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Abstract

Spatially Resolving Dynamics and Nanoscale Migration of Excitons in Organic
Semiconductors Using Transient Absorption Imaging and STED Microscopy

by

Samuel B. Penwell

Doctor of Philosophy in Chemistry

University of California, Berkeley

Associate Professor Naomi S. Ginsberg, Chair

This thesis focuses on the development and application of new methods for spatially and
temporally resolving measurements of exciton dynamics and migration in organic semicon-
ducting thin films, which are commonly used in organic field effect transistors (OFETs),
organic light emitting diode (OLEDs), and organic photovoltaics (OPVs). Three methods of
probing exciton dynamics and migration on length scales better matched to the structural
heterogeneity in organic semiconductors are presented. First, the benefits of spatially resolv-
ing ultrafast dynamics are explored, by employing transient absorption microscopy on single
domains of polycrystalline films of 6,13-bis-(triisopropylsilylethynyl)-pentacene (TIPS-Pn),
revealing a polarization dependence that significantly aids the assignment of the excited state
dynamics. A full kinetic model of population dynamics, as a function of both polarization
and time, is developed and fit to the experimental data, where the polarization dependence
provides a several fold increase in the number of constraints for the fitting routine. The
global fitting analysis successfully reproduces the experimental data, and the observed dy-
namics are determined to include ultrafast thermalization of the initially hot exciton in ∼
50 fs, followed by singlet fission in the first few picoseconds, and then internal conversion
over several hundred picoseconds. The success of the kinetic model and the assignment of
the dynamics are direct results of the polarization dependence, which is only revealed at the
single domain level.

Second, stimulated emission depletion (STED) fluorescence microscopy, originally devel-
oped for super-resolution fluorescence imaging of isolated, robust, fluorescent dye labels in
biological imaging applications, is adapted to image conjugated polymer solids using their
endogenous, densely packed, non-ideal chromophores. Notably, the challenge posed by the
strong two photon absorption of the so called “STED pulse”, which depletes the initially
diffraction-limited excited state population to yield a sub-diffraction resolution excitation
volume, in conjugated polymers is successfully mitigated through careful control of the
STED pulse parameters in combination with the pile-up correction and excitation modu-
lation. This technique is demonstrated on nanoparticles of the conjugated polymer poly(2,5-
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di(hexyloxy)cyanoterephthalylidene) (CN-PPV), where an imaging resolution of better than
90 nm is achieved.

Finally, a new method to measure exciton migration on its native nanometer and picosec-
ond scales is presented, based on a further adaptation of STED microscopy, which provides
ultrafast time resolution of spatial migration dynamics. This technique of time-resolved ul-
trafast stimulated emission depletion (TRUSTED) is achieved by adding a second STED
pulse, with a controlled time delay, to define an optical quenching boundary that preferen-
tially quenches excitation that has migrated beyond a critical radius. The theoretical and
experimental sensitivity of this technique to migration processes is demonstrated, through ki-
netic simulations and experimental studies. The application of TRUSTED to CN-PPV thin
films, in combination with a custom fitting routine, reveals the exciton migration length to
be Ld = 16 ± 2 nm. Additionally, Monte Carlo simulations of incoherent exciton hopping
are performed for a variety of possible spatioenergetic landscapes, revealing the migration
process in CN-PPV to be approximately diffusive in nature, where the 5 ns lifetime capi-
talizes on the diffusive motion, resulting in the relatively long observed migration length.
The simulations also reveal more generally how the energetic and spectral parameters of a
material combine to determine the extent and nature of exciton migration.

The results presented here, and the future experiments enabled by this work, will reveal
the importance of matching the scale of the experimental resolution to the natural scale of
the process or heterogeneity of the material. The insight that stands to be gained through the
continued pursuit of these research goals will elucidate the nature of the structure/function
relationship in organic semiconductors, informing the rational design of the next genera-
tion of semiconducting materials for applications in displays, computing, lighting, and light
harvesting.
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Chapter 1

Introduction and Background on
Organic Semiconductors

1.1 Introduction

Semiconducting materials are found in almost every piece of modern technology including
computers, cellphones, displays, light bulbs, and solar cells. They have altered the way we
interact with each other, perform business, light our homes, and power our devices. Organic
semiconductors, made from small organic molecules or polymers, have emerged as potential
replacements for high performance inorganic materials, which can be toxic and expensive to
produce.[1, 2] Organic materials have the advantage of chemical tunability in their molecular
structure to customize their performance to specific applications; many can be solution
processed by roll to roll printing for inexpensive mass production, and they offer a range of
other benefits, such as enabling flexible electronics.[3–7]

Most applications of organic semicondutors fall into one of a few categories, organic field
effect transistors (OFETs), organic light emitting diodes (OLEDs), and organic photovoltaics
(OPVs).[3, 8–10] The utility of these devices derives from the excited state dynamics of the
organic semiconducting material. Optical excitations in organic semiconductors form bound
electron-hole pairs called “exitons” that can undergo many dynamical processes, such as
singlet-triplet interconversion and spatial migration, which determine the functionality of
the material in a device.[4] The observed dynamics are the result of both the intramolecular
properties of the molecular units and their intermolecular interaction in the densely packed
thin films used in devices.[11, 12] This relationship between the structure of the material
and its function is of fundamental importance to the performance of organic semiconductors
in devices and to enabling the rational design of new materials for specific applications.

Solution processing, which is a key benefit of organic semiconductors, often produces
kinetically trapped heterogeneous substructures that depend on the preparation conditions,
leading to a large array of morphologies and device performances for a given material.[13]
Typical measurements of exciton dynamics and migration, however, are made in bulk, av-
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eraging over any heterogeneous substructures present, precluding any correlation with the
underlying morphology.[14]

To better inform the structure/function relation in organic semiconductors, we have de-
veloped three methods of probing their exciton dynamic and migration on length scales
better matched to their structural heterogeneity. First, we employ transient absorption
microscopy on single domains of polycrystalline films of 6,13-bis-(triisopropylsilylethynyl)-
pentacene (TIPS-Pn) (Chapter 2), revealing a polarization dependence that significantly aids
the assignment of the excited state dynamics. Second, we adapt stimulated emission deple-
tion (STED) fluorescence microscopy to image conjugated polymer nanoparticles (Chapter
3), demonstrating the ability to define sub-diffraction excitation volumes. Finally, we further
adapt this technique to measure exciton migration in
poly(2,5-di(hexyloxy)cyanoterephthalylidene) (CN-PPV) on its native nanometer and pi-
cosecond scales (Chapter 4), opening the door for correlative mapping of exciton migration
with the local substructure, and revealing fundamental properties of the exciton migration
process in conjugated polymers.

The results presented here, and the future experiments enabled by this work, will reveal
the importance of matching the scale of the experimental resolution to the natural scale of
the process or heterogeneity of the material. The insights that stand to be gained through the
continued pursuit of these research goals will elucidate the nature of the structure/function
relationship in organic semiconductors, enhancing our fundamental understanding of exci-
ton dynamics and migration, and informing the rational design of the next generation of
semiconducting materials for applications in displays, computing, lighting, and light har-
vesting. These technologies continue to improve the quality of our lives and the efficiency
and sustainability of our society.

1.2 Background on Exciton Dynamics and Migration

in Organic Semiconductors

The goals of the research presented here, as outlined above, are to combine high spatial
and temporal resolution methods to construct new techniques to measure exciton migration
and dynamics in organic semiconductors, on the native scales of the processes and material
heterogeneity. This chapter will introduce the relevant properties of organic semiconductors,
and the fundamental physics and methods on which the presented work relies. Subjects to
be covered include the definition of semiconducting materials (Section 1.2.1), the properties
and advantages of organic semiconductors (Section 1.2.2), the nature of optical excitations in
organic semiconductors (Section 1.2.3), including fundamentals of optical processes and the
nature of excitons, a review of the excited state dynamics typically found in organic materials
(Section 1.2.4), including an brief overview of transient absorption, which is typically used to
study these dynamics, the definition of a chromophore in molecular solids and a discussion
of the types of energetic disorder in the energy of chromophores (Section 1.2.5), an overview
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of theories of exciton migration with a brief introduction to Dexter transfer, Förester theory,
and diffusion (Section 1.2.6), an overview of the types and scales of structural heterogeneity
(Section 1.2.7), and an overview of current methods to resolve this heterogeneity (Section
1.2.8), including a review of microscopy and the diffraction limit. The successful demon-
stration of the methods developed herein will lay the foundation for correlative studies of
material properties and substructure, elucidating the critical structure/function relationship
that underpins rational material design and device performance.

1.2.1 Semiconducting Materials

This work will focus on the photophysics of semiconductors. Traditional semiconducting
materials are crystalline materials, which have bandgaps (between the valence and conduc-
tion bands) on the scale of optical excitation energies for photons in the visible and infrared
spectrum, with the Fermi level in the gap, resulting in carrier densities (electrons in the con-
duction band or holes in the valence band) typically less than 1020 cm−3.[15] As a result, they
are insulating in the ground state, but can be conductive under illumination. Common uses
of semiconducting materials include transistors, light emitting diodes, and photovoltaics.[3,
8–10]

Semiconductors are often categorized as n-type or p-type, based on the dominant type
of charge carrier. If the Fermi level is close to the conduction band, some electrons may
be thermally promoted to the conduction band (n-type), while if the Fermi level is close to
the valence band electrons may again be thermally promoted, this time leaving holes in the
valence band (p-type). In classical crystalline inorganic semiconductors, this is achieved by
doping the material with a small concentration of atoms one group above (n-type) or below
(p-type) the atomic group of the host.[16]

1.2.2 Organic Semiconductors

Specifically, this work will investigate the optical properties of organic semiconductors.
An organic semiconductor is a solid film composed of either small π-conjugated organic
molecules or π-conjugated organic polymers, in contrast to the atomic lattices in inorganic
materials. The organic, molecular, nature of organic semiconductors allows the material
properties to be tuned through the chemistry of the molecular constituents, yielding a diverse
zoology of potential materials that can be customized to specific applications.[3–5] Some of
these organic materials can also be solution-processed into materials, via roll to roll printing,
reducing production costs compared to vapor deposition.[1, 2] Additionally, some organic
semiconductors have other desirable properties, such as flexibility for the production of
flexible electronics.[6, 7] The molecular nature of organic semiconductors also results in
various degrees of disorder in the material structure. For disordered, non-periodic, materials,
the band picture does not apply, however, the molecular or locally delocalized occupied and
unoccupied energy levels are still separated by an energy gap and the terminology that
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stems from the traditional band picture, such as the “band gap”, is often still applied to
these systems.

Small molecule organic semiconductors often exhibit a high degree of order, forming
molecular crystals, where the small molecules self-assemble to form large crystalline domains
with specific unit cells. These molecular crystals are analogous to the atomic lattices in
inorganic semiconductors, however, the coupling between sites in the lattice are governed by
Van der Waals interactions of the molecular constituents. As such, there are much weaker
interactions between lattice sites, and much less delocalization of the excited states between
lattice sites, so the nature of the excited states is somewhere between the molecular orbital
picture of the individual molecules and the full band picture for inorganic crystalline solids.
The relevant molecular orbitals, which determine the electronic structure of π-conjugated
small molecule materials, are formed by the delocalization of the p-orbitals that participate
in the conjugation. Most conjugated organic systems have just enough electrons to fill the
bonding orbitals, such that the band gap originates from the π to π∗ molecular transitions.
The size of this gap is also generally related to the extent of conjugation, with longer conju-
gated systems exhibiting lower transition energies, in analogy to the transitions for a particle
in a box.[3, 4, 17]

The coupling of two such molecules results in an energy splitting, producing new delo-
calized states with perturbed energies, where the splitting is proportional to the strength
of the coupling. The Hamiltonian for the dimerization of two molecular monomers can be
expressed as,[4, 18]

H = H1 +H2 + V (1.1)

where H1 and H2 are the Hamiltonians of the respective molecules and V is the coupling.
The ground state wavefunction can then be expressed as the product of the monomer wave-
functions (ψ1, ψ2):

Ψ = ψ1ψ2. (1.2)

The energy of the ground state is then found in the typical way.

H |Ψ〉 = Eg |Ψ〉
Eg = 〈Ψ|H |Ψ〉
Eg = 〈ψ1ψ2|H1 |ψ1ψ2〉+ 〈ψ1ψ2|H2 |ψ1ψ2〉+ 〈ψ1ψ2|V |ψ1ψ2〉
Eg = E1 + E2 + 〈ψ1ψ2|V |ψ1ψ2〉
Eg = E1 + E2 +W (1.3)

Where the coupling energy, W = 〈ψ1ψ2|V |ψ1ψ2〉, is typically negative for dimers. The
excited state wave function will then be a linear combination of monomer 1 or monomer 2
in the excited state, with equal weighting for identical monomers. There are two possible



CHAPTER 1. INTRODUCTION AND BACKGROUND ON ORGANIC
SEMICONDUCTORS 5

linear combinations:

Ψ+ =
1√
2

(ψ∗1ψ2 + ψ1ψ
∗
2) (1.4)

Ψ− =
1√
2

(ψ∗1ψ2 − ψ1ψ
∗
2) (1.5)

where the star denotes an excited state. The Hamiltonian can then be written in matrix
form in this basis: [

H++ H+−
H−+ H−−

]
. (1.6)

The terms for identical monomers with ground state monomer energy, E, and excited state
monomer energy, E∗, are,

H++ =

〈
1√
2

(ψ∗1ψ2 + ψ1ψ
∗
2)

∣∣∣∣H1 +H2 + V

∣∣∣∣ 1√
2

(ψ∗1ψ2 + ψ1ψ
∗
2)

〉
=

1

2
[E∗1 + E1 + E2 + E∗2 + 〈ψ∗1ψ2|V |ψ∗1ψ2〉+ 〈ψ1ψ

∗
2|V |ψ1ψ

∗
2〉

+ 〈ψ∗1ψ2|V |ψ1ψ
∗
2〉+ 〈ψ1ψ

∗
2|V |ψ∗1ψ2〉]

=E + E∗ + 〈ψ∗1ψ2|V |ψ∗1ψ2〉+ 〈ψ∗1ψ2|V |ψ1ψ
∗
2〉

=E + E∗ +W ∗ + β

where W ∗ = 〈ψ∗1ψ2|V |ψ∗1ψ2〉 is the coupling of one excited state and one ground state
monomer, and β = 〈ψ∗1ψ2|V |ψ1ψ

∗
2〉. The remaining terms are,

H+− =

〈
1√
2

(ψ∗1ψ2 + ψ1ψ
∗
2)

∣∣∣∣H1 +H2 + V

∣∣∣∣ 1√
2

(ψ∗1ψ2 − ψ1ψ
∗
2)

〉
=

1

2
[E∗1 − E1 + E2 − E∗2 + 〈ψ∗1ψ2|V |ψ∗1ψ2〉 − 〈ψ1ψ

∗
2|V |ψ1ψ

∗
2〉

〈ψ∗1ψ2|V |ψ1ψ
∗
2〉 − 〈ψ1ψ

∗
2|V |ψ∗1ψ2〉]

=0

H−+ =

〈
1√
2

(ψ∗1ψ2 − ψ1ψ
∗
2)

∣∣∣∣H1 +H2 + V

∣∣∣∣ 1√
2

(ψ∗1ψ2 + ψ1ψ
∗
2)

〉
=

1

2
[E∗1 − E1 + E2 − E∗2 + 〈ψ∗1ψ2|V |ψ∗1ψ2〉 − 〈ψ1ψ

∗
2|V |ψ1ψ

∗
2〉

〈ψ∗1ψ2|V |ψ1ψ
∗
2〉 − 〈ψ1ψ

∗
2|V |ψ∗1ψ2〉]

=0
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H−− =

〈
1√
2

(ψ∗1ψ2 − ψ1ψ
∗
2)

∣∣∣∣H1 +H2 + V

∣∣∣∣ 1√
2

(ψ∗1ψ2 − ψ1ψ
∗
2)

〉
=

1

2
[E∗1 + E1 + E2 + E∗2 + 〈ψ∗1ψ2|V |ψ∗1ψ2〉+ 〈ψ1ψ

∗
2|V |ψ1ψ

∗
2〉

− 〈ψ∗1ψ2|V |ψ1ψ
∗
2〉 − 〈ψ1ψ

∗
2|V |ψ∗1ψ2〉]

=E + E∗ + 〈ψ∗1ψ2|V |ψ∗1ψ2〉 − 〈ψ∗1ψ2|V |ψ1ψ
∗
2〉

=E + E∗ +W ∗ − β

Thus the energies of the Ψ+ and Ψ− states are,

E+ =E + E∗ +W ∗ + β (1.7)

E− =E + E∗ +W ∗ − β (1.8)

and the resulting level diagram is shown in Figure 1.1.

Figure 1.1: Schematic of the energy level splitting that results from dimer-
ization of identical monomers.

In the case of a molecular crystal with N molecules, the ground state wavefunction
becomes[4]

Ψ =
N∑
n=1

ψ0
n (1.9)

where ψ0
n is the ground state of the nth molecule. The Hamiltonian is,

H =
N∑
n=1

Hn +
N∑

m6=n

Vmn = Ho + V. (1.10)

For simplicity, assume a one dimensional crystal with periodic boundary conditions and
lattice spacing l. In this case, there are N degenerate excited states,

Ψ′i = ψ1
i

N∑
n6=i

ψ0
n. (1.11)
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The first excited state will be a linear combination of these levels,

Ψ′ =
N∑
n=1

anΨ′n. (1.12)

For nearest neighbor interactions and periodic boundary conditions, the solutions are,

Ψ′k =
1√
N

N∑
n=1

einklΨ′n (1.13)

where k is a wavevector for the excited state with allowed values of 0±2π/Nl±4π/Nl, ..., π/l.
The corresponding transition energies are,

Ek = (E∗ − E) + (W ∗ −W ) + 2β cos(kl) (1.14)

where β is the nearest neighbor interaction energy,

β =
〈
ψoi (r1)ψ1

i+1(r2) | V12 | ψ1
i (r1)ψ0

i+1(r2)
〉
. (1.15)

The result is a band of N states of width 4β. Since the coupling is generally weak for
molecular materials, the observed absorption spectrum of the solid is similar to the solution
spectra of the molecular units, however, the spectrum in solid state is typically red shifted
due to the delocalization of the excited state and the energy splitting induced by the inter-
molecular coupling.

Conjugated polymers can also be considered as molecular materials,[19] but tend to form
disordered solids, where the backbone of the polymer largely adopts random configurations.
These disordered configurations cause some disruptions in the conjugation along the length of
the polymer, resulting in a series of connected conjugated systems which act as chromophores
in the film. Some polymers can, however, exhibit some ordered packing over short length
scales.[20] In regions with a high degree of local order, the electronic structure is similar to
the molecular crystals discussed above, while more disordered regions, with less periodicity,
have smaller inter-molecular couplings with more variations depending on the specific local
configuration and tend to have more solution like, localized, states with some dimerization
or aggregates.[11, 21] This heterogeneous morphology results in a spatially heterogeneous
manifold of states, where the local electronic structure is determined by the underlying local
morphology.

In either case, the performance of the material depends strongly on its optical properties
and photophysics. The experimental methods used to investigate the properties are also
largely based optical probes. Thus, we now turn to the nature of optical excitations in
organic semiconductors.
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1.2.3 Optical Excitations in Organic Semiconductors: Excitons

Before discussing the specific optical properties of organic semiconducting systems, we
will briefly review the the physics of the linear optical response of a simple two-level system
and the effects of the introducing vibrational levels within the ground and excited electronic
states.

1.2.3.1 Background on Absorption and Emission

To begin we will consider the linear interaction of a simple two-level optical system with
a field. We will subsequently increase the complexity to account for the possibility of degen-
erate states and the effect of the vibrational modes found in real molecular systems. The
kinetics of a simple two-level optical system interacting with a light field can be expressed
using the Einstein coefficients for stimulated absorption (B12), stimulated emission (B21),
and spontaneous emission (A21), depicted in Figure 1.2.[22] These Einstein coefficients deter-

Figure 1.2: The Einstein coefficients for stimulated absorption, stimulated
emission, and spontaneous emission.

mine the rate constants for the corresponding processes. The rate constant for spontaneous
emission is simply the A21 coefficient, while the rate constants for the simulated processes are
found by multiplying the Einstein B coefficients by the spectral energy density in the field
(ρ). The system of equations, governing the kinetics of the system can then be expressed as
follows,

dN1

dt
= −B12ρN1 +B21ρN2 + A21N2 (1.16)

dN2

dt
= +B12ρN1 −B21ρN2 − A21N2 (1.17)

where N1 and N2 are the populations in levels 1 and 2. In more complex systems, where
there may be degeneracy in the states, but still two primary energy levels, the Einstein B
coefficients are related by the degeneracy of the states,

B12 =
g2

g1

B21 (1.18)
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where g1 and g2 are the degeneracies of states 1 and 2 respectively. The kinetics can then
be simplified to

dN1

dt
= B12ρ

(
g1

g2

N2 −N1

)
+ A21N2 (1.19)

dN2

dt
= −B12ρ

(
g1

g2

N2 −N1

)
− A21N2. (1.20)

Note that the response of the system to the driving field ρ depends on the difference between
the populations in the two states. As a result, a strong field will produce an equilibrium
condition between the two states, where the relative population at equilibrium depends on
the relative degeneracy of the levels. This treatment assumes “π pulses” cannot be used to
achieve full population inversion, due either to rapid dephasing or to the presents of multiple
transitions with a distribution of transition strengths in real molecules, as discussed below.
There are some theories, however, concerning the possible implementation of such “π pulses”
in electronic transitions in molecular systems.[23]

The Einstein A21 coefficient can also be related to the B coefficients by,

A21 =
8πhν3

c3
B21 (1.21)

where h is Planck’s constant and c is the speed of light. Since the number of photons in the
field at frequency ν is n(ν) = 8πν2/c3, the rate of spontaneous emission into a given mode
of the field is equal to the rate of stimulated emission induced by a single photon in that
mode:

A21

n(ν)
= B21hν. (1.22)

R.C. Hilborn gives an excellent overview of the relations between the Einstein coefficients
and other measures of transition strength, such as the absorption cross-section, oscillator
strength, and transition dipole.[24]

Real molecular systems, however, are more complex than the simple two level systems
discussed above. In particular, molecular systems have vibrational levels in both the ground
and excited electronic states. The probability of transitioning between any two of these
“vibronic” levels during absorption or emission depends on the vibrational wavefunction
overlap, as described by the Franck-Condon factors in the Born-Oppenheimer approximation.
This approximation assumes that the electronic motions are fast compared to the nuclear
(vibrational) motion, so that the wavefunction can be factored into electronic and vibrational
components, and the electronic portion of the wavefunction can be solved assuming a series of
fixed nuclear arrangements. The resulting dependence of the energy of the electronic state
on the nuclear coordinate acts as a potential surface for the nuclear vibrational motion.
Typically, the dominant nuclear vibrational mode is treated as a harmonic oscillator. In this
case, the electronic potential is quadratic and the energy of the vibrational levels are given
by,

Ev = ~ω(v +
1

2
) (1.23)
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where ~ is the reduced Planck’s constant, ω is the angular vibrational frequency, and v is
the vibrational quantum number. The transition probability, P , between vibronic levels in
the ground and excited state can then be expressed as,

P = |〈Ψ1ψv | µ | Ψ2ψv′〉|2 (1.24)

where Ψ1 and Ψ2 are the ground and excited electronic wavefunctions, ψv and ψv′ are the
vibrational wavefunctions in the ground and excited electronic state respectively, and µ is the
dipole operator. The dipole operator acts only on the electronic portion of the wavefunction,
and the vibrational overlap becomes a scaling factor (Frank-Condon factor).[16, 25–27] The
transition probability is then,

P = |〈ψv | ψv′〉|2 |〈Ψ1 | µ | Ψ2〉|2 (1.25)

where the Franck-Condon factor, |〈ψv | ψv′〉|2, modulates the electronic dipole coupling, and
predicts the relative amplitudes of the vibronic transitions. The distribution of vibronic
transitions that are accessible for absorption from the ground state, or emission from the
excited state, contributes to the observed width of the absorption and emission profiles,
respectively.

