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ABSTRACT

A brief introduction to the finite element concept and a formulation
of classical large deflection plate equations is presented. A general
approach to large deflection problems of elastic structures, based on an
equilibrium balance between the resisting forces of the final structural
configuration and the applied loads, is discussed. The details of a finite
element formulation for large deflectionvplate problems are developed. This
development makes use of the constant strain triangle (CST) for in-plane de-
formation and the linear curvature compatible triangle with nine degrees of
freedom (LCCT~9) for out-of-plane defdrmations. Results of solutions using
this technique are compared with typical solutions achieved by the use of
classical plate equations. The concept of geometric stiffness is discussed
and formulated so that it is applicable to plate problems. The formulation
is applied to solve problems where elastic plates with varying support con-
ditions are loaded into post-buckling configurations. The formulation of
the plate problem for nonlinear material properties is discussed and an

approximate method is developed. Examples of its application are presented.
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NOMENCLATURE AND LIST OF SYMBOLS

Symbols have been defined as they appear in the text. However it has

not been possible to maintain uniform symbology throughout since in some

sections special emphasis has been required. Wherever possible this is

noted below. The tilde (~) indicates the quantity is a function of the

spatial co-ordinates. A subscript 0 indiéates the quantity is referred to

the middle surface or to a configuration referred to as the "initial"

configuration.

directed projections of sides of'triangle on x
axis

direction cosines of displaced co-ordinate system

Plan area of triangle

plan areé of subtriangle

area of triangle formed by joining corners i and
J with the origin

matrix felating [AEP} and {A€)

directed projections of sides of triangle on

y axis

5 in Chapter 1; Subscript indicating Bending

1-v

matrices of functions to define strains from
nodal point displacements

matrices arising in determination of nodal.

curvatures from nodal displacements

- distance from middle surface to center of

stiffness
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constitutive matrix of linear elasticity in
Chapter 4
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EnS
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matrices of functions to define displacement
field from nodal displacements

subscript indicating P, B order of nodal vectors

subscript indicating "corner order" of nodal.
vector

Cauchy infinitesimal strain tensor

elastic moduli; normal, tangent and secant,
respectively

Green's strain tensor

unit base vectors

arbitrary'function of triangular co-ordinates

body_force vector and its components per unit
of mass

thickness of plate

height of triangle

index with range of 3

moment of inerfia
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index with range of 3
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interpolation fﬁnctions
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stress couples in_Chapter 1

nodal moments about the x, y, X, Y axes
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matrix of functions to determine stress couples
from nodal displacements

co-ordingte measure normal to side Ei

vector of stress resultants and its components

matrix of functions to determine stress resultants
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stress resultants in Chapters 1 and 3

subscript indicating middle surface; subscript
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local and global co-ordinates respectively

position vector before deformation in global and
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INTRODUCTION

In the last decade the inﬁroduction of high speed digital computers
has had a profound‘effect on the field of struétural analysis. The avail-
| ability of such machines has enabled engineers to solve problems which
were intractable before. In order to efficiently utilize such powerful
tools, matrix formulation, together with generalized concepts of stiffness

and flexibility have become the common base of communication in structural

engineering.

In the field of gontinuum mechanics the effect has not been so pro-
nounced but the computer has led to intensive activity in developing tech-
niques in which the behavior of a continuum can be'represented by & dis-
cretized system. One technique of this type has been the representation of
a continuum by a model consisting of a finite number of "elements." This

technique is known as the "finite element" method. If the problem is

formulated on the basis of a variational principle, the finite element
method is equivalent to a Rayleigh-Ritz procedure in which the domain of a
set of trial functions is restricted to the volume of an element and the
same trial functions are used in the domain of each element. The finite
element method is therefore sometimes referred to as an "extended Ritz
method."

This dissertation develops a finite element method of analysis for
plate structures including the effects of large deformstions.?

The analysis is based on approximating the actual plate structure by

an idealized model composed of triangular finite elements. A detailed

¥ The meaning of the term "large deformatlons in the context of this
work is discussed in section 1.2.




discussion of the concept of finite element representation of & two-
dimensional continuum, and a review of recent developments in this field,
has been presented by Felippa [l]+ and others, and will.not be repested
here. A short review of the basic concepts is contained in section 2.1.
The particular finite element model adopted for this investigatidn
assumes that in-plane deformation prodﬁces'constant strain in each element
while out-of-plane deformation produces & linear variation of curvature
throughout the element (discdntinuous along lines connecting the corners
with the centroid). This is equivalent to combining the behavior of two
previously developed elementé: the constant.strain triangle (CST) and the
linear curvature compatible triangle with nine degrees of freedom (LCCT-9).
The application of the constent strain triangle to problems of plane stress
and plane strain, and the application of linear curvature compatible
triangles to problems of plate bending, has beeh presented elsewhere [2, 3].
The details of coupling the bebavior of these elements together to solve
problems involving large deflection of Plate structures are dealt with here.
The method is applicable to problems in which the membrane and bending
effects both contribute to the carrying capacity of the structure. The |
solution technique is iterative and the effects of the initial stress may
be optionally included to give a more accurate estimate of incremental
stiffness. This is advantageous in investigating post buckling behavior.
Since deformation in these structures often exceeds the proportional limit
of the material, an approximate method of including the effect of nonlinear

material behavior has been included.

¥ Numbers in square brackets refer to references listed at the end.



Theifinite element approach in general‘has'a number of advantages
over ﬁore claSsiéal solution methods. Once it is formilated for a partic-
ular type of element it is applicable to arbitrary geometries; loading and
boundery conditions. In addition, there is no difficulty iﬁ prineciple in
extending the formulation to problems involving incremental analysis,
vafiation of material propertiés or stef-bsttep dynamic analysis. For
large deflection plate problems, thé formilation presented in this dis=-
sertation possesses the additional advantage that it is not subject to the
geometric restrictions on slopes that are present in the classical formu-
lation of the plate equations. |

The method presented here is based on the simplest finite element
model that gives a reasonable representation of the macroscopic behavior
of a plate. Further developments are to be expected upon the introduction
of higher order elements, better inter-element écmpatibility, refinedk
geometric relationships, and extension to Problems of the type mentioned
in the paragraph above. In addition it appears feasible to investigate the
construction of an element stiffness which couples the in-plane and out-of-

Plane behavior at the element level.



1. FORMULATION OF PLATE EQUATIONS

1.1l Introduction

In brder to evaluate the effectiveness of the finite element approach,
results are usually compared with those obtained by "classical methods" of
solution for typical problems.f In formulating this finite element approach
to large deflection plate problems, most of the assumptions are similar to,
but not always identical with, those of classical plate theory. Because
of this it is advantageous to review the development of the classical plate
equations so that the assumptions associated with the two approaches may be
compared.

In formulating the plate equations either a physical or a variational
approach may be used. The physical approach will be followed since it
best suits the purpose of this discussion. Two alternative developments
are available:

(2) the three dimensional elasticity equations may be reduced to two
dimensional equations by imposing the assumpﬁions of plate theory,

or,

(b) +the plate equations may be set upvdirectly from two dimensional
relationships.

We adopt the former approach because it leads to a more direct evaluation

of the approximations involved. The development follows that outlined by

Fung [4] bﬁt more emphasis is placed on physical interpretatioﬁ in an

effort to gain a better appreciation of the factors involved.

¥ See section 2.1.1.



1.2 Relation of the Large Deflection Plate Problem o Nonlinear Theory

Qg Elasticitx

The nonlinear theory of elasticity considers nonlinearities which arise
from finite deformation. Finite deformation implies finite engineering
strain or finite rotation or both. When deformations are finite it is
necessary to specify whether stresses énd strains are referred to the
original configuration (Lagrangian description) or the deformed configuration
(Eulerian description). Equilibrium must be established in the deformed
configuration while the geometry and boundary conditions are uéually
specified in the original configuration. Whén the Lagrangian description
is used the kinematic equations are simple but the equilibrium equations
are complicated. When the Eulerian description is used the equilibrium
equations are simple but the kinematic equations are complicated [L].
Solution of such general equations is difficult.but specific problems can
be solved using numerical incremental techniques [1, 5].

The large deflection plate problem belongs to a special class of finite
deformation problems in which the engineering strains, but not the rotations,
can be considered as infinitesimal. The physical consideration which d4if-
ferentiates between large and small deflection plate theories is the
stretching of the middle surface as a result of out-of-plane deformations.
This stretching results in the development of "membrane” stresses which are
not accounted for in small deflection theory. Small deflection theory can
be considered anequate "only if the stresses corresponding to the stretching
of the middle surface are small in comparison with the maximum bending
stresses." This will be true "if the deflections of the plate from its

initial plane or from a true developable surface are small in comparison

. _ N
with the thickness of the plate" [6, 71,

x Quotations are from pages 48 and 49 of Timoshenko [6].



Accepting the first quotation above as the distinguishing feature
separéxing "large" from "small" deflection theory of plates, the limit of
applicability of small deflection theory cannot be associated with any
absolute geometric restriction_on displacements or rotations. It is
generally accepted that thé limit is reached when the ratio of maximum de-
flection to thickness of plate aﬁtains'a value of 1/3 to 1/2, although this
can be influenced by such factors aé.boundary conditions and the type of
curvature developéd in the plate.

The formulation of large deflectibn plate equations, by reducing the
three dimensional elasticity equations to twﬁ dimensional equations, re-
quires the distinction to be made between stress tensors referred to de-
formed configuration and stress tensors referred to the initial configu-
ration. Since some readers may not be familiar with the stress tensors
required; a brief review of their definition and relation to the present

developmént is given in Appendix A.

1.3 Formulation of Equations

1.3.1 Displacement Formulation of the Equations of Elasticity

The governing equations for plate problems are formulated with dis-
Placements as the dependent variables. 'The displacement formulation of
three dimensional elasticity requires the use of the following sets of
equations:

(a) Equilibrium equations

(b) Strain-displacement equations

(c) Constitutive equations

Substitution of the strain-displacement equations into the constitutive
equations and subsequent substitution of the constitutive equations into

the equilibrium equations yields the displacement equations of equilibrium,



which, together with ﬁhe boundary conditions, are sufficient to properly
specify sfatic.elasticity problems. Since displacements are the dependent
variables the compatibility conditions are automatically satisfied if the
solution is sufficiently differentiable.
| The familiar small deflection plate equation
Vi = _gi | @)

where w is the deflection of the middle surface of the plate normal to the
3
Eh

12(1 - v)
is the expression of the equilibrium requirement normal to the original

original plane of the plate, q is the distributed load, and D = ?
plane of the plate. This simple equation results because of the assumptions
made in constraining the displacement field, These assumptions permit the
displacements contributing to the bending behavior of the plate to be ex-
pressed in terms of the single dependent variable, w.

The object of this chapter is to examine the assumptions involved in

reducing the three dimensional equations of elasticity to a set of simpler

two dimensional equations which we will refer to as a set of "plate equa-
tions." The assumptions associated with the reduction of each of the sets

of equations (a), (b) and (c) are examined in the following sections. Rec-

tangular cartesian co-ordinates and cartesian tensor notation are used
throughout but conventional engineering nomenclature is used when it is

~desirable to write equations in full.

1.3.2 The Strain-Displacement Relations
The measure of deformation usually used in solid mechanics is one-
half the difference between the square of the distance between two adjacent

material points after deformation and the square of the distance between the

same material points before deformation. This leads to the following




relation (see Fig. 1.1).

ol s%- A s> - L (. . . oA¥. = (1-2)
o = (M s vty ) ol ol = ol

where uy are the displacements‘in the co-ordinate directions,
ds is the distance between the two material points after deformation,
dso is the distance between the fwo points before deformation,
X, are the co-ordinates of tﬁe point Q before deformation,

xi + dxi are the coordinates of the point P before deformation, and

1
By =3 (g g vuy s vy gu ) | (1-3)

is known as Green's strain tensor or the Lagrangian finite strain tensor.

By defining two other quantities, ®; and W; 55 equation (1-3) can be

written as
L= & e ST V4 _ 1-4
ELJ oy Z (ek “Jeh)(ekj "‘%e\,/ ( )
= X , : ' ;
where eij > (ui,j + uj,i) is known as Cauchy's szraln tensor or the
Lagrangian infinitesimal strain tensor, and wij =3 (uj,i - ui,j) is

known as the infinitesimal rotation tensor.
The following properties of the quantities defined above follow
directly from their definition:

(i) e and w; ; are linear functions of the displacement gradients
and Eij is a quadratic function of the displacement gradients.
(ii) Eij and e;  are symmetric while w; 5 is antisymmetric.
If the magnitudes of the displacement gradients, u, 3 are restricted

3

so that they are small quantities of the order

. <</, (1-5)



the product termé in (1-3) become small quantities of the second order and
Green's strain tensor reduces to Cauchy's strain tensor. Under these
circumétances the following physical interpretation can be made:

(a) The components of &5 cen be identified with the conventional engi-

neering strains (¢ and y) as follows
<&, ¢, C3526,,2€,32%5,) = <&u Sxy Ej} % By 33"> (1-6)

(b) The components w4 can be related to the infinitesimal average rigid
body’rotation of the element.
Since higher order product terms in (1-3) imply higher order product
terms in (1-4), this indicates that both engineering strains and average
_rotations are small quantities of the first order under restrictions (1-5).
Restrictions (1-5) may therefore be stated in the alternative form

< A - 1-
C.;<<| and Wy, <<I (1-7)

Restrictions (1-5) or (1-7) are the assumptions used in deriving the equa-
tions of linear elasticit&.

In large deflection plate theory the restrictions (1-5) are relaxed
for the gradients of the out-of-plane displacement component, w. The
engineering strain components can no longer be identified as in (1-6) but
must now be approximated by the components of Green's strain tensor. Under.
these circumstances the identification is as follows:

<t_/l t:Z-Z Z‘;3 2—52243 25?/> = < fxl é?ﬂ {;} Xﬂﬁgj );z> (1—8)-

where exx’ are the engineering strains associated with line elements

oriented in thé co-ordinate directions before deformation. Equation (1-8)
is valid, providing éij
displacement gradients (see Appendix A).

and Yij << 1, regardless of the magnitude of the
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The explicit form of equations (1-U4), which is used for plate formu-
latioh, will be developed after a discussion of the restrictions on the
displacement field and the»constitutive equations which are presented in
the next two sections.

1.3.3 Restrictions on the Displacement Field--Kirchoff Assumptions

In order to derive the two dimensibnal plate equations, from the
three dimensional equations of elasficity, constraints are placed on the
displacement field. These constraints may be stated as follows:

(1) Material points lying on normals to the middle surface before de-
formation remain in a straight line after deformation. This is
usually abbreviated to 'normals remain straight,"

(2) The straight line through the material points referred to in (1)
above, is also normal to the middle surface after deformation. This

is usually abbreviated to "normals remain normal."

(3) The strain in the direction of the normal can be neglected in
establishing the displacement of a material point.

(4) The slope of the middle surface remains small.

Assumptions 1, 2 And 3 above are usually referred to as the "Kirchoff

assumptions."”

Applying assumptions 1, 3, and 4, the horizontal displacements of a.
typical point, A, may be expressed as (see Fig. 1.2b)

U, (xJ}) = *5'/\ (4{,})0
(1-9)

A L 3) T Y *‘5%4 (34[;}—)0
where the subscript O refers to middle surface values and therefore
Uy Voo (u,z)o‘and (v,z)O are functions of x and y only. Assumptions 3

and 4 are required for equations (1-9) since no distinction is made between
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the vertical projection of 0-A' and Z,-
Applying assumption 2, using equations (1-9) and evaluating at the
middle surface yields 7
(2 £,), = (#,)) (1raty,) + (o, V(1+e5,) # ) 7 = 2
(2£,), = ¢r5,),( r+25,,) Fleny), (1oL )+ (5,) Ay, o= 0
These equations express the conditibn, in the form of a scalar product,
vthat, at the middle surface, lines originally located along the co-
ordinate axes remain at right angles. This is illustrated in Fig. 1l.2¢
‘and Fig. 1.24. |
If the quantities

6(}') z 7 ld;_g J 4(1), 2 '4{;’ < /

are regarded as small quantities of first order, such that products of
these quantities are of the same order as the engineering strains (second

order), then the quantities

/¢ZO{2: , /15;;7' << /

cahnot be greater than second order. If restrictions are now placed on

the quantities

cey s Mo, <</

such that they are small quantities of the same order as the engineering

“ha o, U

strains (second order) then equations (1-9a) reduce to the following first

order equations, correct up to second order,

(44’}')0 = - %}2

Under these circumstances, equations (1-9) can be written as
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it (z/—é‘r’/}) = 7, _} w;]z .

_ (1-10)
TG F) T T E e |

In addition, since w and w

0,x 0,y are first order .quant:.tles, wg have the

relation
w-(:k,_y) = ¢ ( :r,_j)' (1-11)

which is correct up to small quantities of the second order.

Equations (1-10) and (1-11) are a mathematical expression of the .
constraints on the displacement field. They.express the displacement of
. the ﬁhree dimensional structure in terms of the dependent variables Uy
Voo and LA which are functions of only two spatial co-ordinates.

1.3.4 The C‘onstitutive Relations and the Strain Displacement Equations

We confine our discussion here to linearly elastic materials. In
the finite element a.pproé.ch more general material properties will be con-
sidered. The most general form of the constitutive equations for a linear
elastic material is given by the relation (see Appendix A).

s . =C £ (1-12)

ts ik & 4L

where sij is the Kirchoff stress tensor,

Eu is Green's strain tensor, and

Ci;jkz are the elastic moduli which satisfy the relations
Cl"j'kl = C-.c',{.’.l
C c . (1-13)

C{/.k’z’ = C,é,lc;/'
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The interchange of indexes is established by the symmetry of the stress
and strain tensors and the assumption of the existence of a strain energy
density function. Introduction of symmetries reduces the number of inde-
pendent moduli. We will cbnfine ourselves here to an isotropic elastic
material for which there are only two elastic constants and the six inde-

pendent components of stress are related to the six independent components

of strain by the equations

Y ' . =4 [ _ ,
Sha C. G Cpr oo | k:-:z'x
‘21.7 | Cn Cz, ©n s \‘_;fl:,’
{35 ] = Gl ] B
S, C; - 2E,, (1-14)
2y C; - 2E 4,
S.l SYM.
L 9’1/ | T C‘g— q A E}%J
where C, = E(1-Y) C, = By E

LT @+v@ -2 S T @ - ®C =50 -

To reduce these equations to two dimensional form it is assumed that
the normal stress Szz remains small and is negligible compared to the
stresses on the x.and ¥y planes. In addition, assumption 2 of section 1.3.3,
which leads to equations (1-10), sets Eyz and sz = 0., The stresses Syz
and Szx therefore cannot be determined from strains, though there existence
is required for equilibrium, and can be omitted from the above relationship.
(This situation is analogous to simple beam theory where shearing stresses -
must also be determined from equilibrium considerations.)

The conditions SZZ =3 =3 =0 define a plane stress condition

yz zZX
and by virtue of the discussion above it is assumed that each horizontal
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layer of a plate element may be considered to be in a state of plane

stress. The constitutive relations therefore become

. () T : Tr !

51,‘ / l) e E-Z%

f"j 124 = |V 7/ ¢ | Esd (1-15)
| s Y X<

- ézjj . s .Z - “z Ey-

The number of strain components required to define the relevant stresses
in the plate has therefore been reduced to three,
Returning now to the strain displacement relations discussed in

section 1.3.2, the three strain components required in (1-15) are

—_ ‘ 2, =2 e
Z;" - o }L( A *'42_;{ s “524 }
; 2 2 ; < -
{7.7 = /U}J * :ZL. (/l(/z 4.,0{;7 3 k);?/ (l 16)
— , AT
‘Z;f;t7 g Py /162.42677~ x Gy * Lx Ls

Applying a similar set of assumptions as used in section 1.3.3, namely

173 7‘”;,7 < /

12

are small quantities of the first order, whose products are of the same

order as u, and iy (second order),

i.e.,

-4Z/x 3 J4(i4? <= 1 ;

Y and that
< s oy <</,

the strain displacement eguations become




16

£ - .z
x '4&)1 s 2/_' a/;“z
£ - 2
iy 4 = v+ L o
~ 7 Tz Yz (1-17)
3-4 M‘ﬂ? £ /"J;Z + ¢ §P % v

The physical effect of the w displacement gradients can now be easily .
seen if these terms are interpreted as the first term of cosine approxi-

mation for the difference between the inclined length and the projected

length of a line element.

It should be noted that the assumption that engineering strains are
small makes it unnecessary to differentiate between the Eulerian stress
tensor, Gij’ and the Kirchoff stress tensor, Sij’ when interpreting the
results, providing the proper orientation is maintained in the inter-
pretation.

1.3.5 The Eguilibrium Equations

The three dimensional equilibrium equations for finite deformation
problems in the Lagrangian description are contained in the expression

(see Appendix A),
2 { s e O\ L o =
Ix; Lok (S 7 a;m) + e =0 (1-18)

where Sjk is the Kirchoff stress tensor. Assuming no body force to be

acting, and writing these equations in expanded form yields




[Sx:r(l+°7"4f)+§ 9"‘-/— 2}9 J+ [53*(/”_9“)4-\77 gg

P
29755 ] +%[§?(’*§~1‘)+54;

J} .7}]_ o.
%[Sn%é:i— Sag(/f-g_»f).,_s,‘}%g].fé[z? Bf +5S (/+2«L)
+ Sy, - 9} [ 9«r+ ;4(/1&%)4-5;}%’, 2(219)
;5;[55*2—“5— 52;—7 :t;_(/t";“")]‘i—-a- %2%‘-‘5»6.21722-;5
2p+30)] + g [5 twre s, 2 o s (1+32)] = o.

Placing restricﬁions on the displacement field that are consistent with

those used in arriving at the strain displacement_relationships, namely

=7 277 oa ’ oy’ 5y —= (1-192)

and recalling that
%a:"‘"ik, and dar . _ Qe

these equations reduce to
_J_.. S -5 QW 5 e
5 152 ]s 4[5 5, 2] 25 55 2] = o
_2_.[ - 524+ 2[S,. -5, 9], _S,. 2 1-20
O L xar “é'a_gfj 29 LT ZFomy 9[53:7 33 -;,_:—?’__ 0( )
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Since sij is a stress tensor defined with respect to the original

configuration, these equations can be reduced to two dimensional form by
integrating over the original thickness of the plate. For this purpose

we define the "stress resultants”
2 -
Ny &: Yyu G C_P;).—_/<5M Sug Sy Sya 523 %}>d} (1-21)

and the stress couples

Jr Ty

Mo My Moy M= [%S5,, S,. S S>3 4z, (1-22)

Since Sij is a symmetric tensor, it follows from the definitions that

) /Négy = /1272 and /%ﬂz = _;7¢e .

Integrating equations (1-20) through the plate thickness yields
h,
DMy - 2] & 2 TN, — O, 2erT S, Pur] % _
- [Ae @a,b]*agf"‘z P 2 [ +[Sa- 532 =0
- /2

)
Ll -5l gl -2 T 5, - 9% ] -0 o
<

The stress resultants and stress couples can be interpreted physically

as shown in Fig. 1.3a, b. It has also been demonstrated in Appendix A

that the stress components Sij’ although referred to the originél configu~
ration, maintain the surface tractions at the same relative orientation to
the material elements as in the deformed configuration. Equations (1-23)

therefore express the transverse equilibrium requirements in the x, y, z
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directions of a plate element in its deformed configuration and may be
interpretéd as shown in Fig. l.3c. An inspection of the equilibrium of
this element verifies this cohclusion.

Further assumptions are now necessary in order to reduce equations
(1-23) to the form required to derive the classical plate equations.
(a) Load applied normal to the top surface of the plate is assumed

to be the only nonzero surfaée traction in the final equilibrium

position.

e [5.]

Ay h]:-

‘[%QJ://:"’- a5, ] = F-

(b) The transverse shear resultants and S,, are assumed to be at least

N N

an order of magnitude smaller than the in-plane stress resultants
in the first two equations (1-23). Since thése terms are multiplied
by first order displacement quantities they are quantities of higher
order and are discarded.

Equations (1-23) therefore become,

2 2. =

'91, N_z t ‘_z-g /YJZ = 0

2

5 Mo, ,g.éz% ivy = 0 (1-24)

o
;D;Ox +%4_’7~—[;f—4’w°"‘; +,z/’/z;79;:"g+é.vy9;"

These are the equilibrium relationships between the stress resultants.

