the regime of length scale larger or
smaller than skin depth, we adjust the value of parameter d, in our calculation.

The NLS equation described by Eq. (13) has widely been studied in physics for under-
standing a variety of nonlinear phenomena associated with hydrodynamical fluids [20-22]
and various others. The most commonly known solution of Eq. (13) is so-called ‘soliton’” and
has rigorously been pursued in the literature. Nevertheless, within the parameter regime
where characteristic EMHD length scales exhibit modulational instability, numerical solu-
tion of Eq. (13) at a given time demonstrates spatially well localized structure for k£ < 1

modes as shown in Fig (3).

V. DISCUSSION

Large scale zero frequency localized coherent structures, namely electron fluid vortices,
have been investigated in an incompressible two dimensional electron magnetohydrodynam-
ics plasmas, wherein typical time scales permit electron motion only, while ions merely
provide stationary neutralizing background. These vortices are supposedly excited by the
action of ponderomotive forces due to an explicit nonlinear self-interaction between two rel-
atively fast whistler modes, when they are driven modulationally unstable. Interestingly
such whistler modes can be stable to the modulation of wave packets in the vicinity of
regime of length scales that are comparable to the inertial electron skin depth. This regime
of wavenumbers may therefore be forbidden to the modulational instability. On the other
hand, far away from the region of stable wavenumbers, EMHD modes can likely to exhibit
modulational instability and lead to coherent vortices.

The importance of inertial skin depth in EMHD has already been realized particularly
within the context of turbulent phenomenon [5-8] which indicates that EMHD characteristic
wavenumbers in the regime k£ < 1 possess dominant wave attribute, while they behave more

like hydrodynamical eddies in the other regime (k > 1). Interestingly, here it has been



observed that these relatively longest and the shortest eddies in the regimes £ < 1 and k > 1
respectively can lead to excitation of large scale vortices when they undergo modulational
instability processes.

The phenomenon of generation of large scale whistler vortices in EMHD plasmas through
the mechanism of nonlinear self-interaction of the whistler modes, as reported here, could be
of great interest to understand experimentally observed propagating whistler vortices along
an external magnetic field [12], translating dipolar structures of EMHD [11, 13, 14] and
EMHD turbulence [2, 5-8].
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List of Figures

e Fig (1) Constant contour lines of modulational instability condition as deduced from
F =U-Q > 0. Positive region has been indicated by shading, while the remaining

region corresponds to negative values of F. Here k < 1 and L = —507 : 507.

e Fig (2) Wavenumbers exhibiting modulational instability in the regime of length
scales smaller than electron skin depth £ > 1 as indicated by the unshaded region

labeled as ‘positive region’. L = —507 : 507. The shaded region represents F < 0.

e Fig (3) Localized coherent structure of EMHD in the regime k < 1 for the parameters
ky = knm = 2x1073. k > 1 regime also demonstrates similar structure but with different

magnitude (not shown here).
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