Additionally, the two quadratic electronic potential curves are typically offset along the
nuclear coordinate, as in Figure 1.3, because the nuclear coordinate has a different equilib-
rium position depending on the electronic state. For example, if the electronic excitation
promotes an electron from a bonding orbital to an anti-bonding orbital the nuclear coor-
dinate will be less tightly bound, resulting in a larger equilibrium nuclear separation. The
most likely transition from the ground state (v = 0 in electronic state 1) will then be to a
vibrationally excited level. The excited state subsequently vibrationally relaxes, however,
to the v′ = 0 level. This energy loss represents the excited state reorganization energy, and
corresponds to the nuclear coordinates relaxing to a new configuration after the electronic
excitation. The emission from the v′ = 0 level is also most likely to occur to a vibrationally
excited level in the ground electronic state, where there is again a reoganization energy as-
sociated with the subsequent vibrational relaxation to v = 0. The net effect is that the most
probable photon energy for emission is less than the most probable energy for absorption,
by ∼ 2× the reorganizational energy. This effect is called the “Stokes shift”.

1.2.3.2 Excitons

The absorption of a photon by a semiconducting material or molecule generates a Coulom-
bically bound electron-hole pair called an exciton. In the traditional picture of crystalline
semiconductors, the electron, which is promoted to the conduction band by the absorption
of a photon, leaves a positively charged vacancy or “hole” in the valence band. The electron
and hole have a Coulombic attraction that couples them with a binding energy that is depen-
dent on the dielectric of the semiconductor. Inorganic semiconductors generally have high
dielectric constants, which corresponds to large charge screening, producing weakly bound
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Figure 1.3: Schematic of the Frank-Condon principle and the origin of the
Stokes shift.

excitons. These so called “Wannier-Mott” excitons typically have binding energies on the
order of 0.01 eV and delocalize over large areas (an exciton with a binding energy of 0.01
eV in a material with a dielectric constant of 10 has a radius of ∼7 nm), (see Figure 1.4a).
This low binding energy can often be overcome by thermal fluctuations to rapidly produce
free carriers. Organic semiconductors generally have lower dielectric constants, and thus
much less charge screening, which results in a much higher exciton binding energy. These
“Frenkel” type excitons typically have binding energies on the order of 0.1-1 eV and are
therefore much more localized, typically to a few chromophores (see Figure 1.4b).[4, 16] Due
to their high binding energies, Frenkel excitons are much longer lived, typically surviving in
their bound state until they decay by fluorescence or internal conversion, with a lifetime on
the order of 1 ns. Efficient charge separation only occurs at donor-acceptor interfaces where
matching of the Fermi levels provides a driving force to overcome the binding energy.[28] It
is important then to understand the processes that an exciton can undergo in its lifetime to
better elucidate the limiting factors on overall device performance.

1.2.4 Exciton Dynamics

The primary excited state processes available to an exciton are charge separation, ther-
malization, fluorescence, intersystem crossing, phosphorescence, and internal conversion. In
addition, if the triplet state, T1, is close to half the energy of the singlet state, S0

1 , then sin-
glet fission can also occur, where a singlet exciton is converted to a correlated pair of triplet
excitons (TT ). These processes are all illustrated in Figure 1.5 and they will be important
in the analysis of the work presented in Chapter 2.
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Figure 1.4: Schematic of the delocalization and energy levels of a)
Wannier-Mott and b) Frenkel type excitons on a periodic lattice.

Charge Separation

Sn1
kcs−→ CS

exciton
kcs−→ e− + h+

The separation of the exciton into free charges (kcs in Figure 1.5) is the desired outcome
in a OPV device, but is unlikely to occur from the thermalized excitonic S0

1 state due to the
large binding energy of the Frenkel type exciton (see Figure 1.4b). If a photon is absorbed
with energy above the bandgap or first excited state energy, however, it may produce a “hot”,
vibrationally excited, exciton in a state Sn1 , which could in principle undergo direct charge
separation, although this process must compete with the ultrafast (∼100 fs) thermalization
(kth in Figure 1.5) to S0

1 . Once the exciton has thermalized, the only efficient pathway for
charge separation is through exciton migration to a donor-acceptor interface, which produces
a driving force to overcome the exciton binding energy.[29, 30]

Radiative Relaxation

S0
1

kfl−→ S0 + hν

T1

kph−−→ S0 + hν

Another decay pathway for the exciton is radiative relaxation (kfl and kph in Figure 1.5)
through spontaneous emission, where the charges recombine and emit a photon. Radiative
relaxation from the singlet state, S1, (fluorescence) occurs on the order of 1 ns, while radiative
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Figure 1.5: Schematic of the typical energy levels, including: the ground
state (S0), the singlet excited state (S0

1), thermally excited singlet state
(Sn1 ), the triplet state (T1), correlated triplet pair (TT ), and the charge
separated state (C.S.), as well as the common excited state processes
found in organic semiconductors, including: thermalization (kth), fluores-
cence (kfl), intersystem crossing (kisc), phosphorescence (kph), internal
conversion from the singlet (kSic) and triplet (kTic), singlet fission (ksf ),
triplet annihilation (kta), charge separation (kcs), and charge recombina-
tion (kcr).

relaxation from the triplet state, T1, (phosphorescence) occurs on the order of 1 µs - 1 ms.
Emission of a photon is the desired outcome in an OLED device. Organic semiconductors
can have a large range of quantum yields for fluorescence emission, depending on the details
of local environment.[9, 31–33]

Internal Conversion

S0
1

kSic−→ S0

T1

kTic−→ S0

Internal conversion, or non-radiative relaxation, (kic in Figure 1.5) is a process of ex-
cited state relaxation in which the energy of the electronic excitation is redistributed among
vibrational and phonon modes, rather than being lost through the emission of a photon.
The rate of internal conversion generally depends on access to particular configurations for
the chromophore that facilitate the redistribution of the excited state energy. Thus, chro-
mophores that are more “floppy” tend to have faster rates of internal conversion, since they
have access to larger portions of configuration space, while more rigid chromophrores tend
to have slower rates.[34]
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Intersystem Crossing and Reverse Intersystem Crossing

S0
1

kisc−−⇀↽−−
krisc

T1

Intersystem crossing is the conversion of excited singlet states to triplet states by an
electron spin flip, and reverse intersystem crossing is the conversion of triplets back to the
excited singlet state. Singlets and triplets do not differ significantly in their charge separation
characteristics in an OPV device, but their differences in lifetime and migration length can
still impact the overall performance of an OPV.[35] In recent OLEDs, reverse intersystem
crossing is critical to device performance, since uncorrelated charges combine to form triplets
and singlets in a 3:1 ratio due to spin statistics, and phosphorescence from the triplet state
is generally slow due to symmetry. The rate of intersystem crossing can be accelerated
by increasing the spin-orbit coupling in the system, typically by the inclusions of a heavy
element, whose core electrons move at relativistic speeds, introducing a significant spin-
orbit coupling.[36] Alternatively, the energy of the singlet and triplet can be tuned to near
resonance, through the chemical structure of the molecule, thereby mixing the singlet and
triplet states.[37, 38]

Singlet Fission

S0
1

ksf−−→ TT

Singlet fission occurs where the singlet energy is close to twice the triplet energy, allowing
for a resonant conversion of the singlet to a correlated pair of triplets (TT) that together
form an over all singlet, resulting in two excitons generated from a single photon absorption
event. This multi-exciton generation pathway is of particular interest in the OPV community
as a method to boost the efficiency of devices and potentially break the Shockley-Queisser
barrier.[39–42]

Triplet Annihilation

T1 + T1
kta−→ S0 + S0

1

Triplet annihilation is the reverse of singlet fission, which is usually the only pathway to
recover singlet excitons from the triplet state, due to the large energy gap between the singlet
and triplet limiting the rate of reverse intersystem crossing, unless there is exceptionally
strong spin-orbit coupling. This process is bi-molecular and diffusion limited from the T1

state, and thus generally slow and inefficient, creating only a small singlet population that
decays quickly through internal conversion and/or fluorescence.[43] An exception is the case

of a correlated triplet pair (TT
kta−→ S0 + S0

1), which is an overall singlet in spin and can
readily convert back to the singlet state while the spin correlation persists.[44]
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Charge Recombination

CS
kcr−→ S1 or

CS
kcr−→ T1

Charge recombination occurs when free charges recombine to form an exciton, as in an
OLED. The recombination is typically diffusion limited, and due to spin statistics, produces
triplets and singlets in a 3:1 ratio.[9]

1.2.4.1 Background on Transient Absorption

Transient absorption (TA), also known as pump-probe spectroscopy, is a third order
non-linear spectroscopic technique, commonly used to study ultrafast dynamics, such as
those discussed above.[12, 41, 45–48] We will build on this method in the work presented in
Chapter 2. The fundamental concept is to study the response of a system to the absorption
of light, by pumping the system with an ultrafast “pump” pulse and then examining the
differential change in the transmission of a second ultrafast “probe” pulse at a controlled
time delay. This is achieved by cofocusing the beams on a sample and modulating the pump
at a known frequency, as shown in Figure 1.6. When the pump is on (unblocked) it creates
an optical excitation in the sample that the probe can then interact with. The change in
the probe transmission (∆T ) between the pump on and off phases is recorded as a function
of the delay time, and typically reported normalized to the pump-off probe transmission as
∆T/T , which can be universally compared, as it is proportional to the change in optical
density induced by the pump excitation.

Figure 1.6: Schematic of a typical pump-probe experiment, including
beam geometry, pump modulation, pulse time delay, and data.
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There are three basic processes that produce ∆T/T signals: ground state bleach, stim-
ulated emission, and excited state absorption (see Figure 1.7). Ground state bleach (GSB)
occurs due to the vacancies in the ground state caused by the absorption of the pump pulse.
When the probe pulse passes through the sample, these vacancies reduce the optical density
of the sample causing an increased transmission of the probe, which corresponds to a positive
∆T/T signal. Stimulated emission (SE) occurs when the probe stimulates the excitations
created by the pump to emit additional photons. These emission events add photons to the
probe field producing a positive ∆T/T signal. Excited state absorption (ESA) occurs when
an excitation created by the pump absorbs a photon from the probe and is promoted from
the first excited state S1 to a higher excited state Sn, or from T1 to Tn yielding sensitivity to
the population in triplet state. These absorption events reduce the intensity of the probe,
creating a negative ∆T/T signal. These signals combine to form the net response of the sam-
ple, which evolves as a function of the pump-probe delay time as the excited state dynamics
proceed, eventually trending to zero when all the pump-induced excitation has returned to
the ground state.[49]

Figure 1.7: Schematic of the probe interactions that generate transient
absorption signals with the “pump off” condition in gray and the “pump”
on condition in black. The processes shown are GSB (red), SE (green),
and ESA (blue), with corresponding transients on the right and the net
signal transient shown in black.

1.2.5 Energetic Disorder in Site Energies

Organic semiconductors, especially those formed of conjugated polymers, can be disor-
dered systems, where the differences in local configuration can produce an inhomogeneous
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distribution of exciton energies over distinct sites in the material. For example, in con-
jugated polymer solids, the chromophores that define the sites available for excitons are
often treated as originating due to kinks in the polymer backbone that interrupt the con-
jugation as the polymer is packed to condensed phase densities, although there are higher
level treatments.[50] The statistical variations in the backbone persistence length generates
a distribution of chromophores of various sizes and corresponding transition energies. This
effect results in a static, spatially dependent, distribution of the individual site energies.[51]
Other effects that contribute to this inhomogeneous broadening (σIHB) of the site energies
include variation in the local electrostatic environment and the particular nature of the in-
terchromophore interactions produced by the local configuration. Additionally, there are
also homogeneous effects, which in this context are those that produce an intrinsic spectral
width to all sites, or those that cause fluctuations in the site energy that are fast compared to
the time an exciton occupies an individual sites (ps - ns). These effects include the Franck-
Condon progression of the chromophores and fast thermal fluctuations in the site energy,
and are collectively referred to in Chapter 4 as “site specific broadening” (σSSB). These
energetic parameters combine to produce a spatioenergetic landscape, where chromophores
are distributed in both space and energy. The observed width of the absorption profile of a
material is the convolution of the inhomoeneous and site specific broadening effects, which is
σ2
tot = σ2

IHB +σ2
SSB for Gaussian distributions, which makes distinguishing the contributions

of the underlying inhomogeneous and site specific effects challenging. These energetic pa-
rameters and there impact on exciton migration will be discussed in more detail in Chapter
4.

1.2.6 Exciton Migration

Excitons in electronically coupled materials, such as organic semiconductors, can also
undergo spatial migration. This migration process occurs through a series of consecutive
pairwise transfer events, “hops”, between chromophore sites over the lifetime of an exciton,
resulting in extended exciton migration length. Exciton migration is critical to the function
of many semiconducting devices, especially organic solar cells, where the exciton must mi-
grate to a junction for the exciton binding energy to be overcome in order to generate free
charge carriers.[28] The limited length scale of migration observed in organic semiconductors,
especially conjugated polymers (5-20 nm),[14] is a limiting factor in the overall efficiency of
organic photovoltaics.[52] Exciton migration in conjugated polymers will be discussed in
detail in Chapter 4.

Due to the importance of this process, there has been a lot of research into the underlying
mechanism of migration and the cause of the limited length scale of migration in organic
materials.[14, 53, 54] There are several possible pathways for migration to proceed. The
dipole-dipole coupling of two sites, at short distances (. 10 nm), can result in Förster
resonant energy transfer (FRET), described by Förster theory, where the excitation is non-
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radiatively transferred between chromophores. The rate of FRET transfer is,

kFRET (r) =
1

τ

(
Ro

r

)6

Ro =

[
9c4~4ηκ2

8πn4

∫
Aabs(ε)Dems(ε)

ε4
dε

]1/6
(1.26)

where r is the distance between the sites, τ is the fluorescence lifetime, Ro is the “FRET
radius”, c is the speed of light, ~ is the reduced Planck’s constant, η is the quantum yield of
fluorescence, κ is a dipole orientation faction (κ = 2/3 for isotropic orientational averaging),
n is the index of refraction, ε is energy, Aabs is the absorption profile of the acceptor, and
Dems is the normalized emission profile of the donor.[26]

When sites are in very close proximity, as in a molecular crystal, there can be orbital
overlap between adjacent sites that facilitates the exchange of electrons between sites (Dex-
ter transfer).[55] The rate of this process depends on the degree of orbital overlap of sites
and is thus very short range, occurring for separations on the order of 1 nm and decaying
exponentially with increasing separation. The rate of Dexter transfer can be expressed as,

kDexter = AJ exp(−2r/l) (1.27)

where A is an experimentally determined constant, J is the spectral overlap integral, r is the
site separation, and l is the sum of the Van der Waals radii for the donor and acceptor. This
regime also opens the possibility for coherent transfer.[56, 57] In this case, it is important
to consider the role of dynamical thermal fluctuations in the positions of the sites, which
can have a large impact on the inter-molecular coupling strength.[58] In more disordered
systems, systems with weak coupling, or in the presence of large thermal fluctuations, exciton
migration is typically considered to consist of a series of incoherent hoping events, driven by
FRET.

The spatial migration is also coupled to an energy relaxation of the exciton across the
inhomogeously broadened distribution of site energies. As the exciton explores the spatioen-
ergetic landscape it tends to migrate to successively lower energy sites until it reaches the
band edge. The exciton can then become trapped, exhibit further thermally activated mi-
gration, or continue to migrate isoenergetically by diffusion, depending on the specifics of the
spatioenergetic landscape at the band edge. This energy loss during migration adds to the
intrinsic Stokes shift of the sites, resulting in a larger apparent Stokes shift in electronically
coupled films than in isolated molecules in solution.[14, 59–61]

The extent of exciton migration is typically characterized by the “diffusion length”, Ld,
which describes the average root mean squared displacement of the exciton over its lifetime,
under the assumption that the migration can be treated as a diffusive process, or described
as a deviation from diffusive motion (sub-diffusive or super-diffusive). We will thus take
some time to review the basic principles of diffusion.
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1.2.6.1 Background on Diffusion

Diffusive motion is the description of the movement of particles when the momentum
of the particles is frequently randomized, typically by collisions with other particles or the
environment, on a bias-free energy landscape.[62] The prevalence of diffusive motion makes
it an important process to understand and indicates that there is a commonality between
the disparate physical phenomena to which diffusive motion applies. The reason for this
prevalence is that diffusive motion is the statistical description of a random walk, which can
be described by considering discrete time steps on a lattice of sites, where the probability
of the particle moving to a given site is equal for all nearest neighbors. In this case, we
will consider excitons to act as diffusing particles, since the “momentum” of the exciton is
randomized between each hopping event, in the incoherent hopping regime. In this section,
we will thus treat the diffusion of a generalized “particle”.

The equation that governs the diffusive motion that results from a random walk can be
derived by examining how the probability of a particular site being occupied evolves over
a time step. Consider a one dimensional lattice with a particle at site xo at time to. At
time to + ∆t there is 50% chance the particle is at site xo + ∆l and 50% chance it is on site
xo −∆l. This illustrates how the occupation probability on a give site redistributes in one
time step, but what is the final occupation probability on the site xo? All of the original
probability density has been redistributed to the surrounding sites, but the site at xo also
gained probability density from those neighboring sites. Specifically site xo will gain 50% of
the probability density, P , from site xo + ∆l and 50% of the probability density, P , from the
site xo −∆l:[63]

P (xo, to + ∆t) =
1

2
P (xo + ∆l, to) +

1

2
P (xo −∆l, to). (1.28)

If we then expand the left side of Equation 1.28 in ∆t and the terms on the right in ∆l, the
three individual resulting terms are:

P (xo, to + ∆t) = P (xo, to) +
∂P

∂t
(to, xo)(∆t) +

1

2

∂2P

∂t2
(to, xo)(∆t)

2, (1.29)

1

2
P (xo + ∆l, to) =

1

2
P (xo, to) +

1

2

∂P

∂x
(to, xo)(+∆l) +

1

4

∂2P

∂x2
(to, xo)(+∆l)2, and (1.30)

1

2
P (xo −∆l, to) =

1

2
P (xo, to) +

1

2

∂P

∂x
(to, xo)(−∆l) +

1

4

∂2P

∂x2
(to, xo)(−∆l)2. (1.31)

After substituting these terms into Equation 1.28, the zero order terms on the left and right
side cancel, the first order term in (∆t) survives so the second order term is dropped, and
the first order terms for (+∆l) and (−∆l) cancel. The remaining terms yield

∂P

∂t
(to, xo)(∆t) =

1

2

∂2P

∂x2
(to, xo)(∆l)

2, (1.32)
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which can be rewritten as

∂P

∂t
=

∆l2

2∆t

∂2P

∂x2

= D
∂2P

∂x2
, (1.33)

for a constant D = ∆l2

2∆t
. The same procedure can be used for higher spatial dimensions.

Cross terms will show up in the expansion in these cases, but they will all cancel. The final
express can be written as:

∂P

∂t
= D∇2P. (1.34)

It is important to note that this analysis assumes that D, the so-called diffusivity or diffusion
constant, is constant with respect to the spatial coordinates.