To derive equilibrium relationships between the stress couples,
the first two equations (1-20) are multiplied by z and integrated through
the thickness. In this operation the following approximations are made:

(a) It is assumed the distribution of the stresses S,, and Syz are

approximately symmetrical with respect to the middle surface so that



20

&4
A3

Ny
Qy
(0) STRESS RESULTANTS (b) STRESS COUPLES
-3 | _q
ot —— yT —t
1 1
[z
(¢c) STRESS RESULTANTS IN  (d) STRESS COUPLES IN

EQUILIBRIUM POSITION EQUILIBRIUM POSITION

FIG. 1.3 - STRESS RESULTANTS AND STRESS COUPLES



2l

(b) The terms in the last bracket lead to an integration by parts.

For the second of these equations, the relation is

‘/hfq [i:_eg JA]d

4, 4
[. ¢333] 5 -/fz [3;47 - %E; i;;k]oﬁ;_.

Again the terms multiplied by dlsplacement gradients are of higher order
and surface values of szy vanish, so that this integral may be approximated

by A

5 5= - .

Sy
P-4
The resulting equations are

2 M oL 2
Ix

Mgz - @, =
..9.3 T* 4)2 ©

(1-26)
R R A SR

It should be noted that moment equilibrium about a line normal to the
middle surface of an element, such as that shown in Fig. 1.3d, follows (at
least to first order quantities) from the symmetry of the stress tensor
Si,j’ the assumption of small engineering strains, and a Physical inter-
pretation consistent with that above.

We now refer back to our discussion in section 1.3.4t where it was
pointed out that, due to the second Kirchoff assumption, the transverse
shearing stresses cannot Be established from material deformation but

must be derived from equilibrium considerations after the other force

quantities have been determined. Since a displacement formulation is
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desired, the stress resultants Qx and Qy associated with these shears are
eliminated by differentiating in the first of equations (1-26) with respect
to x and the second with respect to y and substituting the results into
the last of equations (1-24). This results in the following basic

equilibrium equations.

—92;/\/1 1—_2__/(/2-_—_ (o}
2

=
2 Ny o 2 -
e S P

(1-27)

Pty o 27 Maa . I Ny 2% 4 dbar o N, D%
— x @: - * zx arf“ag/VZ‘ Z &l 4 el
oz Fade  AT* [i %t 1T g, "7{74‘7.

These equations represent the equilibrium requirements for the sum of
the forces in the x, y and z directions respectively.

1.3.6 Derivation of Plate Equations

Different forms of the plate equations can now be obtained by combining
the equations developed in the preceding sections. The pertinent equations
are summarized below.

(i) The Kirchoff Relations

4 (2/~<Z}) = o Cx,y) - 3 ‘U;(*,;y},z

(1-10)
ARy gy 3) = AT, ) - 2w (2'«7)%
| (1-11)
wrlx q,32) = 5 (x_g4)

(ii) The strain displacement relations
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— | oz
£, = + L our ? (1-17)
29 " Y U5 Y |
Z[g=/uw+/z/;2+agzw;}
(iii) The constitutive equations
(< ] [/ v - ] )
S"‘" (EX:\:
S L= E ' .
1= = | ¥ ! 1 £ |
o (1-15)
S ‘l i —V |
S Lol |25,
) - = ~ /
(iv) The equilibrium equations
NW}Z + /'ij)J =0
Nagyn + Ny, y = 0 ' (1-27)
Mx)xz £ Z/%‘J’?éf # /Z.7,,¢7=_-[i»f-/f/xc«;;/_’u1452/1/37:4;’,{:7 #
A. The Small Deflection Plate Equations /-f-/-’ w‘;"—‘fd _7

The small deflection equations may be obtained by imposing
restrictions (1-5) on all displacement gradients. The product terms in
(1-17) may then be omitted since they are small quantities of higher
order. Substituting equations (1-10) into the truncated equations (1-17)
and then inserting this form of (1-17) into equations (1-15) yields the
stress components in terms of the displacements of the middle surface.
Integration of equations (1-15) through the thickness of the plate in
accordance with definitions (1-21) and (1-22) yields the following

expressions for stress resultants and stress couples.
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s - ' |
N[ [ - o wT e
p A
o | (1-28)
4 Nﬁ . = B vV ‘ ’ | . 4
i V.
N caed ke e | |7
Xy
[~ AR I P ]
and
fM ) B 9 f 3
I v - w
x Cyxx (1_29)
‘M; -=-D|Vv | - w%/w S
. . o I=Y .
My B 20 O 2
Substitution of these results into (1-27) yields the plate equations
2 .
A, = [/+# - =
Ve T(ZE)(Mogy ~Hny) = O
2 . (1-30)
T (g (S <) = 0
v = 1 (8 + Mo . # 2Ny, ar Ny o, (1-31)
° " D TR % 2y Gy T Ny 4 ,)
¥, 3
where V2 is the harmonic operator <3-:- + ——) and
2 ay2

& e 2 M
is the biharmonic operator n +2 o 5t T§
' dx ax“dy" Jy

Equations (1-30) are coupled together, since the dependent variables U

and v, @ppear in both, and represent the displacement equations of
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equilibrium of the plane stress problem. Equation (1-31) is the equation
from which the out-of-plane diéplacement component, w, can be determined
and 1s uncoupled from equations (1-30). However the in-plane stress
resultants are required to be known before etiuation (1-31) can be solved.
If these stress resultants are zero throughout, then (1-31) reduces to

the simplest form of plate bending equation

v4_w’a =& .

B. The von Karman Equations

The most important set of large deflection Plate equations are known
as the "von Karman equations." They may be obtained by retaining the
Product terms in equations (1-17) and following the same procedure as is
used for developing the small deflection equations.

If this is done, the expressions for stress resultants and stress
couple_s become

2

Noe = Bla, o+ i), » z///z/;/_; * ag,})]

Z
/VJ = 8[41;/4 "“_é-"fg*”(/%a,z f-l;dé-;\,)] (1-32)
Moy Z(152) 8 [Hoy b wipn r oy o 7
and
rM,, —/ s -] ( 2,2
1My b= =D v : 1 @045 T (1-29)
\MEJJ N - %1_4 \Z w;"yJ
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Substitution of these results into the equilibrium equations (1-27)

yields

> [ L Aaf p ez
EZD%M*”4&7*2 M@szW;jJ

24
7‘_/-1),92__46,&#1&’”:,;7‘%11%, j:o
Z° =g (1-33)
. 2 <
_3_9_[/”5137"”460/1 f'%/%q+/)w;/xjj
i i o R TP LY
4 _ _ N ¢ /e ' o
v = 5[; f/vxé‘,;,xzf‘z/v*_g 5‘5/?(7%/!;,60:/_‘7_?_7

where Nx’ ny and Ny in equation (1-34) are represented by the expressions
(1-32) in terms of the displacements Uys Vg 2nd W

The same interpretation can be associated with these equations as
with the corresponding equations of the small deflection theory. However

since equations (1-33) are now dependent on w., they cannot be solved

0
without also achieving a solution of (1-34) which in itself is dependent
on u, and vo thr&ugh the presence of the stress resultants Nx’ Ny and ny.
The three equations are therefore completely coupled and must be solved
simultaneously.

Equations (1-33) may be satisfied by introducing a stress function
and solving (1-34) simultaneously with the compatibility equations.
However it serves no purpose to pursue this type of development here.

It is significant to notice that the only difference between the
small deflection formulation and the large deflection formulation is the
inclusion of the product terms in the strain displacement relationship.

Physically these terms represent the stretching of the line elements due

to out-of-plane displacements.
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C. Ihe Membrane Plate Eguations

If a plate is supported in such a way that significant membrane
forces can be developed, the membrane forces carry a proportionally greater
share of the loading as the load is increased. For very thin plates at
high loads an approximate formulation may be obtained by neglecting the
contribution of bending to the carrying capacity of the plate. This is
equivalent to setting D = O in equation (1-34). This approximate theory
therefore requires the simultaneous solution of equations (1-33) and the

equation

f*/v;‘%zzf‘z/t/;gyﬂ;q-f@ﬂ' =0, (1-35)

D. Inextensional Plate Equations

When the boundary conditions and loading on a plate are sqch that
‘the plate can deform without developing significant membrane forces, the
behavior of the plate may Be approximated by neglecting middle surface
strains, i.e., considering the middle surface "inextensible." A dis-
cussion of two aﬁproaches to this-type of problem may be found in Borg [8]

and Mansfield [7].

1.4 Summary of Plate Assumptions

A review of the preceding derivation indicates that the principal
.restrictions required in the formulation of the classical plate equations

may be summarized as follows:

(a-) usxs u:y’ V:x, v’y’ W’Z X1

are required to be small quantities of second order, and
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(b) Wy Woo <1

are required to be small quantities of first order such that the square
of these quantities, which is of second order, is of the same order as the
engineering strains and the quantities in (a).

Assumptions (a) and (b) are required to establish each of the

following:

(i) the Kirchoff equations (1-10) and (1-11),

(i1) the strain displacement equa tions (1-17), and
(iii) +the equilibrium equations (1-27).

The above assumptions are those normally associated with the theory
of "thin" plates. If the ratio of plate thickness to a characteristic
lateral dimension of the plate is small (i.e., the plate is "thin"), the
_ theory yields a satisfactory solution. For "thick" plates the Kirchoff
assumptions are no longer applicable.

In the development of the finite element method which follows,
restrictions (1-5) or (1-7) are placed on the displacement gradients with
respect to the local co-ordinate system. However, since the local co-
ordinate system translates and rotates with the element all of the above
restrictions on displacement gradients may Be removed with respect to the
global reference frame. The principal limitation on the method, as formu-
lated in the following sections, is that engineering strains remain small,
i.e.,

6‘:/ 5 ‘ybj << /,

The finite element method, of course, introduces a set of approximations

which are not present in classical theory, but results indicate that there
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is a considerably wider range of application over which it can be expected

P to yield good results. This range can be expected to increase as more

sophisticated elements are developed.

&
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2. A LARGE DEFIECTION FINITE ELEMENT
ANALYSIS OF PIATES

The analysis which is developed in this chapter is restricted to
elastic structures. The development is carried out for a homogeneous,
isotropic, linear elastic material and assumes small engineering strains
throughout. However no conceptual difficulty is involved in extending
the model to include inhomogeneous or nonlinear elastic material, or
finite engineering strains. The method is extended in chapter four to
include an approximate method of incorporating nonlinear material be-
havior. Although the method is developed for a perticular type of finite

element model, the concepts are general and applicable to other models.

2.1 Selection of a Finite Element Idealization

2.1.1 A Review of Basic Concepts

Recent progress in the field of finite element analysis has produced
a large number of possibilities in selecting a scheﬁe for idealizating a
two-dimensional structure. Displacement, equilibrium, and mixed models
have been developed. The purpose of any model is to approximate the be-<
havior of the continuum, which has an infiﬁifé number of degrees of
freedom, by an assumed behavior which can be defined by a finite number
of degrees of freedom. To accomplish this the structure is divided into
subregions and the behavior of each subregion is approximated by a linear
combination of a finite number of independent functions whose range is
restricted to the subregion. The number of independent functions deter-
mines the number of generalized co-ordinates or degrees of freedom associ-

ated with the subregion.
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If the specified functions are used as a basis for representing dis-
Placements, the model is said to be a "displacement model." TIf the speci-
fied functions #re used as a basis for representing stresses, the model is
said to be an "equilibrium model."” If the functions are used as partial
bases, for both displacements and stresses, the model is said to be a
"mixed model." For a completely linear system, de Veubeke [9] has used
the principle of minimum potential energy to show that if complete compati-
bility is maintained at the interfaces.of subregions, displacement models
yield upper bounds to the stiffﬂess coefficients; and has used the principle
of complementary energy to show that if equilibrium is maintained at all
points, equilibrium models yield lower bounds to the stiffness coefficients.
If the class of functions is expanded to become "relatively complete"* with
respect to the set of functions satisfying the boundary conditions ofkthe
assembled structure, the stiffness coefficients should converge to their
proper values.

Since the»process of expanding the élass of functions to relative com-
Pleteness has been generally impractical, a compromise has.been attempted.
The set of functions selected to represent the behavior of a subregion has
been restricted to a limited number, and the convergence of the results
has been studied as the size of the subregions is reduced. This technique
usually requires the evaluation of finite element results by comparison
with classical solutions of typical problems before the validity of the
model and the degree of subdivision required for reliable application can

be established.

* See Sokolnikoff [10], p. k07
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Since displacement models are the most readily availeble and highly
developed at the present time, equilibrium and mixed models were not
seriously considered for this investiéation.

Considerable progress has been made in establishing minimum require-
ments for a set of functions for displacement models which will produce
convergence to the proper stiffness coefficients as the subdivision is
refined. Felippa has summarized the requirements for plane stress anély-
sis [1] and plate bending analysis [3] and also described a systematic
procedure for constructing a set of basis functions by using interpolating
poiynomials. For this purpose it is useful to look at the subregions as
a physical element. The displacement throughout the element is then speci-
fied by forming a linear combination of the basis functions or "shape"
functions. The coefficient of each function becomes the generalized co-
ordinate for that particular shape and is thus associated with a "degree
of freedom." By making use of interpolation functions, each generalized
co-ordinate can be identified with a physical displgcement quantity at a
particular location in the element (which is referred to as a nodal point
or node). Compatibility between elements is established by locating the
nodes on the boundaries between elements and imposing the same nodal
displacement on all elements adjoining a particular nodé. \

The simplest element that meets the minimum requirements for a given
application is an element for which the number of degrees of freedom are
just sufficient to maintain the minimum continuity requirements (compati-
bility with adjacent elements and internal continuity) and whose displace-

ment functions can produce rigid body motions and the constant strain

states ("completeness" property) associated with that application. When
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additional degrees of freedom are provided the element is referred to as
a "higher order" element. Higher order elements have the advantage of
being able to represent a better approximation of the displacement with a
coarser subdivision.

2.1.2 A Survey of Element Development

The element selected for large deflection plate analysis must be
capable of representing both in-plane and out-of-plane deformation. This
suggests combining the displacement pattérns of existing elements which
have been successful in the analysis of plane stress and plate bending.
Triangular elements were the first type of element to gchieve extensive
use in the analysis of plane stress problems. The simplest element in
this case is the constant strain triangle which has been dealt with by
Wilson [2]. Higher order triangular elements have been developed by
Felippa [1]. Triangular elements may be combined to produce quadrilateral

elements of arbitrary shape [1].

In contrast to the plane stress problems, rectangular elements weré
the first type of elements to be successfully applied to the plate bending
problem. Some of these elements have performed satisfactorily in spite
of failure to satisfy some of the minimum completeness or continuity re-
quirements. Clough and Tocher [11] have compared results of three rec-
tangular elements and four types of triangular elements, including the
first triangular element which satisfied the minimum continuit& requirements.
Bogner, Fox and Schmit [12] déveloped the first compatible and complete
rectangular element. Felippa [3] has provided an alternative developmént
of the Hsieh-Clough-Tocher triangular element stiffness and has systemati-

cally developed higher order compatible triangular plate bending elements
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which may be assembled into arbitrary quadrilaterasl elements. Argyris [5]

has developed a parallelogram element and introduced the concepts of natural

co-ordinates, stresses and strains.

2.1.3 Selection of Element for this Analysis
The first element which was considered in this investigation was a

rectangular element in which the out-of-plane displacements could be repre-

sented by the compatible and complete set of functions developed by Bogner,

Fox and Schmit with 16 degrees of freedom. In addition, a linear variation

of in-plane strain components could be achieved with 8 degrees of freedom

(see Fig. 2.1). All degrees of freedom were associated with nodal dis-

Placements at the four corners. The disadvantages of this type of element

may be listed as follows:* | '

(a) Any rectangular element subjected to both in-plane and out-of -plane
deformations becomes a warped surface after deformation in which the
four nodal points no longer lie in a common plane. Sigce the solution
technique is iterative, this presents problems of geometry and stiffness
computation for the next load increment.

(b) Although the out-of-plane and in-plane displacement functions each
form a compatible system, displacements of the combined functions
are incompatible unless displacements for all elements are referenced
to a éommon plane.

(c) The generalized forces associated with second derivative degrees of
freedom do not correspond with readily identified physical force quanti-
ties and transformation of these quantities to a different set of co-

ordinate axes introduces errors of unknown magnitude.

* These can be better appreciated after reading Section 2.2.
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(d) The rectangular element-is less flexible in representing arbitrary
»geometries and in refining mesh size in regions of high displacement
gradient. (This objecﬁion can be eliminated by adopting an arbitrary
quadrilateral element).

- The eiement vhich was finally selected for this analysis assumes the
in-plane deformation patterns are those associated with the constant strain
triangle and the out-of-plane deformations are those associated with the |

linear curvature compatible triangle with nine degrees of freedom (see

Fig. 2.2). This combination possesses the advantages:

1) In any deformed configuration the nodal points define a plane.

2) All nodal forces are readily identifiable physical force quantities.

3) The element is the simplest triangular element availeble which.meets

’ the minimum reqnirements for both in-plane and out-of-plane displacements.

It should be pointed out that this element does not produce compatible

displacements when adjacent elements are referred to different reference

planés. It thus has the same disadvantage as listed in (b) for the rec-

tangular element. Results cannot therefore be interpreted as representing

a bound on thé true solution and the model must be vérified by trial as

discussed in Section 2.1.1.

In attempting to establish a truly compatible element for this type
of problem it becomes apparent that the polynomials used to represent in-
plane displacements must be of the same degree as those used to represent
out-of-plane displacements. This gives rise to generalized nodal forces
which cannot be associated with physical force components. In addition,

Clough* has pointed out that compatibility along lines where & discontinuity

¥ Verbal communication from Prof. R. C. Clough, University of California
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in reference planes occurs cénnot be maintained without Reissner type shear
7?“; deformaﬁion if in-plane shear deformation can occur and the nodal points

do not lie on a developable surface. Carr [13] has recently combined a |
f;é higher order in-plane element and the compaiible traingular bending

| | elements, with good results, for analysis of thin shells. However both

types of incompatibility mentioned above are present in his model.

2.2 A General Approach to Large Deflection Analysis

Thé approach to large deflection problems which is used in tﬁis
analysis will now be described. The method is illustrated with reference
to the particular type of.finite element model selected in section 2.1.3
but is completely generalvand is due to W’J‘.lson.f It has previously been
applied to trusses and two dimensional frames [14)] and is extended to
plate bending in this dissertation. | "

In analyzing a large deflection problem we seek a structural configu-
ration for our model in which the unbalanced internal forces are equili~

brated by the applied external loads. We assume that the solution to the

problem is unique (see Appendix B for a discussion of uniqueness) and it

is therefore irrelevant how we arrive at the final configuration as long

as the final configuration maintains an equilibrium balance.

Consider now an element which forms a part of a plate stfucture as

shown in Fig. 2.3. Define the "global” co-ordinate system, which is a
- fixed set of axes for the entire structure, as the rectangular cartesian
co-ordinate system, x, y, z. Define also the "local" co-ordinate system

before deformation, x¥*, y¥, z¥, and the "displaced local” co-ordinate

' Prof. E. L. Wilson, University of California, Berkeley.
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system after deformation, X, Y, Z. The local co-ordinate system X, Y, 2
is defined such that nodal points of the element after deformation (11,
2', 3') lie in the X, Y plane, and is oriented in such a way that the

"average rotation" of the element with respect to the local co-ordinate

system is zero. The co-ordinate systems x¥, y¥*, z* and X, Y, Z can
therefore be regarded as the same local system which translates and
rotates with the element as the element is displaced.

The followihg Procedure may be regarded as an algorithm for computing

the equilibrium configuration. |

1. Assume that the nodal locations have been specified in the global
co-ordinate system, by some approximate method. From these
locations, establish the displaced local co-ordinate system for the

element in its deformed configuration.

2. Determine the element deformation with respect to the displaced
local co-ordinate system.

3. Using the deformations and element stiffness defined with respect to
the displaced local co-ordinate system, determine the element resisting
forces.

L. Transform the element resisting forces and the element stiffness to

the global system.

5. Repeat the steps 2, 3, and 4 for each element of the model and then
sum the resisting forces and stiffness coefficients at each node.

% ' The difference between the resisting forces and the applied loads

represents a set of unbalanced forces on the given configuration

of the model.
6. Apply the set of unbalanced forces to the model in the cbnfiguration

defined by the nodal locations in step 1 (the appropriate stiffness
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has been determined in step 5) and solve for increments in the
nodal displacements. This gives a new estimate of nodal locations.

Repeat steps 1 through 6 until the configuration of the model main-

- tains an equilibrium balance with the applied loads.,

Some general comments may now be made on this pProcedure.
Although displacements and displacement gradients may be large with
respect to the global co-ordinate system, they may be reduced to

arbitrarily small quantities with reSpect to the displaced local

co-ordinate system by refining the subdivision,_providing the engi-

neering strains are small. Therefore strain-displacement equations
referred to the displaced local co-ordinate system need not include
the products of displacement gradients and small deflection plate
theory is valid for the element (see sections 1.3.6, and 1.h4).

Since the structural stiffness matrix is assembled using the current
geometry the effect of change in structural configuration is included
in the equilibrium equations.

Since the final configuration of the structure is always baséd on an
equilibrium balance with the total applied loading, the assembled
stiffness used to determine the displacement increments for the

next iterate need not be exact. The only requirement on the
assembled stiffness is that the displacement increments determined
from it should ultimately iead to an equilibrium configuration

(see section 2.3.3).

The principal disadvantage of this approach is the computational

effort involved. Each iterate requires the complete solution of a small

deflection problem. It is therefore essential that an efficient equation

solver be available and that a reasonable estimate of the assembled stiff-

ness matrix be attained.
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2.3 The Stiffness Formulation

In solving structural problems by matrix techniques, two general
methods have been develo?ed, namely, the flexibility method and the stiff-
ness method. The stiffness method, in the form of the direct stiffness
assembly, has proved mére versatile and easier to adapt to automatic pro-
gramming techniques. It is therefore followed here.

This section develops the sitffness formulation in general terms, ¥
assuming that the variationbof internal strains and stresses.can be _
specified throughout the structure in terms of the displacements of a
finite number of nodal points. The detailed relationships between nodal
displacements and internal effects will be dgveloped for this particular
model in subsequent sections.

Thé stiffness formulation can be derived from the principle of minimum
potential energy or from the principle of virtual work. We select here
the principle of virtual work since it is less restrictive than that
of potential energy and intuitively more obvious. It is assumed through-

out that engineering strains remain small and the structure remains elastic.

The principle of virtual work may be expressed ast

, - Yo
/VG:-J—S%'JV --/V/aﬁ; 5_44[.941/+/$ 7, daas  (21)
-

In general we assume {u} = [D] (r) where [D] is a matrix of functions
which specify displacements throughout the structure and {€} = [B] (r}
where [B] is a matrix of functions which specify the strains throughout
the structure.

¥ See, for example, pagé 285 of Fung [4]. Equation (2-1) applies only
for small deformation theory. The extension for large displacements is
discussed later in the section.
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where d indicates a virtual variation,

~ indicates the quantity is a variable function of the spatial

co-ordinates
dij is the stress tensor
Eij is the strain tensor
p is the mass per unit volume
u, is the displacement vector

V is the volume of the body

'S is the surface area

SG is the surface area on which stress boundary conditions are

prescribes
Ti is the prescribed traction on SG, and

Fi is the body force per unit of mass.

Specializing this immediately for a structure in which the stress

condition is confined to two dimensions, the equation of virtual work can

be written as

where

and

{ 155113t <v = {pliafiur fsqirtas e

71 =<% 5 5,
et =<é& &, %>
jat'=<i &+ &>
FiT=<A A 4> (&3
7V =<7 7, 7>,
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2.3.1 Stiffness Formulation for Linear Structures

We assume it is possible to express the displacements and engineering
strains throughout the structure as linear functions of m nodal displacements.
If we designate the nodal displacement vector as {r}, we can write

ju} = [D]jr}

a;d 3x/ B2 mxt (2_)_})

Jéf = [BlfH .

Ir-wr X/l
The constltutlve relatlon can be expressed as

(of = [C]le} . (2-5)
IXx/ Ix3 3xy/
Noting that (éu) = [D] {dr) ana {6€) = [B] [dr]{ the virtual work equa-

tion becomes

jsri” [/V [BI[EIIE] « v] Jrf= /gr/”//ﬁy}’;ﬁy AV +[[8]7} 5} (26
; S
Performing the integration, this can be expressed as

ALK frf = 5o JiRf oprgf @

where [K], {Rf]‘and (Rs] can be identified with the corresponding terms
in equation (2-6). [K] is known as the structure stiffness matrix and
[Rf] and {RS) are generalized forces associated with the body forces and
surface forces respectively. Defining the total external force vector

{R], as

[Rf= [R.f + [Ref (2-8)
and noting that {dr} is composed of arbitrary elements, equation (2-7)

becomes

[K] [r} = {&¢.
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This set of equations can now be solved for {r}, which can then be used to
determine the stresses and strains at any point by using relations (2-4)
and (2-5).

2.3.2 Incremental Stiffness¥*

The stiffness evaluated-in section 2.3.1 applies only to a étructure
which is initially stress free and for which the field of engineering strains
may be assumed to be a linear function of nodal displacements over the
total range of these displacements. This behavior is illustrated schemati-
cally in Fig. 2.lLa.

We now consider a structure for which the response is significantly
nonlinear as illustrated schematically in Fig. 2.4b. In order to analyze
such a structure the response may be approximated, in the region of an
equilibrium configuration, by a linear relationship between increments in

load and increments in displacement. The resulting stiffness matrix will

be referred to as the "incremental stiffness.”

In order to derive the incremental stiffness, assume a stable configu-
ration is defined by the nodal displacements {ro} under the set of loads
{Ro}. Consider an adjacent equilibrium position [ro} + {Ar} in equilibrium
with the loads [Ro} + {Ar}. The prihciple of the virtual work now states
that the virtual work must vanish in both the configuratidn {ro} and the
configuration {ro] + {ar}, since both are equilibrium pﬁsitions. However

the situation is now more complex. We note that, for a proper formulation,

* The incremental stiffness, and its evaluation for this model, are
treated in detail in Chapter 3. Details are omitted here since it is not
necessary to have an "exact" evaluation of incremental stiffness in the
application of this method.
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all virtual work quantities of the first order of magnitude should be
included. Since an "initial" stress condition exists due to the presence
of thé loads {RO}, the work of the initial stresses on second order virtual
strains is of the same order of magnitude as the work of increments of
stress on first order virtual strains.

A formulation of the incremental virtual work equation is carried out
in Appendix B. The resulting equation may be expressed asf

3

. 5 3 ~ o~ g :
{JAr}T-éEV Z2 %, [8,:1T8.,,7 + [’%;j]r_%tﬂf’“ﬁ/‘“'/(a-9)

/3 e=1 J'.Tl

. ) ~ T . .
+ /JAr{T[fV [BA][E][EAj]azvo far} = (sar}jaR}
A _
wherg Gijo is the stress condition in configuration [rO] and the subscript
A indicates a matrix for incremental quantities referred to position {ro].
We define the "geometric stiffness" matrixv[KG] as the quantity between —
the vectors of nodal increments in the first term of equation (2-9), and
[KD] as the quantity between the vectors of nodal increments in the second

term. Equation (2-9) can then be written as

féAro [[Kq] + [Ko]] e {SAr}T/A R} . (2-10)

Since the vector {dAr} is arbitrary, this implies that

t Note that this formulation is easily extended to include thermal
effects by the following procedure. Compute the internal thermal stress
increments A0; ;o and the associated external restraining forces {(ARp)
by assuming the structure is completely restrained. The thermal stress
increment is then added to the existing stress state O; 50 and the incre-
ments in displacement {Ar]} are determined by applying an effective load
of {AR} - {ARp). The stresses 404 5 resulting from the increments of dis-
placement are then added to o... + A0, . to determine the resulting stress

‘s ijo ijo
condition.
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K, # Kol (ar] = (4 R}
or [k_] /4 H = (AR} . (2-11)

The matrix [KI]is the incremental stiffness matrix for the configu-
ration {ro}{ |
2.3.3 An Approximete Stiffness

We now refer back to the discussion of Section 2.2 where it.was
pointed out that an exact evaluation of the incremental stiffness is not
necessary because the procedure is iterative and the final configuration
must satisfy an equilibrium balance with the total applied loads.

The evaluation of thevinstantaneous incremental stiffness [KI] '
(tangent stiffness) developed in Section 2.3.2 requires the evaluation
‘of [Kb] and [KGJ. The matrix [Kb] represents the normal structural
stiffness matrix of an unstreséed structure in configuration {rO] for
infinitesimal nodal displacements. It is illustrated schematically in
Fig. 2.4¢. The matrix [KG] represents the change in nodal forces due to
the existence of a constant "initial" stress state as the geometric con-
figuration of the structure is infinitesimally éltered.

The evaluation of [KG] requires considerable computational effort and
the results in Section 2.11 will show that an effective solution for many
Problems can be obtained by approximating the stiffness with [KD]. The
remainder of this chapter describes in detail how the problem is formu-
lated on this basis. The iteration scheme for this type of solution is
illustrated in Fig. 2.k4a where numerical subscripts indicate the iterate
number and Ru indicates the unbalanced load.

It should be emphasized here that the omiésion of the geometric stiff-

ness matrix can be justified only because the procedure is iterative and
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based on a final equilibrium balance. Any incremental solution, in which
the structure develops both membrane and bending stresses, which does not
include the effect of the geometric stiffness or does not evaluate the
unbalanced forces with respect to the total applied load must be expected
to diverge from the correct solutién. Of>the techniques available, the
iterative technique provides closer control but is considerably more time
consuming. In Chapter 3, both'iteration and the geometric stiffness are
combined in the solution process.

It should also be emphasized that the necessity of including the geoi
metric stiffness depends primarily on the initial stress state rather than
on the magnitude of the deformation. The nonlinear terms in the strain-
displacement equations are alwayé present but it is the existence of the
initial stresses which makes them significant for infinitesimal dis- -
placement increments. This is best illustrated by a simple example such
as the beam-column discussed in section 3.1. The term "initial stress"
matrix is therefore probably a better name than "geometric stiffness"
matrix.

2.3.4 The Direct Stiffness Procedure

The direct stiffness procedure fefers to a method of forming the
stiffness of an assemblage of elements when the stiffness of the individual
elements are knﬁwn.- Referring to equation (2-6) the variation of strain,
and the displacement components, throughout the structure are represented
in the matrices [§] and [5] respectively. However, the integral over the
entire structure can be évaluated by the sum of the integrals over each
subregion. If [g]k and [Slk indicate the variation of strain and dis-‘
Placement throughout the'element k, as a result of unit change in nodal

displacements, then (2-6) can be replaced by the relation
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N
, T

srt | Z

f } k=i /Vt

18], [c],[B], v] irf

= fsr /T/ A f//—'/au/fz / [5][/7/45] (2-12)

0'

[fﬂ [kkJ] r o= (Z, Rub+ 2 IR fe// (1)

where [Kk] is the stiffness of the element k and {Rfk} and {R ] are the
generalized forces associated with the element k. A literal 1nterpretat10n
of (2-13) indicates that the stiffness of each element is developed in a
matrix format which includes the total number of degrees of freedom of

the structure. Since only nodal displacements for nodes on element k pro-
duce displacements in the element, this is an awkward procedure. The
element stiffnesses are therefore developed independently for each element
k, by considering only the displacements {rk), and the qorresponding forces
[Rk}, for the nodes located on that element. In the summation process, the
elements of [rk} and {Rk] are identified with the corresponding nodal
quantities in {r} and {R}. The process of identifying nodal quantities

of the element with the corresponding nodal quantities of the structure,
and adding the stiffness coefficients into the proper location in the

structural stiffness matrix, is referred to as the "assembly' process.

2.4 The Element Stiffness’

A typical element for this finite element modél is shown in Fig. 2.5.

We consider each corner to be a nodal point and number them in a

¥ Since in this chapter there is no need to differentiate between the
type of stress and strain tensors, we revert to standard nomenclature.
Strietly speaking however the stress and strain tensors we use are the
Kirchoff and Green tensors, respectively.




k9

P. iull

-

My, Oy

Pz

(a) LOCAL CO-ORDINATE
SYSTEM

Pylvl
4 S
|
3 —.FPX3'U3
B3, va
P2 y2 'B) IN-PLANE FORCE
T COMPONENTS AND
‘ DISPLACEMENTS
Rz, v2

,My:.eyl

-2 X
Py, Wa

Mys, Oy3

(c) OUT-OF -PLANE
FORCE COMPONENTS

& ——»sz, eXZ

1 AND DISPLACEMENTS
Mya. eyZ

FIG. 2.5 NODAL QUANTITIES FOR DISPLACEMENT MODEL




50

counterclockwise manner. The nodal forces and displacementscan be arranged

in vectors. Define the nodal force vector, [RE}, for the element, and
Ry} and (Ry), s | |
T Tl T
IRet =< IR} IR} >
=< R R. % & & é;3:1§3' Mer Mo éiz Iz /s 55 s /Z?3>

41
and the corresponding nodal displacement vector, {rE}, and the vectors

'(rP} and {rB], as

T 71 7
-— |
Ire} =< Iof i1}
i _

- ' )
=< %, Uy %y Y Az Yo &y é%v égv “2 é%z é%g‘“é %s é%y).
These nodal quantities are illustrated in Fig. 2.5. Ingeneral the sub-
script "P" will refer to quantities associated with in-Plane behavior, the
subscript "B" will refer to quantities associated with Bending, and the
subscript "E" will refer to quantities associated with the entire Element,
ordered as above.

Recalling the Kirchoff relations [equations (1-10) and (1-11)] we
may write the displacement of any point in terms of the middle surface

*
quantities as

/iz = /izo - 2;/ o

%
- . —_ , (2-14)
AT = > -—} %,‘9‘
o -~

1
)

* In the following a tilde (~) will be used to indicate a quantity which
is a function of the co-ordinates to distinguish it from the corresponding
nodal quantities. Since interpolation functions are always co-ordinate
functions no tilde is used with them.
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where the subscript O denotes a middle surface quantity which is a function
of the cd-ordinates X and y.

Since we are developing a displacement model it is now necessary to
assume a vaxiatipn of the quantities EO’ ;O’ and %b over the area of the -
element. For the present we will not specify the form of these functions
but simply describe the variation by the relations

( T
W AR
= [t} {7} (&)
= {ff oy

where [u]T = (ulu2u3), {V]T = (vlv2v3), {w} = [rP] and [wu], (mv} and [ww}

Se&

are vectors whose elements are the shape functions associated with the
corresponding sets of nodal displacements {u}, {v}, {w}, respectively.
The strain displacement relations are given by equations (1-16) of

section 1. These relations are

e = 2 g L (P, T, J*

Lax = F= * 3 (357 + 5% +3557)

£ = 5, 2R, 9T, 9ir2

=z T 55 Tz &> ey = 2 / (1-26)
= _ 2, o7, A E , 2ros , 2=
Ty T oIy Toxgy iy

Assuming now that the products of all displacement gradients are small

(see section 1.4 and 2.2) the strain displacement relations become those

of linear elasticity, namely

= d A
= 522

I
vl

N

(2-16)

B
et &
§

\

N
g
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Substituting equations (2-14) into equations (2-16) yields

~ 5:‘2 | AEM f’”‘ ~ ~ (2-17)
f$f= _6_14 = A);)J —_} fljj‘ :.[50} -;/X/ ‘
5;4 | /'7;)1: */;Zo_g Zag)’ﬁ
where
~ T o~ -

(&t = <&. &, %, >

f‘i}r‘—' < /L?o,z /:’J;q AZ;,{,«- Aoy > (2-18)
and {)Cf = < w3 “3, 44 ,zw:,q> .

Equations (2-18) can now be expressed in terms of the nodal displace

ments by using equations (2-15). We then obtain

r

e T
[Eof = /{ﬂ' " //ZA"J}T 7} =[B]{n} W
2 Z

1l o
{)C} = )%f,i«,ff {"B} [Ba] {"é} . - (2-20)
_lzfﬂucu}r

Equations (2-19) and (2-20) define the matrices [ﬁp] and [1"3'3 1.
To determine the stiffness of the element wé now appiy the principle

of virtual work. The generalized nodal forces {RE} which equilibrate a

set of internal stresses {(G) » Where {EJT = (gxgygxy)’ are determined by the

equation
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Ref= [ £4151 < v. "

The two dlmenslonal constitutive relation may be written as

{7} = [C]] f (2-22)

~ 2
Substituting (2-22) in (2-21) and expressing (€ } and (€} by relation

(2- 17), the virtual work equation becomes

I 1Re) = [, e - 3RYTCT JE -2/ % ff v
"/ fEXSIC] (<. ofdV - / 2 f£, /[c_//x} AV (2-23)
‘/Zw/o‘f”“/‘[CJ/£ pavrf 32 /RN )3 AV

If [5] does not vary with z, the two center terms vanish when integrated

through the depth of the section. Equation (2-23) therefore becomes

i //?E/ 7z} [/[@[C][B]d'/]/"/ ;. | (2-24)
=15t | #EIENEs] v |t}

IR K i + 15 [Ka] fraf (2-25)

et | Ko -~ 1’}}} —
Xf"e*/X ’ KJ /{"sf e
= (T [K T e

Since the virtual displacements are arbitrary, we have

t . . s as R - .
An asterisk * will be used to indicate virtual quantities in the re-
mainder of this chapter.
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/'RE'/ = [KE]/G‘f ’ (2-28)

where [KE] is the stiffness matrix of the element. The matrices [KP] and
[Kﬁ] are ﬁhe respective stiffness matrices for the in-plane and the out-
of-plane nodal displacements, illustrated in Fig. 2.5, and are defined by

the corresponding terms in equations (2-24) and (2-25a).

—— ——C———————— SR  ————————

The stiffness matrix for in-plane deformation has been denoted as
[KP] in section 2.4, It is evaluated by carrying out the integration of
the first term of Equation (2-24). However it is useful to carry out the
integration of the stiffness matrix in a special order so that it is easier
to recover the internal element forces after the hodal-véctor {rE} hés
been evaluated.

We define the vector of internal forces (stress resultants),
h

[P} =< A Ay Fp,>= 26 & G =dy (2v2D)
24
2

=7 1743 - /4 [c]/cf/o(} / [T F¥f A5
- Sl = s g - BT

vhere [N] = h[C][ﬁ}], prov1d1ng [C] is not a function of z.

i

" The stiffness [K?] can now be defined in terms of the matrix [N].

From (2-25) we note the definition of [KP] is

[K.]= | [BIIEIB] <V | (2-29)
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where [E}] is the function of x and y only. Integrating through the

thickness this equation can be written as

(Kl = | BIIA] «A. NG

The stiffness [Kf], for the nodal degrees of freedom we have chosen,
is that of the constant strain triangle. This is one of the first finite
elements stiffnesses developed and it appears in numerous pub;ications.

| It is evaluated in Appendix C using triangular co-ordinates.

2.6 Derivation of Stiffness for Out-of-Plane Deformations

The stiffness matrix for'out-of-plane deformations has been denoted
as [Kﬁ] in section 2.4. It is evaluated by carrying out the integration
of the second term in equation (2-24). However, as in the case of [KP],
it is useful to carry out the integration so thamithe internal stress
couples can be recovered after the nodal dispiacements are known. We

define thé stress couples
ro A
;A _ i —~ -~ —_ _ z_ — ~ 2_ l
f%vz/ =<, = Aht§$r> —z// JL<:Q;2. rzi7 <§é,>ai}u (2-31)

The negative sign is included so that the stress couples are the conjugates
of the curvature (that is, the product of a stress couple and its corre-
sponding curvature is positive work).

Expressing (0} in equation (2-31) in terms of the nodal displacements

we obtain

- , o
ot = [ g 17fely = [ B4 ICIJE) 3Ry

4
2
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If [CJ is not a functlon of z, this reduces to
/’””f //7 3 [CI( Rz = / FLEIIB]A3 fr / (2-33)
| [/7_7/" f
where /77 = £°[C]18,] .

The stiffness matrlx can now be written in terms of [ﬁ]. From

equation (2-24),

[Ka] = [ 3*[B]TC]B] v

which becomes
[a] = | (BT 4 .

The stiffness matrix [KB], for the nodal degiees of freedom used in
this model, is that for the Hsieh-Clough-Tocher element. It has been eval-
uvated by Clough and Tocher [10] and also evaluated by Felippa [3] using
traingulér co-ordinates and interpolation functions. The Procedure is

outlined in Appendix C following the method of Felippa.

2.7 Evaluation of Element Deformations

We consider the element in a displaced and deformed configuration as
shown in Fig. 2.6. Assume that the nodal displacements are known in the
global co-ordinate system. In order to evaluate the element resisting
forces it is necessary.to evaluate the element deformations in the dis-
Placed local co-ordinate system, since nodal displacements and rotations,
are assumed small with respect to the local system.

For this purpose we.define the following co-ordinate sysﬁems (see

Fig. 2.6) which describe a material point P.
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GLOBAL i,y Global co-ordinates of P in undeformed element
in original position

CO~ORDINATES [£,n,¢C Global <):o—ordina.tes of P' in deformed elanent
, (p-P')

LOCAL  |[x*,y* Local co-ordinates of P in undeformed element in
CO-ORDINATES | - original position

LOCAL X%, Y% Local co-ordinates of P" in displaced but un-
_deformed element (referred to as the "reference
|CO-ORDINATES | - element"). (P - P").

AFTER 1X,Y,2 Local co-ordinates of P' in d:Lsplaced and de-
formed element (P - P').
|[DEFORMATION

In this section a.L'L capital letters apply to quantities. associated with
the displa.ce& local co-ordinate system.

We adopt a vector approach, and describe the position of typical
point P' a.ﬂ.:er,defomation, in both the global co-ordinaté system and the

displaced co-ordinate system. ¥

—

f r /-/z,ce +/u'ez+are "/+/?‘/fﬁfofV[fWE’;(_z-SS)

Using the relations

- . - = A A
= w R *
ro= Lo+ rt =+ 27 e,
and > o 2 - 2
, T 6 T a4 € + are, +ow Sy,

equation (2-35) becomes

(*+ 2c-a,) é, +@*+)ﬂ'—4f,‘)éz 7+ (e -eJ) /6\3 (2-36)
(2~3

| | LT
= (X*+U)E + (Y"+VIE, + WE, .

The symbol . indicates a unit base vector.
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Now the co-ordinate systems £,n,& and X,Y,Z are related by a set of

direction cosines a_,, such that the unit vectors transform according to

' the transformationt
(2-37)

A
E. = a..

A
‘¢ ‘s ej ’

Expressing ﬁi in terms of 65, and equating coefficients, equa-

tion (2-35) yields

2% 2 cae, = (X4 U) a, +(Y*V)a, Wa,,

g* et o —a = (X* s v)a, * (Y*+ V}‘fu + Wa,, (2-38)

W - W = (X*s U)a,, » (Y*+V)a” FWa,s .

Grouping all known quantities on the left hand side and recognizing that
x* = X* and y* = Y¥, we define the modified global displacements E, v and
W by the relations

- %* ’*
= -y (/- )X —a,, Y = a,,,UfﬂL,V+aJ,W

- ‘ e _
o __4/2)()(-* (7- 2,2) Y = @,y V4 g, V'/-djz(W )
2-39

— e * X

Equations (2-39) define the transformation between the modified global -

displacements and the local displacements. Since this transformation is

orthogonal, the local displacements are defined by the relation
v Ly R,p Ry
VI = |4z a;, a, (2-4o)

W Apr Rzz Qs

X3

* See Appendix D for the method of determining 845
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Evaluating this relatiqnship at the nodal points determines the nodal dis-
pPlacements in the local system in terms of the nodal displacements in the
global system,

To- complete:the evaluation of local nodal quantities it is necessary

to evaluate the local nodal rotations [@x ¢Yi]‘ We assume that the nodal

i’

rotations in the global system {Gki, eyi) are known. These rotations are

related to the first derivatives of the displacements by the equations

2w = —tan'g, ur = tan’ 6,
2% 27
. | (2-41)
¢ = Claen QW ¢ = - fan_é_\/__\/.
X 3% Y 2 X

The first derivatives are now related by partial differentiation, assuming
that the displacements are functions of the ofiginal location with respect

to the displaced local co-ordinate system, i.e.,
U= UlxTy™) V=Vix;r¥ W= W(x5y® (2-k2)

The details of carrying out the differentiation are developed in
Appendix D. This results in equations of the form,

(“NX: + 2z Y:"'Quuxs "‘szVxE)(a'.w 1‘“33!3_;-‘-”)

*+ 2,, X: + Q2,5 Yx**‘a'lz. Che + @y, \,/rf)/a'.?z + Q33 gﬁi") .(2"-*3)
SW 37

XX /-« . L der —
/= 2z (“3/""¢33§-§-) aaz(a‘32+a‘33-g-,£7

where terms not previously defEE;d are defined in Appendix D. Evaluating
at the nodal points, the underlined quantities become the nodal slopes in ‘
the global system, and equations of type (2-43) define the nodal slopes in
the local system. The nodal rotations are then determined by equations

(2-41).
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The transformation of nodal rotations developed above is nonlinear
fgi’ and therefore cannot be put in matrix form. It is because this nonlinear
geometric transformation is not restricted to small slopes and angle '

;ﬁ« : changes* that it islpossible to deal with problems which are outside of

the range of the classical plate formulation.

2.8 Evaluation of Element Forces

The preceding section described how local nodal displacements are

derived from global nodal displacements. Since local nodal displacements
are small quantities, they may be used in conjunction with the small dis-
placement stiffness matrix developed in Section 2.4 and evaluated in
Appendix C. We now change the order of the vector of nodal forces and

define {ﬁé} in the local co-ordinate system,
IR} =< IR} (RS RS> =
A

Xi Yr Zi A/

(2-kk)
/W; ‘/i; /5§ Z, '/7§z‘/ﬂ7!’f; /33 é?a /%&3 /WE3;>

!
71 Z2

where (ﬁi], {ﬁé] and [§3] represent the nodal forces at the respective
nodes. In the following two sections the subscript e is used to distinguish

the ordering of the nodal quantities in (2-44) from that of section 2.1,

and the bar is used to differentiate local from global vectors. The corre-
sponding vector of nodal displacements in the local co-ordinate system is

defined as {?e} ,

L&

¥ Note that there is a practical limit to beyond which these transfor-
mations cannot be used. When the inclination of the element approaches 90°
with respect to the x-y plane of the global co-ordinate system, dw/9 and
aw/an become indefinitely large. However problems have been solved for
cases where rotations have exceeded 60° (see section 2.11).
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T T r T

P rer =<(F Rt (R

1) } / f / "2 f { 3 / | | (o-15)
YW B Y Y Y b B0 Y W fy )

where [Fi}, [?é], and [Fé} represent the nodal displacements at the
respective nodes. Then the element forces can be established from the

set of element displacements by the relation
2Re} = [K] {F.f  (e-26)

where [K] is the stiffness matrix in equation (2-26), section 2.4, with

;f the elements rearranged to conform to the ordering established in defi-

nitions (2-4k4) and (2-45).

2.9 Global Transformation, Assembly and Iteration

The‘equilibrium equations and the assembled stiffness matrices for
the overall structure, described in section 2.3, are referred to the global
axes. It is therefore necessary to transform the element resisting forces

of section 2.8, and the stiffness of section 2.4, to the global co-ordinate

orientation before assembling.

The transformation of nodal forces is accomplished at each corner of

the element by the relation

( F)’( —a” @, a, - A P W
; ) PY = Gy Ry, Gyz - - F:g (2-47)
K A S B ’ { P f
My y ’ ‘ o g Mx
\PﬂY g ’ ‘ i Fag \rﬁg
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Denoting the corner transformation matrix above as [Tc] this relation

beconmes,

/R_p/ =[7=__] /RJ

/,2,3

(2-18)

where i is the corner index, and'[Ri] is the corresponding vector of

corner forces in the global system.

Considering now infinitesimal displacements, the transformation

relation (2-48) implies that

17

[T]{r}

e =/ 2,

7

3

(2-49)

where [r } and (r} are the displacements corresponding to [R } and [R ]

Therefore equatlon (2-46) can be written as,

v}%e = {

JDI :UI h\-

}

‘,\*

s
A
0721

_‘ v 7;1

]
=[K]
{Rs}

LK1 -

. o] {r|}
T, - !ri}
’ TZJ {ry]

{ni
{2} (2-50)

{rst
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or

(Re} = Kol )

where [KE] is defined as the triple matrix product in equation (2-50), ana

{Re] aﬁd {re) are the nodal vectors of element forces and displacements in

thevglobal system, in corner order.