This diffusion equation can be solved very generally by Fourier transforming both sides.
We will demonstrate the derivation for a single spatial dimension, x, with the correspond-
ing spatial frequency dimension, k, in Fourier space for simplicity. Applying the Fourier
transform to Equation 1.34 yields,

F
[
∂P

∂t

]
= F

[
D∇2P

]
(1.35)

where on the left, the Fourier transform, F , commutes with the time derivative, and on the
right side, the spatial derivative brings out a factor of ik for each order. The result,

∂F [P ]

∂t
= −k2DF [P ] (1.36)

and its integral,
F [P ] = F [Po] e

−k2Dt (1.37)

all us to recover P:
P = F−1

[
F [Po] e

−k2Dt
]

(1.38)

a general expression, where F−1 denotes the inverse Fourier transform and Po is the initial
condition. Consider the special case of an initial delta function at the origin. The Fourier
transform of a delta function is a constant in Fourier space,

P = F−1
[
Ae−k

2Dt
]

=
A√

4πDt
e−

x2

4Dt . (1.39)

This solution is a Gaussian with a standard deviation of σ =
√

2Dt. It is then easily shown
that if the initial condition is a Gaussian with a standard deviation of σo the solution is:

P (x, t) =
A√

2π(2Dt+ σ2
o)
e
− x2

2(2Dt+σ2
o) (1.40)



CHAPTER 1. INTRODUCTION AND BACKGROUND ON ORGANIC
SEMICONDUCTORS 21

by a change of variable in t. In this case we can write the standard deviation as follows:

σ2 = σ2
o + 2Dt. (1.41)

This linear dependence of the variance of the distribution with time is characteristic of
diffusive motion. This derivation was shown for one dimension, but as long as the initial
condition is separable the solution is also separable. So for a symmetric Gaussian initial
condition in n-dimensional Cartesian space the solution is,

P (x1, ..., xn, t) =
n∏
i=1

P (xi, t) =

∏n
i=1Ai

(2πσ2)n/2
e−

∑n
i=1 x

2
i

2σ2 (1.42)

and the radius, r, is defined as r2 =
∑n

i=1 x
2
i , which yields

P (r, t) =
A

(2πσ2)n/2
e−

r2

2σ2 . (1.43)

The above solution to the diffusion equation assumes that the diffusivity, D, is constant
with respect to both space and time. There are, however, some interesting physical cases
where the rate of diffusion changes over time, such that D = D(t), such as the super-diffusive
(D(t) increases with time) and sub-diffusive (D(t) decreases with time) cases mentioned
above. Inserting D(t) into Equation 1.34 yields,

∂P (r, θ, t)

∂t
= D(t)∇2P (r, θ, t). (1.44)

This case can be solved by a convenient substitution of the following form:[64]

γ(t) =

∫ t

0

D(t′)dt′, (1.45)

which yields,
∂P (r, γ)

∂γ

∂γ

∂t
= D(t)∇2P (r, γ). (1.46)

Since γ is the inverse derivative of D(t),

∂γ

∂t
= D(t). (1.47)

Therefore, Equation 1.46 simplifies to

∂P (r, γ)

∂γ
= ∇2P (r, γ), (1.48)

which is a simple diffusion equation, like Equation 1.34, in terms of γ and has a known
solution as outlined above:

P (r, γ) =
1

(2πσ2)n/2
e−

r2

2σ2 , (1.49)
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where the standard deviation is

σ2 = σ2
o + 2γ

= σ2
o + 2

∫ t

0

D(t′)dt′,
(1.50)

and the solution may be expressed as

P (r, t) =
e
− r2

2(σ2
o+2

∫ t
0 D(t′)dt′)(

2π
(
σ2
o + 2

∫ t
0
D(t′)dt′

))n/2 . (1.51)

The diffusion length, Ld, is the length scale for the migration of particles with finite
lifetimes. To derive its form, first consider the mean squared displacement (MSD) of an
n-dimensional distribution centered at the origin:

MSD =
〈
r2
〉

=
n∑
i=1

〈
x2
i

〉
=

n∑
i=1

[∫∞
−∞ x

2
iP (xi, t)dxi∫∞

−∞ P (xi, t)dxi

]

=
n∑
i=1

σ2

= nσ2

= 2nDt+ nσ2
o . (1.52)

Since σo is the initial variance, the change in the MSD is

∆MSD = nσ2 − nσ2
o

= 2nDt. (1.53)

The square of the diffusion length is then the time average of this quantity over the lifetime
of the particles:

L2
d = 〈2nDt〉t

L2
d =

∫∞
0

2nDtN(t)dt∫∞
0
N(t)dt

, (1.54)

where N(t) describes the particle decay. In the special case where N(t) = e−t/τ , the integral
has a simple solution:

Ld =
√

2nDτ. (1.55)
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This quantity represents the average displacement of the particles from the origin over their
lifetime, τ . Another possible definition of Ld is the average displacement in a particular
direction xi, which does not depend on dimensionality and is useful in describing the diffusion
of particles towards a boundary along a given dimension:

Ld =
√

2Dτ. (1.56)

A lot of the literature, related exciton diffusion in particular, drops both the dimensionality
and the factor of two and defines the diffusion length as:[4, 14]

Ld =
√
Dτ. (1.57)

Care must be taken to understand which definition is in use in a particular work. Although
Equations 1.55 and 1.56 are more physically relevant, we will adhere to the commonly cited
form in Equation 1.57, which implies that our reported values underestimate the typical
micration distances by a factor of

√
2. In the case of time dependent diffusivity, Equation

1.54 becomes:

L2
d =

∫∞
0

2n
(∫ t

0
D(t′)dt′

)
N(t)dt∫∞

0
N(t)dt

, (1.58)

and must be evaluated for the particular form of D(t).

1.2.6.2 Methods of Measuring Exciton Migration

Several methods have been developed to measure the extent of exciton migration in
organic semiconductors.[14] The most popular is photoluminescence quenching (PLQ), where
thin films (on the scale of the diffusion length, typically 5-10 nm) of a sample are grown over
an exciton quenching substrate like TiO2.[65–79] Excitons that migrate to the interface
are quenched, so by studying the photoluminesence as function of film thickness the exciton
migration length can be extracted. There can be complications, however, due to the stringent
requirements of the sample preparation for smooth thin films and possible FRET of the
excitons to the interface.[80]

As an alternative to measuring the photoluminescence of the semiconductor, it is also
possible to measure the conductivity of the TiO2 that is induced by the charge transfer events
at the interface, by monitoring the change in the microwave reflectivity.[81–84] This method
has the added advantage of sensitivity to non-emissive exciton states, such as triplets, but
does not resolve the other issues of PLQ.

Thicker samples can be used (on the scale of microns) in spectrally resolved photolumi-
nescence quenching, where the sample is excited by a series of monochromatic wavelengths.
The diffusion length can then be extracted by comparing to a single other sample without the
quenching layer, however, this method is only compatible with materials with long diffusion
lengths, such as molecular crystals.[85–90]

The quenching material may also be distributed within the semiconductor as a dopant,
and the photoluminescence quenching studied as a function of the concentration of the
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quencher, as long as the dopant remains well distributed and does not phase separate.[91–
97] In each of these cases, there are also questions of how the presence of the quenching
material perturbs the electronic structure and dynamics in the semiconductor.

Exciton annihilation can also be used to determine the exciton diffusion length, where
the excitons act as their own quenchers. Since the efficiency of annihilation depends on the
diffusivity of the material, the diffusion length can be extracted from fitting the photolumi-
nescent decay profile at multiple excitation densities.[71, 87, 98–107] This method can be
performed on a single sample, but requires robust materials that can withstand the intense
laser fields used to create high excitation densities.

An elegant alternative to using quenching to measure exciton migration is to directly
observe the evolution of an initially diffraction limited exciton distribution by imaging its
photoluminescence.[59, 60] It has been used on quantum dot solids and molecular films with
long triplet diffusion lengths. This method circumvents the need for a quenching site, while
also avoiding the high excitation densities required for exciton-exciton annihilation, and can
be performed on a diffraction limited area within a single film. It does still, however, face
the challenge of measuring the small change cause by exciton migration, Ld ∼ 5 − 10 nm
in conjugated polymer films, in the relatively large, ∼200 nm, initial distribution, and the
diffraction limited resolution is still insufficient to resolve the spatial heterogeneity in most
conjugated polymers, as outlined below.

1.2.7 Spatial Heterogeneity in Organic Semiconductors

One of the major advantages of organic semiconductors is that many of them are solution
processable, which can reduce the cost of device production. This processing method, how-
ever, produces kinetically trapped heterogeneous morphologies. Since the functionality of
these materials is inherently tied to their structure, these heterogeneous local microstructures
could have very different performance characteristics.[108–113] In order to fully understand
the structure/function relationship of organic semiconductors in devices, it is critical to have
a clear understanding of how their function varies over the microstructures present and how
the boundaries between domains impact performance.

The length scale of this morphological heterogeneity varies with the material and prepa-
ration method. Polymers tend to produce disordered films with very short length scales for
heterogeneity on the order of 10-100 nm.[114–119] Small molecules tend to form more highly
ordered crystalline domains, which can have much longer characteristic length scales on the
order of 1-100 µm.[111, 120–123]

The techniques used to study migration and dynamics, however, lack sufficient resolution
to resolve this spatial heterogeneity. For example, traditional transient absorption measure-
ments, typically used to study exciton dynamics, use long focal length lenses or mirrors to
focus on the sample, creating beam waists on the order of 100-1000 µm. In most organic
semiconductors these beam diameters will average the response of many heterogeneous mi-
crostructural domains, convolving their individual responses and obscuring the underlying
structure/function relationship.
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h

a) b)

c) d)

Figure 1.8: Illustration of waves, wavefronts, and rays: a) a plane wave,
b) the wavefront for a plane wave, c) a spherical wave from a point source,
d) the wavefront for a spherical wave. Some example rays are shown as
dashed lines.

Additionally, most methods of measuring exciton migration, discussed above, excite bulk
areas of the sample, and many require several physical samples for a single measurement.
The best methods provide diffraction-limited resolution, which may be sufficient for some
small molecule organic semiconductors, but will not be able to resolve the sub-diffraction
heterogeneity in conjugated polymers.

1.2.8 Methods for Enhancing Spatial Resolution

Enhancing spatial resolution in optical measurements, a theme in Chapters 2, 3, and 4,
typically involves some form of optical microscopy. To review, we will begin with a brief
introduction to the basic concepts of microscopy and the diffraction limit and then discuss
some methods of improving the spatial resolution of measurements.

1.2.8.1 Background on Microscopy

Wavefronts and Snell’s Law: In optics and microscopy, light can treated as a wave, as
illustrated in Figure 1.8, with the mathematical form:[124–126]

E = Eo ei(kz−ωt+φ), (1.59)

for Figure 1.8a, where k = 2π
λ

is the wavevector, ω = 2πν is the angular frequency, λ is
the wavelength, ν is the frequency, z is the direction of propagation, t is time, and φ is the
phase. For simplicity, rays and/or wavefronts are commonly used to depict the shape of the
field. The wavefront can be thought of as an isosurface of phase, shown in Figure 1.8 b) and
d) as solid curves, and will be an important concept in Chapters 3 and 4. For a perfectly
collimated laser beam, the phase is uniform in each plane perpendicular to the ray, so the
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wavefront is a flat plane, giving rise to the phrase “plane wave” to describe well-collimated
light. Rays are drawn in the direction of propagation, shown in Figure 1.8 as dashed lines.
The propagation direction is always perpendicular to the wavefront, so one way to change
the direction of propagation is to intentionally tilt the wavefront. This can be achieved by
an angled interface with a material of a different index of refraction.

As the wave enters the higher index material it slows down. The speed of light in a
material, c′ is

c′ =
c

n
, (1.60)

where c is the speed of light in vacuum and n is the index of refraction in the material. With
this reduction in speed, there is a corresponding reduction in the wavelength,

λ′ =
λ

n
. (1.61)

This occurs because the energy of a photon is related to the frequency of the electromagnetic
wave. Thus, when the speed changes the wavelength must also change to conserve energy:

E = hν =
hc

λ
=
hc′

λ′
. (1.62)

Now we can construct a picture of a refracting wave as shown in Figure 1.9. If we know the

θi

λ/ni

λ/nf

λint

θf

Figure 1.9: Illustration of Snell’s Law

angle, θi, of the incoming wave relative the surface normal and the index of the materials,
ni and nf , we can calculate the refracted angle. We start by considering the phase of the
incoming wave along the interface. The phase of the field along the interface can be described
by a sine wave with λint = λ

ni sin θi
. To maintain continuity of the phase, the phase of the
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field in the material must match the phase of the field at the interface. The wavelength in
the material, however, has changed so the angle must also change,

λint =
λ

ni sin θi
=

λ

nf sin θf
, (1.63)

which yields Snell’s Law:
ni sin θi = nf sin θf . (1.64)

Lenses: The change in speed and wavelength at an interface of two materials with different
indices of refraction acts to tilt the wavefront and correspondingly change the direction of
propagation. If the interface is curved, as in Figure 1.10, then the angle of refraction increases
as the angle of incidence increases. So for a convex surface there is more deflection near the
edges than at the center, and the field is focused. Equivalently, the phase is delayed more in
the center than at the edges and the wavefront gains a concave curvature, which corresponds
to a focusing field. The same principles can also be utilized to collimate light from a point

Figure 1.10: A plane wave is focused by a convex interface with a material
of higher index (grey).

source, as shown in Figure 1.11. One important note is that a curved interface is not actually
required. The focusing is achieved by modifying the wavefront, so the same effect can be
produced by any means of imparting the correct pattern of phase delay transverse to the
propagation direction. For instance, a flat interface with a index gradient will also act as a
lens, as shown in Figure 1.12.

Imaging systems One or more lenses can be combined to form an imaging system. The
action of a lens, in the “thin lens” approximation, is to focus collimated light (parallel rays)
to a point at a distance f from the lens, where f is called the focal length of the lens.
Conversely, the lens will also act to collimate light originating from the focal point. Based
on these simple principles it is possible derive the location (di) and size (hi) of the image for



CHAPTER 1. INTRODUCTION AND BACKGROUND ON ORGANIC
SEMICONDUCTORS 28

Figure 1.11: A spherical wavefront is collimated by a convex interface with
a material of higher index (grey).

Figure 1.12: Illustration of an index gradient lens. Higher index is shown
as a darker shade of grey.

an object of height (ho) placed at a given distance (do) from a lens, as shown in Figure 1.13.
The magnification is given by,
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Figure 1.13: An illustration of the image (i) produced for an object (o)
placed at distance (do) from a thin lens.

M =
hi
ho

= −di
do

=
f

f − do
(1.65)

where the negative value of M denotes the inversion of the image. More control of the image
can be achieved by combining two lenses, as shown in Figure 1.14. The magnification of this

Figure 1.14: An illustration of a two lens imaging system with lenses of
focal lengths f and f ′.

system is ∼ f ′/f . The plane of the object and image are referred to as conjugate planes. In
more complex, multi-lens, systems there are two sets of conjugate planes, one set in which
the object is in focus, and one set in which the object is Fourier transformed. This plane,
one focal length on the opposite side of a lens from an object placed in the focus, is called
the back focal plane. Sets of these conjugate planes are illustrated in Figure 1.15. To see
that the field in the back focal plane corresponds to the Fourier transform of the image, we
briefly review Abbé theory.[127, 128]

Abbé theory relies on an understanding of how an object diffracts an incident plane wave.
When a plane wave passes through an object with slits, close to the size of the wavelength in
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Figure 1.15: An illustration of the concept of conjugate planes in an imag-
ing system. The two sets of conjugate planes are indicated by red and
black dashed lines. The set of planes in which the object is in focus sim-
ply depends on where the object is placed.

the medium (λ′) equally distributed with a separation (d), each slit in the plane of the object
acts an individual point source. The constructive interference of the resulting spherical waves
emitted from each slit will have a maximum for angles at which the path length difference
for the interfering waves corresponds to an integer multiple (m) of the wavelength. This
angle (θm) is given by,

sin θm =
mλ′

d
. (1.66)

If the pattern is a sinusoidal gradient of transparency in the object plane, with a spatial
frequency ko = 2π/λo, rather than the square wave that would describe the slits in the case
above, then only the zero and first diffraction order (m = 0 and m = 1) will be observed.
An arbitrary object can then be conceptualized as a superposition of a large number of such
spatial frequencies. The higher orders (m values) in the case of the slits originate from the
need to superimpose many spatial frequencies to construct the square wave that describes
the slits.

Abbé theory states that the light diffracted from an object corresponds to the light
waves that would interfere to form its image. Two waves, both incident on an image plane
with angle θ, interfere to create a spatial frequency, sine wave in the image plane, with a
wavelength λo predicted by

λo =
λ

n sin(θ)
, (1.67)

in analogy to Equation 1.63. Therefore, if the object has a spatial frequency ko = 2π/λo,
light will diffract from it at an angle determined by

θ = sin−1

(
λ′

λo

)
. (1.68)

Features in the object plane with higher spatial frequencies, smaller objects, diffract light at
larger angles, while features with lower spatial frequencies, large objects, will diffract light



CHAPTER 1. INTRODUCTION AND BACKGROUND ON ORGANIC
SEMICONDUCTORS 31

at smaller angles. A lens placed one focal length from the object plane will then collimate
these rays in the back focal plane of the objective, such that light diffracted from low spatial
frequencies (small angles) corresponds to small radii from optical axis (axis through the center
of all lenses), while light diffracted from higher spatial frequencies corresponds to larger radii.
This concept is illustrated in Figure 1.16, which shows a high spatial frequency (red) and
low spatial frequency (black) in the object plane (the slight offset is just for visualization).
The rays diffracted from the higher spatial frequency appear at larger radii in the back focal
plane. Also shown in Figure 1.16, is the concept of image manipulation by control of the
back focal plane. Since the red rays are blocked, by an aperture in this example, they do
not contribute to the image formation and the high spatial frequency information is lost in
the image, while the lower spatial frequencies are reproduced in the image plane.

Figure 1.16: An illustration of how a Fourier transform of an object is
created in the back focal plane (BFP) of a lens.

The magnification of the imaging system is ultimately determined by how the spatial
frequencies in the sample are transformed in the image. For example, in Figure 1.16, the
black rays are diffracted at a certain angle (θo) and interfered to form the image at a different
angle (θi) creating a different spatial frequency in the image than was present in the object.
Thus the magnification can more generally be written

M =
no sin(θo)

ni sin(θi)
, (1.69)

where the important quantity, n sin(θ), is called the numerical aperture (NA), and

M =
NAo
NAi

(1.70)

The resolving power of a lens is better characterized by its numerical aperture than by its
focal length, because the highest spatial frequency that can be created in an image depends
on the largest angle of diffracted light that can be captured by the lens.
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The Diffraction Limit The size of the smallest feature that can be created by interference
is referred to as the diffraction limit. As shown in Equation 1.67, the wavelength of the spatial
frequency produced by interfering waves is λi = λ

n sin θ
, where θ is the angle of incidence of

the waves on the image plane. The size, d, of the feature created by this interference is taken
to be half the wavelength,

d =
λ

2n sin θ
(1.71)

=
λ

2NA
. (1.72)

Thus the smallest feature that can be created in an imaging system depends on the wave-
length of light used and the NA of the system. For a lens with an infinite diameter, θ → π/2
and d→ λ

2n
, so the diffraction limit is ∼ λ/2 or ∼ 200 nm for visible wavelengths.[127, 128]

1.2.8.2 Super-Resolution Fluorescence Microscopy

Since many interesting biological and materials systems have features on length scales
below the diffraction limit, extensive research has been performed on methods to achieve
sub-diffraction-limited resolution fluorescence imaging, culminating in the 2014 Nobel prize
in Chemistry being awarded from the development of super-resolution fluorescence mi-
croscopy.[129–137] These techniques are collectively referred to as super-resolution fluores-
cence microscopy. Many of these methods rely on collecting many photons from a single
molecule emitter, creating a diffraction limited Gaussian distribution in the image, and then
identifying the peak of the distribution to locate the emitter. These forms of localization
microscopy, such as STORM,[131] PALM,[132, 133] and PAINT, can achieve nm-scale resolu-
tions, but require many photon detection events from isolated emitter molecules. Structured
illumination microscopy (SIM) images a grating onto the sample, where the spatial frequen-
cies in the sample beat against the spatial frequency of the grating, creating Moiré patterns
of low spatial frequencies that encode the information of much higher spatial frequencies in
the sample.[134] This effectively translates a region of the Fourier space that normally falls
outside of the aperture of the lens, to the region of the Fourier space that the imaging system
can capture. By recording the pattern in the back focal plane for different angles of rotation
of the gradient, a super-resolution image can be reconstructed. Finally, stimulated emis-
sion depletion (STED) microscopy uses structured beam modes to drive stimulated emission
from the periphery of an initially diffraction-limited excitation volume. This method will be
discussed in detail in Chapter 3, and forms the basis of the work in both Chapters 3 and 4.
[135–137]

1.2.9 Contributions of the Presented Work

The work presented here explores the benefits of combining high spatial and temporal
resolution methods to study exciton migration and dynamics in organic semiconductors at
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the length scale of the underlying processes and the material heterogeneity. Chapter 2 will
discuss the application of transient absorption microscopy to polycrystaline thin films of
TIPS-Pn, revealing a polarization dependence that significantly aids the assignment of the
excited state dynamics. In Chapter 3, we demonstrate the extension of STED microscopy
to conjugated polymer solids, using their endogenous chromophores to create sub-diffraction
images. Finally, Chapter 4 will present a new method of measuring exciton migration, on its
native picosecond and nanometer scales, though a further adaptation of STED microscopy,
and its application to CN-PPV, where the diffusion length is found to be Ld = 16 ± 2
nm. This method of measuring exciton migration opens the door for correlative mapping
of exciton migration length with the local substructure in conjugated polymers. The results
presented herein, and the future experiments enabled by this work, will reveal the importance
of matching the scale of the experimental resolution to the natural scale of the process or
heterogeneity of the material, and enable high resolution studies of the structure/function
relationship of exciton dynamics and migration in organic semiconductors, which will inform
the rational design of next generation semiconducting materials.
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Chapter 2

Transient Absorption Microscopy of
TIPS-Pentacene Thin Films

2.1 Introduction to Ultrafast Dynamics in Small

Molecule Organic Semiconductors

The exciton dynamics introduced in the previous chapter generally fall into two cat-
egories, spatial migration dynamics, and energetic population dynamics. While both are
fundamentally important to the behavior of an organic semiconductor, the length scale of
exciton migration is typically small, ∼ 10 nm for conjugated polymers and up to ∼ 1 µm
for small molecules,[14] while the scale of heterogeneity in the population dynamics depends
on the structural heterogeneity, ∼ 100 nm in conjugated polymers[114–119] and ∼ 1 − 100
µm in small molecule films.[111, 120–123] This chapter will focus on improving the spatial
resolution of measurements of the energetic population dynamics in a small molecule or-
ganic semiconductor, where the relatively large length scale of heterogeneity found in small
molecule polycrystalline thin films allows individual domains to be addressed with diffraction
limited optics.

Small molecule organic semiconductors, such as polyacenes, have a long history of study
as model molecular systems.[4, 138–141] Many of these molecular materials can be solution
processed to form thin films that exhibit well ordered crystalline domains, strong π-stacking,
large carrier mobilities, optical absorption of visible wavelengths, and singlet fission. Addi-
tionally, their organic nature means that their material properties can be tuned by changing
the chemistry of the molecular monomers, yielding a diverse and adaptable zoology of po-
tential materials. These properties have recently garnered a resurgence of research on their
potential application to organic electronics, such as organic photovoltaics (OPVs), organic
light emitting diodes (OLEDs), and organic field effect transistors (OFETs).[1, 5, 45, 120,
142–147]

Exciton population dynamics (referred to as exciton dynamics in this chapter), are typi-
cally studied with transient absorption, also known as pump-probe spectroscopy, which uses
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short laser pulses to resolve the response of a system to optical excitation with ∼ 100 fs tem-
poral resolution (see Section 1.2.4.1). Transient absorption is a powerful tool in the study
of photophysics, and has a long history of application to organic semiconductors and dyes,
where the ultrafast time resolution enables detailed studies of excited state dynamics on their
natural time scales.[12, 41, 45–49] Traditional transient absorption measurements, however,
are performed with large spot sizes, on the order of 100 - 1000 µm, and thus average over the
heterogeneous structures and responses present in most organic semiconducting materials.

The potential benefits of adding enhanced spatial resolution to transient absorption mea-
surements have recently begun to be recognized in the growing field of transient absorption
microscopy.[148–169] The results in this chapter, which were previously published in the
Journal of Physical Chemistry C,[170] present further evidence of the importance of match-
ing the resolution of measurements of dynamics to the scale of the material heterogeneity,
by probing the domain specific photophysics of the small molecule organic semiconductor
6,13-bis-(triisopropylsilylethynyl)-pentacene (TIPS-Pn) in a home-built transient absorption
microscope. With the enhanced spatial resolution of transient absorption microscopy, a
probe polarization dependence in the dynamics within crystalline domains is revealed, which
significantly aids the assignment of the observed dynamics, and would be obscured in tra-
ditional bulk measurements. A full kinetic model of the system is then constructed that
successfully models both the temporal and polarization dependence of the signal, enabling
a single fitting routine to account of all observed data trends.

This work represents an important first step to the enhancement of the spatial resolution
of exciton dynamics in organic semiconductors. The lessons learned from the challenges
presented by reducing the probed volume in these experiments provide valuable insight to
the best methods to further improve the spatial resolution to match the sub-diffraction
length scales of heterogeneity and exciton migration commonly found in organic semicon-
ductors.

2.2 Conceptual Overview of Transient Absorption

Microscopy

In order to resolve the dynamics from individual microstructural domains, it is necessary
to increase the spatial resolution of transient absorption measurements so that the probed
volume is smaller than the characteristic length scale of heterogeneity. For small molecule
organic semiconductors, this can be achieved by performing transient absorption microscopy,
where the pump and probe beams are coupled into an optical microscope and focused on the
sample by an objective to a spot on the order of a few hundred nanometers to a few microns.
Similar methods have been previously used to provide molecular specific contrast in biological
imaging[148, 157–159, 169] and to reveal and understand the spatial heterogeneity of the
excited state dynamics of inorganic nanostructures,[150, 153, 154, 171–175] graphene,[151,
155, 163, 176] perylene microcrystals,[166, 177, 178] and OPV polymer blends.[48, 152, 161,
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167, 168]
Transient absorption microscopy operates on the same principles as traditional transient

absorption, described in Section 1.2.4.1, but with increased spatial resolution. The improved
resolution corresponds to a reduction in the sampled volume, which has several effects on
the signal production that should be considered. First, the tighter focusing conditions mean
lower beam powers are required in order to achieve the intensities needed to drive the third
order non-linear response. This can be a benefit if the available power is limited, but care
must also be taken to avoid sample damage due to thermal build up. This can be achieved by
raster scanning the sample over several spatial locations, allowing a given sample location to
rest and return to thermal equilibrium between measurements. Secondly, since the intensity
on a given region of the sample needs to be approximately the same as in traditional transient
absorption, the reduced sample volume in transient absorption microscopy causes a reduction
in the observed signal level, since fewer chromophores are being probed. This is an important
consideration, as the probed volume in transient absorption microscopy can be on the order
of 1,000x - 10,000x smaller than in traditional transient absorption. Therefore, care must be
taken to minimize any sources of noise.

2.3 Background on TIPS-Pn

One small molecule organic semiconductor that has received a lot of recent attention
is 6,13-bis-(triisopropylsilylethynyl)-pentacene (TIPS-Pn), shown in Figure 2.1a.[1, 5, 120,
142–145] Pentacene, the core of TIPS-Pn, has been extensively studied and demonstrated
to have efficient singlet fission, but can only be prepared by vapor deposition. TIPS-Pn
shares the basic pentacene structure, but its bulky side groups increase its solubility in or-
ganic solvents, which makes it solution processable.[179] When cast in the proper conditions,
TIPS-Pn forms polycrystalline thin films with ∼100 µm wide domains, as shown in Figure
2.1b. The side groups also have a dramatic effect on the packing structure of these domains.
While pentacene has a herringbone structure, TIPS-Pn takes on a brick-layer conforma-
tion to accommodate the side groups. This conformational change increases the π-stacking
leading to larger carrier mobilities and air stability, but the fundamental properties that
make pentacene attractive for organic electronics are preserved.[180, 181] Additionally, both
pentacene and TIPS-Pn are known to exhibit singlet fission, which may enhance the per-
formance of these materials in OPV devices by potentially doubling the yield of excitons
produced.[142, 146, 147, 182] The dynamics of singlet fission feature prominently in our
transient absorption measurements.

The crystal structure of thin films of TIPS-Pn differs from that of a single crystal grown
in solution.[179, 183] The orientation of the crystal relative to the substrate, as reported
from X-ray diffraction,[183] is illustrated in Figure 2.1d, where the substrate is in the plane
of the page, as is the a− b plane of the crystal. Note, that the S0 → S1 transition dipole is
aligned with the short (transverse) axis of the pentacene core.[184]



CHAPTER 2. TRANSIENT ABSORPTION MICROSCOPY OF TIPS-PENTACENE
THIN FILMS 37

Figure 2.1: Important properties of TIPS-pn including: a) the chemi-
cal structure of TIPS-Pn, b) a polarized optical microscopy image of a
TIPS-Pn film, c) the TIPS-Pn optical absorption spectra with our pump
laser spectrum in red, d) the crystal axes of thin film TIPS-Pn with the
substrate, and the crystal a − b plane, in the plane of the page with the
transverse and longitudinal axes shown in black and red respectively.

Next we will describe the methods for film preparation and transient absorption mi-
croscopy measurements, then present the results and analysis, including kinetic model-
ing.
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2.4 Transient Absorption Microscopy Experimental

Methods

2.4.1 TIPS-Pn Sample Preparation and Characterization

Glass substrates were sonicated for 10 min in acetone, soapy water, and then isopropyl
alcohol with rinses of that solvent between each step. During deposition, the substrates
were placed onto an aluminum block on top of a hot plate held between 60 and 70 ◦C.
Approximately 40 µL of filtered (0.2 µm pore size) 5 mg/mL TIPS-Pn in toluene solution
was drop cast onto the substrates and immediately covered with a 100 mm Petri dish to
control the evaporation rate. This yielded 600 nm thick films with finger-like domains 50-
150 µm wide and multiple millimeters long (Figure 2.1b).

Optical profilometry measurements were taken on an ADE MicroXAM-100 optical pro-
filometer. Crosses were scribed into the sample to delineate regions of interest and to provide
a zero for the thickness measurements. Linear absorption measurements were taken on a
Cary 100 UVvis spectrophotometer (Figure 2.1c). Samples were then mounted face down
onto large rectangular coverslips for TA microscopy measurements.

2.4.2 Transient Absorption Microscopy Setup

Figure 2.2: Schematic of the experimental setup for transient absorption
microscopy.

Transient absorption microscopy measurements were conducted in a home-built optical
microscope (Figure 2.2). Briefly, an 80 MHz mode-locked Ti:sapphire Coherent Mantis
oscillator was used to seed a 5 kHz Coherent Legend-Elite regenerative amplifier, which
was used to pump an optical parametric amplifier (Coherent OPerA Solo), producing laser
light centered at 700 nm (Figure 2.1c), pumping the S0 → S1 transition of TIPS-Pn. This
beam was split into degenerate pump and probe pulses in a 4:1 intensity ratio that were
fed into a 0.4 NA 10X Plan Apo Leica objective to yield sub-10-µm-diameter spot sizes (fit
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to 1/e2) with pulse duration of ∼35 fs (FWHM). As shown in Figure 2.2, the collinearly
propagating pulses were offset equidistant from the optical axis of the objective so that they
would focus to the same spot in the sample plane. Energy fluences were set relatively low to
avoid sample photodamage (400 µJ/cm2 for pump; 100 µJ/cm2 for probe) as confirmed by
a power dependence study (Figure 2.7). The power was set for the pump and probe beams
through separate waveplate and polarizer combinations. Additionally, probe polarizations
were varied in steps of 15 degrees from 0◦ - 180◦ by rotating a second waveplate (Figure
2.2). After passing through the sample, the transmitted beams were collected using an
identical objective to the first, and the pump beam was removed via spatial filtering while
the probe beam was focused onto a Hamamatsu H9306-03 photomultiplier tube (PMT). The
output from the PMT was split and coupled to two lock-in amplifiers, with one locked to
the pump chopping frequency (500 Hz) to collect the unnormalized TA signal, ∆T , and the
other locked to the laser pulse repetition rate to collect the probe transmission signal, T . By
rastering the sample position using a computer-controlled Physik Instrumente piezostage,
spatial maps of ∆T/T were generated. Additionally, by toggling the kinematically mounted
mirrors shown in blue in Figure 2.2, the beam path could be modified to focus onto a CMOS
camera (Thorlabs DCC1545M) for imaging the beams or sample.

2.5 Transient Absorption Microscopy of TIPS-Pn

2.5.1 Results for TA Microscopy on TIPS-Pn Thin Films

We performed transient absorption microscopy of TIPS-Pn films with 8 µm spot sizes,
which can easily fit within single domains, allowing us to study and compare domain spe-
cific dynamics. Additionally, the crystalline nature of the domains in TIPS-Pn results in
a probe polarization dependence (see Figures 2.3 and 2.4), which significantly aids in our
assignment of the three observed excited state time scales in TIPS-Pn to ultrafast exciton
thermalization, singlet fission, and exciton recombination. These probe polarization effects
were obscured in previous studies, whose spot sizes were on the order of 200 µm, or ∼1000x
greater than those used here, producing bulk measurements averaging over multiple domains
and their respective orientations.[46, 142, 185, 186] The insights we gained through domain-
specific studies of organic semiconductors will significantly enhance our understanding of the
relationship between physical structure and device performance.

The strong polarization dependence of our signals illustrates that areas within our 8 µm
spots have a high degree of crystallinity. In our measurement of these crystalline domains,
the pump polarization is held in a fixed orientation, as it only serves to modulate the overall
signal intensity by changing the coupling to the S0 → S1 transition dipole and thus the
magnitude of the initial excited state population. When the probe pulse interacts with the
sample at time τ , however, it can couple to both the S0 → S1 transition dipole, generating
GSB and SE (+∆T/T signals), and any resonant ESA transition dipoles (−∆T/T signals),
such as S1 → Sn, which can have their own distinct orientations. The projection of the
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probe polarization onto each of these transition dipoles determines the contribution of the
corresponding process to the observed transient signal, providing a means to better decouple
the contribution of distinct excited state processes. While the spot size could be further
reduced by increasing the NA of the objective or expanding our beams to overfill the back
aperture, it is unlikely this would reveal additional significant heterogeneity in this sample
and would reduce the observed signal.

Figure 2.3: TA microscopy images of a TIPS-Pn film, in the same region
of interest shown in Figure 2.1b, for probe polarizations (θpr) of 0◦, 45◦,
90◦, and 135◦ and delay times of 50 fs and 500 ps. Positive ∆T/T signals
are shown in orange and red while negative ∆T/T signals are shown in
green and blue.

Transient absorption microscopy data can be collected in multiple modalities. The spatial
variation of the transient absorption signal can be examined by fixing the laser polarization
and pump-probe time delay, while scanning the sample over a dense lattice of spatial locations
to build a transient absorption image of the sample. As shown in Figure 2.3, these images
may then be taken at a few discrete time delays and probe polarizations to reveal trends.
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In Figure 2.3, two primary domains are observed with a domain boundary near the center
of the image. The upper domain yields strongly negative, slightly negative, positive, and
slightly negative signals at θpr = 0◦, 45◦, 90◦, and 135◦ respectively, while the lower domain
yields slightly negative, strongly negative, slightly negative, and positive signals for the same
probe polarizations. In all cases, the amplitude of the signal at τ = 500 ps has decreased,
but not changed sign, relative to τ = 50 fs.
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Figure 2.4: The transient absorption microscopy data for the orange (a,c,e)
and green (b,d,f) spots in Figure 2.1b. a,b) Full ∆T/T vs probe polar-
ization (θpr) and time delay (τ) data sets, where positive signals are red
and negative signals are green/blue. c,d) The polarization dependence of
the linear transmission (T) in red, with a polarization dependent slice of
the ∆T/T data at τ = 1 ps in blue. e,f) The evolution of the ∆T/T
signal over the delay time for select probe polarizations, with the average
of all probe polarizations shown in gray to approximate the signal from a
traditional TA measurement.

It is clear from these images that transient absorption signal can be used as a contrast
agent to identify distinct domains in TIPS-Pn films. The primary source of this contrast is
the distinct and well defined orientation of each domain’s transition dipoles, which produce
clear differences in the transient signal for a given probe polarization and time delay. Thus
the enhanced resolution of TA microscopy elucidates the relationship between the TA signal
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and the relative molecular orientation within each domain.
The domain-specific, polarization-dependent, transient absorption signal may be studied

in more detail by selecting only a few spatial locations (the two we chose are indicated
in Figure 2.1b as orange and green spots) and increasing the number of polarizations and
time delays for data collection. The resulting data are shown in Figure 2.4, where the left
column (parts a,c,e) shows data from the upper domain (orange spot in Figure 2.1b) and
the right column (parts b,d,f) shows data from the lower domain (green spot in Figure
2.1b). The surfaces in panels a and b show the full polarization and time delay dependence
of the TA microscopy signal for the corresponding locations. Both spots have a periodic
polarization dependence with positive and negative signals, where the negative component
strongly outweighs the positive.

The primary difference between the domains is in the phase of the polarization depen-
dence, as the transients in panels e and f show very similar dynamics. This phase difference
is highlighted in panels c and d, which show the polarization dependence of the linear trans-
mission T (red) and ∆T/T at τ = 1 ps (blue). The phase offset between the two domains
indicates their relative orientations. Additionally, the overall weighting of the ∆T/T signal
towards negative values indicates that the probe interaction with ESA dipoles is stronger
than its interaction with the GSB/SE dipole, by a factor of ∼2.5:1. Furthermore, the most
positive ∆T/T signals are achieved for polarizations that correspond to the minimum in the
linear transmission, indicating the orientation of the S0 → S1 dipole for GSB and SE. This
agreement, and the fact that the most negative ∆T/T signals are observed ∼ 90◦ from the
S0 → S1 dipole, indicate the the S1 → Sn ESA dipole is oriented orthogonal to the S0 → S1

dipole. Since the S0 → S1 dipole is known to be oriented along the transverse (short) axis
of the pentacene backbone, and projections of the transverse and longitudinal axis of the
TIPS-Pn molecule are close to orthogonal in the sample plane (see Figure 2.1d), it follows
that the S1 → Sn dipole is oriented along the molecular longitudinal axis. Our ability to
resolve these polarization dependent effects and assign dipole orientations is a direct result of
the enhanced spatial resolution of TA microscopy, where bulk measurements would average
over domain orientations obscuring the rich polarization dependence of the transient ab-
sorption signals. To illustrate the benefit of the polarization dependence, we have averaged
our data over polarization to approximate the signal that would be obtained in traditional
transient absorption and plotted it in gray in Figures 2.4e,f. This single trace would be the
only accessible information in a traditional transient absorption measurement.

2.5.2 Assignment of the Observed Dynamics to Underlying
Physical Process

To assign the observed dynamics to physical processes, it is most convincing to construct
a kinetic model of the system based on the proposed photophysical processes and verify that
the model can simultaneously reproduce all observed trends in the data in a global fit. To
achieve this, a set of proposed physical processes must first be identified. We therefore, begin
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by performing a simpler analysis with exponential fits to the data at individual polarizations,
to identify trends and elucidate which physical processes could theoretically produce these
dynamics. We return later on to a treatment based on a kinetic model.

2.5.2.1 Exponential Fits to the Observed Dynamics

The dynamics in Figure 2.4e,f, show that regardless of whether the ∆T/T signal is
initially positive or negative at a given polarization, the signal first trends towards more
negative values, then towards more positive values, before decaying towards zero. The time
scales of these population dynamics can be revealed by fitting the individual polarization
transients to a tri-exponential function with an offset,

∆T

T
= a1e

τ/t1 + a2e
τ/t2 + a3e

τ/t3 + c, (2.1)

shown as black lines in Figure 2.4e,f. The full set of collected transients and their fits are
shown in Figure 2.5. Plots of the fit parameters as a function of polarization (see Figures
2.6) reveal that the time scales are ∼50 fs, ∼3 ps, and ∼250 ps and do not vary with probe
polarization or between the domains, as they describe the material-specific evolution of the
excited state population. The amplitudes, however, have a strong dependence on the probe
polarization and a phase shift between domains because the contribution of each process to
the observed signal depends on the coupling of the probe to the respective transition dipole
moment.

An additional advantage to resolving the probe polarization dependence via TA mi-
croscopy is the ability to clearly distinguish excited state population transfer from exciton
relaxation. Exciton relaxation reduces the excited state population causing the signal to
trend towards zero regardless of its sign, so the amplitude of the corresponding exponential
in the fit changes with the sign of the signal to create a decay in the signal for all transients.
We see this behavior in the third (∼250 ps) timescale and its amplitude (a3). Excited state
population transfer changes the relative contributions of the corresponding dipoles to the
signal, causing the signal to trend toward more positive or negative ∆T/T values regardless
of the sign of the signal, so the amplitude of the corresponding exponential in the fit has a
constant sign for all polarizations. We see this behavior for the first two timescales (∼ 50 fs
and ∼ 3 ps) and their corresponding amplitudes (a2 and a3). A typical bulk measurement
would average over the polarization dependence and return only a single transient signal,
which we have estimated by averaging our polarization dependent data and shown in Fig-
ure 2.4e,f in gray. If these traces were taken independently, the second, ∼3 ps, timescale
would likely be assigned as a fast component in the exciton relaxation, as is appears to act
identically to the third, ∼250 ps, timescale. It is only through the polarization dependence
that the second component can clearly be assigned to an excited state population transfer,
since the signal increases for positive signals on this timescale, which can not be explained
by exciton relaxation. Based on this analysis we assign the ∼250 ps timescale to exciton re-
laxation through internal conversion and/or spontaneous emission. The first two timescales
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Figure 2.5: The transient ∆T/T data for all probe polarization for the
green (a,c) and orange (b,d) spots, with the corresponding tri-exponential
fits overlaid in black. Parts a and b shown the transients for θpr = 0◦, 30◦,
60◦, 90◦, 120◦, and 150◦. Parts c and d shown the transients for θpr = 15◦,
45◦, 75◦, 105◦, 135◦, and 165◦.

must correspond to excited state population transfer processes and their assignments are
addressed below.

2.5.2.2 Assignment of Physical Processes

The fastest, ∼50 fs, timescale could correspond to a number of ultrafast processes, such as
vibrational relaxation, charge separation, singlet fission or singlet-singlet annihilation.[187,
188] The power dependence, shown in Figure 2.7, demonstrates that the experiments are
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Figure 2.6: Variation of the tri-exponential fit parameters with probe
polarization for the orange and green spots indicated in Figure 2.1b.

in a linear regime and thus annihilation does not contribute significantly to the signal. We
must consider how the remaining processes would impact the ∆T/T signal to identify which
could produce a trend towards more negative values.

To relate the change in the ∆T/T signal to the underlying population dynamics, recall
that the ∆T component is just the change in the transmission of the probe, with the pump
on and off, which in turn is related to the change in the probe intensity as it passes through
the sample, due to the net stimulated absorption and emission from each level. The signal
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Figure 2.7: Power dependence of the TAM signal in the orange and green
locations.

will depend on the occupation of each excited state, the strength of the transition dipoles
for each process, and how strongly they couple to the probe field. Thus, we can build an
understanding of how the redistribution of excited state population effects the generated
signal, by considering the following approximation:

∆T/T ≈ (µ01 · ρpr)S1 + (µ01 · ρpr)Sv0 − (µ1n · ρpr)S1 (2.2)

where µ01 is the ground state dipole and ρpr is the probe field. Then (µ01 · ρpr)S1 describes
the SE from the first excited state, (µ01 · ρpr)Sv0 describes the GSB due to the ground state
vacancies (Sv0 ), and −(µ1n · ρpr)S1 describes the ESA from the first excited state to a higher
level.

Since the ∼50 fs timescale process produces a more negative signal, it must correspond
to some combination of an increase in ESA, decrease in GSB, or decrease in SE. Also the
amplitude of the process, a1 in Figure 2.6, is smallest for positive signals and largest for
negative signals, indicating the dominant dipole for this process is roughly orthogonal to the
linear absorption dipole, which is also the GSB/SE dipole. Thus, the increasing negative
signal on this timescale is most likely due to an increase in the amount or strength of ESA.

Singlet fission, which is the conversion of a singlet into two triplets, would reduce the
S1 population, but increase the Sv0 population proportionally, canceling both effects. So the
primary difference would be in the ESA, where the transfer from S1 → TT would either
increase or decrease the ESA depending on the relative strength of the probe’s interaction
with the S1 → Sn and T1 → Tn transition dipoles. Therefore, singlet fission is only consistent
with the ∼50 fs timescale if ESA from the triplet state is strong. At the time we performed
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this work the triplet ESA at our probe wavelength (700 nm) had previously been reported to
be negligible in TIPS-Pn.[142] We concluded, therefore, that singlet fission is not likely to be
responsible for this timescale. Ongoing work in our lab[189] has demonstrated that triplet
absorption does in fact occur, however, it is not strong enough to produce the observed drop
in signal on this timescale.

Charge separation would likely remove the contribution of stimulated emission, while also
changing the ESA. The ESA on the original S1 → Sn dipole would be lost, and an additional
ESA from the free charges might be introduced. This dipole would, however, likely be
aligned with the crystal lattice, specifically in the direction of the highest charge mobility.
To determine if this effect is represented in the data, we fit the polarization dependence at
several time delays to the sinusoidal function:

∆T

T
= A cos2(x+ θ) + c (2.3)

The evolution of these parameters over the delay time is shown in Figure 2.8. While the
amplitude and offset change as the signal decays, the orientation (θ) only varies by a likely
negligible 2◦. The consistent orientation of the polarization dependence indicates that the
ESA from the states populated by the excited state dynamics has very similar dipole orien-
tations as the initially pumped state.

We conclude from this analysis that the simplest explanation for the ultrafast ∼50 fs
timescale is vibrational relaxation from an initially pumped hot state, Sn1 → S0

1 . This
relaxation would shift the stimulated emission out of resonance with the probe, removing
its contribution to the signal. Additionally, the ESA from Sn1 and S1 would likely have the
same orientation, differing only in a vibrational term. The strength of the ESA could either
increase or decrease depending on the Franck-Condon overlap of each level with the higher
lying state.

Now we must consider the second, ∼3 ps, timescale, over which the signal trends towards
more positive ∆T/T values at all polarizations, regardless of the sign of the signal. This trend
indicates an increase in GSB/SE or a decrease in ESA. The amplitude of this process (a2

in Figure 2.6) also indicates that the dominant dipole is orthogonal to the linear absorption
dipole, so the increasingly positive signal is likely due to a loss of ESA. This could be
achieved by charge separation, migration to trap states, or singlet fission. Charge separation
is unlikely to occur from the thermalized S0

1 state due to the large binding energy of the
Frenkel type exciton. The potential effect of trap states on the signal is unknown as it would
depend on the ESA spectrum and absorption dipole orientation of the traps. Singlet fission,
however, is known to occur in TIPS-Pn.[142] The effect of singlet fission would be the loss of
SE from the singlet, if the SE has not already been lost due to thermalization, an increase
in GSB due to the promotion of a second triplet, and the loss of the singlet ESA. So if the
SE had already been lost due to thermalization, the gain in GSB and loss of the singlet
ESA would cause the signal to trend upwards. The net effect would again depend on the
difference in ESA between the singlet and triplet states. As indicated above, at the time we
performed this work the triplet ESA at our probe wavelength (700 nm) had previously been
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Figure 2.8: Time dependence of the parameters of the fit of the polariza-
tion dependence to a sinusoidal function for the green (a) and orange (b)
spots. The plots correspond to the orientation (θ), amplitude (A), offset
(c), and root mean square error of the fit (RMSE).

reported to be negligible in TIPS-Pn.[142] We concluded, therefore, that the net effect of
singlet fission would be an increasingly positive ∆T/T , as observed. Ongoing further work
in our lab, with the introduction of multiple probe wavelengths,[189] has demonstrated that
triplet absorption does in fact occur. Including this process in the analysis, however, did not
change the assignments reported herein.