Assembly now proceeds, in the manner described in section 2.3.4, by
identifying the nodal displacements and forces of the element with the
corresponding nodal displacements and forces of the structure. The
summation of the element forces at any particular node yields the force
required to equilibrate the current structural configuration. These forces
are then subtracted from the total applied nodal force to determine the
unbalanced force at the nodes. This set of unbalénced forces becomes the
loading on the current structural configuration for the present iterate,
and the increments in displacement resulting from these forces are then
added to the current nodal locations to Produce the next estimate of the
structural configuration. The entire process of evaluating stiffness and
unbalanced forces, and solving for displacement increments, is then
repeated until an equilibrium balance is achieved.

Some comments on the transformation to global orientation, carried
out in equations (2-47) and (2-50), should now be made.

(1) The transformation (2-47) is incomplete in the sense that the moment
component MZ is not computed. This situation arises because the
élements DPossess only five degrees of freedom.per coiner. No
stiffness coefficients are therefore available which will allow for

- computation of rotational deformation about the normal to the element.




In effect this means that the equilibrium equation to bring the sum
of the moments about the vertical axis, through a node, into balance,
cannot be written. It must be assumed that this unbalance is small
and has little influence on the behavior of the plate. This
assumptioﬁ appears to be justified by the results presented in
section 2.11.

(2) The matrices in equation (2-50) which premultiply and postmultiply the
matrix [K] are displacement transformation matrices. We recall the
effort involved in section (2-7) to transform npdal displacements from
the global description to the displaced local description. The dif-
ference in the transformations arises because the displacement
transformation matrices associated with the stiffness matrix need

only apply for infinitesimal nodal displacements.

(3) - The element stiffness, as developed in section (2-4), is uncoupled.
The coupling of the in-plane and out-of-plane problem ig accomplished

by the transformations in this section.

2.10 Solution of Equations

The equilibrium equations resulting from the assembly procedure dis-
cussed in section 2.9 are solved for the increments in nodal displacements
resulting from the unbalanced forces. This requires the solution of 5m
simultaneous algebraic equations for every iterate, where m is the number
of nodal points.

The solution is based on a Gauss elimination procedure but the sub-
routine is specialized to triangularize a banded symmetric matrix.. This

results in a very efficient solution of the equations. The subroutine
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* .
was originally developed by Wilsoni and modified by Felippa.f

2.11 Applications
In this section the method developed in this chapter is applied to

soﬁe typical broblems. Most of the problems have been selected on the
basis of two considerations:
(a) to illustrate the various types of problem to which the method is
applicable, and
(b) to compare the results of this method with the results achieved by
more conventional methods.
A list of the problems and the PLATES in which results are illuétrated
is given in Table 2.1.

2.11.1 Inextensional Bending

A section from an infinite length of plate, 10 inches wide, 0.1 inches
thick, clamped along the left edge and free along the right edge was sub-
Jjected to a pure moment along the free edge. The applied moment and
elastic properties were chosen to give a radius of curvature of 9 inches.
Since the moments are constant throughout the plate and curvature occurs
in one direction only, membrane forces are not induced. The deflection
for the plate can therefore be checked against the co-ordinates of a
circular arc with 9 inch radius and 10 inch length.

| The results of the solution (without the correction for difference
between arc length and chord length discussed in Appendix D) are shown in

Plate 2-1. Note that the slope at the free edge is approximately 64° and

*
Prof. E. L. Wilson, University of California, Berkeley, California

4 Dr. C. A. Felippa, University of California, Berkeley.




TABLE 2.1

LIST OF PLATES FOR CHAPTER 2

PLATE

. SUBJECT v NO. TITLE
Cantilevered Plate | 2-1 ‘ Prdfile of Inextensional Plate Bending
2-2 Load-Deflection for Cylindrical Bending
Cylindrical -
Bending 2-3 Stresses for Cylindrical Bending
2-4 Load-Deflection of Simply Supported
Square Plate
Simply Supported 2-5 Membrane Stresses in Simply Supported
Square Plate Square Plate
2-6 Bending Stresses in Simply Supported
Square Plate
2-7 Load-Deflection of Clamped Square Plate
for Low Loads
Clamped Square
Plate 2-8 Load-Deflection of Clamped Square Plate
for High Loads
2-9 Post-Buckling Load-Deflection of
Post-Buckling of a Cantilevered Plate
Cantilevered Plate
2-10 Post-Buckling Profile of Cantilevered
Plate
2-11 Comparison of Bending Stresses for Simply
Stress Results for Supported Square Plate
Simply Supported
Square Plate 2=-12 Distribution of Stresses in Simply

Supported Square Plate
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the horizontal motion of the free edge is approximately 2 inches. It
is this horiiontal motion ﬁhich induces the membrane effect in plates
which are not free to move at the supports.

A;thoqgh this example was solved primarily to check the geometric
transformations, it corresponds to the type of plate problems to which
the inextensional approximate theory (see section 1.3.6.4) can be applied.

2.11.2 Cylindrical Bending

One of the few types of large deflection plate problems which has
been successfully solved in closed form is the case of cylindrical bending.
The development of the equations, together with charts and tables required
for the solution are given in thé first chapter of Timoshenko (6].

In order to check the finite element method with published results,

a problem with extreme nonlinearities was selected. The problem consists
of an infinite strip of plate, 20 inches wide, 0.5 inches thick, and
simply supported on unyielding supports along each edge. A modulué of
elasticity of 30 X lO6 psi and a Poisson's ratio of 0.3 were used. The
loading was increased in 8 increments from O to 5000 psi. Under simple
beam theory the calculated deflection at the centerline of the span is
approximately 30.5 inches.

The load vs. center deflection plot is shown in Plate 2-2. Notice the
Pronounced nonlinearity. Membrane and bending stresses are plotted in
Plate 2-3 for the center séction. Stresses of these magnitudes could not
be attained in a real material but‘illustrate the influence of the membrane
action. Notice the comparison with the simple plate theory bending stress.
Agreement with Timoshenko results are excellent in view of the fact that
these results were obtained, from the table on page 18, by interpolation

from values with only two significant figures [6].
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2.11.3 Simply Supported Plate - Uniform Load

To check the method for plates developing double curvature, a solution
was carried out for a 16 inch square plate, 0.l inches thick, which was
simply'supported_on unyielding supports on all sides. These results can
be compared with those obtained by Levy [15]. Levy solvea the von Karman
equations (see section 1.3.6.b) consistihg of two coupled equations in
which the dependent variables were the stress function and out-of-plane
displacement. The dependent variables were approximated by a truncated
trigonometric series and convergence was examined as more terms were added.
The first six nonzero terms were included in the solution.

The platé was assumed to have a modulus of elasticity of 30 X lO6
psi and a Poisson's ratio of 0.316.T The uniform load was varied from O
to 15 psi in 5 increments.

The load vs. center deflection plot is shown in Plate 2-4. Note the
excellent agreement of the solution.

The plot of membrane stress and bending stress is shown in Plates 2-5
and 2-6, respectively, for various locations on the plate. The agreement
of bending stress results with Levy's solution is not as good»as forlde-
flections. An accurate determinatipn of stresses from a displacement model
is always more difficult to achieve than a determination of displacements.
The same‘phenomenon of course occurs with the series solution. Stress re-

sults for this particular example are discussed in detail in section 2.12.

¥ The value of 0.316 was selected to agree with that in Levy's solution.
Levy was primarily interested in aluminum and therefore adopted this value.
However the modulus of elasticity in Levy's solution appears only in the
nondimensionalized form Pay/Eh and thus may be varied.
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2.11.4 Clamped Square Plate - Uniform Load

The same Plate as was analyzed in section 2.11.3 was analyzed with
clamped edges. Plate 2-7 is a plot of center deflection vs. load. The
maximum loading on this plot is 15 psi, as it was for the simply supported
pPlate. To illustrate the fact that the method has a greater capacity,
the loading was continued to 140 psi. This plot is shown in Plate 2-8.
The limit of Levy's work [16] is shown on the same plot to be slightly
less than 20 psi. |

2.11.5 Post-Buckling Behavior of a Cantilevered Plate

The previous examples have considered plate behavior in which the
éystem becomes stiffér as the load increases. For plétes in which the
in-plane forces are compressive and increase in magnitudé as the loading
progresses, the system "softens." The most extreme example of this is an
infinite strip of plate subjected to in-plane compressive loads. This
problem corresponds to the classical "elastica" problem of column buckling.

The same plate layout as used in section 2.11.1 was selected with the
exception that a modulus of elasticity of 30 x lO6 Psi and a Poisson's
rétio of 0.3 were used. The plate was loaded with a compressive line load,
parallel to the middle surface of the plate but with an eccentricity of
0.0l inches (which is one-tenth of the plate thickness) so that large
deflections would initiate when the load approached the critical load.

The load vs. free edge deflection plot is shown in Plate 2-9. The
theoretical elastic solution for a concentrically loaded strip is taken
from Timoshenko [17] where the solution is achieved through the use of
elliptic integrals. Agreeﬁent seems sufficiently close for engineering
purposes. Notice that the essentially flat range of deflections is not

easily determined by this technique and a better solution is Presented
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in Chapter 3. A discussion of this point is undertaken below., To illu-
strate the magnitude of deformations that are involved in this type of
problem a profile of deflected configuration for a load greater than the
buckling load is shown in Plate 2-10. Notice that the vertical deflection
is approximately h-l/z inches and the horizongal deflection is approxi-
mately 7 inches. Since these deflections occur in a plate of 10 inch
length they represent a severe condition.

| It was noted above that the "flat" region on the plbt in Plate 2-9

is not easily determined by this technique. The reason for this is that
the approximate stiffness which was adopted in section 2.3.3 becomes a poor
estimate of the'actual stiffness of the structure in this range. For this
reason it is desirable to consider an evaluation of the geometric stiffness.

This is done in Chapter 3.

2.12 Discussion of Results - Stresses

The previous section has presented the solutions for a number of
plate problems and compared the results with solutions achieved by other
means. The problems have included examples involving large geometric dis-
Placements and rotations, various types of boundary conditions and ‘the
presence of large in-plane forces. It can be seen that the macroscopic
structural behavior is generally well representéd by the model and results
are sufficiently accurate for engineering purposes. It should be emphasized
that the same technique and formulation have been used for all of these
problems énd can be applied to plates of arbitrary geometry and boundary
Aconditions for which no classical solutions exist.

It was noted in section 2.11.3 that agreement with Levy solution

stress results was not as good as for deflections. Stress results from
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the finite element approach must be interpreted carefully. As an illu-
stration of stress results, the example of the simply supported plate
of section 2.11.3 is examined in detail. Two element layouts are com-
pared whiqh have roughly the same number of degrees of freedom. These
element layouts are shown in Fig. 2.8 and will be referred to as "single
diagonal" and "double diagonal” subdivisioﬁs, respectively.

Figure 2.7 gives the numerical results for deflections and stresses,
for single and double diagonal subdivisions, for both small deflection and
large deflection plate theory, for a load of 3 psi.  The maximum deflection
at the center is 2.78 times the plate thickness as determined by small
deflection theory so that this condition is well beyond the applicable
limit of small deflection theory. However small deflection theory results
are proportional to the loading so that a comparisdn of the small deflection
theory finite element results with conventional theory can be made. The
bending stress comparison is shown in Plate 2-11, and indicates that the
finite element results are within 4 per cent.of the conventional solution%
except at the free edge where a self equilibrating set of element moments
Produces an average stress of approximately ten per cent of the maximum
bending stress. The stresses plotted on Plate 2-11 are average stresses
at the nodal points. The displacement model maintains normal slope
compatibility along the element interfaces but curvatures are discontinuous.
Therefore stresses are discontinuous. Figure 2.9 indicates the stress
couples, m, at the corner of each element, from which the average stresses

were computed. It should be noted that the stress couples at each corner

* Page 118, Timoshenko [6].
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are averages in themselves since curvatufes are also discontinuous within
the element (Appendix C).

The numerical values of stresses and deflections, for a load of 3 psi,
for the large deflection solution are also shown in Fig. 2.7 and stresses
are plotted on Plate 2-11. Note that the membrane effect reduces the
maximum bending stress to approximately 1/3 of its former value while the
locked in stress at the free edge is reduced by a factor of less than two.
' This results in a greater ratio of free edge stress to maximum stress
than occurs for the small deflection solution. The element stress couples
are again shown in Fig. 2.9.

Figure 2.8 gives numerical values of stresses and deflections as the
load is increased from 3 psi tq 15 psi. Stress results are plotted on
Plate 2-12. Note that (a) the location of maximum stress and maximum
bending stress shifts away from the center of the plate as the load is
increased, (b) the membrane stress remains appfoximately constant across
the width of the plate but achieves its highest value at the free edge,
and (c) the membrane stress begins to dominate at higher loads. As the
load increases the ratio of locked in free edge bending stress to maximum
bending stress continues to increase and becomes close to 30 per cent at
the maximum loading condition.

However in view of the results on Plate 2-11 it appears that the
locked in stresses on the boundary do not detract from the reliability of
results in the interior of the plate. It should be noted that the free
edge of the plate is the portion of the plate subjected to the greatest
moment gradient and that as the deflections became larger this moment
gradient is accentuated with respect to gradients in other portions of

the plate.
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It has been noted that the locked in stresses on the free edge of the
plate for a small deflection solution are in the order of 10 per cent
(for thé present subdivision and the LCCT-9). Fellipa [3] has applied a
linear curvature compatible triangle with 12 degrees of.freedom (Lcer-12)
and found that the free edge stresses are in the order of 5 per cent., It
can be expected that considerable improvement in this aspect of stress
results can therefore be achieved by incorporating higher order elements
into the method. It is interesting to note that Levy's trigonometric
series solution also indicates a stress result onthe free edge in the order
of 10 per cent of the maximum bending stress. Plate 2-6 showsvthat the
finite element bending stresses are approximately 10 per cent lower than
those predicted by Levy's series solution. Levy states that "in the case
of center deflection, the convergence is oscillatory" fof the trigonometric
solution and indicates that for large pressures it may be necessary to con-
sider more terms in the series in order to determine the center deflection
to within 1 per cent. Since convergence is slower for the second deri-
vative of a series solution than for the series itself, an error in bending
stress of 10 per cent appears quite possible with the truncated series
which was employed. This is not meant to imply that the finite element
bending stresses are a better solution than the series solution but merely
to indicate that approximations are present in both solutions and, in the
context of this problem, a discrepancy of 10 per cent does not appear
unreasonable, |

A few remarks should also be made with respect to membrane stresses.

: The'model is based on a uniform membrane stress throughout the entire

element. By utilizing an averaging procedure suggested by Wilson [2]

membrane stresses may also be estimated at the nodal points. Numerical

R R
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membrane stress results are given in Fig. 2.10, and element membrane
stresseé are plotted in Plate 2-12. The averaged nodal stresses produce
results slightly lower than element stresses and are considered less
accurgte. Stresses plotted in Plate 2f5 were therefore obtainéd from
Plate 2-12 which utilizes element, rather than nodal point stresses
and show good agreement with Leﬁy results.

| The results of this chapter indicéte that the finite element seems
to be well adapted to obtaihing solutions, which are sufficiently accurate

for engineering purposes, to a wide variety of plate problems.




FIG. 2.7. STRESS COMPARISON FOR
16 X 16 X 0.1 PLATE FOR q = 3 psi
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FIG. 2.7 (Contimued)
Stress Timoshenko Stresses [51 (v = 0.3)
Type 0.2a O.ka 0.6a 0.8a 1.0a
‘ o, 9650 15,810 19,530 21,500 22,100
o, 7750 13,980 18,430 21,150 22,080
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16 x 16 X 0.1 BENDING STRESSES AND DEFLECTIONS
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(i) Single Diagonal Nodal Stresses
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Figure 2.10

16 X 16 X 0.1 INCH MEMBRANE STRESS RESULTS FOR q =3 psi
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3. THE GEOMETRIC STIFFNESS

The formulation and results presented in Chapter 2 were based on
approximating the stiffness of the structure by the stiffness of a stress
free structure in the deformed configuration. This approach has been
successful in solving many practical problems. However, as was pointed
out in section 2.3.2, an "exact" evaluation of the stiffness of the

structure at any time must include the effects of existing stress condi-

tions. For some types of problem it is advantageous to obtain a more exact

estimate of the stiffness. This is particularly true (a) when using a

solution technique which is not iterative and (b) when predicting structural
behavior in the region of buckling. The object of this chapter is to
develop a "complete" formulation of the "geometric stiffness" (see sec-

tion 2.3.2) of a two dimensional model and to evaluate the significant

terms of this formulation for this particular model.

3.1 Introduction

The term "geometric stiffness" is a relatively new one in engineering
literature. However the concept has had a long and extensive history. 1In

its simplest form this concept can be illustrated by a simple beam-column.

If we refer to Fig. 3.1, the equation of equilibrium for the beam can be
written as

n £ 95:22& = 3’ .

< x?

’ However if the beam has an axial load P, at the time of application of
the load g, the equation of equilibrium is [17]

ot? iy = o
£ <p + Py = 2.

(‘.:(x ()‘k‘?‘




(a) BEAM
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(b) BEAM - COLUMN

FIG. 3.1
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‘The quantity q corresponds to the external "applied load" and the quantity

2
EI is the conventional beam "stiffness." The term P g“% corresponds to
' dx

a "geometric stiffness,” because it effectively reduces the stiffness of

the structure with respect to the loads 4. The geometric stiffness depends

only on the initial stress condition, P, and second order geometric effects.
Physically it represents an effective lateral load resulting from a con-
stant initial stress when the beam is subjected to a change in configuration.
The concept of effective lateral load can.be used to arrive at the terms
on the right hand side of equation (1-27) when formulating the equilibrium
equations of the plate.f; In the derivation of the geometric stiffness which
follows, it is the forces arising from this effect which are being evaluated.
A systematic and rigorous development of the behavior of a continuum
for incremental effects when subjected to initial stress has been under-
taken by Biot [18]. In the field of finite elements, the most elegant
treatment is probably that of Felippa [1]. However Argyris [5, 19],
Matrin [20, 21], and Hartz [22, 23], are among those who have formulated
geometric stiffnesses for particular applications. The terms "initial
stress” matrix and "stability" matrix are also used for the geometric
stiffness matrix.

3.2 Formulation of a "Complete" Geometric Stiffness for Two-Dimensional
Elements

The derivation of the expression for the geometric stiffness has been
carried out in Appendix B. It arises from the first term in expression

(B1-8), namely

¥ See Timoshenko [5], p. 378.
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This integral was developed with reference to the global co-ordinate system
but the integrand is invariant with respect to co-ordinate transformation

So that it may be referred to the local co-ordinate system. The engi-

neering strains and all displacement gradients may be assumed small with
reference to this system of co-ordinates so that we may specialize to the
two dimensional description and use small deflection plate theory. In
the remainder of this chapter we will therefore

‘ (a) drop the A symbol, with the understanding that a u stands for a

| small increment in displacement

(b) wuse lower case letters with the understanding that they refer to th.e

local co-ordinate system. This is consistent with the nomenclature

adopted in developing the stiffness matrices in sections 2.4, 2.5
and Appendix C.
We evaluate the integral for one element only, in accordance with the
direct stiffness technique.

Expression (3-1) may be written ast

32 3 - o~
= To S)m & ~ =~ =
= < / L 5/4‘“ /"({"j L7 Y, T “’J_// oV (3-2)
¢=4 pi=d Vb z
T+

In the remainder of this section the summation convention will be
suppressed. In addition, since only infinitesimal displacements are
considered, O subscripts for integration are dropped.
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or

3 3 _ - - ~ |
ng / Tje & l./%’/lr/%//] AV (3-3)

where [1:} is as defined in section 2.3.

Substituting equation (2-15) into equation (2-14) of section 2.k,

establishes the relations for (u)

———

| f/i , /%/T o __}/%Jyx/‘; jff,zc/] (3-4)
= (7=l ey |
N IR s’ JZ

where terms are defined in section 2.4, According to the definition of

that section we may also designate the nodal vector as [rE}.

We use the indexes a, § with a range from 1 to 2 in the following

and evaluate the derivatives,

¢ 3 ~ B
2 7, T \ T
%%D‘ /éL,a}' o ‘}/;{i;x,(} )
-~ T ) _ -
<<3/;0(>: ° {géffl,,(} }/{éf}#d/' {FE}:L o(_sr_k (3-5)
~ , -
' L%”(J - f “’:'X} N
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~N
/

g_f ‘ ’ '{%C-x}T .
4 N (3-6)
<<§§_V_f> - . ‘{%547} {re} = [Ag;l {r} 3-6
0 .. .

where [X;] and [Kz] are defined by these expressions.

Expression (3-3) can now be written as

T Z 2 -~ ~ T E N N
L St [2 z Mg 2 I =y )]

2R il ﬁ:l

(3-7)
Z .~ ~ T ~ il :
T ﬁizl [/\;J G Ne] * [A}] Do [A}] ]&L Virelr.

Since the stress tensor is symmetric, and the summation index is arbitrary,

the center two terms can be combined into the sum

2
>3

o=/

[A] %, [T

where

/92‘/*f ’ .
’ [ fira } - |38
/ B %c'wf 7 / Z{;M; _/ Viy} *}/ %/zz.f«} M*i

— —

Since all terms in the matrix sum of (3-7) are now in symmetric form,

expression (3-7) can be written symbolically as
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, ‘ . _
L ~ 3-9)
7 9 I:f'ff [KG]{rE}J ’ (3-9
for when the variation is carried out it yields

£ (Snf K]t + & ) TR] (55

and since the matrix sum [KG] is symmetiic this can be written as
[dre)T[KG] {rE], where [KG] can be identified as the geometric stiffness,
.as defined in Appendix B, for this element.
We now form the matrix products of the first and last terms in the
integral (3-7) and of expression (3-8), and integrate through the thick-

ness. In order to do this, we define

Z
Jy <% @y T (AN, G2 (3-20)
Z
and h
2 .
7 —JL Q;G ‘d;; = /yﬁﬁﬂ .
i

In performing the integration the following assumptions have been

made:
b
< .
n {7 = . . PP . . .
(a)- é’fa36€} 0. This can be justified if we consider that Oy3 is an
"E‘ even function with respect to the middle surface.
4
2
(b)/(Qj~ =0, This is consistent with the assumptions in section (1.3.l4)

!
) where the smallness of 633 was used to justify the plane

stress constitutive law.




2
(c }‘27' 442—1" N . This follows if Oy o8 is a linear function of z.
12 :

Zh
2

Integration then yields,

WdNtlsf 0 ofillle]
T AN ALY

%dem*ﬁ{‘gz,;} M@«}’jﬁ{% } /Z/«,&; nﬁf%f i

—

~
O
]
N
M &
M «
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7%,xf9q{ o - Wl ] |
pZ Vo Qulload ~tntttsf | | LA
W fQlnd W fOE ALl Y _
. | | (3-12)
: where :
V= | W Wl 1y f el

and | o
[l oaf” o i f oyl

- y T ; 2, T
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Equation (3-11) represents the geometric stiffness matrix for a plate
element subjected to an initial stress condition which has stress resultants
{Nqﬁ, Qu} and stress couples [M&B}.‘ All terms can be given a (nominally)
physical interpretation. For instance the terms in the top line of the
matrices may be respectivelj interpreted as:

(a) The rate of change of the x forces, with respect to u displacements,

resulting from the initial stress resultants N B
(b) The rate of change of x forces, with respect to w dlsplacements,

resultlng from the initial stress couples M B
(c) The rate of change of x forces, with respect to u and w displacements

respectively, resulting from the initial shear forces Qu.

We note that the second matrix sum in (3-11) could be put in terms

of moment gradients by using the equilibrium equations of the type

? Czﬁif + %Jtléﬁf - - C?a; .

2 x Iy (1-26)

3.3 Geometric Stiffness Matrix for Influence of In-Plane Forces on
Bending Stiffness

From a practical point of view it is unnecessary to evaluate the
"complete" geometric stiffness matrix developed in the previous section.
Since the incremental displacements gradients are small, most terms are of
higher order. The most significant term is the term in the lower right
hand corner of the first matrix of equation (3-11). The geometric stiff-
ness matrix may therefore be approximated as

. -

o L] o

L 2 |
[Kq] =[ ol i e ‘ LA, (3-13)

== / T

-—
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To evaluate this term we use a technique similar to that used in
evaluating the stiffness matrix for bending thét was discussed in Appendix C.
Since the derivatives of the displacement functions are of lower degree
than the displacement functions themselves, the numerical work of inte-
gration can be reduced by evaluating these derivatives at a sélected set of
nodal poinfs such that interpolation functions of the minimum degree neces-

sary, may be used. This matrix is evaluated in Appendix C.

3.4 Applications

Although the geometric stiffness matrix can be incorporated into all
large deflection problems it has oniy been applied here to problems where
the number of iterates required, using the method of Chapter 2, becomes
excessive.

A list of the problems discussed, and the Plates on which results

are plotted, is given in Table 3.1.

3.4.1 Post-Buckling of a Cantilevered Plate

The problem of the infinite strip of plate with loads applied in the
plane of the plate, discussed in section é.ll.S, was repeated with the
geometric stiffness included in the analysis. This problem again corre-
sponds to the "elastica" problem.

Load deflection results are shown in Plate 3-1 and compared with the
solution in Timoshenko [17]. The problem was solved in two ways:
(a) incrementing loading, and
(b) incrementing in-plane displacements of the free edge.
In the latter case the out-of-plane deflection was initiated by a small
constant load applied normal to the plane of the plate at the free edge,

Note the excellent agreement of both techniques with the theoretical




TABLE 3.1

LIST OF PLATES FOR CHAPTER 3
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PLATE

PROBLEM NO. TITLE
Post-buckling of a 3-1 Post-Buckling Load-Deflection of
Cantilevered Plate Cantilevered Plate

3-2 Post~Buckling Load-Deflection of
Square Plate-Low Loads
Post-buc#llng of & 3-3 Post-Buckling Load-Deflection of
Square Simply Square Plate-High Loads
Supported Plate
3-h Reactive Boundary Forces for Buckled
Square .Plate
3-5 Posthuckling Load-Deflection of a
Post-buckling of a Flange Plate
Flange Plate 3-6 Profile of Buckled Flange Plate
Post-buckling of a 3-7 Post-Buckling Load-Deflection of a
Rectangular Simply Rectangular Simply Supported Plate
Supported Plate
with an Aspect 3-8 Post-Buckling Centerline Profile of a

Ratio of 1.75

Rectangular Simply Supported Plate
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solution. The displacement technique is the more efficient of the two
from the point of view of computer time but it is more difficult to
select a sequence of hisplacements which will properly cover the range
of interest. |

3.4.2 Post-Buckling Behavior of a Square Plate

The 16-inch square plate discussed in section 2.11.3 was investigated
to determine its post-buckling behavior. This plate is simply supported
on all four sides. Displacementsof one side were incremented and two
'solutions wefe carried out. One solution maintained zero in-plane nodal
forces on the sides\perpendicular to the direction of loading. The other
solution maintained zero displacement at nodal poiﬁts on these sides.

Load-defleetioﬁ results are plotted in Plate 3-2 and Plate 3-3. The
Levy solution [15] is given for comparison. These results are rather
interesting. The convenient boundary condition for Levy's solution was a
straight edge with zero average in-plane force. It‘can be seen that the
finite element solution with zero nodal forces agrees reasonably well with
this solution as long as out-of-plane displacements do not exceed the
thickness of plate (Plate 3-2).l But for greater displacements, the edge
in the finite‘element is free to warp and therefore does not develop as
high a membrane effect in the transverse direction. This results in
greater flexibility at higher loads (Plate 3-3).

On the other hand the finite element solution for zero edge displace-
ments in the transverse direction predicts a considerably lower "buckling"
load (Plate 3-2). This results because the in-plane forces induced in the
transverse direction, by the Poisson's ratio effect, reduce the critical
load. However when the out-of-plane displacements become large (Plate 3-3),

the membrane forces developed in the transverse direction exceed those that
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would be developed under Levy's assuﬁption and this results in a stiffer
behavior. Levy's solution is therefore effectively bounded. It would
be possible‘to reproduce boundary conditions similar to Levy's, in the
finite element solution, but this would be very time consuming from a
computational standpoint.

The résults of this problem also illustrate two points that are
worth repeating:

(i) the large post-buckling capacity of plates with relatively little
out-of-plane deflection. (Compare Plate 3-3 with Plate 3-1.)

(ii) the effect of boundary conditions cannot always be anticipated
prior to a solution, and this efféct may be large.

Plate 3-L4 shows the distribution of the in-plane stress resultant
normal to the edge of the plate on which displacements were incremented,
fdr various loading conditions for the case zero lateral in-plane force.
Notice that the center strip of the plate develops tensile membrane
forces, even in this directioﬁ, under large displacements.

3.4.3 Post-Buckling of a Simulated Flange Plate

In order to illustrate the versatility of the method a section of

plate simulating the approximate conditions of a flange of a wide flange
beam was examined for post buckling behavior. The plate had a length of
1k inches, a width of 4 inches and a thickness of 1/U inches. It was
simply supported along one edge, free on one edge, free on one end and
clamped on the opposite end.

The load deflection plot is shown on Plate 3-5 and the configuration

of the free edge for various post-buckling conditions is shown on Plate 3-6.

Notice that, unlike the simply supported plate, the load-deflection curve

begins to drop off for large deflections.
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Since the writer is unaware of any solutions for this type of problem,
even in the small deflection range, it is not possible to obtain a compari-
son of this solution with one achieved by other techniques.

3.4.4 Post-Buckling of a Simply Supported Rectangular Plate With an
Aspect Ratio of 1.75

To illustrate that the method is capable of selecting the critical
buckling load, when it consists of more than one "half-wave," and simply
supported plate‘8 inches wide, 14 inches long and one-tenth of an inch in
thickness was used. The load-deflection plot is shown in Plate 3-7 and
the displacement of the plate along the centerline‘is shown in Plate 3-8,

As in the other examples, out-of-plane displacement was initiated by
applying a small lateral face. In this case a load of one-half a pound
was applied at nodal point 11, On Plate 3-8? the solution for the first
load increment indiéates all displacements in the.same direction. For the
second load increment, which is just slightly below the classical buckling
load (see Plate 3-7), a very small reversal of displacement occurred in
the right half of the plate. Subsequent loading produced the symmetric,
buckling pattern of two half waves. This pattern agrees with the small
deflection buckling pattern and it can be seen from Plate 3-7, that the
large deflection finite element solution correlates well with the critical
load from the linearized theory. |
3.4.5 Discussion

The ability of the finite element method to analyze elastic behavior
of plate structures in the post-buckling range has been demonstrated by
the examples of this section. ?he type of problems that can be soived
are ﬁnrestricted by boundary conditions or plate configuration, and the

application of the method in this way therefore represents an extension of

e
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analysis into an area which has not previously been effectively explored.
{fr | The major difficulty encountered in this type of analysis is the
computational effort that must be expended. However the technique is

capable, in principle, of investigating a large number problems of practical

interest. When combined with nonlinear material behavior, such problems
as local buckling, the influence of residual stress on buckling, lateral-

 torsional buckling, and tension field behavior are susceptible to study.

.
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L, VARTABLE MATERIAL PROPERTIES

4,1 Introduction

The incorporation of variable material properties, in large deflection
finite element analyses, presents no difficulties in principle. Solutions
have been developed for nonlinear material effects for plane stress
problems [1, 5], axisymmetric shell problems [24], and small deflection
plate probiems.f However practical difficultues arise in attempting to
obtain an efficient solution procedure to realistic plate problems.

Some of the factors which should be considered before developing a
solution procedure are:

(1) Lack of knowledge of real material properties,
(2) Numeiical computations,
(3) The displacement model.

4.1.a Material Properties

When dealing with materials, certain rules of material behavior are
hypothesized, in the form of constitutive relations, and an analysis is
developed which is consistent with these rules. A large number of con-
stitutive hypotheses are available. Hypoelastic, hyperelastic, elastic-
perfectly plastic, elastic-plastic with various hardening rules, and
visco-eléstic are only a few of the hypotheses which define idealized
materials. In most cases the constants or functional parameters required
by the hypothesis are determined experimentally from simple stress states
and then are inserted into the more general constitutive relation. However,

real materials seldom behave in a manner completely consistent with the

T An elastic-plastic solution of the small defection plate bending
problem for work-hardening materials was developed by C. A. Felippa in
1966 but has not been published.
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constitutive hypothesis and, in view of the approximations involved in
representing material behavior, the question arises as to whether our
knowledge in this area justifies an elaborate analytical technique in
order to maintain pointwise consistency with the material hypothesis.

L.1.b Numerical Computations

Once the material response becomes nonlinear the derivation of stiff-
ness can seldom be accomplished in closed form and therefore it is usually
necessary to resort to nuﬁerical integration over the volume of the element.
An alternative ﬁrocedure is to derive interaction relationships by inte-
grating, in closed form, through the thickness, and then integrating
‘numerically over the area to compiete the evaluation. In the case of a
plate there are six independent strain and stress resultant variables.
Interaction relationships of these quantities are complex unless one
proceeds to the extreme case of limit analysis.

For a problem such as the plate problem the derivation of element
stiffnesses requires a large amount of numerical computation for any
analysis with a nonlineér constitutive hypothesis.

L.1.c The Displacement Model

The displacement models used in finite element analysis are based on |
the assumption that a linear combination of the shape functions can closely
approximate the shape of the subregion of the real structure. Since non-
linearity of material properties usually produces high gradients of strain
in relatively localized areas, a fine mesh may be required in order to
obtain a good representation of behavior. In statically determinate and
stress concentration problems this does not usually present a problem since
the regions of high gradients can be predicted prior to analysis. However,

in complex indeterminate structures the locations of high gradients are not

PTRESLIE
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always evident. Reference to limit analysis of plates illustrates that

the regions of high gradient may be distributed throughout the plate and

of indeterminate location [25].f Since an extremely fine mesh throughout
the entire structure may require too great a computational effort, a
realistic solution would probably have to be based on a series of solutions
which (a) first locate the areas of high gradient and then (b) introduce
finer subdivisions in these areas. As the loading is incremented, new

areas of high gradient will be introduced as a result of redistribution

and changing stress patterns.
k.,1.4 Discussion
;z Nonlinear constitutive relations may be incorporated into the basgic
procedure described in Chapters 2 and 3 with very little modification.
However the construction of the stiffness matrix must be modified in such
a way that the variation of constitutive parameters throughout the element
volume is accounted for and this greatly increases the numerical compu-
tations. |

The modifications required in the derivation of stiffness are discussed
in section L.2 and a description of a scheme for developing a stiffness

matrix for an elastic-plastic hardening material is given in section L4.3.

Referring to the discussions of sections 2.1 and 2.12 we note that, although
experience has shown that nodal stresses converge in the mean, the particu-
lar model used in this investigation cannot be expected to produce point-

5 wise convergence of stress and strain values because the displacement

pattern produces discontinuities in both the bending and in-plane strains.

¥ See, for instance, page 266, where the yield line pattern for a simply
supported plate is illustrated.
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Since the constitutive coefficients are usually functions of the strains,
a direct application of the type described in section 4.3 should await
the development of an extension of the method to higher order elements in
which strain compatibility is maintained.

The procedure of section 4.3 could be applied to the Present model
by relating the constitutive coefficients to the average strains at the
nodal points. However this gives rise to a situation where the constitutive
parameters are pointwise inconsistent with the element strains. Neverthe-

less the approximation would probably give a reasonable representation of

overall behavior. However the computational effort involved in such a

solution is large since the stiffness of each element for each iterate

E‘ ;

must be determined by numerical integration through the volume,
Because of the lack of pointwise strain convergence, the lack of

knowledge of real material behavior and the magnitude of numerical compu-

tations involved, the method of section 4.3 does not appear to be Jjustified
for the displacement model developed in this work. An approximate method
is therefore developed in section 4.k. This method assumes that the
material properties for the entire element may be related to the strains

at the centroid of the element. The technique results in a great reductioh

of computational effort in determining element stiffness but, in order to

represent a reasonable approximation of the plate behavior, requires a fine

mesh in areas of nonlinear behavior.

4 %

4.2 Stiffness Formulation for Variable Material Properties

4.2.1. The Element Stiffness

If, in the derivation of the expression for element stiffness, it is
not assumed that the constitutive coefficients are constant throughout the

element thickness, all terms of equations (2-23) are nonvanishing. From
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section 2.4 we have
R = [ EENE v - [ 5 e Ty
-] 3R v [ 217 IE] % v

(2-23)

Integrating over the element volume yields

/C'; .r/}?f/ = /p/[/(p]/ g *h zg])/t?/ (4-1)
~ /% /Z/%J/ of "/"/Vs]/’”

x, T {FP* ' KF’ B KPB_ {'P”i (4-1)
=} [Ref =
o8 1 e e
k] = [ BJEE] «v,
Ko /éﬁc‘][égy ‘v, Ge)

X
%
——
I}
<\ <\<\\<\

and ZKB/

The matrices [§B] and [EP] have been defined in section 2.4.
Since the virtual displacements are arbitrary, equation (4-1) may be

written as

Ref = K] o e
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where [KJ] is the element stiffness, as defined by equations (4-1) and
(4-2), for any variation of the constitutive matrix throughout the element.

If [8] is a function of the spatial coordinates only, and not of the
sfrains, the evaluation of the stiffness submatrices need only be performed
once in solving a particular problem. For a constant [6] the coupling terms
vanish, as in section 2.4, and no numerical integration is required. If
[a]is a function of z only, as in the case of laminated plates (see, for
example Dong, Pister, Taylor [26]), numerical integration is required in
only one direction. If [E] is a function of all three spatial co-ordinates,
a three dimensional numerical integration is required.

For nonlinear materials the constitutive matrix is usually a function
of the strains or strain-history. In this case a numericai integration is
required for every load increment if a proper tangent stiffness is to be
evaluated. |

L.2.2 Incremental Stiffness, Geometric Stiffness and Stress Determination

An examination of the expression for geometric stiffness indicates
that it ié dependent only on the "initial" stress state and the geometry
of deformation and is therefore independent of the constitutive relation
(see Felippa [1]). Equation (3-13) therefore remains valid for the
geometric stiffness and can be used directly in the solution of problems
involving nonlinear material behavior. The combination of.the geometric
stiffness matrix with the element "tangent stiffness" matrix of section
L.2.1 yields the "incremental” stiffness matrix. |

Stress determination is more complex than for a linear material. If
the stresses are single valued functions of the element strains (nonlinear
elastic or deformation theory of plasticity) the element forces may be

determined for a particular deformed configuration by utilizing secant
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constitutive values in equations (L4-2), and evaluating a "secant stiff-
ness" matrix. If the stress is a function of the strain history (incre-
mental plasticity), the stress must be determined by adding the stress

increments to the previous stress state.

4.3 A General Solution Technique Including Nonlinear Material Effects

We illustrate a general solution technique for nonlinear material
Problems by discussing the case of an elastic-plastic hardening material.
Relationships for this constitutive hypothesis have been put in a form
suitable for finite element application by Khojasteh [24]. Although this
reference deals with a problem for which the principal directions of Stress
and strain remain constant, and for which numerical integration is two
dimensional rather than three dimensional, the basic equations can be
extended without difficulty to the plate Pproblem.

Khojasteh's technique consists of establishing an incremental stress-

strain relationship of the form

AT l | A&,
N [P] AE, (4-k)
AG;JJ A%,

where [P] is determined on the basis of':

(a) a flow rule which maintains normality of the plastic strain increment
to a subsequent yield surface defined by a loading function,

(b) a hardening rule which specifies the loading function in terms of
the previous plastic strains, and

(c) the elastic stress-strain relationship,

Ao Agy )
agg (= [C] (ag (1-5)

AT, AYS|
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In addition, the plastic strains can be determined from the total strains

by a relation of the form

A€ As,
ey (= [A] jag (1-6)
Aﬁ# A 3/3,_ ) »

Various solution procedures can be followed but the procedure outlined
below is based on the concepts of section 2.2 in which a plate configuration

is sought which satisfies the constitutive relationships (4-L4) and (4-6)

and is in equilibrium with the applied load.
*
Assume an equilibrium position Ft is known and the following infor-
mation associated with this position is also known:

. * *  * %
(a) the nodal locations, x

*
2]
02 Yoo Zp0 Oy Oy
(b) for each element,
*
(i) the tangent stiffness, [KTt]
(ii) the i tal stiff [K*]-[*]+[K*J
ii) the incremen stiffness, K, J = KTt ot
*
(iii) the local element deformations, {Ut}'
(c) point values of the following quantities, at a sequence of points
through the thickness at each node in each element,
(i) the effective strain Ei*

—%
(ii) the effective stress Ch

(iii) the stress vector {G:}

(iv) the matrix of equation (4-6), [A*].

iﬁ The procedure of Table 4.1 may then be regarded as an algorithm for

. determining the next equilibrium position F:+l and the quantities associated
with it. The algorithm is essentially that of section 2.2, generalized

for this material.
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TABLE L4.1. General Procedure for Solving

Elastic-Plastic Hardening Problem

C.

*
Assumed Known for Equilibrium Position Ft:

* ¥* * ¥* #

(a) The nodal locations Xps Vs Zys 4o eyt
*

* #* * *
(b) The element quantities Kpgs Kpp = Ky + Koy U,
(¢) At a sequence of points through the thickness, at each node each
element, the quantitives Ei*, E:, {c:], [A*]t
(See section 4.3 for definitions of these quantities.)

Apply a load increment, ARt

1. Assume an approximate configuration FS.
2. Compute element deformations, Us'

#*
3. Compute increments in element deformations from position Ft

AUS = US - Ut

% ;
L, Compute unbalanced loads, R = OR, - KTt(AUs)
5. Assemble stiffness for current geometry

*
K = x(Ka) .
s t
s

6. Solve for increments in nodal displacements, Ars, and

compute new nodal locations T = + 4ar .,
s+l s s

7. Repeat steps 1 to 6 until an equilibrium position, is determined.

%*
The new equilibrium position Ft+l has been determined but it is neces-

sary to determine the quantities in A, and the stresses, before the

next load increment. The procedures is as follows.

1. Usi dal locati * : s O o
. sing no ocations xt+l’ yt+l’ Zt+l’ xt+1’ Cyt+l

compute element deformations Ut+l'
2. For each point through the thickness and at each node in each

element compute:
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TABLE 4.1, Continued

(2) (o5]) = (8], ae)

(b) (o0,) = [Cl{ae - 2€")

(c) {of,,) = (a}} + (c0,)

(@) Ty =5, + 05, T =T 4L

(e) Using the quantities above determine [P*]t+l of equa-
i - *
tion (4-4), and [4 ]t+l'
Integrate equations (4-2), numerically, using the constitutive

- » *
matrix [P*]t+l to determine [KT]t+l for each element.

* * .
and add to [KT] to determine [K ]

*
Determine [KG] bl N

t+1

for each element.

Apply the loading increment AR + and return to B.l.

t+l
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L.k An Approximate Method of Including Nonlinear Material Effect

In view of the numerical complexity of the analysis described in
section 4.3 and the discussion of section 4.1, the general approach was
not considered justified for the present model. The following is an
approximate analysis which assumes material properties may be defined for
the entire element in terms of the strains at the centroid of the area of
the element. The method is formulated for a particular nonlinear elastic
material hypothesis which is described in section 4.kt.a.

L.h.a A Nonlinear Elastic Constitutive Relationship

While many references deal with a general formulation for nonlinear
elastic materials, very few state a specific relationship. We adopt here
a form suggested by Wilson [27].

Since the initiation of yielding of metals has been shown to be
essentially independent of the dilitation, the yield surface for plasti-
city theory is generally related to the strain invariant,

Z R, 2
_‘Te = (E/ f‘sz} 7'(‘5:2 “5.-3) "'(‘93 -£,) (4-7)

— i % 2 . 2 2 22
= (€ - £4) +(§_;7—£J,) +(é}-£)_;) +_2§ (33:7 .r§}+iz},

For an elastic-plastic hardening material, an effective plastic strain,
EP, is defined as
- P ‘ N
E = Vz Vg (4-8)
- &
3
which is arrived at by equating the invariant ni for a general strain con-

dition with that for a uniaxial tension test. A similar definition holds

for effective stress, with the factor‘ég replaced by;%% .

SRR
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It seems reasonable to use the same approach for nonlinear elasticity
and hypothesize that the modulus of elasticity relates effective stress
to effective strain. Proceeding in the same way as in the preceding

paragraph we define the effective strain for elastic materials as

g = / 7T . (4-9)
VZ (/+4) €
The effective stress is
o = | ~\/77;_ (4-10)
vz |

which is identical to that used in plasticity.

We assume the general constitutive relations may then be expressed as

(o} %g [C] /€/

and ' (4-11)

[aa) = % [C] fag]

where the tangent modulus, E_, and the secand modulus, E,, are obtained

T’ S’
from a uniaxial stress-strain plot and [C] is the constitutive matrix for

the corresponding'problem in linear elasticity.

Specializing equations (4-9) and (4-10) for plane stress, we obtain

B e

E = — /( v+ Y (ESHED) = (1-4rr i) Easy, (h-12)

I

1‘-:_4;_?_ (/"'/z/ d/é;,

and

2 : ' 2 20 2 (L4-13)

Ql
I
\
S
!

N
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+
N
4
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Equation (4-12) may be used to determine € for any strain condition. Eq,

and Es are then determined from the uniaxial tension test and equa-

tions (4-11) may then be utilized upon identifying [C] with the con-
stitutive matrix of linear elasticity for plane stress. Except for the
fact that Poisson's ratio is not 1/2, the above procedure is analagous to

& deformation theory of plasticity.

L.L.b Derivation of Element Stiffness Matrix

The stiffness of the element is obtained by performing the inte-
gration in equations (4-2). However it is assumed that the material
properties are defined by the strains at the centroid of the area of the
element and therefore are only functions of the spatial coordinate z.
Under these circumstances the element stiffness can be determined directly
from the stiffnesses [K,] and [KB] of a linear elastic material. The
procedure, suggested by Wilson,f is as follows.

Equation (2-23), in its original form, states

LB - gl T T LS5, | (2-23)
2 FTRef = € 302 TET ft =30 < v.
Since the integration can be referred to any arbitrary plane we may define
the variable 1, measured from the plane_z = c, as

2 = -
or : 7 > (4-14)

F =7

Expressing the variable z in equation (2-23) in terms of the variable

n yields.

¥ Professor E. L. Wilson, University of California, Berkeley, California.
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J2f T (Ref = | et -< @l [E] iy - e (pf et v
~ [ Rt ICI IR AV s
} /v 7 1Y [E]ftnt —<tHet V - é oy <R [CIRS L V.

Now [Clis a function of 1 only and has the form given in equation (L4-11)

*
where Es(n) or ET(n) is the only variable. If c is defined such that

//, J
b LG
then

/é 7[(7/ o(/;e, = 0
and

/é‘,gy ‘4 A [2:;7 ¢i’
Vs

is therefore a zero matrix. Consequently the last two terms of equation (l4-15)
vanish. In addition the vector {{ao] - ¢{¥#}) represents the strains on
the surface z = ¢ and therefore may be written as [sc}. Equation (L4-15)

therefore becomes

R [ EAETE) Vo [ 7T v

Using equations (2-19) and (2-20)f to express {Zc] and (X},

*

~ When E(n) or E(z) is not subscripted it is to be understood that it
can be either ET or Es depending on the particular application.
¥ It is assumed here that the in-plane interpolation functions apply on
the surface z = ¢ and not on the surface z = O.
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f = [8]

and

(%l =18,]%) .

and integrating, equation (4-16) becomes

W& - | g
} A {@}} B

where

[K.] = /v [ 5»]25_7[5?,7] oLV (4-18)

wa (K] = [ [BICIB] «v (-10)

The matrices [§P] and EEB] can be evaluated by integrating through the
thickness and are then directly related to the matrices [K?] and [KB]
of linear elasticity by the equations
[K.] = J Ecz) oy [Kp]
£ 5
and (k-19)
[ K] = 22 [ 77y <7 [kéj )

£ 47
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The stiffness matrix in equation (L4-17) has become uncoupled because
the reference plane z = ¢ is the '"neutral plane" or "center of stiffness"
for the particular variation of E(z). On this surface, in-plane displace-
ments produce no bending and bending prodﬁces no in-plane displacements.

In order to utilize this stiffness mgtrix it is now necessary to
relate the vector of displacemenfs {rPc} on the right hand side of equa-
tion (4-17) to the nodal displacements [rP} on the middle surface. This

relationship is

//;c/ - /’7:1/ - c /f/'%t}f[/ = //”p/ - cf8f (4-20)

in which the vector {6} is composed of nodal rotations contained in the

vector {rB}; Substituting (4-20) into (4-17) yields

K, - Koo (17!

-c K K

Z
-
— 8P ._B*C-/-(ee “8

(=t |Ref = (2

where [gP] and [§B] have been defined in equations (L4-19), and [KP], [EEP]’
LEQQJ are all identical to [5?] but with rows or columns of zeros inserted,
and with the appropriate sign changes from equation (h-zo), so that the
elements of {0} are identified with the corresponding elements of {rB].