From the above analysis, we assign our observed dynamics to an ultrafast ∼50 fs ther-
malization in the singlet state, followed by singlet fission on a ∼3 ps timescale, with exciton
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recombination at longer times. To check the validity of these assignments, we construct a
kinetic model of the process to fit the data.

2.5.3 Kinetic Modeling and Fit to Experimental Data

We can now proceed with the construction of a kinetic model to simulate and fit the
data based on the proposed assignments from the above analysis. The benefit of a kinetic
model is that it can fully account for the interplay of the dynamic processes in the system,
removing our dependence on intuitive arguments to support our assignments, verifying that
the observed dynamics in the data can in fact be reproduced by the proposed kinetics. The
kinetic model also allows the full data set to be fit simultaneously in a single global fitting
routine, providing a higher degree of confidence in the result.

Based on the above analysis, we have constructed a four-level kinetic model (Figure
2.9b) to fit the data. The model includes the ground state (S0), initially excited hot singlet
state (Sn1 ), thermalized singlet state (S0

1), and the correlated triplet pair (TT). The kinetics
included are thermalization (Sn1 → S0

1) with rate kth, singlet fission (S0
1 → TT ) with rate ksf ,

triplet annihilation of the correlated pair (TT → S0
1) with rate kta, and singlet relaxation

(S0
1 → S0) with rate kr.
In order to produce simulated data for the fit, we must first solve the coupled differential

equations that describe the evolution of the population of the excited states. The system of
equations is:

dSn1
dt

= −kthSn1
dS0

1

dt
= kthS

n
1 − krS0

1 − ksfS0
1 + ktaTT

dTT

dt
= ksfS

0
1 − ktaTT.

(2.4)

Numerically propagating these kinetics in a fit, which tests many combinations of rates,
would be computationally prohibitive. An analytic solution can be found, however, for a
system of coupled first order linear differential equations. We begin by writing the equation
in matrix form.

dS

dt
= KS (2.5)

S = S(t) =

Sn1 (t)
S0

1(t)
TT (t)

 K =


−kth 0 0

kth −(ksf + kr) kta

0 ksf −kta

 (2.6)

The solution to this system of equations can be found by first solving for the eigenvectors
and eigenvalues of the rate constant matrix, K. Let P be a matrix where the columns of
P are the eigenvectors, and Λ be the matrix of negative eigenvalues, where the diagonal
holds the negative eigenvalues and there are no off diagonal terms. Then equation 2.6 can
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Figure 2.9: Kinetic model and fit to experimental data. a) Selected tran-
sients from the green spot with the fit overlaid in black. b) The levels,
rates, and transition dipoles included in the kinetic model. c) The polar-
ization dependence of the data from the green and orange spots with the
results from the fit overlaid in black.

be solved using the following expression:[190]

S = PeΛtP−1Si (2.7)

Where Si = [1; 0; 0] is the initial condition.
It is important to verify that P−1KP = Λ. One thing to note about this expression is

that the quantity eΛt needs to be a diagonal matrix with zeros in the off diagonal elements.
If using MatLab’s “eig()” function to find the eigenvectors and eigenvalues, Λ is reported as
a 2D matrix with zeros for the off diagonal terms. If the exponential is then applied to this
2D Λ matrix the off diagonal terms will be ones, not zeros. The “diag” function can be used
to correct for this with the expression:

diag(exp(diag(Λ)t)).

This method efficiently calculates the predicted population dynamics for a given set of
test rate constants by composing the rate matrix (K) in Equation 2.6, finding its eigenvalues
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and eigenvectors, and using Equation 2.7 to calculate the resulting population dynamics.
In order to compare the fit to the data, however, the ∆T/T signal and probe polarization
dependence produced by these dynamics must also be determined. Thus we use Equation
2.8,

∆T

T
(t, θ) = Ao(θ)Sv(t)− A0

1(θ)S0
1(t) + [A0(θ)− An1 (θ)]Sn1 (t), (2.8)

to calculate the ∆T/T signal and its probe polarization dependence from the predicted
population dynamics in analogy to Equation 2.2. Here we include the GSB/SE dipole (µ0)
and separate ESA dipoles from Sn1 (µn1 ) and S0

1 (µ0
1), shown in gray in Figure 2.9b. SE from

S0
1 is neglected, as it will be out of resonance with the probe. Absorption from the triplet

state is also neglected, as it is assumed herein that there is no transition from this level that
is resonant with our 700 nm laser pulse.[142] As mentioned above, on going further work has
found that while triplet absorption does occur, it’s inclusion in the model does not change
the assignments reported here. The Sv(t) = S0(0)−S0(t) term is the number of ground-state
vacancies and accounts for GSB, the S1

0 term contributes to the ESA, and the two terms for
Sn1 account for its ESA and the SE. The amplitudes A0, A0

1, and An1 include the couplings
of the probe field with the transition dipoles µ0, µ0

1, and µn1 , respectively, and are assumed
to obey the following functional form:

A(θ) = a+ b cos2(θ + c) (2.9)

where c is the dipole orientation, b is the strength of the anisotropy in the dipole-probe
interaction, and a is an offset to account for any disorder in the dipole orientation.

To perform the fit, we use MatLab’s “lnsqcurvefit()” function with a trust-region-reflective
algorithm. The fit uses a custom function to calculate the ∆T/T (θ, τ) data from an input
guess for rate constants and the variables that define the amplitudes A0, A0

1, and An1 , based
on Equations 2.6, 2.7, 2.8, and 2.9. To enable the fit to address the most physical param-
eters, the rate constant for the approach to singlet/triplet equilibrium, kT = ksf + kta, and
the energy gap between level TT and S0

1 , ET = ETT − ES0
1
, are used as inputs. The model

then calculates ksf and kta from kT and ∆ET via the Arrhenius relation[190]

kta
ksf

= e−∆ET /kbT . (2.10)

The fit of this simulated ∆T/T signal to the experimental data was performed simulta-
neously for all time points, all 13 probe polarizations, and both the green and orange spots,
in a single global fitting routine. The fit parameters include [kth, kT ,∆ET , kr, A0, A

0
1, A

n
1 ]

at each location, where each amplitude is described by the three parameters in Equation
2.9. All fit parameters were allowed to vary independently between locations, with the only
constraints being that the A0 dipole orientation for each location was taken as constant from
the polarization dependence of the linear transmission (T ) in Figure 2.4c,d, and the ratio of
the A0 dipole strengths between the domains was inferred from the relative modulation of
the these linear transmission curves.
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The resulting fit for selected transients at the green spot is shown in Figure 2.9a, with
additional fits to the full set of polarization traces for the green and orange spots in Figure
2.10. The rate constants and other fit parameters are summarized in Table 2.1 and the
polarization dependent amplitudes A0, A0

1, and An1 are plotted in Figure 2.11.

Figure 2.10: The transient ∆T/T data for all probe polarization for the
green (a,c) and orange (b,d) spots, with the kinetic model fit overlaid in
black. Parts a and b shown the transients for θpr = 0◦, 30◦, 60◦, 90◦, 120◦,
and 150◦. Parts c and d shown the transients for θpr = 15◦, 45◦, 75◦, 105◦,
135◦, and 165◦.

The kinetic model fits the data well and the rates in the green and orange spots are in
good agreement, even though the transients for a given polarization appear very different
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1/kth (fs) 1/kT (ps) ∆ET (meV) 1/kr (ps)
green spot 45 4.2 26 555
orange spot 43 4.7 26 665

Table 2.1: Table of parameters returned by the full kinetic model fit.

Figure 2.11: The polarization dependence of the amplitudes A0, A0
1, and

An1 for the corresponding dipoles µ0, µ0
1, and µn1 , in red, blue, and black

respectively, for the green (a) and orange (b) locations.

from each other. The kinetic model finds that the fastest rate is thermalization (kth) of hot
excitons, with a time constant of ∼44 fs, in excellent agreement with the fastest timescale
in the empirical tri-exponential fit of 50 fs. The second fastest rate in the kinetic model
is found to be the rise time of triplets due to singlet fission (kT ), with a time constant
of ∼4.4 ps, in good agreement with the second time constant in the empirical fit of ∼3
ps. The slow component in the kinetic model is found to be the relaxation of the singlet
state (kr), with a time constant of ∼605 ps. The discrepancy here with the slowest time
constant in the empirical fit of ∼250 ps is likely due to the fact that the tri-exponential
fit includes an offset, while the kinetic model does not. The fit also accurately captures
the polarization dependence of both data sets, as seen in Figure 2.9c. Additionally, the
orientation of the transition dipoles µ0

1 and µn1 were unconstrained in the fit, yet they are
found to be perpendicular to the orientation of µ0 in each domain (Figure 2.11), as predicted.
The agreement in timescales between the two locations and the dipole orientations returned
by the fit are further evidence that these domains differ only in an azimuthal rotation, and
are likely oriented similarly with respect the substrate.

Finally, the fit to the kinetic model finds that the energetic splitting between the S0
1

and TT states is 26 meV, with the TT state slightly higher in energy. While the model
fitting places the TT state higher in energy than the S0

1 state, Ramanan et al.[142] find
a large singlet fission yield that would likely require the TT state to be lower in energy
than S0

1 . This difference could be because of different sample morphologies probed. It
is also possible that we have underestimated the triplet yield in our simple model by not
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including the subsequent correlated triplet separation, TT → T + T, which would provide
a greater driving force for the singlet fission process. Ongoing further work with the same
TA microscope in our lab, now with multiple probe wavelengths and the inclusion of triplet
absorption and the separation of the correlated triplet pair, has enabled us to further confirm
the assignment that we provide in this thesis.[189] The minimal energy difference that we
obtain indicates that the S0

1 and TT states are effectively resonant with one another when
thermal effects are taken into account and may provide some insight into the degree of
resonance between the singlet and triplet pair energies, a property which could be tuned
through molecular functionalization and design.

2.6 Conclusions and Outlook for Transient

Absorption Microscopy

We successfully investigated the ultrafast photophyscis of individual domains in a poly-
crystalline thin film of TIPS-Pn, by focusing our lasers to spots ∼3 orders of magnitude
smaller than is typical for bulk transient absorption measurements. This form of transient
absorption microscopy can produce images using ∆T/T as a contrast agent, revealing regions
with differing dynamics or orientations. In this case, we image two domains with distinct
crystalline orientations producing clear contrast in their ∆T/T signals. We also observe a
strong probe polarization dependence in the measured transient absorption signals, indicat-
ing a high degree of crystallinity and anisotropy in the regions within our ∼8 µm diameter
focal volumes. This polarization dependence allows us to build a clear picture of the excited
state dynamics and dipole orientations within each domain. Our analysis determines the
primary ESA dipole to be roughly orthogonal to S0 → S1 dipole. Furthermore, by fitting
the experimental data to both an empirical tri-exponential and a full global kinetic model,
we are able to determine that the excited state dynamics include the ultrafast thermalization
of the initially excited hot singlet exciton in ∼50 fs, followed by singlet fission in the first
few picoseconds, and finally internal conversion back to the ground state in several hundred
picoseconds. The kinetic model also produces an estimate of the energy gap between the
singlet and the correlated triplet pair of ∼26 meV, implying near resonance in singlet fission.
The rapid rate of singlet fission in TIPS-Pn makes it a good model system for studying
the effect of singlet fission on the efficiency of solar cells. These results from the fit to the
kinetic model are aided by the additional constraints provided by multiple polarizations,
which would be inaccessible in a traditional bulk transient absorption measurement.

The initially distinct response of different domains to polarized transient absorption mi-
croscopy can be reconciled by careful analysis of the polarization dependence and is re-
vealed to be dominated by the domain orientation. The domains studied here are demon-
strated to have consistent kinetics and likely adopt similar orientations relative to the sub-
strate, differing only in their azimuthal orientation. After the domain-specific dynamics
were characterized by this work, further transient absorption microscopy studies in out
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research group revealed the structure and dynamics at domain boundaries in TIPS-Pn
films[191] and that the variability in the individual domain dynamics in 2,8-difluoro-5,11-
bis(triethylsilylethynyl)anthradithiophene (diF-TES-ADT) films is much greater than those
in TIPS-Pn.[192]

We envision transient absorption microscopy as a powerful tool to examine more complex
microstructures in more disordered materials, potentially decreasing the focal volume beyond
the diffraction limit. The transient absorption signals from such excitation volumes would
be extremely small, however, and the realization of sub-diffraction limit transient absorp-
tion microscopy on organic semiconductors will require significant advances. Fluorescence
microscopy, on the other hand, has the capability to measure extremely small signals, down
to the single molecule/photon regimes, with many advanced methods for sub-diffraction
imaging, but at the expense of the ability to resolve the various GSB, SE, and ESA signals
available in transient absorption, which inform studies of population dynamics. To further
our study of the spatial resolution of exciton dynamics in organic semiconductors, we there-
fore turn our attention to super-resolution fluorescence microscopy and the extent of exciton
migration in conjugated polymers.
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Chapter 3

Extending STED Microscopy to
Electronically Coupled Materials with
Endogenous Chromophores

3.1 Motivation for STED on Conjugated Polymers

As demonstrated by the results in the previous chapter, there are substantial benefits to
spatially resolving studies of exciton dynamics in heterogeneous materials. The diffraction
limited transient absorption method presented above, however, is only suitable for use in
materials with relatively large scales of heterogeneity. Many complex, naturally lumines-
cent materials possess much smaller, nanoscale, structural heterogeneity. The effect of this
heterogeneity on the materials’ optical properties has been difficult to determine because
of the challenges of imaging naturally luminescent materials below the optical diffraction
limit. In many cases, these materials are composed of organic molecular chromophores that
are packed so densely that they are electronically coupled; their Coulomb interactions re-
diagonalize their electronic quantum mechanical states, leading to optical properties of the
resulting material that differ significantly from those of the individual molecular compo-
nents.[4] These properties range from static spectral characteristics and oscillator strengths
to the ultrafast dynamics of charge carrier or excitation energy transport.[53, 193–196]

For example, the solution-processing of modern printable organic-electronics creates ki-
netically trapped solid structures, which must be understood in the context of their local
and macroscopic effects on the functional electronic and optical properties of these materi-
als.[170, 191, 197–201] When the morphology of these materials is critical to their function,
fluorescent labeling, as is performed in bioimaging, is impractical because it disrupts the
very structure whose effects are meant to be studied. Furthermore, the luminescence of the
endogenous chromophores can overwhelm that of the dilute labels, and the labels may also
electronically couple to the material, perturbing the function of both. These challenges exist
for organic semiconducting solids composed of small π-conjugated molecules and polymers
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used in optoelectronic applications, and they are equally problematic in luminescent bio-
materials with endogenous chromophores, as found in photosynthesis,[202] circadian rhythm
regulation,[203] and other forms of bioluminescence.[204] A common challenge in charac-
terizing heterogeneous, naturally luminescent materials is that there are no straightforward
means to obtain their optical properties on the characteristic length scale over which they
vary.

The work presented in this chapter, previously published in the Journal of Physical
Chemistry Letters,[205] will demonstrate a method to adapt stimulated emission depletion
(STED) microscopy, a form of super-resolution fluorescence microscopy, to naturally lumi-
nescent materials, using their endogenous chromophores. An introduction and background
information on STED microscopy is first presented (Section 3.2), along with practical ex-
perimental concerns for its application to arbitrary systems (Section 3.3), and a scheme for
overcoming two photon absorption (2PA) of the STED pulse (Section 3.4). The experimental
setup (Section 3.5) and results (Section 3.6) are then discussed for super-resolution imaging
of conjugated polymer nanoparticles of poly(2,5-di(hexyloxy)cyanoterephthalylidene) (CN-
PPV). The successful demonstration of this method of preparing sub-diffraction excitation
volumes in naturally luminescent systems lays the foundation for local measurements of ex-
citon dynamics and migration, on their native scales. In particular, the extension of this
method to perform direct and local measurements of exciton migration in conjugated poly-
mers will be explored in Chapter 4.

3.2 Background on STED Microscopy

3.2.1 Introduction to Stimulated Emission Depletion Microscopy

Stimulated emission depletion (STED) microscopy is a super-resolution fluorescence imag-
ing technique developed by Stefan Hell.[135] STED is typically performed in a confocal mi-
croscope and achieves super-resolution by first exciting a diffraction limited distribution of
chromophores with an excitation (pump) pulse, then driving stimulated emission with an
annular depletion pulse (see Figure 3.1). This depletion pulse (or STED pulse) is sufficiently
intense to drive the stimulated emission in the sample to saturation everywhere except near
the center of the annulus, where the field goes to zero. The remaining excitation volume, after
depletion, is confined to an area that can be vanishingly small and depends on the intensity
of the STED pulse used.[137] This method of creating sub-diffraction excitation volumes in
fluorescent materials has been predominately applied to biological imaging applications, by
dye labeling samples with one of the chromophores demonstrated to work with STED.[206–
208] The resolution enhancement achieved by STED, and other super-resolution methods,
has enabled a revolution in biological imaging and garnered a Noble prize in chemistry in
2014.[129, 130]

Below we will consider the theory and practical considerations of STED microscopy
in more detail including the kinetics of stimulated emission depletion (Section 3.2.2), the
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Figure 3.1: Schematics of important concepts in STED microscopy in-
cluding: a) the beam modes and confined volume, b) energy levels for
stimulated emission, c) typical wavelength of the pump and STED pulses
relative to the sample absorption and emission, d) the resolution of the
confined volume vs STED intensity.

creation and characterization of the annular STED beam mode (Section 3.2.3), the effects
of the STED polarization (Section 3.2.3.3), the theoretical resolution of STED microscopy
(Section 3.2.4), and a brief overview of the practical limitations (Section 3.2.5) which are
discussed in more detail in Section 3.3.

3.2.2 The Kinetics of Stimulated Emission Depletion

The kinetics of the stimulated emission depletion process are essentially the same as
those in a laser. The system can be modeled with 4 levels, a ground and vibrational excited
state in each of the ground and excited electronic levels, as shown in Figure 3.2a. An
impulsive excitation drives the gg-ev transition creating a population in the excited state.
This population then undergoes rapid vibrational relaxation in the excited state to eg. The
stimulated emission field then strongly drives the eg-gv transition, creating an equilibrium
between these levels. The field is left on long enough for the eg-gv equilibruim population
to decay to level gg through the ground state vibrational relaxation. If the excited state
vibrational relaxation is fast, the system can be simplified to a three level picture as in
Figure 3.2b.
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Figure 3.2: Level diagrams for STED: a) Full 4-level system, b) simplified
3-level system for impulsive excitation and fast excited state vibrational
relaxation

To visualize the kinetics, we can write the rate equations for the 4-level system:

dNev

dt
= kpumpNgg − kvib∗Nev

dNeg

dt
= −kstedNeg + kstedNgv + kvib∗Nev

dNgv

dt
= kstedNeg − kstedNgv − kvibNgv

dNgg

dt
= −kpumpNgg − kvibNgv.

(3.1)

The time dependence of the field is encapsulated in the rate of the stimulated processes,
kpump and ksted as[22]

ki = Biρi(t), i = pump or sted, (3.2)

where B is the Einstein coefficient and ρ describes the field. Now we can numerically
propagate the kinetics with small time steps, δt:

Nev(t+ ∆t) = Nev(t) + [kpumpNgg − kvib∗Nev] ∆t

Neg(t+ ∆t) = Neg(t) + [−kstedNeg + kstedNgv + kvib∗Nev] ∆t

Ngv(t+ ∆t) = Ngv(t) + [kstedNeg − kstedNgv − kvibNgv] ∆t

Ngg(t+ ∆t) = Ngg(t) + [−kpumpNgg − kvibNgv] ∆t

(3.3)

The results are summarized in Figure 3.3. Note that the STED pulse is typically delayed
from the pump to allow for the excited state vibrational relaxation and that the eg and gv
populations are forced to equilibrium by the STED field and decay together on the time scale
of the ground state vibrational relaxation, so that the STED pulse must be long compared
to the ground state vibrational relaxation to optimize the quenching of the excited state.
This effect implies a practical limitation on the time resolution of an experiment, due to
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Figure 3.3: Kinetics of STED in a 4-level system

the required duration of the STED pulse. Since vibrational relaxation in solids is on the
order of picoseconds,[25] an effective STED pulse can not typically be shorter than 10’s of
picoseconds, and is usually close to nanoseconds in duration.[206]

Now we will assume that the first two steps are impulsive and that the system starts in
level eg, so that we can simplify our picture to the 3-level system in Figure 3.2b. Then if we
approximate the STED pulse as a square wave, we can solve the system analytically for the
duration of the pulse to find the excited state population remaining after the application of
the STED pulse. First, the kinetic equations are written in matrix form,

dNeg
dt

dNgv
dt

dNgg
dt

 =


−ksted ksted 0

ksted −ksted − kvib 0

0 kvib 0



Neg

Ngv

Ngg

 . (3.4)

Then we can define

A =


Neg

Ngv

Ngg

 K =


−ksted ksted 0

ksted −ksted − kvib 0

0 kvib 0

 Ai =


Neg(0)

Ngv(0)

Ngg(0)

 (3.5)
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and write the equation in a simple differential form.

dA

dt
= KA (3.6)

The solution to this system of equations can be found by first solving for the eigenvectors and
eigenvalues of the rate constant matrix, K. Let P be the matrix of eigenvectors, where the
columns of P are the eigenvectors, and Λ be the matrix of negative eigenvalues, where the
diagonal holds the negative eigenvalues and there are no off-diagonal terms. Then equation
3.6 can be solved using the following expression:[190]

A = PeΛtP−1Ai. (3.7)

It is important to verify that P−1KP = Λ. One thing to note about this expression is that
the quantity eΛt needs to be a diagonal matrix with zeros in the off diagonal elements. If
using MatLab’s “eig” function to find the eigenvectors and eigenvalues, Λ is reported as a
2D matrix with zeros for the off diagonal terms. If the exponential is then applied to this
2D Λ matrix the off diagonal terms will be ones, not zeros. The “diag” function can be used
to correct for this with the following expression:

diag(exp(diag(Λ)t)).