The matrix in equation (4-21) can now be identified with the matrix
of equation (4-11) or (4-3) and represents the stiffness matrix of the

element for the assumptions made in this section.
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4.5 Solution Procedure

The solution procedure used for structures with nonlinear elastic
properties is identical with that used for structures with linear elastic
properties, described in section 2.2, with the exception that the secant
stiffness is used to compute the element resisting forces while the tangent
stiffness is used to evaluate the assembled stiffness matrices.

Since the assembled stiffness matrix need only be approximate, tangent
stiffnesses are evaluated on the basis of the previous equilibrium position.
However the unbalanced forces should be evaluated as accurately as possible
since they are the basis of the convergence criterion. The element secant
stiffnesses are therefore modified every iterate. The solution scheme is

illustrated schematically in Fig. L.1.

4.6 Application

The approximate formulation of section L.4 was applied, using the
procedure outlined in section 2.5 and the bilinear elastic‘material
properties illustrated in Fig. 4.2, to some simple problems for which
curvature occurs in only one direction. A list of plates on which the
results are presented is given in Table 4.1. We shall refer to the material
response for strains exceeding an effective strain of 0.00135 as "soft,"
as illustrated in Fig. 4.2. Point A will be referred to as the "softening
point."

4.6.1 Moment Curvature

The moment curvature diagram for a plate 5 inch thick is shown in
Plate 4.1 to a curvature of 16 times the softening curvature. Strains in

the y direction were prevented. By combining in-plane and out-of-plane

forces, numerical interaction curves could be determined (see section 4.1.6).

TUEFETE T
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EFFECTIVE STRESS

EFFECTIVE STRAIN

FIG.4.2 ASSUMED MATERIAL PROPERTIES
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TABLE L4.1. LIST OF PLATES FOR CHAPTER 4

PLATE
SUBJECT NO. TITLE -

Moment curvature 4-1 | Moment curvature for 3" plate

k-2 Force-deflegtion for cylindrical
Cylindrical bending of bendlng of 5 inch plate strip
an infinite strip of 3" 4-3 | Stresses and profiles f?r
plate with 14" span cyllndrldgl bending of 5 inch

plate strip

-4 | Force-deflection for cylindrical
Cylindrical bending of bending of 0.1 inch plate strip
an infinite strip of 4-5 | Stresses and profiles for

0.1" plate with 14" span

cylindrical bending of 0.1 inch
plate strip
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4.6.2 Cylindrical Bending of % inch Plate

Force-deflection relations for a 14" wide infinite strip of plate,
_% inch thick, are plotted in Plate 4.2. The loading corresponds to a
line load along the center of the plate strip. The center moment in-
creases linearily for the first load incfements and then drops off at
higher loads when the membrane effect becomes dominant. The softening of
the material produces only a slight irregularity in the load deflection
curve,

Distribution of stresses over the depth of the plate and regions of
softened material are shown in Plate 4.3. The profiles indicate the
concentration of curvature in the center of the span at high loads.

4.6.3 Cylindrical Bending of 0.1 inch Plate

The same problem as discussed in section 4.6.2 was repeated with a
plate thickness of 0.1 inch. In this case the entire plate except for
the small shaded area at the top, shown in Plate 4.5, had softened at a
deflection of 0.5 inch., For a deflection of 0.3 inch only the shaded
area at the bottom of the plate had softened. The membrane efféct here
is completely dominant and tﬁe profile for load increment 7 indicates that
the plate 1s acting essentially as a mechanism with moment resistance
having only a minor effect. Since the moments are relatively small and
complete convergence was not achieved for the two highest load conditions
the last two points on the moment curve in the force-deflection plots on

Plate 4.4 are sensitive and only their relative magnitude is significant.

4.7 Discussion of Analysis for Nonlinear Materials .

The analysis of problems involving nonlinear material properties by

the method presented in the previous sections is time consuming in spite
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of simplifying assumptions. This is not primarily due to the increase in
number of numerical computations but is a result of slower convergence of
the unbalanced forces which necessitates a greater number of iterates.
»For linear materials the unbalanced forces can continue to be reduced to
arbitrarily small quantities. However for nonlinear material there seems

to be a point beyond which it is difficult to achieve further reduction.
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5. PROGRAMMING

The computer programs utilized in this investigation were limited in

capacity to maintain an in-core solution. Computations were carried out

on the CDC 6400 machine at the University of California Computing Center
in Berkeley. Throughout the investigation effort was concentrated on de-
veloping an operating program which could produce solutions to the problems

under consideration. However no effort was devoted to optimizing numerical

computations and the program cannot therefore be considered as a "pro-
duction program." For this reason a listing is not given and only an

outline of the arrangement of subprograms and their functions is included.

5.1 Program Outline

An outline of the program for linear elastic materials is shown in
Fig. 5.1. The program for nonlinear material properties is identical
except that:

(a) The element stiffnesses for a linear elastic material are computed

prior to the first load increment and stored on tape.

(b) The element secant stiffness are computed in ASSEMBLE by evaluating
the multiplication factors in equations (4-19) and using the taped
stiffness matrices. These are used for computing the element forces.

(c) The element tangent stiffnesses are computed in ASSEMBLE in the same
way as the secant stiffnesses but the multiplication factors in equa-

& tions (4-19) are determined only for each equilibrium position,
during the computation of stresses. The element tangent stiffnesses

3 are used in assembling the structure stiffness.




Fig. 5.1 Qutline of Program for Linear Elastic Material

1h2

Read Data ]
I | No further
I load incre-| STOP
Increment ILoad ments
|
4
Assemble (See below)
Compute unbalanced
loads & perform Converged
convergence check

Modify equations for
displacement boundary
conditions

Solve equations for
displacement increments

Increment nodal

locations

Adjust load factor

Outline of Assemble

Compute stresses

Select first element

—

Select next element

: 1
| Compute displaced local co-ordinates |

[ Compute element deformations

.

| Compute in-plane stiffness

.

L Compute bending stiffness

Compute element forces

Transform element forces and
stiffness to global co-ordinate

Assemble by direct stiffness
procedure

1

Return when all elements processed
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5.2 Computational effort

The time requirements for the CDC 6400 solutions may be estimated

approximately on the following basis:

Approximate
Solution Procedure Time per element
per iterate in seconds

Without Geometric Stiffness 1/5 - 1/4

With Geometric Stiffness 3/10 - 3/8

Some typical times for sqlutions carried out in this investigation are:

Problem Type Total iterates CP time in minutes

Simply supported square
plate large deflection 25 : k.o
solution (Plate 2-4)

Simply supported square
plate post-buckling an 14.3
solution (Plate 3-2)

Nonlinear cylindrical
bending (Plates 4-4 and 4-5) 99 9.2

The total solution time depends, of course, on the number of elements,
the number of load conditions, and the convergence criterion. In general

the convergence criterion was to make the sum of the absolute values of

all unbalanced forces less than 0.1 times the number of nodal points. The

program for linear materials was limited to 40 nodal points and 60 elements
while the program'for nonlinear materials was limited to 32 nodal points

and 60 elements.
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6. SUMMARY AND CONCLUSIONS

A general approach to large deflection problems has been presented
and a finite element analysis of the large deflection plate problem has
been developed. It has been demonstrated that this analysis is capable
of solving a variety of problems for which the in-plane and out-of-plane
behavior is coupled and that the results are sufficiently accurate for
engineering purposes.

A geometric stiffness matrix has been formulated, and derived in
detail for this particular model, which facilitates the study of post
buckling behévior. It has been demonstrated that the analysis is capable
of predicting post-buckling behavior of plates for a variety of boundary
conditions.

An approximate method of incorporating variable material properties
has been included. This technique has only been formulated for nonlinear
elastic material and exhibits poorer convergence characteristics than for
linear elastic materials.

This work has demonstrated the feasibility of solving these types of
problems and developed a technique for their analysis. However further
developments are regquired iﬁ many directions, some of which may be
itemized as follows: |
(2) Optimization of numerical computations.

(b) Refinement of the displacement model or development of equilibrium
models.

(c) Improvement of the convergence characteristics for nonlinear material
properties and development of the analysis to handle more general

types of material behavior.
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APPENDIX A

STRESS TENSORS FOR LAGRANGIAN DESCRIPTION OF

LARGE DEFLECTION PROBLEMS

A.1 Introduction

Three different stress tensors are used in deriving large deflection
equations in the Lagrangian description. These are nicely dealt with by
Fung [l4] and details may be found in that reference. However it is
adventageous to summarize the pertinent relationships here since many
engineers using plate theory have not been exposed to these concepts and
also because a more complete physical interpretation with respect to the
piate problem can be attempted. Physical interpretations which follow are

illustrated in two dimensions in Figs. Al and A3.

A.2 The Lagrangian Stress Tensor and the Equilibrium Eguations

Consider an element from a plate before and after deformation as shown
in Fig. Al. Consider a set of rectangular cartesian axes such that X5
specify the position of a point before deformation and Xi specify the
position of a point after deformation. The stress tensor defined per unit
of area in the deformed body ﬁith respect to this set of axes is called the
Eulerian stress tensor. We denote it by Gij' The requirements of equi-

librium for an infinitesimal element are

D_L)‘j"/ + /)/-L. = 0
3X.
and - —_——
G::/' - ‘/J,'_ ”
If we now consider a general body such as shown in Fig. A2, the equi-

librium requirement may be written for the deformed configuration as




3T G BB

, i1

1k9

/v/::/dv + /SG—J'; ,\/,.ds =0, (A-l)‘

However the shape of the deformed body is unknown prior to obtaining a
solution. Assuming the body force per unit of mass does not change

during deformation we can say

/V F:./o(l/:{éﬁ;/@pél/‘; ' (A-2).

where the subscript O indicates initial configuration, and Fi’ p, and dv
are the body force per unit of mass, the density and the element of volume,
respectively.

The resulting surface traction on an area dS is represented by a

force vector dTi,

A7, =G v A4S (a-3)
VAN

where Vj is the normal to the surface element dS. We now define the

Lagrangian stress tensor, Tij’ and the surface traction, dTOi(L), such

that (see Fig. Al)

2
o R AS=d T = a7 e T. 4, 45, (a-1)
where dSO and v, are the area and normal in the initial configuration
associated with the same material points which comprise dS in the final
configuration. By means of this definition the forces acting on a surface

of the deformed body can be evaluated in terms of an integral over the

corresponding area in the original configuration. Thus
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FIG. Al- LAGRANGIAN AND FIG. A3-KIRCHOFF STRESS
EULERIAN STRESS TENSOR, Sij
TENSORS, Tijj AND ojj

INITIAL
CONFIGURATION

FINAL CONFIGURATION
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é “7 = [ wrf ()
S

o

By substituting the definition of dTOi(L) into equation (A-5) and using

equation (A-2); the equilibrium equation (A-1) becomes

//C.-/o(l/ -/—/ T_‘.;).dSG:O. (A-6)
v, ¢°/° v s e ¥4 |

Applying Gauss's theorem

o

and equation (A-6) becomes

4 /F:O ; +.‘?7—f‘3) L v = 0.

Since this equation must be satisfied for an arbitrary volume element, the

integrand must vanish everywhere and therefore

o 7\_/"'» 7 /:" 2 = [ (A-7)
'r)xd..- co /e

becomes the equation expressing the equilibrium requirement of the de~

formed configuration in terms of quantities referred to the original

configuration.

Thus the Lagrangian stress tensor is the stress tensor which appears
in the equilibrium equations when these equations are referred to the
original configuration. It should be noted that the Lagrangian stress

tensor is unsymmetric (see section Al.l4t) but since equation (A-7) expresses
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the equilibrium conditions in the deformed configuration in terms of a
stress tensor defined on the original configuration this is not an in-

consistent property.

A.3 The Kirchoff Stress Tensor and the Constitutive Relations

We start by recalling the definition of Green's strain tensor. The
pPhysical interpretation of this quantity is most easily understood if
developed by means of vector concepts. Considering a line element of
length dso originally orientated in the direction of the x axis, the measure
of change in length associated with component Exx is obtained by taking
the vector dot product before and after deformation and evaluating |

L sS _ (s # S(ts.)) —usl _

28> 2 As? A s, Z( g,

2
:£<é1§s),uai 5z{$ﬁ%5;£;7i°
d(as )

dsO

engineering strain is small with respect to one, Exx is an accurate measure

The quantity is the engineering strain and thus, providing the
of this strain. This interpretation applies to a line element in any
orientation. Note that the line element may have a final orientation in
a radically differént direction, but the measure remains valid. A similar
interpretation shows that the off-diagonal terms of Green's strain tensor
are an accurate representation of engineering shear strain provided the
engineering strains remain small. This is true regaraless of the magni-
tudes of the displacement gradients.

Consider now a line element ds as shown in Fig. A3. Logically, the
final length of this line should be related to the compénent of stress
oriented in the direction of the line element in its final position. If

the force vector on the element surface shown in Fig. A3 is dIi, and a
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force vector referred to the original position is desired which produces
stress components having the same relative magnitudes with respect to the
element, then the force vector must be rotated through the same angle as
the line element when referring to the original configuration. This gives
rise to the Kirchoff stress tensor, Sij’ which is defined such that it
produces a traction dTOi(K) having the same orientation with respect to

the element. The definition is

(k) .
0/7; = 0‘5 Jx;, = S. Y LS .

¢ Je 7o [=4
IX o

The Kirchoff stress tensor therefore represents the state of stress in the
final configuration when referred to the original dimensions and orientation
of the element. Since the strains are specified in terms of this original
configuration it‘is natural to relate the strains to the Kirchoff stress
tensor. The constitutive equation for an isotropic linear elastic material
therefore becomes

S o= AE 5’_.—/'-Z/¢¢f:;/v (A-8)

(¥4 Xy %4

A.4 Relations Between Stress Tensors

It can be shown [4] that the three stress tensors are related as

follows

Too= fo 220 o Sp= 22 92/ o,

9K ~ooX, 9Xg
J
7 —— eX Je "—é—"‘“ S X

I %o X

Tre =L 2Xe T T.= L 2XT X G,
/o: a/'tq, 7 /% ")xas a)?(/ﬂ .
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The symmetry of Sji can be seen from its relationship to Gﬁa which is a

symmetric tensor.

A.5 TFinal Remarks

In formulating equations it is desirable to use only one of the stress
tensors. The most convenient is the Kirchoff stress tensor. The consti-
tutive equations and the equilibrium equations, suitable for large

deflection problems, therefore become

.= - ~ . -8
and
P l S, - 2, l + .= A-
___ ijé ( o T 97 4; ) /f Fo: 0' ( 9)

Since we are concerned here with a problem in which the engineering
strains are small, the Kirchoff stress tensor may be interpreted as repre-
senting the Eulerian stresses in the final configuration if properly

orientated with respect to the element (see Fig. A3).
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APPENDIX B
VIRTUAL WORK AND STRAIN ENERGY RELATIONSHIPS

B.l Derivation of Incremental Virtual Work gguationf

We refer to Fig. Bl. Consider a typical structure in configuration
Fo, specified by displacements {ro], which is an equilibrium with loads
{RO]. We consider this configuration as the "initial" configuration for
a load increment. The application of a load increment {AR} leads to a new
equilibrium configuration, I = FO + A', specified by the displaceﬁents
[ro} + {Ar}, which is in equilibrium with the loads {Ro] + {O/R}. We
seek a virtual work equation which relates the increments in loads {&R}
to the increments in displacement {Ar}. The initial stress Gijo’ the
strain increment AEij, and the stress increment Asij are all referred
to the "initial" configuration, Lo

| The "initial" stress tractions arising from the loads (R} are

assumed to remain of constant magnitude and maintain the same orientation

with respect to the infinitesimal element axes for subsequent incremental

deformations. The initial stress tensor is therefore conjugate* to the
strain increments AEij in the sense that the product Gij(AEij) is work.
Similarly Asij ié conjugate to AEij. These expressions for work are only
valid for small increments of engineering strain.

The virtual work equation for the position I' therefore becomes

i The incremental stiffness is developed in a more elegant
way by Felippa [1], page 119, and is also developed by Biot [15],
page 80.

*
See Biot [15], page 61.
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/v;> 7% -/-AS,,/J/Af ) ot i
= [/

S

o=

(B-1)

cz7' +¢7‘ / a’@a)+/l/f/f; Jaaj,jd%
A

where the subscript O refers to the "initial” configuration (see Appendix A).

In equation (B-1), the surface vector is defined by the relation

4,
v ] A %

-~ ~ -~ -~ . = - ~(L/

LT; = GpdS = (G, AT )pdS = AT, v AT, = dT,.
l.e.,
o
= o= . -
e T T, ljod% Ad7l, = 7. Y ., ’f LS

Now, the structure is also in equilibrium in the "initial" configuration.

Therefore, the virtual work equation for position FO states

“yo

© <

45’« J(AZ;,)oclc{z { AT S(An;) (8-2)

+//ao = Slaw) LV,

Evaluating AE, .,
iJ

AL, = ] i), + @F), - (4, (A-@Mf/ (-3)

Taking the variation of Aﬁij,

SGE,) = +f (sati;), .+ (say),, (5-4)

+ ($dty),, (A./ZZA)‘}J, + (Au ) (J‘”‘,e)/

Therefore equation (B-l) becomes
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b (Fae 28304 { (o), + (a2,

* (JA-@)", /Afz?,é)u, * (A c (Sau j /Cg (55
B-5

//aﬁ' +Ac{7— }/(a’zmz) +//g/r (JA%,)dV .

: v
Equation (B-2) becomes, noting that Au., bS.. and AdT.g(L) =0,

[ G ) Gai),; + Gaqiy),, f o,

y (B-6)
:/sr LT ($AzZ;) +/ /':;/g ($42;) AV,

[«

Subtracting equation (B-6) from equation (B-5) yields

/)4; Yo 5[ (A%), Aty),, * @7, ) (844, FV,

,1./% 415 . ,,// (S - iy Eu;), . + (s'A.iz;} : (4‘72@), (B-7)

(5Mz/ .

Yy

+ (A/Zl;)ﬂ‘;» /J’A/z?;é))j/ AV / Aaﬁ'

This can be written as
fi % . ;/(M’Z) (ad,) (4, +/45 S(4E.) dt{,(B_S)
= / Acﬁ'“ ($442;)

o

If we now adopt the vector notation for Easpecified in equation (2-3)

and write

fAuf = [D ]/Ar/ and fA'%£~/=[DA,J/Ar/ ,
where [DA] is the functional relationship specifying the infinitesimal

displacement field in terms 6f infinitesimal nodal displacements, the

first term of equation (B-8) can be written as
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M. %, 7 ‘[/MZA/T/MZ;/] oV,
=y % # ¢ [ 5, T8, Jporf] v

o~ T . o 7o
%,£§}°*§% [ﬁ£4r}7p[lpzﬂié]lj[2&{;] * [?24{/] L 47;]

. - T__ - - T .
= /JA/’/T:?L / % 5 , 5;0 [[DA,J [DA,J]* [‘3,] [DAJ-{?LdK / Ar f ’
v,

The summation has been written in full in the last expression so the

0

[Arf LV,

1=

‘nature of the term can be seen. The quantity inside the square brackets
is called the "geometric stiffness" or "initial stress stiffness" matrix
and is designated as [KG].

The second term on the left hand side of eéuation (B-8) represents
the virtual work done by the increments in stress arising from deformation
and can be identified with the conventional stiffness matrix. Since it
represents the stiffness in the displaced configuration we designate it

as [KD], and this term becomes

T~ . ,
[$arf [K,] ar}.
The term on the right hand side represents the virtual work done by

the increments in surface forces and can be written as

(S Ar} T{A R} .

Equation (B-8) therefore becomes

farf [k + Ko farf = [sar}' (AR} . (9
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Since all virtual displacements are arbitrary, this requires that
. : ) - v : (B-10)
[Ke + KoJ{ar} ={AR]

which is the relation between incremental displacements and incremental
forces required if the structure is to pass from one equilibrium configu-

ration to another.

B.2 Some Notes on Uniqueness

In solid mechanics there are two general approaches to uniqueness
proofs.
(a) Direct approach.* Given the governing differential equation and the
boundary conditions and (for dynamics) initial conditions of the

problem, assume two solutions u, and Uys Uy #u Then show that the

1 2°
function Au = u, - u, is also a solution and is identically zero.

1 2
Such proofs depend upon the linear properties of the differential equa~
tion and the positive definiteness of the strain energy function.

(b) Variational approach. In the variational approach it is first neces-
sary to show the equivalence of the differential equation formulation
with the conditions for a stationary value of an integral, say I. In
other words it is necessary to show that a stationary value of I
implies the differential equation and boundary conditions are satis-
fied; and satisfaction of the differential equation and boundary con-
ditions implies a stationary value of thé integral. The uniqueness
of the solution can then be studied on the basis of the properties of

the integral. Since this approach is not confined to linear equations

we use it as a basis for discussion.

See, for example, Fung [4], p. 160, or Sokolnikoff [10], p. 86.
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Although there are many recent developments in variational theorems,
the two traditional variational approaches that can be shown to yield the
equations of elasticity are the principle of stationary potential energy
and the principle of stationary complimentary energy.

For a linear elastic material and infinitesimal deformations the
potential energy is a quadratic form. Under these conditions the principle
of stationary potential becomes the principle of minimum potential'energy1
and a unique solution is assured. »If nonlinear elastic material is con-
sidered the potential energy is no longer a quadratic form and therefore
it cannot be shown that there is an absolute minimum value of the integral,
I. It can however be shown that there is a "relative minimum in the
neighborhood of a stable natural (i.e., stress and strain free) state"*
where the strain energy is a positive definite function. The proof is
restricted to apply to a natural state since the effect of initial stress

is not included in the formulation and is restricted to a neighborhood of

this state since infinitesimal strain-displacement relationships are utilized.*

The inclusion of any of the effects, (a) nonlinear material properties
(b) large displacement strain-displacement relationships or (c) initial
stress states, invalidates the traditional uniqueness pfoof either by
destroying the quadratic form of the strain-energy density or by adding
additional terms to give an "effective" strain-energy density term which
may not be positive definite. However, the fact that uniqueness cannot be

proven in the mathematical problem does not necessarily mean that the

¥ Sokolnikoff, [10], p. 385.
* Fung, [4], p. 287.

* Sokolnikoff, [10], p. 86.
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physical problem does not have a solution which for practical purposes
can be considered unique. Some remarks on the solutions to the problems
contained in this report can be made.

Consider the case of the "elastica" problem for which the finite
element solution is given in section 2.12. The thebretical load deflec-
tion plot for this problem is illustrated schematically in Fig. B2. From
a mathematical standpoint this problem has a multitude of solutions.
However, when solved numerically, using an incremental approach, the
solution A, B, C will always be obtained. This is the critical solution
for the physical problem. When the solution reaches the bifurcation
point, B, it will follow the stable branch because there is always suffi-
cient disturbance in the iterative technique so that it will depart from
the unstable branch. From a practical point of view, it is immaterial which
stable branch it follows although this has been predetermined in the solu-
tions of section 2.11 and 3.4 by introducing a small lateral load.

In the large deflection plate problem that is not subjected to in-plane
compressive forces, the membrane force stabilizes the structure and again,
although it cannot be shown mathematically, there can be no question of the
uniqueness of the solution of the physical problem. For plates with large
in-plate compressive forces the same type of argument can be advanced for
physical uniqueness as was done for the column above. The results of
section 2.11 show that the incremental technique picks out the critical
buckling configuration when this consists of two half waves rather than
one,

For nonlinear elastic materials the uniqueness proof fails because the
strain energy density is no longer a quadratic form and this permits the

existence of other relative minima. However, here again, the incremental
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solution technique selects the neighboring stable equilibrium position and
therefore the one which is physically significant.

In conclusion it may be Said that while uniqueness of the mathematical
problem does.not exist, the incremental solution technique selects a
neighboring stable equilibrium positioﬁ which, for practical purposes,
may be considered to be the unique solution of the physical problem which

the model is simulating.
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APPENDIX C

EVALUATION OF ELEMENT MATRICES

C.1l Co-ordinate Systems and Interpolation Functionsf

In deriving the stiffness properties of triangular elements it is
useful to introduce the concept of triangular co-ordinates. These are the
"natural co-ordinates" of a triangular shape in the sense that the co-
ordinates of a point are independent of the size, orientation or subsequent
deformation of the element and that along each side of the triangle one co-
ordinate is always zero. They have the advantages of simplifying inte-
gration and simplifying the direct construction of interpolation functions.
Direct construction of interpolation functions is advantageous because
generalized co-ordinates associated with the interpolation functions can
be immediately identified with physical displacement quantities at nodal
points.