Equation 3.7 can be solved analytically in a program like Mathematica or numerically in
MatLab. The main result we are interested in is the final population in the excited state
level eg, which is,

Neg(ton) = Neg(0)
e−

1
2

(Keff+2ksted+kvib)ton((1 + eKeff ton)Keff + (eKeff ton − 1)kvib)

2Keff

(3.8)

where Keff =
√

4k2
sted + k2

vib, ton is the duration of the STED pulse square wave, and Neg(ton)
is the population remaining in the excited state after the STED pulse finishes. Since we have
assumed in this analysis that the STED pulse is a square wave, the rate ksted is now a constant
that is proportional to the intensity of the field. We can therefore plot Neg(ton) vs ksted to see
how the system responds to different STED intensities, shown if Figure 3.4. As you can see,
there is a saturation in the response of the excited state population to increasing intensity
for a given pulse duration, and that saturation occurs at different excited state populations
for the various pulse durations. It is this non-linear saturation in the sample that allows
STED to achieve sub-diffraction resolution. To see why, we will have to examine the spatial
variation of the STED intensity and how it combines with this saturation effect to determine
the resolution of a STED image.

3.2.3 The Phase Mask and STED Beam Mode

The transverse spatial mode of the STED pulse plays a critical role in determining the
final resolution of the image, and the formation of the correct mode is one of the most
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Figure 3.4: Excited state (eg) population vs STED intensity for several
STED pulse durations, assuming a square wave STED pulse. The rate of
vibrational relaxation was chosen to be 0.1 ps−1 for this plot.

challenging experimental aspects of STED microscopy. As such, care should be taken to
understand the principles that determine the shape and quality of the STED point spread
function (PSF).

3.2.3.1 The Phase Mask

The shape of the STED PSF depends not only on the mode of the beam, but also on the
wavefront, which is a surface depicting the phase of the field as a function of location in the
beam mode. The shape of the STED pulse PSF is essentially an intentional aberration. It is
formed by using a phase mask to impart a specific wavefront (phase pattern), onto the beam.
Since the STED PSF is formed by a particular wavefront pattern, it is easily distorted by
additional wavefront errors, which are introduced by imperfection in optical surfaces, over-
tightening of optics mounts, misalignment of imaging systems, and non-ideal lenses. To form
a high quality STED PSF the beam incident on the mask should, therefore, start with as
flat a wavefront as possible (constant phase across the mode), any optics in the beam line
should be as smooth as possible (preferably λ

10
wavefront error), and the microscope must

be well aligned. The phase mask used to produce the STED PSF is a helical phase ramp
from 0 to 2π phase delay, as shown in Figure 3.5. When this wavefront is imprinted on the
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Figure 3.5: Vortex phase mask with phase delay varying from 0 (white)
to 2π (black).

beam the center has all phases simultaneously, so the only solution to Maxwell’s equations
is for there to be zero amplitude at this position. In addition, points in opposing positions
relative to the central null are out of phase and thus destructively interfere when the beam
is focused, maintaining the central null. The desired phase delay is achieved by carefully
depositing a polymer with different thicknesses for the different phase delays desired.

3.2.3.2 The STED Beam Mode

If we start with a Gaussian beam with a flat wavefront and imprint the wavefront de-
scribed by the phase mask in Figure 3.5, we can calculate the resulting far field beam mode,
as shown in Figure 3.6. The central zero shows up very quickly, with a set of surrounding
fringes. Also note that the beam is not collimated after the phase mask. This is because it
diffracts off the phase anomaly in the center of the phase mask.

Figure 3.6: The simulated beam mode of an initial Gaussian beam passing
through the vortex phase mask. Positions shown are (a) in the plane of
the phase mask, (b) 0.5 m after the phase mask, (c) 1 m after phase mask,
and (d) 2.5 m after phase mask. Each plot corresponds to 1 cm per side.
For reference, the distance between the phase mask and sample in our
experiment is ∼ 2 m.
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Additionally, the actual phase delay imparted to the beam depends on the thickness of
the polymer, its index of refraction, and the wavelength of light used. Thus the phase mask is
only a true 0 to 2π phase ramp for a particular wavelength. If there is a mismatch between
the design wavelength and the wavelength used, the phase will not be stitched together
properly at the thickness discontinuity and the beam will diffract off this edge. This can be
seen in the far field as a dark line extending from the center of the STED pulse in a given
direction. Usually a few diffraction fringes will also be visible. A simulation of this effect is
shown in Figure 3.7.

Figure 3.7: The simulated beam mode 1 m after the phase mask for (a)
a phase mask match to the wavelength of the field and (b) a phase mask
that only achieves a 0 to 1.6π phase ramp due to a mismatch between the
design wavelength and the field. Plots correspond to 1 cm per side.

The fringes surrounding the main ring of intensity merge at sufficient distance from the
phase mask, as shown in Figure 3.8, or if the beam is focused, as shown in Figure 3.9.

Figure 3.8: The simulated beam mode of an initial Gaussian beam passing
through the vortex phase mask. Positions shown are, a) 5 m after the
phase mask, b) 10 m after the phase mask, c) 20 m after phase mask, d) 30
m after phase mask. Each plot corresponds to 2 cm per side. For reference,
the distance between the phase mask and sample in our experiment is ∼ 2
m.
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Figure 3.9: The simulated PSF of a focused STED beam with a 50 mm
lens placed 1 m after the phase mask. Showing slices of a) xy for a 25×25
µm area and b) xz for a 25×500 µm area.

The far field, or focused, beam mode created by the proper phase mask, when properly
centered on the Gaussian mode, is typically considered to be a Laguerre-Guassian distribu-
tion for l = 1, p = 0:[209]

El,p(r, φ, z) =
CLG
lp

w(z)

(
r
√

2

w(z)

)|l|
exp

(
− r2

w2(z)

)
L|l|p

[
2r2

w2(z)

]
exp

(
−ik r2

2R(z)

)
exp(ilφ) exp(−ikz) exp(iΦ(z)).

(3.9)

CLG
lp is a normalization constant and

w(z) = wo

√
1 +

(
z

zR

)2

(3.10)

is the beam waist. In the focus, z = 0 so w(0) = wo. Here, zR is the Rayleigh range,

zR =
πw2

o

λ
, (3.11)

R(z) is the radius of curvature, which goes to infinity in the focus,

R(z) = z

[
1 +

(zR
z

)2
]
, (3.12)

and Φ(z) is the Gouy phase shift,

Φ(z) = (|l|+ 2p+ 1) arctan

(
z

zR

)
(3.13)

which is zero in the focus. Finally Llp are the generalized Laguerre polynomials. The STED
pulse corresponds to l = 1, p = 0, so we only need to know the corresponding term,

Lα0 (x) = 1. (3.14)
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Now substituting everything back in, we find an expression for the field:

E1,0(r, φ, 0) = Ar exp

(
− r

2

w2
o

)
exp(iφ). (3.15)

The corresponding intensity distribution is the square of the field:

I(r, φ) α r2 exp

(
−2r2

w2
o

)
. (3.16)

Comparisons of this functional form to the calculated far field beam mode and focused PSF
are shown in Figure 3.10.

Figure 3.10: Comparison of the Laguerre-Gaussian distribution (red) to
a) the calculated STED beam mode at 10 m after the phase mask, and
b) the calculated PSF in the focal plane of a 50 mm lens places 1 m after
the phase mask.

3.2.3.3 Polarization Effects

While the phase mask alone will produce a central null in the beam in the far field, it isn’t
enough to guarantee there will be near zero central intensity in the focus of the microscope.
This is because of how the microscope objectives distort polarized light. When a ray of light
passes through a lens, it is bent toward the optical axis. Since the polarization vector is
orthogonal to the ray it gains a tilt in (x, y, z). This effect is most dramatic for high NA
lenses like objectives, where the rays are bent at steep angles. This means that for a linearly
polarized beam, the z component of the polarization will not cancel perfectly in the center
of the STED pulse. In order for the z component of the field to cancel the beam must be
circularly polarized with the same handedness as the phase mask, as shown in Figure 3.11.
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Figure 3.11: Simulations of the focus of a STED pulse with linear, right
hand circular, and left hand circular polarization through a 2 mm focal
length ideal lens. This simulation is based on simple geometric rays and
interference.

This effect is more completely described by the electric field vector in the focal plane in
the case of a high NA lens, which can be expressed as[210]

E(R,ψ, z) =
i

λ

∫∫
Ω

A1(θ, φ)A2(θ)A3(θ, φ) exp(itφ) exp [−ikR sin θ cos(φ− ψ)]

exp(−ikz cos θ) a(θ, φ) sin θdθdφ

(3.17)

where E(R,ψ, z) is the electric field in the focal plane, λ is the wavelength in the medium,
k = 2π/λ, θ is the angle between the optical axis and a given ray, and φ is the azimuth
angle. The integral is over the solid angle Ω defined by φ ε[0 − 2π] and θ ε[0 − θmax], such
thatNA = n sin(θmax). A1 is the amplitude distribution in the back aperture of the objective,
for a first order Laguerre-Gaussian beam,

A1(θ, φ) = r(θ) exp

(
−r

2(θ)

ω2
o

)
. (3.18)

A2 is called the apodization factor, which for an aplanatic objective is:

A2(θ) =
√

cos(θ). (3.19)

A3 is a function that describes the aberrations in the imaging system, which we will neglect
to see the ideal case. Finally a(θ, φ) is the polarization vector for a given ray propagating
towards the focus. Recombining these terms yield,

E(R,ψ, 0) =
i

λ

∫∫
Ω

r(θ) exp

(
−r

2(θ)

w2
o

)√
cos(θ) exp(iφ) exp [−ikR sin θ cos(φ− ψ)]

a(θ, φ) sin θdθdφ,

(3.20)

for the field in the focal plane. Now consider the central point in the focal plane, where the
null should be:

E(0, 0, 0) =
i

λ

∫∫
Ω

r(θ) exp

(
−r

2(θ)

w2
o

)√
cos(θ) exp(iφ) a(θ, φ) sin θdθdφ. (3.21)
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If we could neglect the polarization a(θ, φ), the integral over φ would vanish. So we will
need to carefully consider the polarization to determine the quality of the null. The polar-
ization vectors in the collimated STED beam are summarized in Figure 3.12 under different
polarization conditions.

Figure 3.12: Polarization vectors for a collimated STED beam after pass-
ing through a right handed phase mask.

When the STED beam is focused through the objective, polarization vectors that point
inwards will gain a −z component, while vectors that point outwards will gain a +z com-
ponent. The cases that have symmetric polarization vectors where all vectors point either
inwards or outwards will produce strong fields in z. In order to preserve the central null in
the STED pulse, there needs to be a balance between the positive and negative z compo-
nents. This is achieved for circularly polarized light with the same handedness as the phase
mask (in this case right handed). Figure 3.13 shows the x− z projections of the polarization
vectors after passing through an objective with NA = 1.4. It is therefore important to
ensure that the polarization of the STED field is as close to perfectly circularly polarized in
the back focal plane of the objective as possible. This can be achieved by mounting a high
quality achromatic λ/4 waveplate behind the objective on a kinematic (x, y) rotation stage.
The orientation of this waveplate can then be set by monitoring the power transmitted by
a rotating polarizer (driven by a small motor) placed down stream. The fluctuations in
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transmitted intensity should be minimized by adjusting the rotation and (x, y) tilt of the
waveplate to ensure circular polarization of the STED field.

Figure 3.13: Polarization vectors for a focusing STED beam after passing
through a right handed phase mask and a NA=1.4 objective.

3.2.4 Theoretic Resolution of STED Microscopy

Now that we have defined the shape and kinetics of the STED pulse we can determine
the resolution that can be achieved. The spatial distribution of excitations remaining after
the STED pulse can be calculated by combining the kinetics in Equation 3.3 with the spatial
variation of the field we derived in Equation 3.16 to describe the spatial component of ksted
and assuming a Gaussian in time. The pump can be treated as a Gaussian in both space and
time. The shape of the distribution depends on both the intensity of the STED pulse and its
duration. When the duration of the STED pulse is large compared to 1

kvib
the distribution

can be reasonably approximated as a Gaussian whose full width half max (FWHM) is a
function of the STED intensity. This relationship has the following functional form:[137]

FWHM =
λ

2n sin θ
√

1 + ISTED
Isat

. (3.22)
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Figure 3.14: Simulation (black) of the FWHM of the final excited state
population distribution as a function of the intensity of the STED pulse
with a fit to the functional form in Equation 3.22 (red). The intensity axis
is in the arbitrary units of the simulation.

Figure 3.14 shows a plot of the simulated FWHM of the final distribution as a function of
the STED intensity (black) with an overlay of a fit to the functional form in Equation 3.22
(red).

3.2.5 Practical Limitation

In practice, the actual resolution of a STED image is limited by several factors. The
central null or “zero” in the center of the STED pulse is never perfect and the field intensity in
this region is typically on the order of ∼1-2% of the maximum intensity. The imperfection in
the “zero” results in some quenching of the excitation in the center of the pulse, which limits
the maximum STED intensity that can be used before sacrificing signal/noise. An additional
limitation on the STED intensity is the damage threshold of the sample. The STED intensity
can not be arbitrarily increased without causing thermal damage or even ablating the sample.
There are also spectral considerations, such as the wavelength of the STED pulse. Any
overlap with the absorption profile will prevent quenching and likely cause damage. However,
the STED pulse must also have significant overlap with the emission profile to efficiently drive
stimulated emission. As a result, STED is most effective on samples with large Stokes shifts.
Finally, the excitation must remain in a bright state with a reasonable transition dipole for
emission. If, for example, triplets were formed, then stimulated emission would no longer
be efficient. The need to satisfy all these requirements has resulted in a limited number
of STED compatible fluorescent dyes.[206]. These effects will be further explored in the
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following section.

3.3 Limitations of Traditional STED for Arbitrary

Chromophores

Far-field super-resolution fluorescence imaging has become very prominent, in particular
in bioimaging, where molecules of interest are fluorescently labeled so that their nanoscale or-
ganization can be determined. Whether employing structured illumination microscopy,[134]
stochastic photoactivated approaches,[131–133, 211] or stimulated emission depletion (STED)
imaging,[137] care is generally taken in selecting the fluorescent labels used. In particular, in
STED microscopy, though some efforts employ luminescent inorganic nanoparticles,[212–216]
the fluorescent labels are typically small and rigid π-conjugated dye molecules that are com-
paratively resistant to photobleaching and that have been selected based on whether their
photophysical properties are empirically found to be compatible with stimulated emission
depletion.[206, 217] Fluorophores with high triplet, photoisomerization, or other photochem-
istry yields, fluorophores prone to photodamage, and especially fluorophores that permit
absorption of the annular STED quenching laser wavelength on account of a limited Stokes
shift or lingering red absorption tail are generally incompatible with STED microscopy. In
addition to linear absorption of the STED laser pulse, two-photon absorption (2PA), which
is a prominent second-order process in π-conjugated organic molecules[218, 219] and solid
materials,[220] can also prevent appropriate levels of stimulated emission depletion. More-
over, the inflexibility of working with endogenous chromophores in naturally luminescent
materials and the requirements for well-behaved fluorescent labels in super-resolution imag-
ing together present severe challenges toward optically characterizing naturally luminescent
materials on the nanoscale.

3.3.1 Damage Thresholds

The method for achieving high resolution described in Section 3.2 relies on the use of
strong fields to drive the sample even at the inner regions of the STED pulse, where the field
is weak, to saturation. This means that the peak intensities need to be very high in order to
achieve the best resolution. For this reason, the record STED resolutions of < 3 nm, have
been reported for materials like N-V diamond centers,[221] which are extremely robust to
high electric fields. Most materials, however, will be damaged by the field intensities required
to make such small spots. So in practice the resolution is limited by the damage threshold of
the sample. Most STED images of organic materials have been limited to resolutions around
40-80 nm for this reason.[206]

There are many pathways for a material to be damaged by a focused laser beam.[222] The
three most relevant mechanisms for this work are photo-bleaching, thermal build-up, and
ablation. Many organic materials are easily oxidized after excitation, which causes photo-
bleaching of the chromophores in the sample.[223] This can be mostly avoided by keeping
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the sample under N2 or another inert atmosphere. Thermal damage is most common for
high repetition rate (100 kHz or MHz) laser systems, or for materials with poor thermal
conductivity. If the time delay between pulses is on the same order as or faster than thermal
diffusion, even very low pulse energies will cause a build up in thermal energy near the
focus, until an equilibrium with thermal diffusion is reached.[224] These thermal effects can
be mitigated by raster scanning the sample between several points of interest, allowing each
one enough time for the thermal energy to dissipate before returning to a given location.
Finally, if the pulse energy is extremely high the sample may be ablated.[225] The intense
electric field can ionize electrons from the material and then accelerate them to speeds where
their collisions cause additional ionization events. This process forms a plasma on the sample,
which will rapidly expand, removing material.[226] This phenomena is commonly utilized in
industry to perform laser milling of fine features.[227, 228] The only way to mitigate this
effect is to reduce the peak pulse power by either reducing the pulse energy, or by stretching
the pulse in time.

3.3.2 Spectral Requirements

The wavelength and bandwidth of the STED pulse, relative to the absorption and emis-
sion profiles of the material, also impact the efficiency of stimulated emission deletion. The
biggest spectral concern is direct absorption of the STED pulse.[216] If the STED pulse has
any overlap with the absorption profile, the intense field will cause a lot of excitation and
heating. These additional excitations could outcompete any stimulated emission, and the
heat load resulting could damage the sample. There must also, however, be some spectral
overlap with the emission profile. The STED pulse works by stimulating emission through a
normal fluorescent pathway, and requires sufficient oscillator strength at the frequency of the
STED pulse. As a result, STED requires a large Stokes shift in the fluorescence, so there can
be good STED bandwidth overlap with the emission profile while simultaneously avoiding
spectral overlap with the absorption profile.[229] Another spectral concern is strong excited
state absorption features at the STED frequency. Just like overlap with the ground state
absorption profile, overlap with the excited state absorption profile should also be minimized
to avoid sample heating and competition with the STED transition. The magnitude of this
contribution is, however, unclear. We do in fact see some excited state absorption in our
samples at the STED wavelength, but it does not significantly hinder the stimulated emission
process.

3.3.3 Excited State Dynamics

Since STED relies on the ability to stimulate emission from the sample, any excited
state dynamics that prevent access to this pathway will interfere with STED. For example,
if there is fast intersystem crossing to a triplet state the STED beam will not be able to
drive stimulated emission because the transition to the ground state is forbidden. There are
some workarounds for this problem, such as T-rex STED.[230] The excited state vibrational
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relaxation should also be fast, since this is the pathway that populates the level that the
STED pulse is stimulating. If this relaxation is slow the STED pulse will be ineffective at
early times and will either need to be stretched or delayed in time until the majority of the
excited state population has vibrationally relaxed. The ground state vibrational relaxation
rate is also critical and should be as fast as possible. Recall from Section 3.2.2 that the STED
pulse drives an equilibrium between the ground and exited states, and it is the ground state
vibrational relaxation that causes this equilibrium population to subsequently decay. If the
ground state vibrational relaxation is slow, the STED pulse will remove only ∼50% of the
population from the excited state, because the strong field drives an equilibrium between
stimulated emission and absorption on the driven transition. For this reason, the STED
pulse duration must be long compared to the ground state vibrational relaxation lifetime.
In combination with the advantages in avoiding damage, this has led to the common use of
very long e.g, 1 ns duration STED pulses.[206]

3.3.4 Two Photon Absorption

Another potential problem with the strong fields used in STED is two photon absorption
(2PA). 2PA is a non-linear process that depends on the square of the intensity and occurs for
wavelengths below the band edge. STED microscopy employs considerable laser intensities
to induce adequate stimulated emission, yet it is precisely at these high intensities that 2PA
can become a competing factor that may dominate the stimulated emission process.[231, 232]
Since the STED pulse provides very strong fields below the band edge, 2PA is a pathway for
the STED pulse to create excitations in the material even when there is no direct overlap
with the absorption profile. This can pose a significant hurdle to achieving sub-diffraction
resolution.

3.3.5 Labeling Density

Due to the effects mentioned above, there is typically some STED-induced fluorescent
background in the image.[216] This reduces the contrast that can be achieved and is related
to the number of additional chromophores overlapped with the STED pulse when a given
chromophore, in the center of the pulse, is being imaged. This effect is commonly mitigated
by limiting the labeling density in the sample, so that there aren’t too many chromophores
in a given area. This effect must also be balanced with the need for sufficient labeling density
to resolve the image features to be studied.

3.3.6 Typical Characteristics of STED Samples

For all of these reasons, STED has most commonly and successfully been applied to
samples that can be sparsely labeled with a dye from the growing, but limited, list of those
shown to work with STED.[206] This has largely included biological samples, where much
effort has been put into labeling techniques. It also means that the possible application of
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STED to more complex systems with densely packed endogenous chromophores has remained
largely unexplored.

3.3.7 Consequences for STED in Conjugated Polymers

In the context of the above limitations, the densely packed endogenous chromophores
in a conjugated polymer solid would not appear to be well suited for STED microscopy.
Conjugated polymers are oxygen sensitive and will quickly photo-bleach under excitation in
air. Samples must therefore be encapsulated in a nitrogen glove box to seal out any oxygen.
As with all dielectric materials, conjugated polymers are also sensitive to high intensity
fields and can be damaged by thermal buildup and/or ablation. To avoid these effects,
samples must be raster scanned to allow individual locations to rest and thermally equilibrate
between measurements, and the STED pulse must be stretched to a sufficient duration to
avoid overly high peak intensities. The large Stokes shift in conjugated polymers is beneficial,
but care must still be taken to select the wavelength and bandwidth of the STED pulse to
simultaneously minimize spectral overlap with the absorption profile, minimize the typically
strong 2PA in conjugated polymers, and maximize the spectral overlap with the emission
profile. The strong 2PA and the photobleaching of the sample can both be mitigated, at the
expense of time resolution, by extending the duration of the STED pulse. If time resolution is
desired, as will become important in Chapter 4, care must be taken to find a pulse duration
that balances these effects. In spite of these challenges, we will show in Section 3.6 that
STED microscopy can be successfully extended to conjugated polymer solids. This advance
is largely due to a carefully considered modulation scheme which eliminates the contribution
of 2PA from the signal, as outlined in the following section.

3.4 Overcoming 2PA in STED Microscopy

The strong effect of 2PA in conjugated polymers presents a significant challenge to achiev-
ing super-resolution. The large STED-induced fluorescent background must be removed from
the signal to isolate the pump-induced contribution. This process is similar to the case of
transient absorption, where the small change in the probe transmission induced by the pump
must be isolated from the large linear transmission of the sample. In the case of transient
absorption, as outlined in Chapter 2, an optical chopper is used to modulate the pump pulse
and a lock-in amplifier isolates the change in the probe intensity at the corresponding fre-
quency. This approach fails here due to the pile-up effect in single photon counting detectors,
as outlined below. A correction can, however, be applied to regain an analogous signal to a
lock-in output, through post processing.
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3.4.1 The Pile-up Effect in Single Photon Detectors

To collect sample fluorescence, we use a one of a kind single photon counting avalanche
photodiode (SPAD) that can be gated on in < 200 ps for reasons that will become evident
in Chapter 4. Single photon detectors, like the SPAD that we use, have a “dead time” after
a detection event.[233] When a photon is detected by our SPAD it triggers an avalanche of
charge that needs to be replenished before the detector regains sensitivity. This time scale
is ∼50 ns for most detectors. We actually program our detector to be held in an off state for
300 ns after a detection event to avoid some signal artifacts that can show up for short hold
off times, such as after-pulses. This creates a 300 ns window after a detection event in which
the detector is off. Since typical fluorescent lifetimes are on the order of 1 ns, there will be at
most one photon detected per excitation laser pulse. If multiple fluorescent photons hit the
detector due to sample excitation by a given excitation pulse, at most one will be recorded.
This means it is not possible to detect a count rate higher than the repetition rate of the
laser (200 kHz in our case). This effect introduces a non-linearity in the response of the
detector to incident photons. This is a well known effect in single photon counting detectors
and is referred to as the “pile-up” effect.[233, 234] This effect is illustrated in Figure 3.15.