Referring to Fig. Cl, the corners of the triangle are numbered in
cyclic order in a counterclockwise manner. A side is identified with the
number of the corner opposite to it and distance measured normal to this
side is also identified by the same number.

We define the triangular co-ordinates of a point (see Fig. Clb) as

gz _ ;/n;' = A(, I} ¢ = 7, z/.? P
h;

where Ai are subtriangles as indicated in Fig. Cla and A is the area of
the total triangle. It follows from definition that for any particular

point

t )
The reader is referred to Felippa [1, 3] for details. Basic geometric
relationships are derived in Appendix D.k4,
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and this relation expresses the linear dependence of one co-ordinate on

the other two.

If we now define the projections of the sides zi on the x and y co-

ordinate axes as ai and bi’ respectively, as indicated in Fig. Clc, the

following relationships can be established.

be = Fre 5
B —-,zAz3 b a, /
vt = 1 | ZA b a z
2 ZA 31 2 7
gg 2 /4 12 bg C(.3 _y
o = b,
20X 2-
2% = a4
W ZA
b, _ oy - D56 — _ 38 _ 4
I, zA S ZA 22,
and for, f = f(cl, Gps c3),
f = L | Lo o 4 (A-h )3 — A B
Iy 2A 2y 28 - EFA

and

(no sum)

(c-2)

{(c-3)

(c-L4)

(c-5)
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2f = b If

C-
_Eﬁi = _fif of 3
oy ZA Y,

where i, j, k are any cyclic combination of 1, 2, 3, Aij is the area of
the triangle formed by connecting the origin and the points i and Js and
di is defined in Fig. Clec.

The displacement functions used in displacement models for most
finite element work consist of linear combinations of polynomials. A
linear combination of polynomials in x and y, will not be independent of the
orientation of element (i.e., invariant) unless it contains all product
terms that are homogeneous to the particular order under consideration.
in addition, lower order terms usually must be included if the completeness
requirement is to be satisfied (i.e., rigid body modes and uniform strain
states). For this reason a systematic method of obtaining displacement
functions should be based on linear combinations of fhe terms in a complete
polynomial (here we use the word "complete" in its mathematical sense).
There are LEil%§Ei§l terms in such a complete polynomial in a two
dimensional space. Therefore any linear combination of ﬁEI&%;EIEl
independent polynomials of degree less than or equal to n forms the complete
polynomial of order n. Polynomials in triangular co-ordinates have the
property that a linear combination of all terms that are homogeneous of
order n, forms the (mathematically) complete polynomial of order n. To
construct an nth order displacement function it is only necessary there-

fore to select'igi;%ggigl nodal points and use the interpolation functions

&
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SUBTRIANGLE (b) NOTATION FOR SIDE
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(c) PROJECTED SIDE LENGTHS AND dig DISTANCES

FIG. Cl - DEFINITION OF TRIANGULAR GEOMETRY
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FIG. C2 - NODAL DISPLACEMENTS FOR CST
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assoclated with these points as the shape functions associates with the
displacement of these points. These polynomials are automatically linearly
independent and the generalized co-ordinatesvare‘then the physical nodal
displacements. In practice it is often desirable to use two or more
physical displacement quantities (i.e., displacement and slope) associated
with the same node rather than associate each shape function with a
separate node. Interpolation functions of this type are called Hermitian

polynomials [12].

C.2 BEvaluation of the Stiffness Matrix for In-Plane Deformations

The simplest type of displacement field that can be used for in-plane
deformations is a linear displacement field. A complete linear polynomial
has lli;léligl = 3 independent ferms. The nodal system is selected as the
three corner points 1, 2, 3 of the triangle as illustrated in Fig. C2.

The interpolation functions associated with these corners are Cl’ C2’ and

c3,'respectively. Consider now the U displacement field. It is specified

as the linear combination

U,
" T
A =< 5’/ %2 §.g> Uy = “0} [/L(.} . (c-7)
4(3
Similarly the v displacement is specified as
v ~
. [}
v =<5 5, i3> an 0= {;i {Mf (c-8)
A5
v/

We can therefore identify the set of interpolation functions {wu] and
[¢v) of the equations (2-15), section 2-4, with the interpolation vector

{¢)} appearing in equations (C-7) and (C-8).
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Referring to equation (2-19) and the relations (C-3) we evaluate

) = ALl by by>

and

14

|

{’w’“z;yf

Equation (2-19) therefore becomes :

323{{’? :Z!_A<a,, a, az>.

(2‘9}:—!— ’ ’ ’ @, @, &g (c-9)
“ b b, b (]

which identifies the matrix [EI;].
Referring now to the evaluation of matrix [KP] in section 2.5, the
matrix [N] can be evaluated as it appears in equation (2-28). We use

the constitutive relation for plane stress to obtain

_/ g . = —b, bz ég . " " —
N] = £E |, . < e s a,a, a '2,73\ (c-10)
(1=+%) . /4 - v b b b
i .._Z__— —CL, a, LLJ, ), ’) i

Since the matrix product in (C~L0) does not depend on the co-ordinates , the
stress resultants are constant throughout the element and may be determined
from equation (2-28) for any set of nodal displacements {rP}.

The stiffness matrix [KP], appearing in equa.tion (2-30), section 2.5,

is then evaluated as
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(4 . a
b, . a,
[KFJ = / Ll b o a, | [N] AA
42 A ) a, b
= ’ - (c-11)
. @, b,
. Az 53

Since the integrand is composed of constants, integration over the area
simply amounts to multiplying the matrix product in equation (C-11) by

the area of the triangle.

C.3 Evaluation of Stiffness Matrix for Out-of-Plane Deformations

The evaluation of stiffness for out-~of-plane deformations is a
complex task and therefore only an outline is presented.here. The reader
is referred to Felippa [3] for a more detailed development.

The deflected shape of a beam with a linear variation of moment is
a cubic curve. In order to adequately express the deflected shape of an
element subjected to different moments at the corners, & cubic polynomial
therefore appears to be the minimum expansion. However difficulties arise
in maintaining normal slope compatibility with only Liii%éiigl = 10 degrees
of freedom. The evolution of a triangular compatible bending element took
a number of years and the reader is referred to Clough and Tocher [10] and
to Felippa [3] for an account of this period. The simplest solution to
the problem requires that a linear variation of normal slope be main-
tained along the edges. However this cannot be achieved with a single
cubic polynomial. The triangle was therefore divided into three sub-

triangles as shown in Fig. C3a, and a separate expansion was used in each
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subtriangle. The expansion maintained linear variation of normal slope
along the particular edge of the subtriangle which was an outside edge
of the complete triangle. Although continuity of slope can be maintained
along the interior interfaces 1-0, 2-0, and 3-0, there is a discontinuity
in curvature along these lines. We outline a development of this stiff-
ness matrix using the technique of Felippa.

The corners of each subtriangle are mentally numbered_so that
corner 3 corresponds to node O of the complete triangle. In each sub-
triangle a cubic expansion is desired. This requires.lO degrees of freedom
in the subtriangle which in turn requires 10 nodal displacements. The
most convenient nodal displacements are those illustrated in Fig. C3c.
The interpolation functions associated with these nodal displacements,

for subtriangle k, are [3]+

;‘/\J’(;’ Z’,", + 6, R

0ty %, -6,5,) +(bgu-6) 5 1,55

7% (ay 52 = A ?‘}) @y 4-2,) 5 55,
R03-25) + 64,5 L8

o p - #

{%,,}: Y02 (4,5,-4;5) ¢ (b, -6,2,) 8, 5. 8 ?
;;2 (22/;}"‘?3 5)'f<QzJ"¢?;’Q3) §,;é§}
;‘32(3’2;’3)

;fz(éz 7, = &, rz)
{;z<k12 % - e, ;})
L’4@§éﬁ

¥ A technique for determining these interpolation functions is described
in Appendix D.k4.
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(a) COMPLETE TRIANGLE (b) SUBTRIANGLE (1) WITH

"COMPLETE TRIANGLE"
LETTERING

(c) SUBTRIANGLE (1) WITH
"SUBTRIANGLE" NUMBERING
AND SUBTRIANGLE NODAL

L DISPLACEMENTS

9' .

4 FIG. C3

(b) SUBTRIANGLE

(a) COMPLETE TRIANGLE NUMBERING SYSTEM

FIG. C4
NUMBERING SYSTEMS FOR GEOMETRIC STIFFNESS
DERIVATION
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where the nodal vector for the subtriangle is

kT k
irBI } - < Ld/- 5‘)’-/ (.9?/ “ Cx 2 Q:,u “s Grs ?;73 6/»4 >

and the displacement field within the subtriangle is given by
T

o -4t

All co-ordinates and the other triangular parameters in equations (C-12)
are referred to the subtriangle k. The undefined terms may be specified,

with reference to Fig; Clc, as

- K L A, = Sbg
/LLZ = (A & PA &
' : L, 4,

[

Since we desire the variation of normal slope to be linear along the
edge containing nodal point 4, the nodal displacement enh is set equal to

can be expressed in terms of 6 e

1
1 Y )
2(9nl + en2) Since Qn and 6 a1 Gy1s

1 2

0 this yields

x2’ 9y2’

, \ k
7 5-2%) + cuy 5%, %,

55043 % - &, 5) t(bsts -4 -2 h;5;) 555,

55 (as % - @) t(azps ~a, 224 C) 5,4,

£, (3-25) * €3, 55,4,

3504, 4,-4%) #(4, —b, Ay —2hg 55) 5,5, 55

7 (2,0 —ay5) Ha-a3i5+25,C )55, 5,

;,?z (7-2%,) |

;Qf(lé? {,- 5/;;/

\ ;;2(/‘32 5 -=,%,)

v

A

.}

(c-13)
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where S3 and C3 are sin Y3, cos Y3 of the subtriangle, respectively,

(Fig. Cla), and where the nodal vector of the subtriangle now is

k,T , k
/l”sfz(cw Our 8y G Gy 8. o Oy, 6, (C1N)

and the displacement field within the subtriangle is given by
~ _ ] e Tj _ky
”’{%’} (s § -

We now assemble the three subtriangles together in such a way that
the normal slopes along the interfaces 1-0, 2-0, and 3-0 are compatible.
This is done by (a) identifying the corner slopes of the subtriangles
with the corner slopes of the main triangle, and (b) determining and
equating the normal slopes of adjacent subtriangles at the mid-points of
their interfaces. The latter operation leads to the equations

(35); %%Z:’:"

(Bw ) (QLJ 0 (c-15)
(}J c‘f) T, 96«") =0
9/"0 5" am & ’
where the superscript is the subtriangle number and the subscript is the
subtriangle nodal point. These three equations can be expressed in matrix

form after identifying the subtriangle displacements with the nodal point

displacements of the complete triangle. We express the relationship as

[

oy ) 3x3

Q] I = o (c-16)

1A%\
where [rB} is the nodal vector appearing in equation (2-25) section 2.k
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T . . .
and {ro} = (wbexoey0>' This equation can be solved to determine {ro]

in terms of [rB}.

(et = - [0 0] I} (e

We are now in a position to develop the stiffness matrix of the
element in terms of the 12 nodal degrees of freedom associated with
points 1, 2, 3 and O and then reduce it td one for only nine degrees of
freedom by using equations (C-17).

Referring to section 2.6 the relationships which we desire were

specified by the equations
b
7t = Li 31E1R 5
.3 R -
- /1}3[6][38]99/@/= [M]{,;,})

iy

and 2

[Ka] = [[&:]1F] <A (2-34)

(2-33)

where [ﬁﬁ] arises in the equation

pine g

T

[Pl N
f%_f = {%‘744} . s} = [53_””3} K (2-20)
& %;*4}J

Since the interpolation functions {@w] are cubic functions, the second
derivatives of these functions are linear functions. The labor involved
in evaluating the integrals in (2-33) and (2-34) can be considerably re-
duced if werrecognize this fact. We have also seen that the shape functions

are independently specified over each of the three subtriangles. The




176

stiffness matrix can therefore be derived more easily by returning to
the basic work equation in the form of equation (2-24), section 2.4. The
matrix [KB] arises from the last term of this equation and, from equa-

tion (2-23), this relationship can be written as
j & T : i - . 2 ~x, T Ny . | C_18
ot TKel af =, 32} ety v . (c-28)
Also from equation (2-32) of section 2.6 we have the relation

2 -
(f = [F 22 [E1% oty (e-19)

Therefore equation (C-18) can be written in the form
V'V TKdinp = [ (% mp A (c-20)
A

3 - .
= Z //Jfk*f r/mk/ AA. (c-21)
E=y A/z .

To evaluate this summation, consider first a typical subtriangle.
Since the variation of curvature over this subtriangle is linear, the
varigtion of moment will also be linear if [E] is not a function of

position in the element. We can therefore writeT

4 The superscript, k, will be dropped from the {g} vector in all
expressions subsequent to equation (C-22) but should be understood to be
present. All numerical superscripts appearing on & will be exponents.
Superscripts on other quantities will indicate the subtriangle number.
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X

3IXU 3x 9

where {,)"Z k}‘.— =< ;f:z )"ng .Z‘

P{:x }T’t( x:u X:’xé- 9{5*3>

177

(c-22)

and 1, 2, 3, indicate values at the respective nodal points of the sub-

triangle. Expressions for {xy;} and [Xx;{} are similar to (XXJ}:}. Similarly

] E
My

{7 §

{517 .
(A= e ]
3 X T 3x4 {tfj {i:i%}
Then
Jo T e =
s ]
et Pty | i
Ak._ gy ]
6]+ -
= <2 s | - tal
- - 6]

T' ] {/”fo} 2
. LA {mfi?f
] s
{i?
fmsaft (c-23)
f‘"“£7§
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where
2 | /
Q] = A" |1 2
1T
/[ 1 2 .

Rearranging the order of the nodal quantities, we define the vectors

, . T . kT BT
< //ﬂ"f,/ //-’"z/ /”"3/’>
/X3 /X3 /X3
_ k V4 £ g k e i R
- < P exi Py rs W’.’Ey/: Plaz Mgy ‘%;2: 4”:@3 Py 3 -4%/273>‘
A similar definition holds for X .
Equation (C-23) can then be written as
~ T
/{)fk*} {/»oéf AA =
A, _
2I, I, L] ({= (c-24)
i, k)T g kwy” kT ,
Cle™f et et 7742@ I, 2L, I, | {4
Ig .[3 ZI3 {4’2;7 s

We now perform the addition indicated in (C-21). In doing this it is

.

necessary to recognize that the curvature and moments at the center node
will be the same for each subtriangle once conditions (C-15) have been

imposed [3]. Define the nodal vectors for the complete triangle as

h3 —

pef” = <AwT pef et paf b e e >

3
—
H]
N
e
2
S
2,
—
3,
=
o
P
A

TAR |

Equation (C-20) then becomes
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2 I I,
I3 Ady [3
_ 2I, I, I
TRl Y~ K -
{‘){ Hﬂn}dA:{X }-—%‘- 3 Zi3 «[3 M
A ’ 2 I, I (c-25)
3 £z 3
| I-"l 1;’ j;, 1—3- [3 I 3 6-[3_

= /"(*/Tlaj/’»t/- (c-26)

2ixazl

and this equation defines the matrix [El-].

Equation (2-33) can be used at each node to relate moment to

curvature
V4 - £ R
fom>p = A7 [CIx} .
/2 ¢
Therefore, for a constant constitutive relation,

[c]

iy

e
. 3 e -
/{.wa = I%_ ] ) = I_CJ {K} (c-27)
[c] . 21 x 2\
lc]
]
- -

which defines the matrix [C). Using relations (C-3) to differentiate

equation (C-13) and evaluating at the corners of the subtriangle, the
k v kK k . k
curvatures {Xl] ,{3(2} and [)(’3} can be evaluated in terms of {rB].

Identifying the elements of (rg] with the nodal displacements of the main

triangle yields an expression of the form
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- Bola]f

2ixq4 2ix3

Using relation (C-17) this equation becomes

= [Bed - I0IBI} - [E]jn) (o

Zixq
which defines the matrix [B].

Substituting (C-28) into (C-27) gives the nodal moments in terms of

the element displacements {r_}. Combining (C-27) and (C-28) with (c-26),

and identifying the product with equation (c~20), yields

175 [Kal %4 = 15T [B] 1G] [E][B] Jry g

or

[Ks]

il

[B] [GIEI[B] .

(c-29)
The bending stiffness matrix has therefore been determined
C.4 Evaluation of Geometric Stiffness Matrix for Influence of In-Plane
Forces on Bendlng Stiffness
In section 3.3, the geometric stiffness was approximated asf
[, . ] i
- 'z 2z
V{J =/ z = . . 1 dA . (3-13)
A<=t B=i
? ;/w"u(/I /W"}
xp i

Throughout this section the summation convention is suppressed
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The purpose of this section is to evaluate this expression for the
particular finite element model under consideration.

The nonzero terms in equation (3-13) are associated with the nodal
vector {rB] and the virtual work expression associated with these terms

is

2z (c-30)
/ = =
A B=

=z

(i «fg{%"',é’} oA [T}

2 .
2 [ = 2 &N AA . (c-31)
/9:

X =1

6 “%

Recalling that the displacement functions are independently specified over
each subtriangle, the virtual work can be evaluated by considering each

subtriangle independently and then summing. Therefore

2 w — )
f/‘///?/ 2 ) ‘if, . N‘W “e C./Aé ) (c-32)
AT

Now {wk} is specified by the product of the nodal displacements
{rg} and the interpolation functions [@E} of equation (C-13). Since
these interpolation functions are cubic polynomials, the slope can be
expressed as a linear combination of quadratic polynomials. A quadratic
polynomial has i@i&%}gigl = 6 independent terms. The nodal systém in

Fig. Chb is selected as the most convenient for representing this quadratic

variation for a typical subtriangle k. Since the Naﬁ do not vary throughout
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the element they may be treated as constants throughout.
The interpolation functions for this nodal system will be defined

as {mz], where

v k

7,025, -/

5, (2%,-4)
£ (2%, -1) (¢-33)
(P = 472 °%7h
y 457,

4;1';.]

455,

and it is understood that the triangular co-ordinates are those associated
with the subtriangle k. The corresponding nodal vector is defined as
either {wk] or [wy} where these vectors représent the values of the

slope in the x and y directions, respectively, at nodal points 1 through

6. The variation of slope throughoﬁt the subelement is therefore expressed

by the relation

~ fox ~ £
4 A a /V"‘,cf' a{é LA £

= VL : ]
= = N, “;’“}(//S///g’f/zag w/;f/ (c-35)
| Ae

Carrying out the integration and arranging the summation as a matrix

product, equation (C-35) can be written as
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/'”Zk/ T/ﬁs/

= <frf fectops | M l] ma | (et

. ; (c-36)
Myx[t] M, 11| |l
where
- —
6 -1 -1 - A
e T 6 -1 - - -4
[L]= [ /4 j#*) =4, = A, 6 -4 - | (e
A, | / €0 32 16 /¢
SyYmM. 32 /6
n 52

Identifying the nodal points of the subtriangle with those of the
complete triangle (Fig. C.4a) and defining the nodal vectors for the

complete triangle as

T .
= - - ~ g e I
{w;c} =% Y “hy why Gy wh, chy of, @Ry aRp>
- | (c-38)
() = & oo N W ,
{ ..J} N ‘..J/ Cre Lyz “r fi;s o "’i/;v f.‘;;ﬁ t:}’; ‘{70 >

equation (C-30) becomes

115 IR

= (/‘afx "77' /‘CJ*/T> /VM[LE] Na, [LE] (L, )f (c-39)
- DA VN o2 R e | oy

where
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/1L 1 =/ . . - - -4 - -z

'z -~/ - -4 -4 -2

/2 -£ 4L -2

37 - - /6 T /€6 -4

= 37 : / v . -

[Le] 527, ° ¢ ji R B CE™S

EL 16 16
Sy s, - 64 /€
CF

_ &

The virtual work for the triangle has néw been evaluated in terms
of the slopes at the nodal points of Fig. C.ha. Since we wish to express
this in terms of the nodal displacements, as in equation (C-30), it is now
neéessary to express the nodal vectors [wk} and [w&} in terms of [rB].

At nodal points 1, 2, 3 of the complete triangle, the slopes
appearing in the nodal vectors of equation (C-39) can be identified
directly with the nodal rotations. The slopes at point O are retained in
the nodal vector {ro] [see equation (C-16)] and eliminated later. It is
therefore only necessary to evaluate the slopes at nodal points 4 and 5 of
each subtriangle to be able %o define the nodal vector for the complete
triangle. To do this we consider the expression for displacement in a

subtriangle, namely
~ & LR T, -
= (P I (c-k1)

where {mﬁ] and {rg] are defined in equations (C-13) and (C-14). Dif-

ferentiating [¢§] with respect to x and y results in the expression shown
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in Table Cl? Evaluating these expressions at node 4, with co-ordinates
(%, %, 0), and node 5, with co-ordinates (O, %, %), results in the
expressions in Table C2. Using these expressions, the slopes for the
complete triangle can be expressed by identifying the subtriangle nodal
displacements with the nodal displacements of the complete triangle. This

results in expressions of the type

[ont =] W, @D] (rgf (c-k2)
| - {rol |
12X 1

10x9 10X 3

where (rB) and {rO} are defined as in (C-16). Using equation (C-17) to
eliminate {ro} we obtain finally the results

[“nf = LWe] (i

JOx/ 1oxG  Gxi (c-43)

) = [Wy] {rs}

where [Wk] = fﬁxl] - [ﬁ;C][QOJ-l[Ql], and similarly for [Wy].

4

Substituting equations (C-43) into (C-L4O) we obtain
o o Mg md T
% Y . in/ i/ :
(] Rsf =173} BWx] [ ] Nynlle] Mo [L] L] R

where the matrix product is the evaluation of the nonzero terms in equa~
tion (3-13). The geometric stiffness matrix for the influence of in-plane

forces on bending stiffness has therefore been determined.

*
The relations inTables Cl and C2 are for a right handed co-ordinate
system X - y - 2, with the z axis directed vertically upward.
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TABLE Cl

DERIVATIVES OF THE INTERPOLATING FUNCTION {¢ w,)

(a) ZA, >/5/’ f o= b 2Pk 4 b, Hf 4 b, Jf%f/
J oy, oY,

ble6(s-35)- 25 s n 5, ) v b cu g5, 74 b gy,

A/»?f(é;?;,'*é {'/7‘-6 //{;»é/f -zc_'ghd};r/*é /;425_{_
(6 A 4) 5% ~RG A 55t b4 (- 4) 55, 2Gh 50 )

LIcs (b, G)Hapr ) [ 5 —2S; P 55 ) # by 5y +
(yp0,-a,)5 5, -2 5}/5, ' ’:_}/I + _éj {—g.z ;:szff_?/{? ~e, )55, -2 53 h, y',’;“z}
i,/{;{,,{;;} +é,/zg/3—.e,;;/—z i 6,235‘5),]‘ + ﬁj/éé(j;;}/

L B b )55 Rl f Rl [ 25 (6,5, 4,5)
~bs DB 50 —RC A5 55 f + bif B 5T (by-bids )l 8, - 2C,h, 5,5, f

Z’/" @y 85 (e, -asds) 8, 8,- 25, hrb, 5 +b b5 (e, 5 —s5,)+
(az-azd;)e5,-2534, ;‘}/-f.b /(L r (g~ ) 5= 253 b ;;2_/

by[25,(35-25,) 2573

/bt r baf-b,57 r by, (8 8- 85,

_é//“;z ;/ + é,/—a, ;;—3/ +iz3/2;3 (7.5~ a, ZJf

(b) 2 Ay bk = a, 3t pay Sk 4 a, It
2 J g, J 7, JZ,

These expressions may be obtained by replacing the underlined bi in (a)

with a..
i
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| TABLE C2
EVALUATION OF DERIVATIVES AT NODAL POINTS 4 AND 5 OF THE SUBTRIANGLES

(a) Expressions for 24, B{tbhrl]/ax
(a;) Evaluation at node 4, with co-ordinates [1/2, 1/2, 0]

in terms of subtriangle dimensions in terms of complete triq.ngle dimensiogls
3 (b, r4s ) z (4 ru 6)
by (b rtisbz)- :_} Cshs b, /—/E b (b tuty) = L Cohe b,
:;,’ cg (b rHzb5) - 2/_ Sy h; b, 7/5 Lol ru b )~ L 5

L (b, r24,)

% (b, A3 53)
- -é‘(zz'»,ég 4/" L h é’“

~ L byt 2 A5by)-F b, b,

Z
'4_—L ey ( by 7"7353)‘5 by 4, (/'p A bs)- / 5 /’ é’
) | 2
; 0 O )
0 o0

(a,.) Evaluation at node 5, with co-ordinates [0, 1/2, 1/2]
}

in terms of complete triangle dimensions
-’-/"w/(é- -4,

4-5)/(2r/¢}b b}——( b (b;-4,)
AR ) ~a p~LS b (b, h)
TChe-b)r L (66 )(1+3)

in terms of subtriangle dimensions

[’/ {/l{fbd _é/) _;i'— (;f /)i bi ..)6

iz ( b: +~64z)
| Lb,(5b-byd5) - £ Co 0 4, 744 b Ardonf - L (b b))
F(h rha)t 2fasad)-Ls bt 73—6/(@~6L-j/vy-a-)+fé-—é){cg-foa/hﬂf
Z by 2 b,
-1 6,4 g b (b L)
~f (b rh ) 5/ bl vl e ) b f

tn, =% ([vj'_b@j/ﬁ%-(:Jf-.'l‘)a,‘;/_A_lg_. S he (b - &)
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TABLE C2 (Continued)

(b) Expressions for 2A 5[tpw,l]/8y

(bi) Evaluation at node 4, with co-ordinates [1/2, 1/2, 0]

in terms of subtriangle dimensions

. . N .
in terms of complete triangle dimensions

i (2, ru32,)

__ﬁ(ﬂ 7‘/11‘;'4"‘}

a(cz Palda ,j C/')a,_?

(‘Aa

/z Ve /-.

Zg_/(o, ,_ﬁ-/ugﬂ.y}—_ hga,;

-3, . .
Sy ho e,

Lo (A pk, )

2 (a,+A,ay)

< ( Ryt 2, )

53(:«; A, e - Lc,t
-2y T Ay F R0
7 ) z 27

-4 /c Lo )t
./’_’;;.(&,{,ri.m/ S b

- Q3 (a,r 23(43)‘_{_ Sy bz
= z

- [f¢e f'-,'ZL- (‘-j - _L 5o /;,‘- <z
/2 &

o o
17 o
o 4

(bii) Evaluating at node 5, with co-ordinates [0, 1/2, 1/2]

in terms of subtriangle dimensions

in terms of complete triangle dimensions

£ a4

7 (Vrw)la -a.)

.@1(///317J,~A,/ - L ha,

R R

%L. (/A/_,, -y - S, hser, g—é(cj ..a‘}/(zpa‘} e - “,‘/ -/;/ S by (4; )
£ (=724 Flap-a ) ri(rrd)(a;-a,

/7 -~ - / —_ A N +
(49 %"48) P2l bA) L Gl (S f(% ey byt eyt L]
_g'__/ 3 PR, —ct, ) - _~§ by e, /—;—(al -a‘//d/. —(4;«L)a/—~a b (€~
L2, 2 e,

_4‘:(@/ byt ez, b) -/3’/(4 aiyb r by - b))

(<7 ..
e ~gi (e - )

A, =L (o -2,

-(z r-/?‘)[-,‘} -/é c. 4 (q'}"d"'/
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APPENDIX D
GEOMETRIC RELATIONSHIPS

In this appendix the methods of determining the local co-ordinate
system, transforming nodal rotations, and modifying in-plane displacements

are established.

D.1 Establishment of Local Displaced Co-ordinate Systemf

In section 2.7 it was assumed that the orientation of the local
displaced co-ordinate system was known. The operations involved in
establishing this co-ordinate system are elementary so that only an out-
line of the procedure is given here. We refer to Fig. 2.6 of section 2.7.
The élement before and after deformation is shown in this figure. We also
refer to the discussion in section 2.2 for the reasons for following the
procedure below to establish this local co-ordinate system,

The quantities which are known prior to the establishment of the
local system are the nodal displacements and rotations in the global
system. We establish the origin of the local displaced system at point 1°'.
Taking the vector cross product of.IT_:_ET and ET_T_§“ establishes the
"reference plane” (i.e., the X-Y plane) and the direction cosines 8315
a32, and a33 of the Z axis. To establish an orientation of the X axis,

bisect line 2' - 3' to establish point Q' and the vector 1' - Q'.

Establish the direction cosines of X by making

4

Sim /? = Sin /6

The nomenclature of section 2.7 is used throughout sections D.1 and
D.2.
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as shown in Fig. 2.6. The factor sin B is computed from the original
element configuration by locating Q at the midpoint of line 2-3. The
direction cosines of the Y axis are then established by making it normal
to X and Z.

Notice that the above procedure effectively eliminates the average
element rotation about the normal axis. There is no heed therefore to
restrict the displacement gradients ou/dy and Jy/dx providing the engi-
neering strains remain small.

A "reference element” 1' - 2" - 3", is now constructed in the
reference plane, with 2" and 3" having the same co-ordinates with respect
to X,Y as 2 and 3 have with respect to x, y. The local nodal displace-
ments are then computed as outlined in section 2.7 and represent the dis-

V., W, W

placements 2' - 2" and 3' - 3" of Fig. 2.6. (Note that U 10 Wy W,

l:
and W, are all zero.)

3

D.2 Derivation of Transformation of Nodal Rotations

In section 2.7 the transformation of nodal displacements was derived.
The transformation of nodal rotations is accomplished by equations (2-41),
providing a relationship between the first derivatives can be established.
The co-ordinate systems have been defined in section 2.7 and we repeat the

basic relationships here.

X = X"+ U

Y = Y*+V
Z = W (D-1)
2z zxrae = x,+x"+ro
V= o grv T s, oty v (p-2)
y= e

* Y _ % (p-3)
X Y TF
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In addition, equations (2-38) can be written as

X* 4 U = (,&x-+m_},u’)@” + (_<7*; v-)a,, + (w-wrja
Y*+V = (2*1'—44.-:4(—,) @, T (._y*-rﬂf- 7) Gz v (W-w)a, 23 (D-b)

W = (%4 -, @, + (gre-a) Ay, F(wrmur) @

and we assume

U=u(xyrY V= V(XS Y% W=w(ix*r%  (5)

Using relations (D-2), the last of equations (D-l4) may be written

as

W= (s-%-u]a, + /7—_(/// ~w)d,, + (@-wja,, . (D-6)
Differentiating (D-6) yields

oW = 623, * ‘?ﬂ; ) c)§ + { + c9ar) ;;?

oX

(p-7)
oW = (a <94¢ o5 = i, , de) O
<y (3/"“453 )Y*’( *339},&—2«

To evaluate 0&/3X, On/dX, d5/dY and dn/dY we use equations (D-2) and (2-38)
in the form

5 = 2, 2%+

= 2, rw, 2, (X)) + oy, YNV a,, W

Differentiatlng,
05 = «, X" + , 0 Y XY+ U __x"‘)
X oX IX* IX IY* X
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Defining ,
ER 2Y"= !
o X X
2U 2X* 4 24 217 =y,
IX* aX YT X
(p-9)
2V IX* » 2V 2r* = Vie
IX* 29X IY* aX
equation (D-8) can be written as
x * :
9% = Q//Xxfa—,a/ T ra, e +a =77, l{\’E +a3,,_3_VL/
X o
Similarly
. . ¥ .
_a__?_:a,,,)(y-/-d Y‘ +a(/),5faZ/\/),E+a§/§_|(_V
2Y o
3 * s '
g-z = 2 Xx "% T " et e F 2, 3_‘1‘/ (p-10)
_ * # 3
_9‘2;/2 = @z X), TRz 7, 7"@/2({/* * %, Ve T %z ‘—)—;f—v
Sub-

where all terms can be obtained by analogy with definitions (D-9).

stituting equations (D-10) into equations (D-7) and solving for OW/dX and

M/SY yields
g L3 ok ./
(a” Xx 2y, Y ra, Ye * Gy, xs)(("a/ L, di——“
5
Vo #* aco‘
o _\ P2y Xy + Qo Y+ G # @y Yy ) (37 + 2 32397
axX
/ -a, (Ez A, 0w — Q,, * &, c9¢u’
* > ‘ _
@ Xy +25, Vy 7, G +a,, Ve ) (@5 *% C}‘;— (
-f-(c z)("‘f—cz )’*+c& L/ ( Dee J
. 22 ’5"
OW = Yk } 3-?/)
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Equations (D-11) are the relations we seek but it remains to evaluate
OX*/3X, OY*/dX, 3X*/dY, dY*/dY which are required in definitions (D-9).
| To evéluate these facfors we refurn to equations (D-1). Recognizing
that a line X¥ = C is a straight line parallel to the X axis in the
reference element before deformation, and the line X = C is a straight line
parallel to the X axis after deformation (where C is in an arbitrary con-

stant) we differentiate equations (D-1) with respect to X to obtain

dX = 4 = X% 4 QU IX* + QU ar*
DX o X IX™ 29X AT* IX

 ——ne

X 3 X IX* OX Ir* ax

Solving these equations for JX*/JX and OY*/dX yields

of = o0 = 2Y" # oV oX* 4 oV oy~

, / + 2V
2 X (‘/+3U}(’/+Q_L/'_} -2V 9oV
P Y™ IY* 9X*
(p-12)
- - oV
T = 9X*
I X / r2U )/ IV ) - U OV
(7 7 SR 7 5%a) — 34, &
Similarly
x - U
IXT _ ar”=
oY D
b and
. / *2Y
o L

where D is the denominator appearing in equations (p-12).




19k

The transformation equations above are valid for any shape of element
and any set of shape functions. (See footnote in section 2.7.)
If we refer to Appendix C for the shape functions used in this

analysis,

{

U<t 1Y V=<s 5, 3,
_..< , ;2 (3> Uz - ' 2 3>V.«2 .
b
The values of U/dX*, etc., can therefore be evaluated at the nodes in

terms of the local nodal displacements, as

v

v - 7 ‘ ’
Sxr T Sh a2y

Us

The quantities oV/dX*, JU/OY* and OV/OY* are evaluated in the same way and the
equations for transformation of nodal slopes have therefore been completely

defined.

D.3 Modification of In-Plane Displacements

In applying this finite element analysis to solution of problems it
was found that a reasonable estimate of membrane forces could not be
obtained for all problems unless a correction was introduced for the dif-
ference between arc length and chord length in the deformed element.

This modification is only required for certain element layouts.

We illustrate this by referring to Example 1 of section 2.11. The
layout of the problem is given in Fig. D1. Two subdivisions are shown.
Results from layout 1 were completely satisfactory for large curvatures.
However the same problem, when solved using layout 2 produced high com-

pressive membrane stresses in the shaded elements and high tensile membrane

stresses in the unshaded elements. An examination of Fig. D1d indicates
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FIG. D2 MODIFICATION OF IN-PLANE DEFORMATIONS
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the reason for this discrepancy. Given the proper location of points A',
B', C', the difference between the chord length and arc length is much
greater for A' C' than fbr A' B'., Since in-plane deformation is computed
with réspect to‘a flat element, this_effect would induce a greater com-
pressive stress in elements ABC and DBE than in ABD and CBE. Subsequent
iteration produces a set of self balancing internal stresses of which
the stress pattern referred to above is characteristic.

The effect is not present in layout 1 since the shortening of all
elements is the same and therefore no self balancing stresses are built
into the solution.

The above defect in the method would be a serious one if it could not
be eliminated since a severe restriction would be placed on element layout.
This negates one of the principle advantages of the finite element method,
namely the ability to adjust the element layout to pick up more detail in
regions of high gradient and to adjust the layout to fit arbitrary shapes.
For these reasons the in-plane deformations were modified to correct for
the difference between arc length and chord length in the deformed element.

Consider the element shown in Fig. D2. We define the rotation at the
end of each side as shown in Fig. D2b.. These rotations cén be established
from the nodal rotations {exi’ eyi}’ which were determined in the pre-

ceding section, by the equation

» i,J,k in cyclic order, (D-13)
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where Si = sin Yo Ci = cos Y, {ka, Gyk] are the rotations at corner
k as established in section D.2, and‘{Gsi, Gs;} are the end rotations
of side i. _
’The profile of a typical side k of the triangle is shown in Fig. D2c.
Since the ﬁhape functioné for the triangle are cubic expansions the

deflection from the chord can be expressed as

. Y -

.k , 2 .2 6L’

Wo= 4 <5059 £y g

i SZ

then | (D-14)
6)é .
AW = (~(-g)1-35) -p(35-2)> | 7%,
ds | s, -

The difference between the arc length and the chord length may be evaluated

as

(/- cof)ds = L / 4(%) ol s (p-15)

where the approximation is obtained from the first term of the trigo-
nometric expansion of cos #.

Substituting equation (D-14) into (D-15) and integrating yields

. =gy, | )
A =218, ‘%ﬁ’x\/J 2<("‘f,)(/"3’§:) Glz-sg)>af g

[ -5(-25) e
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Evaluating (Gsl, 632) by making use of equations (D-13) yields

BE 2 1 )
_ 45 74(:5%"52; S:C, 6&@
. 2 2
B ' _ c* s 0 -
Ac_ 6 o o / # 5“’('; c 4 QJIQ - (D-17)
=< Gk 8 8 40 5% - 4c Asc)| | 6,
2
» 43 | @jj

which gives the change in length of the three sides of the triangle in
terms of the nodal rotations. | |

Since this change in length represents an increase in length over
the chord length, the effective nodal displacements were incremented for
the purposes of computing element strains. The increments in nodal dis-
placements were computed as follows:

(l) The nodal displacements of point 2' were incremented by A? as

shown in Fig. D2a.

(2)  The nodal displacements of point 3' were incremented by combining

A}, A?, and A? by a Williot-Mohr approach as shown in Fig. D2d.

This modification of nodal displacements was applied only for the

purpose of computing in-plane element strains and is obviously approximate.

It reduces but does not eliminate the effect discussed at the first of
this section. However the residual stresses are reduced by several orders
of magnitude and those remaining are negligible in comparison with the

primary stress effects.
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D.4t Derivation of Triangular Relationshipsf

D.4.1 Relationships Between Co-ordinate Systems

In dealing with the triangle, three types of co-ordinate systems are
‘useful: |
(a) the "global" or "local" co-ordinate system x - v, (Fig. D3a),
(b) "side" co-ordinates S5 - Ny, (Fig. D3b)
(c) the "triangular" co-ordinate system &15 Gos G35 (Fig. D3c).
In this section i, j, k, refer to any cyclic order of the indices 1, 2, 3.
To relate the global and side co-ordinate systems, the s and n co-

‘ordinates of a point may be projected onto the x and y axes, (Fig. D3d),

to obtain
; x } cos?, s, ' Z,
= +
1 sin ¥ 2, = (D-18)
which, according to the definitions, (Fig. D3e),
bi = -y
can be written as
x @, 6; S, 27
foy ._/.. . + : . (D-l9)
L - é’c' <, M 7 | '

¥ The co-ordinate systems used in this section are lefthanded co-ordinate

systems and do not correspond to those used in the remainder of this work.
Formulae cannot therefore be taken directly from this section and applied
in other sections. All the relationships developed have been previously
established elsewhere. See, for instance, Felippa [1, 31].
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Transposition of the corner co-ordinates and inversion then yields the

relationships
S cos ¥ sin Y x-Z,
MR - s/ﬂaf cos&f -4 -—4\7
(D-20)
)| @ =8| [ x-x,
i’ ( . |
¢ b, “e F <Fs
Using the definition of triangular co-ordinates
.= A
A , (p-21)
the derivatives of the triangular co-ordinates may be established
(Fig. D3r)
98 = b 5 = ac (D-22)
3 x ZA o2n  ZA ; B
Differentiating equations (D-18) and (D-20) yields
aﬂ — s = aJ‘ 35, foveng e = 34«5‘
s, L A, dx L UR
(D-23)
é__. = _6_1. = __52,}’— aﬂ'og. = ‘é’c = —-9-5';"' . '

Starting with the basic relationship between triangular co-ordinates
(see section C.1), and the geometric relationships of Fig. D3g, the re-

lationship between triangular and global co-ordinates may be established.
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/ / / / ol
27 = |z ,tl Z, z, (D-24).
F =y A HF3 73 :
Inverting the matrix yields
L [ ’ , ]
;, 2 A23 b, @, /
, _ > A (D-25)
b2 [ 2A & Mgy b, A, x
;73 | 2 A 12 bs ' aé’_} 2
where Aij has been defined in section C.1 and
- . (D-26)
= b — b o2
2 A 2 b, é .

is twice the area of the triangle, (Fig. D3h).

Differentiating equation (D-24) yields

Qs
b

b

@
JY
Y
N

= Z"

= mé?i' , | (D-27)

The side co-ordinates may be expressed in terms of the triangular co-

ordinates, by the geometry of Fig. D3k, which yields

"/ /v 5 (D-28)
s | = AR 5[
« ’ he IA

Inversion yields
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!ﬁ 2A -k di-4, /
;k = L ’ /7(.' -, S, -

ZA <
)fo' - - VA P I

Differentiation of equation (D-29) yields

d {/ = - _/_7&_ é_z.,: = dbo-b

oS, ZA e ZA

] ;:e = _/r_i_ a 7.9 - _(/‘C,;." (D-30)
2S5, ZA dn, ZA

9 rd = 0 ' _d__r_:__ = /4' -

d s Q7. ZA

If we now consider a general function of the triangular co-ordinates

f(c;l, Cp> (;3), equation (D-30) and (D-22) may be used to evaluate the
i
partial derivatives which arise and establish the relations.

O = L [IF - OF )

_&_/_ = _L/,éiﬁ + (cd,-4;) dF - Ao 2f [ no sum (p-31)
a”z‘.. ZA c);: L-')?;. 9}2

o = b 2f

o ZA 2%

If = a. I . (D-32)

o ZA °%
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Defining the quantities My and Ai as

)‘ = dc‘ (.':/"‘1'
e = e and c D
vz | A (D-33)
(see Fig. cl), and using the geometry of Fig. D3f establishes the
relations
A, = - @.ay + b, by
, - E:
Sy = - Qe R A b by (D-34)
g 2
¢
and .
b = ﬂ"-‘ ék - dé A‘ -

D.k.2 Subtriangle Geometry

In developing the stiffness matrices for the LCCT-9 it is necessary
to use relationships between subtriangle geometry and the geometry of the
total triangle. In the following, the subtriangles are assumed formed by
joining the corner points to the centroid (see Fig. Cl). Superscripts
refer to the subtriangle number. Referring to Fig. D3m the following

. relationships are obtained by inspection

4 4 ¢ 3
) (D-35)
¢ J < e
C%' = - c?z fé = - éﬁ

In addition, from the geometry of Fig. D3n, we obtain




FIG. D3 (Page | of 3)
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¢ :/‘ @ -
C&l = - dz = 13 Z
7 ‘ 3 ' . D-36
é%, = - Zﬁz = é? "421 . ' ( )
3

Also, from the geometry of Fig. D3p, we obtain

-

/z," r 2] == - (D-37)

’

and, from the geometry of Fig. D3q, we obtain

A, = L ¢/ +A,;) (D-38)
N ) 3
and therefore

4

A £ (7 * ) (D-39)

D.4.3 Integration

Integration of polynomials in triangular co-ordinates easily accomplished
by reducing the terms to products of only two co-ordinates, say cl and 52,
integrating each from O to 1 and using an element of area as shown in
Fig. D3r.

D.4.k, Construction of Interpolating Polynomialsf

The construction of interpolation functions can be most easily

¥ The method of constructing interpolations functions that is outlined
here is due to Felippa.




209

accomplished by visualizing the function as a surface constructed with

reference to the plane of the element which is taken as the z = O plane.

Felippa has used this techhique and intuitive reasoning to construct

interpolation functions for various nodal systems up to the fifth order.

In deriving the geometric stiffness matrix, interpolation functions
for a quadratic expansion were used [equation (C-33)]. The complete
quadratic polynomial has igi;%§gtgl = 6 independent terms (see sectién c.l).
For this purpose the nodal system in Fig. Dha was used. To obtain inter-

- polating functions for this system the following procedure may be used:

(a) Considef a corner point such as point 1. The interpolation function
for this point should have a value of unity for (1, 0, 0) and zero for
points 2, 3, 4, 5 and 6. This can be achieved by taking a product
of the equations for the lines 3-2 and 4-5. Thus the interpolation
function for point 1 should be.

£35(%-%)

The constant k is chosen to normalize the function for (1, 0, 0) and

therefore is 2.

(b) Consider the midpoint of a side, say point k. By identical reasoning
to that above the interpolation function is

£ 5

where k must have a value of k.

In constructing the bending stiffness matrix for the triangle a cubic
expansion is ﬁsed. Fig. Dk shows three alternative sets of nodal gquantities
that can be used. The actual nodal system employed is that pf Fig. Dhd
but it is useful to start with the nodal system of Fig. Dib to describe

the procedure.
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' The intérpolation functions for the nodal system of Fig. Dub are con-
structed in exactly the same way as described above. Thus, by inspection,

the interpolation funption for point 1 ;s

é-ﬁ/iféyi‘sﬂ;
for point 4 is

ke 5505 -F)
for point 5 is

£ 5h(5-%),
and for point O is
LIng, .

The ki_are determined to normalize the values of the funétions at the
respective points.

The construction of interpolations functions for the nodal quentities
of Fig. Dlhc, can be undertaken as follows:
(2) Consider displacement of corner 1. The associated interpolation

function should |

(i) have a value of unity:at (1, o, 0)
(ii) produce zero slope at all corners and zero displacement
at corners 2 and 3.

(iii) produce zero displacement at the centroid.

To satisfy conditions (ii) it is sufficient, for points 2 and 3, to

have a Cle in the product. However the function must also have zero

slope at (1, 0, 0). This suggest a function of the form




21l

NODAL
NODAL SYSTEM VECTor| 'NTERPOLATING FUNCTIONS

@) (0,0,1) w; ¥ (2%,~7)
éui ;’z (2 fz '-/)
@ Y3(2%3-1)

0,1,0) | « + % %

w.;' 4 “:4 ’:_;

wg 4 Y3 %,

% (38,-/1)(3¢%,-2)
§$2(35,-1)(3%,-2)
¥3(3%3-/)(355-2)
7% %2 (3%,-7)
75, % (3{'3-/)
7?’2 1;3(37z-/)
?8253(353-4)

7 %52%, (3%53-1)
7%52%, (35%,-4)
S£Y, 5,5,

?}2'(36 #35,+3%53) -7%,%, 53

Siaz %, -a, %3) f{az‘“g)r/ 5283
57 ba¥s~b;%,) +(bg-5,) %%, %5
5'2"/5*'373"‘35) —75%2%3

‘ ’zz ('a,, r.? - aJ 7/) +(a3 "a'l) ;'/ g’z ?3

$2 (byy, -4, 33)#(6,-6,)5, 5,5,
550534 35,435,) =75, 52 s

85°(az%,~a,5,)Ha,-a,) %%, ¢,
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FIG. D4 INTERPOLATION FUNCTIONS.
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such that k, can be evaluated to give zero slope at (1, 0, 0). To

satisfy condition (iii) the term

/é.3 f/ ;’2 ;‘3

can be added.  This function produces zero displacement and slope at
each corner and k3 can be evaluated to eliminate displacement at node 0.

The final function is therefore
Z2/ 4 : ' »
£, 57 (ky-8) + k3 5%, %,

with values of kl, k2, k3 determined to satisfy the above conditions.
(b)-,Considering an interpolation function for slope at a corner, say for
ey at corner 1. This function should
(1) have a unit derivative with respect to x at corner i.
(ii) have a zero derivative with respect to x at corners 2, and 3.
(iii) have zero derivative with respect to y and have zero dis-
placement at the three corners.
(iv) produce zero displacement at the centroid.
The condition at the centroid is satisfied in the same way as described
above. Therefore we concentrate on conditions (i), (ii), and (iii).
Since a visualization of the function shows it cannot be a function of

cl alone, it could be of the form,

SR G ke k)




213

The inclusion of C12 satisfies the conditions at corners 2 and 3.
Evaluation at (1, O, 0) requires that k, be zero. The constants k, and
k3 may then be evaluated to satisfy the slope requirements at corner 1.

(¢) The function
R §5, 5
satisfies all requiréments of the interpolation function for the
centroid point 0.
Interpolation functions for the nodal system in Fig. Dhd are given

in equation (C-12) and may be obtained in the same way as those for the

nodal system of Fig. Dhc, except that the coefficient of

;j §ZL §3

is evaluated to make the normal derivative of all interpolating functions,

‘except that for Gh’ equal to zero at point 4. The function

R, 5,8,
is then the interpolation function for 94 but the coefficient is chosen to

normalize the slope rather than the deflection at the centroid.