Figure 3.15: Pile-up effect in single photon counting detectors. The square
wave indicates the excitation pulse train and the stars are photons incident
on the detector. The first photon is detected while photons reaching the
detector during the resulting dead time are not.

3.4.2 Derivation of the Pile-up Correction

In order to correct for the pile-up effect, we need to understand the probability that
multiple photons reach the detector from a given excitation pulse. This probability is gov-
erned by Poisson statistics, which say that if on average µ uncorrelated events are observed
per time period, then the probability that n events are observed in a given time period is
described by the Poisson distribution,[233]

P (n, µ) =
µn

n!
e−µ. (3.23)

The single photon counting detector gives a binary response: either n = 0 or n > 0. We can
therefore construct the probability that no photons are detected (n = 0) as one minus the
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ratio of the actually detected count rate to the repetition rate,

P (0, µ) = 1− raw count rate

repetition rate
= e−µ. (3.24)

Then we can solve for the average,

µ = − ln

(
1− raw count rate

repetition rate

)
. (3.25)

This is the average number of photons incident on the detector from a single excitation pulse,
so to convert back to a corrected count rate that describes the rate at which photons actually
hit the detector even if they weren’t detected, we just multiply by the repetition rate.

Corrected Count Rate = − ln

(
1− raw count rate

repetition rate

)
× (repetition rate). (3.26)

This simple correction can be used to dramatically extend the linear response of the detector.
An example of an actual correction we performed is shown in Figure 3.16a.

3.4.3 Modulation and Pile-up Correction to Remove the 2PA
Background

The fluorescence that is induced by the STED pulse through 2PA needs to be removed
so that the pump fluorescence can be isolated.[216] Typically this kind of process of isolating
a signal from a background level can be achieved by modulated the signal and only looking
at the component that changes with the correct frequency. This is often achieved with
a lock-in amplifier. In this case, however, lock-in amplification fails to isolate the pump
induced fluorescence due to the pile-up effect on the detector. This is essentially due to the
non-linearity that the pile-up effect creates, but it can be understood statistically as well.
Consider a constant pump signal where one pump-induced photon reaches the detector in
each duty cycle. If there is an increasing STED induced fluorescent background then as the
number of STED induced photons reaching the detector increases, the probability that the
one photon that is detected is the pump induced photon is diminishing. So the lock-in signal
will decrease as the amplitude of the STED induced fluorescence background increases.

This effect can be overcome by incorporating the pile-up correction with the pump mod-
ulation scheme. The problem is that the pile-up correction needs to be performed indepen-
dently for both chopper phases (open and closed) to return both to a linear response regime
before a subtraction can be performed to remove the background. This is achieved by sending
the chopper phase reference to the computer so that photon detection events can be binned
appropriately in software analysis. The pile-up correction can then be applied, according to
Equation 3.26, to both channels, excitation pulse on and off. To yield the isolated count rate
of pump-induced fluorescence we compute the difference between the two. This method is
not truly analogous to lock-in amplification as it does not use a true frequency filter, but it
works well to remove the STED-induced background due to 2PA (Figure 3.16b).
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Figure 3.16: Demonstration of the performance of the pile-up correction
and modulation. a) Linearity of the detector response. Measured count
rate, collected from the reflection of the pump pulse off a coverslip in the
sample plane, vs the pulse energy with (red) and without (black) the pile-
up correction. b) Isolation of pump-induced fluorescence. The variation
in the measured pump-induced count rate, for a constant pump pulse
energy, as a function of the count rate of the STED-induced background
with (red) and without (black) the pile-up correction.

3.5 STED Microscopy Experimental Setup

A schematic of the experimental setup for STED imaging is shown in Figure 3.17, with a
list of part numbers provided in Table A.1. We use a PHAROS laser from Light Conversion,
which is a yitterbium-doped potassium gadolinium tungstate (Yb:KGd(WO4)2) regenera-
tively amplified laser, which produces 230 fs pulses at 200 kHz with 50µJ/pulse and 10
W average power. The PHAROS is used to pump two ORPHEPUS-N non-colinear optical
parametric amplifiers (NOPAs), also from Light Conversion. The NOPA that produces the
pump beam uses the third harmonic (3H) of the fundamental and has a tuning range be-
tween 440 and 960 nm. The NOPA that produces our STED pulse uses the second harmonic
(2H) of the fundamental and has a tuning range between 650 and 900 nm, with an optional
second harmonic of the signal stage to reach 325 to 450 nm as well. The 2H NOPA also
has glass wedges that can be translated in and out of the white light beam to control the
dispersion in the white light before amplification, which allow the amplified bandwidth to
be tuned. For the experiments presented here, the 3H NOPA generated our pump pulse at
540 nm with 20 nm bandwidth. Typical powers out of the NOPA were around 50 mW or
250 nJ/pulse. The 2H NOPA generated our STED pulse at 740 nm with 14 nm bandwidth.
Typical powers out of the NOPA were 190 mW or 950 nJ/pulse. Both beams are greatly
attenuated before reaching the sample.
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The pump pulse is collimated and then fiber coupled into a single mode polarization
maintaining fiber with a 10 mm focal length achromatic lens. The fiber output is collimated
with a 10×/0.3NA objective. The power of the beam is then controlled by focusing through
a liquid crystal noise eater, which attenuates the power and reduces power fluctuations.
The power out of the noise eater is further reduced by a waveplate/polarizer pair and an
absorptive neutral density filter. The transmitted beam is then optically chopped with a
Newport chopper, then telescoped by a factor of 2 with 75 and 150 mm achromatic lenses to
increase the beam diameter in order to overfill the back aperture of the microscope objective.
The beam is then coupled into the microscope with a dichroic mirror from Chroma.

The STED pulse is collimated out of the 2H-NOPA and then passed through a grating
stretcher (Clark-MXR, Inc.) in order to extend the duration of the pulse. We use this
grating stretcher in place of the long (∼75-100 m) fibers found in other STED setups be-
cause our excitation and STED beams originate from a single source, and the required path
length in the pump line to match the time delay to the sample would be impractical in
this configuration. The polarization is then rotated to 45◦ with a waveplate/polarizer pair,
which also allows for power adjustment if needed. The beam is then split with a polarizing
beam splitter cube into two lines. One of these lines is passed through a folded delay stage
with a retroreflector, while the other is passed through matching stationary optics. Both
lines pass through motorized waveplates and shutters before being recombined in a second
polarization beam splitting cube. Note that only the beam on the stationary optics was
used in the work presented here; the need for the second STED line will become apparent
in Chapter 4. The beam is then coupled into a single mode polarization maintaining fiber
with a 10 mm achromatic lens. For maximum coupling efficiency, it is important to match
the beam diameter and focusing lens to the mode field diameter in the optical fiber. There
will be losses if the NA of the lens is either too high or low. The fiber output is collimated
with a 10×/0.3NA objective, which is necessary to minimize the induced wavefront error.
Achromatic lenses in this position were found to induce spherical aberrations, and parabolic
reflectors of sufficient wavefront flatness could not be sourced. The beam is then passed
through a vortex phase mask and waveplate/polarizer pair to control the beam power. The
phase mask is mounted in a 6” kinematic mirror mount, with (x, y) linear stages, to allow
the phase mask to be properly centered on the beam mode, and the back reflection aligned
upstream to ensure a 0◦ angle of incidence. The beam is then expanded by a factor of 2.14
with 35 and 75 mm achromatic lenses. Note that this telescope was not present for data
collection for the work in this chapter, but was added to the setup for the work in Chapter 4.
The beam is then coupled into the microscope with a dichroic mirror from Chroma. Finally,
just before the objective, the beams are sent through a λ

4
waveplate (Tower Optics 4505-

0190 A-25.4-B-.250-N4) which makes the STED pulse circularly polarized with handedness
matched to the phase mask. This waveplate is held in a kinematic rotation stage so that the
angle of incidence can be adjusted to optimize the circularity of the STED field.

The microscope has two routing mirrors and a 45◦ vertical mirror to direct the beams
up into the 63×1.4NA Plan Apo Leica objective (HC PL APO 63x/1.40 oil CS2, Leica
Material #11506350). The objective is held in a custom mount (see Figure A.1) on a
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Newport XYZ stage. The sample is held in a PI Nano scanning piezo stage (P-545.3C7),
supported by four adjustable height pedestals and custom brackets (see Figure A.2). There
is also a 20×/0.7NA top objective held on a custom mount (see Figure A.3) with a spacer
(see Figure A.4) on a Newport linear translation stage. Above the top objective is a white
light LED for widefield illumination, to aid in focusing and to image the sample region
of interest. Images, reflections, or fluorescence are collected through the bottom objective
and transmitted through the dichroic routing mirrors for the pump and STED pulses, then
either imaged on a camera for widefield, or focused onto a single photon counting avalanche
photodiode (SPAD) (Prof. Alberto Tosi, SPAD lab, Politecnico di Milano; PicoQuant)[235,
236] through optional filters.

The motion of the Newport motorized stages is controlled with a Newport motion con-
troller (XPS-Q8). The SPAD is gated with a Picosecond Delayer (MPD) and has a ∼ 200
ps rise time. The gate delay, “on time”, and subsequent hold off period can all be controlled
through computer interfaces. For imaging, the gate delay is set to gate on just after the
STED pulse interacts with the sample. Typical values for the gate duration and hold off
time are 20 ns and 300 ns, respectively. The counts from the SPAD can either be sent to a Pi-
coQuant PicoHarp 300 for time correlated single photon counting (TCSPC) or sent through
a home built inverting amplification circuit (see Section A.3) to a counting card on our data
acquisition card (DAQ) (National Instruments PCIe-6321 with BNC-2090A breakout board).
The DAQ is also sent a reference signal from the chopper at twice the modulation frequency,
which is used to trigger acquisitions of the SPAD counts and bin them according to the
chopper phase. This enables the pile-up correction and background subtraction discussed in
Section 3.4.
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Figure 3.17: Schematic of the experimental setup. A reference table of
part numbers is shown in Table A.1

3.6 Imaging CN-PPV Nanoparticles with STED

Microscopy

3.6.1 Results for CN-PPV Nanoparticles

In spite of the challenges discussed in Section 3.3, we demonstrate that subdiffraction
resolution in STED microscopy can be achieved on materials with endogenous, electroni-
cally coupled chromophores.[205] We image luminescent conjugated polymer nanoparticles
of the polyphenylenevinylene derivative poly(2,5-di(hexyloxy)cyanoterephthalylidene) (CN-
PPV) with 90 nm resolution. This work is enabled by the important adaption that we
employ to circumvent 2PA-induced fluorescence from the STED laser pulse, discussed in
Section 3.4. We envision that this advance will open up the possibility to employ previously
discarded labels in bioimaging. It will also importantly enable direct imaging of solution
processed luminescent optoelectronic materials on the subdiffraction scales characteristic of
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their structural heterogeneities, which can disproportionately determine the limits on their
functionality.

Figure 3.18: a) Absorption (gray) and emission (black) spectra for CN-
PPV solids with the excitation wavelength (green), STED wavelength
(red), and collection band-pass (gray). b) Schematic of direct excitation
by the pump pulse (green) and 2PA and stimulated emission for the STED
pulse (red). c) Normalized time correlated single photon counting (TC-
SPC) fluorescent lifetime of CN-PPV solids when excited directly by the
pump (green) or through 2PA by the STED pulse (red), with an overlay of
the approximate STED pulse duration (black). The unique shape of the
lifetime when excited by the STED pulse is due to the balance between
2PA and stimulated emission. d) Schematic of the modulation scheme
used to isolate the pump-induced signal.

In this study, we focus on CN-PPV solids prepared as nanoparticles.[237] Each CN-PPV
particle is composed of one or more aggregated polymer chains. As shown in Figure 3.18a, in
the solid phase CN-PPV has a broad absorption spectrum, extending from the ultraviolet to
a peak absorption wavelength at 480 nm, and tailing off around 600 nm. Its fluorescence is
peaked around 625 nm. We therefore use wavelengths of 540 nm for the excitation laser pulse
and 740 nm for STED depletion pulse. We find that 2PA at the STED laser pulse wavelength
indeed occurs, as evidenced by a super-linear power dependence in the low power limit
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(Figure 3.19). Furthermore, we measure 2PA-induced fluorescence in our 610-640 nm imaging
detection window, approximately 300 meV higher in energy than the STED laser photons
(Figure 3.18a). The material’s electronic energy levels and corresponding transitions that
are relevant to performing STED microscopy are presented in Figure 3.18b. The excitation
laser (green) couples the ground and excited states in a diffraction-limited spot; the STED
laser (red) drives an electronic transition on the Stokes-shifted line to deplete the excited
state in a spatially dependent manner to achieve super-resolution.[137] Also illustrated is
the 2PA of the STED photons whose excitations presumably thermalize to the same excited
state as those generated through linear resonant absorption of the excitation laser.

Figure 3.19: Power dependence of the STED-induced fluorescence, show-
ing the characteristic super-linear dependence of 2PA for very low and
moderate STED intensities.

The time resolved fluorescence of the CN-PPV is depicted in Figure 3.18c, along with
the STED laser pulse temporal profile (black curve). When induced by the excitation laser
at 540 nm (green), the transient follows a typical biexponential fluorescence decay.[238]
More unusually, when induced by the STED laser pulse at 740 nm (red), the fluorescence
intensity rises abruptly with the onset of the nonlinear 2PA and then also falls abruptly
with the onset of stimulated emission. The shape of this decay curve primarily depends on
the time-dependent competition between 2PA and stimulated emission,[231] as mirrored in
simulations of the system (Figure 3.20).

To prepare the CN-PPV nanoparticles, a ∼ 0.005% (w/v) solution of CN-PPV in tetrahy-
drofuran (THF) was made in a nitrogen glovebox. A 0.2 mL aliquot of the 0.005% CN-PPV
in THF solution was quickly added to 0.8 mL of ultrapure water while the water was ul-
trasonicated. This solution was drop cast onto microscope coverslips and allowed to dry
overnight in air. Once dry, residual oxygen and water were removed from the sample in the
antechamber of a nitrogen glovebox and the samples were then encapsulated in the glove-
box using UV cure epoxy (EPO-TEK, OG159-2). A representative absorbance spectrum of a
CN-PPV film was acquired with a UVvis spectrophotometer (Agilent Cary 100); fluorescence
spectra of CN-PPV nanoparticles encapsulated on a glass slide were obtained with a Horiba
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Figure 3.20: Simulation of the competition between 2PA and stimulated
emission yielding an approximation of the observed fluorescence liftime
lineshape in Figure 3.18c.

Fluoromax-4 fluorimeter at an excitation wavelength of 540 nm. Images were obtained in a
home-built epifluorescence microscope described in Section 3.5. The sample was rastered in
steps of 10 nm over a 2 µm x 2 µm area with a dwell time of 50 ms/pixel to form an image.
At each pixel, epifluorescence is collected between 610 and 640 nm through our dichroics
(Chroma T650spxr and T600lpxr-UF2) and two emission filters (ChromaET625/30m) and
focused onto our fast gated SPAD detector to eliminate prompt fluorescence. We phase
lock the detection to the optical chopper cycle and separately accumulate the photon count
rates during the corresponding “excitation-on” and “excitation-off” phases for multiple cy-
cles. The count rates obtained during the open and closed cycles of the chopper are each
corrected for the classic pile-up effect with a simple Poisson correction factor before we take
the difference of the two to isolate the count rate that is attributed to the modulated ex-
citation pulse only (see Section 3.4). Fluorescence lifetime measurements were performed
in the microscope with the fast-gated SPAD with a HydraHarp 400 (PicoQuant) using an
excitation pulse energy of 0.22 pJ or a STED pulse energy of 370 pJ.

To image solids of CN-PPV, we modify traditional STED microscopy in the apparatus
discussed in Section 3.5. We excite the samples with a pulse energy of 0.16 pJ at 540 nm
and we follow this few-picosecond, diffraction-limited excitation with a 120 ps duration, 570
pJ, annular Laguerre-Gauss mode STED pulse (Figure 3.18b) tuned to the red edge of the
CN-PPV fluorescence emission peak, 740 nm, in order to stimulate emission everywhere but
in the subdiffraction center of the original excitation spot via nonlinear saturation. Because
we operate the microscope with NOPAs pumped with a 200 kHz repetition rate PHAROS
ultrafast regenerative amplified laser, we are able to carefully tune, control, and optimize
many experimental parameters, including pulse wavelengths, bandwidths, duration, and rel-
ative delays. Also, in contrast with common STED microscopes, to eliminate the effects of
absorption of the STED laser, we modulate the excitation pulse intensity at 500 Hz and
separately record on a single photon avalanche diode (SPAD) the fluorescence counts during
the “excitation-on” and “excitation-off” phases of the modulation cycle (Figure 3.18d), as
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discussed in Section 3.4. This modulation scheme enables us to specifically select for fluores-
cence induced by the modulated excitation pulse when forming an image in order to obtain
superior contrast. Lastly, time-gated detection has been used to improve spatial resolution
by eliminating fluorescence collection from the diffraction-limited excitation volume prior to
the onset of stimulated emission.[239, 240] Here, our time-gated detection, with an extremely
rapid 200 ps turn-on time,[235, 236] furthermore, eliminates early time fluorescence induced
by the diffraction-limited excitation and STED pulses.

Figure 3.21: Images of CN-PPV nanoparticle clusters with a) excitation
only, b) modulated excitation with STED, c) unmodulated excitation with
STED, d) STED only.

Using the above scheme, we image clusters of nanoparticles composed of solution-processed
CN-PPV. The images in Figure 3.21 reveal that our adaptation of STED microscopy suc-
cessfully addresses the challenges of 2PA of the STED laser. Using the excitation pulse only
(Figure 3.21a), the particles within individual clusters are not at all resolved, whereas the
addition of the time-gated STED pulse, along with excitation modulation, reveals multiple
features within each cluster with an approximately 3-fold improvement in resolution (Figure
3.21b). Even with time gating, without the excitation modulation, the background intensity
is both higher and nonuniform (Figure 3.21c). This deficiency occurs because 2PA-induced
fluorescence due to the roughly micron-sized STED laser spot (Figure 3.21d) cannot be dis-
tinguished from the desired unquenched excitation-pulse-induced fluorescence originating in
the subdiffraction volume centered on the null of the STED lasers Laguerre-Gauss mode.
The problem is more clearly visualized in the line scans presented in Figure 3.23.

We also established the dependence of the spatial resolution on the STED pulse intensity
(Figure 3.22c) by imaging the individual bead boxed in the bottom left corner of Figure 3.22b
at multiple STED laser intensities and by measuring and plotting the width of the nanopar-
ticle feature in these successive measurements. Similar to typical STED experiments,[241]
the feature size drops and then saturates at approximately 90 nm.

To analyze the impact that modulating the excitation pulse has on image formation and
quality, we present in Figure 3.23 line scans across the STED image of the nanoparticles in
Figure 3.22b (black) and compare them to the corresponding line scans obtained without
modulation (gray). The locations of these line scans are indicated with dashed lines enumer-
ated i and ii in Figure 3.22b. Because, at the 500 Hz modulation frequency, we separately
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Figure 3.22: Images of CN-PPV nanoparticle clusters with a) excitation
only and b) modulated excitation with STED. c) Resolution of the image
as a function of STED intensity, measured as the full width half max of
the boxed feature in b).

record the fluorescence counts at a given pixel while the excitation pulse illuminates the
sample and while it does not, the gray traces in Figure 3.23 are straightforward to extract
from the data set that generates a modulated STED image (Figure 3.21). The unmodulated
gray trace in Figure 3.23a (section along i in Figure 3.22b) shows an apparent rise to a
plateau around 200 nm, whereas only the modulated (black) trace shows that there is an
isolated feature centered at approximately ∼300 nm. Overall, the unmodulated “baseline” of
detected STED-induced fluorescence is not uniform, making it impossible to quantitatively
compare features to one another. Figure 3.23b (section along ii in Figure 3.22b) reveals an
unmodulated baseline amplitude greater than the size of the feature at ∼1100 nm riding
on top of it. Furthermore, the relative extent of the dip between the two features at the
far right appears significantly deeper in the unmodulated gray trace than in the modulated
trace. In both cases, the nonuniform unmodulated background levels represent imaging ar-
tifacts that, without the ability to compare to the modulated line scans, can be mistaken for
features themselves or can distort the relative size of real features. These imaging artifacts
arise because the unmodulated, STED-induced fluorescence background level at any given
pixel is proportional to the density of other nanoparticles illuminated by the off-axis portion
of the large (>1 µm diameter) transverse mode of the STED laser pulse[216] (Figure 3.24).
Clearly, without excitation modulation the ability to resolve small features is also heavily
compromised.

3.6.2 Discussion on STED Imaging of CN-PPV Nanoparticles

The modulated STED image in Figure 3.22b illustrates the ability to perform super-
resolved far-field fluorescence imaging on materials with densely packed endogenous chro-
mophores that have not previously been accessible in this way. Furthermore, when imaging
a material that is able to fluoresce as a result of STED illumination alone, modulating the
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Figure 3.23: Normalized linescans from the modulated (black) and un-
modulated (gray) images. Locations of the linescans are shown if Figure
3.22b.

Figure 3.24: Experimentally observed point spread functions of the a)
STED pulse and b) pump pulse.

excitation pulse significantly improves the image contrast. To explain how and why we have
successfully super-resolved materials with photophysical properties that are generally con-
sidered to be nonideal for STED microscopy, we discuss the physics underlying the contrast
and resolution that we have achieved. First, we consider the increased complexity of STED
imaging specifically using organic chromophores for which nonlinear 2PA competes with lin-
ear stimulated emission at the STED laser pulse wavelength. Our results reveal that the time
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dependence of the competition of these two processes with different intensity dependences
can limit the effects of 2PA. In other words, the STED pulse temporal profile ensures that
stimulated emission can persist at intensities at which 2PA is waning in order to quench a
significant fraction of the 2PA-induced fluorescence, as illustrated in Figures 3.18c and 3.20.
The monotonically decreasing and saturating behavior of the resolution curve obtained in
Figure 3.22c also demonstrates that stimulated emission still dominates 2PA even at the
highest peak pulse intensities. Because this quenching of 2PA-induced fluorescence occurs
over and is limited to the course of the ∼120 ps STED pulse duration, fast gated detection
on a similar time scale[235, 236] enables us to suppress a significant fraction of 2PA-induced
fluorescent photons from being detected. Although the line scans in Figure 3.23 illustrate
that even gated detection is imperfect, our straightforward excitation pulse modulation fur-
ther selects for fluorescence induced by the excitation pulse only, in order to significantly
improve image contrast.

The minimum CN-PPV nanoparticle feature size of 90 nm that we have observed at a
maximum STED intensity in Figure 3.22c could be limited by the feature size, excitation
modulation rate, sample heating, possible exciton annihilation effects,[242] an imperfect null
in the Laguerre-Gauss mode of the STED pulse, or by the inherent spatial resolution of
the microscope. For nanoparticles larger than the typical exciton diffusion lengths of several
nanometers measured in related PPV materials[101, 243, 244] it is possible that the electronic
coupling in the material also limits the ultimate resolution. Additional temporal stretching of
the STED pulse to decrease its peak intensity could further mitigate 2PA and enable higher
fluences and potentially higher spatial resolution to be achieved. Note that in Chapter 4 we
demonstrate an improved resolution of 70 nm after expanding the STED beam diameter to
over fill the back aperture of the objective. Nevertheless, the ability to image heterogeneities
in solution-cast, functional optoelectronic materials using their endogenous chromophores
even at the scale of ∼100 nm will be of significant utility because many of their features
that are smeared out at the diffraction limit are able to be resolved on this subdiffraction
scale.

3.7 Conclusions for Extending STED Microscopy to

Conjugated Polymer Solids

In summary, we have demonstrated that it is possible to perform subdiffraction STED
fluorescence imaging of electronically coupled materials as a result of and in spite of their
densely packed endogenous chromophores. We have shown that excitation modulation aids
in eliminating the challenges of STED laser 2PA, and we anticipate that our findings can
be generalized to the large class of organic chromophores that exhibit 2PA so that STED
imaging may be performed on a much wider range of materials than originally demonstrated
or anticipated. These materials could include dyes not currently considered to be compatible
with STED or other super-resolution fluorescence approaches, photosynthetic membranes,
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or other autofluorescent biomaterials. In fact, the extremely bright conjugated polymer
nanoparticles employed in this study could even be used as labels in super-resolution imaging
applications. Moreover, our findings open up the possibility to image the subdiffraction
heterogeneities in solution-processed solid optoelectronic materials composed of π-conjugated
molecules or even of colloidal nanocrystals. This avenue could reveal directly how these
heterogeneities not only affect such a materials local optical properties but also how they
affect the materials macroscopic electronic properties that determine its functional potential.
Lastly, although 2PA could be reduced by increasing the duration of the STED laser pulse,
our shorter pulse duration and similarly fast gated detection will be shown in Chapter 4 to
enable a scheme to resolve ultrafast energy transport[59, 60] in similar electronically coupled
materials on the nanometer scales that no longer average over their heterogeneities. Such a
scheme should be a significant improvement over bulk approaches used to measure exciton
migration[14, 75, 85, 245, 246] that cannot currently explain which trajectories an excitation
might favor as a function of specific features of the film morphology.
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Chapter 4

Time Resolved Ultrafast Stimulated
Emission Depletion: Exciton
Migration in Conjugated Polymers

4.1 Introduction

The successful adaptation of STED microscopy to the conjugated polymer CN-PPV, as
demonstrated in the previous chapter, has the potential to enable super-resolved studies of
exciton migration in conjugated polymers on length scales near to the characteristic scale of
heterogeneity. Exciton migration is an important process in many opto-electronic systems,
especially in natural and artificial light harvesting, where the transfer of optical excitations
to reaction centers or p-n junctions is a critical step in energy conversion.[28, 52] In photosyn-
thetic systems, the migration of excitations to reaction centers may be nearly 100% efficient,
but the design principles enabling efficient transport in these complex and disordered sys-
tems have remained elusive.[247–250] Conversely, the performance of organic photovoltaics
has been limited by the short range, 5-20 nm,[14] of exciton migration in organic semicon-
ducting polymers.[14, 52] There has been considerable effort to understand the origin of these
limited migration lengths, but the development of a complete physical picture of the migra-
tion process has been limited by the difficulty of measuring exciton migration and making
correlations to the local material substructure. Representative measures of exciton migration
in organic semiconductors, have been challenging because of the mismatch between exciton
diffusion lengths (5-20 nm)[14] and the optical diffraction limit. Common methods aim
to address this challenge by growing thin films that abruptly terminate at quenching sub-
strates, then studying the photoluminescence quenching as a function of film thickness.[65–
79] These physical boundaries, however, inevitably alter the spatioenergetic landscape for
migration[80] and the experiments average over large areas, precluding any correlation to
the local substructure that determines the diffusion length. Recently, an elegant new ap-
proach was demonstrated that removes the need for a quenching boundary by utilizing high
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precision time dependent measurements of the emission volume to enable detection of small
changes in the exciton distribution, with diffraction limited focal volumes.[59, 60] Here, we
present a method to surmount both the diffraction limit and the need for physical quench-
ing boundaries by instead defining quenching boundaries all-optically with sub-diffraction
resolution. This approach allows us to characterize spatiotemporal exciton migration on its
native nanometer and picosecond scales, without disturbing the semiconductor morphology.

This chapter presents a new method for exciton migration measurements in organic semi-
conducting polymers, based on an adaptation of STED microscopy, and its successful appli-
cation to CN-PPV thin films. This method of time-resolved ultrafast stimulated emission
depletion (TRUSTED) utilizes the enhanced spatial confinement of the excited state popula-
tion to more directly track the spatial and temporal evolution of the exciton distribution over
its lifetime. The motivation for this method and the conceptual framework for its operation
will be introduced (Section 4.2), followed by a discussion of the appropriate normalization
conditions to isolate the contribution of migration in the signal, and practical considera-
tions regarding the experimental implementation (Section 4.3). Kinetic simulations are also
presented, verifying that the outlined normalization conditions isolate the migration com-
ponent in the signal (Section 4.4). Experimental results are presented for the application
of this new method to thin films of CN-PPV, and a fitting routine is then constructed to
extract the exciton diffusion length (Ld) from the data, which is found to be Ld = 16 ± 2
nm (Sections 4.5 and 4.6). Finally, Monte Carlo simulations of incoherent exciton hopping
between lattice sites are performed as a model of the migration process in conjugated poly-
mers, to elucidate the nature of the spatioenergetic landscape that underlies the relatively
long migration length in CN-PPV (Section 4.7). Based of our analysis of the results and
simulations, we determine the exciton migration in CN-PPV to be approximately diffusive
because site-specific broadening is comparable to inhomogeneous broadening, thereby lever-
aging a long, 5-ns, exciton lifetime to yield a relatively long migration length.[251] We also
draw general conclusions, beyond CN-PPV, about how energetic and spectral parameters
determine the extent and character of migration in the incoherent hopping regime.

The sub-diffraction spatial resolution of our new approach will enable previously unattain-
able correlations of local material microstructure and the resulting nature and extent of exci-
ton migration, providing an additional level of insight into structure/function relationships in
electronically-coupled materials used for energy transport and transduction, applicable not
only to organic semiconductors used in photovoltaics or light-emitting devices but also to
explaining why natural photosynthesis exhibits the most exemplary exciton migration.

4.2 The TRUSTED Concept

4.2.1 Traditional Exciton Migration Measurements

To measure the migration of excitons, their initial and final positions over the course of
their lifetime must be determined. In an ideal case, a single exciton would be created in a
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well-defined initial position, and then its change in position would be recorded over time.
There are, however, several challenges with realizing this experimentally. First, excitons are
optical excitations so their initial position can only be dictated down to the diffraction limit
(∼ 200 nm). Second, it is not clear how to read out the position of the exciton at a given
time. The primary optical signature of excitons is their fluorescence, which again can not be
localized below the diffraction limit. This is problematic since the length scale of migration
is typically on the order of 5-20 nm.[14] Therefore, with diffraction limited optics, migration
appears as a small perturbation to the population distribution. The most prominent method
for addressing this issue has been the use of bilayer photoluminescence quenching (PLQ),[65–
79] although there are alternative approaches, such as spectrally resolved photoluminescence
quenching,[85–90] fluorescence volume quenching,[91–97] microwave conductivity,[81–84] ex-
citon annihilation,[71, 87, 98–107] and the direct imaging of the photoluminescence distribu-
tion[59, 60], as discussed in Section 1.2.6.1. Bilayer PLQ experiments, the most commonly
used method of measuring exciton migration in conjugated polymers, measure the degree of
quenching achieved in films of varying thickness grown over a quenching substrate, and all
but one of the alternative methods depend on the dynamics of exciton quenching. For a thin
film in a bilayer PLQ experiment, all excitons are able to migrate to the interface and are
quenched, but as the thickness of the film is increased there are some excitons that fail to
reach the interface, due to the limited migration length, and survive to generate fluorescence
signals. A length scale for migration can then be derived by carefully studying the photo-
luminescence quenching as a function of film thickness. The disadvantage of this technique
is that it averages over a large area of a film, and it uses information from multiple films
prepared under different conditions for different thicknesses, which can perturb the struc-
ture.[14] The result thus represents an average over many types of possible morphologies.
Additionally, there can be issues with excitons being quenched by the interface even when
they have not yet reached the boundary, which complicates the analysis.[80] The alterna-
tive techniques also have challenges for application to conjugated polymer films: spectrally
resolved PLQ is typically only compatible with materials with long diffusion lengths like
molecular crystals, in fluorescence volume quenching the embedded dopants may phase sep-
arate or alter the electronic structure of the material, microwave conductivity measurements
use the same sample geometry as bilayer PLQ and faces the same challenges, exciton annihi-
lation requires high intensity resonant fields that may damage samples, and direct imaging
of the photoluminescence distribution lacks the spatial resolution to identify heterogeneity
in conjugated polymers, as do the other techniques.

4.2.2 The STED Pulse as an Optical Quenching Boundary

Our experiments replace the physical quenching boundary in previous work with an
optical quenching boundary generated by the STED pulse. This technique has the distinct
advantage of making the boundary tunable and transient. Since the quenching boundary
is generated by an optical field, its location, shape, intensity, duration, and timing can be
controlled. Additionally, the field may be blocked to perform a normalization in the absence
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of a boundary. Furthermore, all this can be done at a single location within a single film,
near the characteristic scales of exciton migration and structural heterogeneity.

4.2.3 Schematic for the Adaption of STED Microscopy for
TRUSTED

As demonstrated in Chapter 3, STED microscopy can be successfully adapted to create
sub-diffraction excitation volumes in conjugated polymer solids. This method creates a
sub-diffraction initial condition, but this pulse sequence (pump pulse plus STED pulse), is
insufficient to measure migration. Determining the length and time scale of migration also
requires knowledge of the position of the excitons as a function of the migration time. To
achieve this, a second STED pulse (STED2) is added to the pulse sequence at a controlled
time delay after the initial STED pulse (STED1). This second STED pulse generates the
optical quenching boundary for migration measurements. The length and time scale of
exciton migration can then be determined by observing the degree of fluorescence quenching
achieved by the second STED pulse as a function of the delay time between the initial
condition (STED1) and the application of the quenching boundary (STED2). The amount
of quenching should increase as a function of the delay time as excitons migrate further away
from the initially prepared excitation volume. This technique can therefore determine the
exciton migration length in a well-defined location in a single film of a conjugated polymer,
with sensitivity to the in-plane component of migration, as opposed to the out of plane
component of migration that is measured in traditional PLQ. A schematic of the pulse
sequence and the expected response of the exciton population distribution is shown in Figure
4.1.

4.2.4 Origin of the Sensitivity to Migration

To better illustrate the origin of the sensitivity to migration enabled by the pulse se-
quence described above, consider the processes outlined in Figure 4.1 in more detail. The
initial excited state population, frame 1 of Figure 4.1, is a diffraction limited Gaussian dis-
tribution determined by the focal volume of the pump pulse. The action of the STED1
pulse is to quench the excitons in regions where the STED field is sufficiently intense to
drive the stimulated emission depletion process, as described in Section 3.2. As a result,
the excitons around the periphery of the initial distribution are quenched, while those near
the central null of the STED pulse survive. This pulse sequence creates a sub-diffraction
limited distribution of excitons, which defines the excitation volume, frame 2 of Figure 4.1.
This confined exciton distribution then expands over the delay time due to the action of
migration, frame 3 of Figure 4.1. For example, under diffusive migration, the variance of the
distribution expands linearly in time, as shown in Section 1.2.6.1. The second STED pulse
(STED2) acts on the exciton distribution in the same way as the STED1 pulse, applying
a radially dependent quenching probability, where excitons at radial positions with higher



CHAPTER 4. TIME RESOLVED ULTRAFAST STIMULATED EMISSION
DEPLETION: EXCITON MIGRATION IN CONJUGATED POLYMERS 94

Figure 4.1: Schematic of the TRUSTED pulse sequence and the antic-
ipated evolution of the excited state population, with 1) excitation, 2)
STED1 confines the excitation volume, 3) variable time delay for migra-
tion, 4) STED2 preferentially quenches exciton at larger radii and defines
the detection volume, the interior region that remains unquenched, 5)
fluorescence is detected from the remaining population.

STED intensities are preferentially quenched, defining the detection volume from which flu-
orescence will be collected, frame 4 of Figure 4.1. Thus, the fraction of the population that
is quenched by STED2 depends on the physical extent of the excitation distribution at the
time the STED2 pulse is applied, and its overlap with the STED2 pulse PSF. The fraction
of excitons quenched by STED2 will thus increase with increasing delay time between the
STED1 and STED2 pulses as the exciton distribution progressively expands due to the action
of migration (see Figure 4.2). The time dependence of the standard deviation of the exciton
distribution can then be extracted by building a fitting algorithm to model this trend, and
it can be related to the diffusion length Ld as described in Section 1.2.6.1.

4.3 Isolation of the Migration Signal: Experimental

Concerns and Normalization Conditions

As discussed in the previous section, the TRUSTED pulse sequence provides a local mea-
surement of the extent of migration, where the extent of migration determines the fraction
of the population quenched by the STED2 pulse at each delay time, however, before pre-
senting the experimental results we must find the proper normalization conditions to isolate
the migration signal in the data and consider how to eliminate the effects of any additional
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Figure 4.2: An illustration of how the overlap of STED2 cross-section pro-
file (red) and the exciton distribution cross-section profile (grey) changes
over the time delay, due to diffusive migration.

processes that could mimic the anticipated effects of migration.
The quantity that underlies the sensitivity to migration is the variation in the fraction of

the exciton population distribution quenched by the STED2 pulse for various delay times.
The detected raw signal, however, is the fluorescence of the excitons, so a detection scheme
and normalization condition are required to isolate the desired quantity. We determined
that the best method to extract the fraction of the exciton population quenched by the
STED2 pulse from the detected fluorescence involves two main factors. The first is to gate
the detector on just after the action of the STED2 pulse for each delay time, removing
sensitivity to any prior fluorescence. The second is to modulate the STED2 pulse, so that
the fluorescence intensity with and without the application of the the STED2 pulse, which
generates the optical quenching boundary, may be recorded. The respective detected fluo-
rescence levels are then proportional to the population of excitons in the sample with and
without the action of the optical quenching boundary, so that the fraction quenched by the
boundary can be extracted. This normalization eliminates the effects of fluorescence decay
due to exciton relaxation. Finally, rather than plotting the fraction of the exciton population
that is quenched, we instead choose to consider the fraction that survives, as we feel it is
better to plot the data in terms of the normalized detected fluorescence level. This ratio is
referred to as the “normalized detection volume fluorescence”.

normalized detection volume fluorescence =
detected fluorescence with STED2 on

detected fluorescence with STED2 off
(4.1)

This quantity represents the fraction of the population that survives the action of the STED2
pulse at a given delay time, which is directly related to the spatial overlap of the STED2



CHAPTER 4. TIME RESOLVED ULTRAFAST STIMULATED EMISSION
DEPLETION: EXCITON MIGRATION IN CONJUGATED POLYMERS 96

pulse PSF with the exciton population spatial distribution. Since the population distribution
expands as migration proceeds, the spatial overlap with the STED2 pulse PSF increases with
the extent of migration (see Figure 4.2). Thus, as migration proceeds, a smaller fraction of the
population distribution will survive the action of the STED2 pulse, causing the normalized
detection volume fluorescence to decrease for longer delay times.

Determining that the normalized detection volume fluorescence is the quantity that en-
codes the signatures of migration, and identifying the correct detection scheme and nor-
malization condition to isolate this quantity, was not trivial. There are several complicating
effects that had to be accounted for, and several simpler detection schemes were tested before
arriving at the method outlined above. For example, the time dependence of the fluorescence
decay due to increased overlap of the exciton distribution with the STED2 pulse PSF, caused
by migration, needs to be distinguished from the fluorescence decay due to the lifetime of the
excitons. The detection scheme outlined above was found to most successfully isolate these
signals. We will, however, discuss a few simpler detection schemes in Section 4.3.1 that were
initially considered, and why they failed, in order to highlight the need for the complexity
of the final detection scheme.

In addition to choosing the correct detection scheme and normalization, it is also im-
portant to consider any processes that could produce a trend in the normalized detection
volume fluorescence that could be mistaken as a signature of migration. If for instance,
the STED2 pulse quenching is more or less efficient at longer delay times, due to excited
state dynamics transferring excitons to an excited state energy level with a different Einstein
coefficient for stimulated emission, for example a triplet or charge transfer state, then this
variation in the effectiveness of the STED2 pulse would generate a trend in the normalized
detection volume fluorescence, obscuring the signal produced by migration. This effect is dis-
cussed in Section 4.3.2. It is also important that the exciton density be low enough to avoid
exciton-exciton annihilation, as this additional source of time dependent exciton quenching
would also produce a trend in the normalized detection volume fluorescence that could be
mistaken for migration. This effect is addressed in more detail in Section 4.3.3, followed by
an overview of the experimental pulse modulation scheme that is required in order to isolate
the signatures of migration in Section 4.3.4.

4.3.1 Detection Scheme to Normalize to the Fluorescence
Lifetime

The best detection scheme to isolate the desired normalized detection volume fluorescence
signal from the background fluorescence lifetime decay requires modulating the STED2 pulse
and scanning the detection gate trigger with the STED2 delay time. A time-gated detector
turns on just after the action of the STED2 pulse is complete, and it is scanned with the
delay time to maintain its timing relative to the STED2 pulse. Modulating the STED2
pulse at each delay time then provides a robust normalization for calculating the normalized
detection volume fluorescence. To illustrate the need for, and benefits of, this configuration,
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consider how the simpler options fail to fully normalize for the fluorescence lifetime.
One simpler detection scheme would be to integrate all of the fluorescence from the

sample, without any time-gate on the detector or with the gate trigger arriving before the
pump pulse, for each STED2 pulse delay time (see Figure 4.3), and to modulate the STED2
pulse on/off (unblocked/blocked) and divide the observed fluorescence intensities. In this
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Figure 4.3: Schematic of a simpler detection scheme that integrates the full
fluorescence emitted by the sample, but fails to normalize to the fluores-
cence lifetime. The top panel is the pulse sequence with pump (green) and
STED pulses (red). The middle panel shows the excited state population,
which is proportional to the instantaneous emission rate. The bottom
panel is the gate, triggered on at a fixed time before the pump/STED1
pulses and integrating over the entire fluorescence lifetime.

case, the ratio of the detected fluorescence intensities with and without the STED2 pulse
would tend to be smallest at short STED2 pulse delay times. For these short delay times,
the excited state population would be smaller over the majority of the integration time,
whereas the population would remain greater for longer delay times. This effect of increased
relative fluorescence with increasing delay time would compete with the effect of migration,
which would tend to decrease this ratio at longer delay times at which the exciton population
distribution has greater spatial overlap with the STED2 pulse PSF. The origin of this problem
is the detection of fluorescence from times before the action of the STED2 pulse. The origin
of this problems is the detection of fluorescence from times before the action of the STED2
pulse. The options to resolve this issue are to either time resolve the entire fluorescence trace
with time correlated single photon counting (TCSPC), where the arrival time of individual
photons, relative the time of excitation, is recorded with a single photon counting detector
and binned to build a histogram of arrival times that recreates the emission profile, or to
use a very fast time-gated detector to isolate the fluorescence emitted after the STED2 pulse
delay time.
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Unfortunately, the pile-up correction discussed in section 3.4, which we use to remove the
STED-induced fluorescent signal, is not compatible with TCSPC, since it only corrects for
the number of photons missed due to pile-up and can not assign arrival time values for these
photons. When using TCSPC the count rate must therefore be kept below 5% (ideally < 2%)
of the repetition rate to avoid pile-up, and successive traces must be taken with and without
the pump so that the STED-induced contribution can be subtracted off. This severely limits
the dynamic range available on the detector and the signal to noise ratio is not sufficient to
extract the small changes due to migration. These measurements, however, are still useful
for building an intuitive understanding of the experiment. Figure 4.4 shows the results of
such experiments, which clearly indicate the action of the first and second STED pulses as
sudden drops in the count rate. These traces are also very helpful in identifying the proper

Figure 4.4: Experimental data collected with TCSPC. The data for pump
on and off was subtracted to isolate the pump induced fluorescence. The
different curves correspond to different STED2 delay times (T2), and the
T2 = inf curve corresponds STED2 off (blocked).

normalization conditions to isolate the form of normalized detection volume fluorescence
desired, which would correspond to the fraction of the exciton population at a given delay
time that survives the action of the STED2 pulse. From Figure 4.4 it is clear that the proper
normalization condition would be to measure the fluorescence with a time-gated detection
selecting for emission events that occur after the STED2 pulse delay time, and to measure
the signal with and without the action of the STED2 pulse to find the percentage of the
population that survived the quenching of the STED2 pulse. In principle this could be
achieved with a fixed time-gate at long times (longer than the maximum STED2 pulse delay
time, ∼3 ns in this case), where the detector is always gated on at the same delay after
the excitation and where the STED2 pulse delay is scanned within the window between the
excitation and detection gate trigger (see Figure 4.5).

This would work well if the fluorescence decay were purely single exponential. Then
the cases with and without STED2 would be equivalent for times before the STED2 pulse
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Figure 4.5: Schematic of a possible experiment and detection scheme for
a time-gated detection at a constant delay after excitation. The colors
indicate the same traces as in Figure 4.3.

arrival (as always), and after the arrival of the STED2 pulse these two cases would lead to
a constant ratio between their respective signals. To illustrate this effect, suppose that A(t)
and B(t) are two exponential decays

A(t) = Ao exp−kt and B(t) = Bo exp−kt, (4.2)

with the same rate constant k, but with different initial amplitudes, Ao and Bo respectively,
representing the fluorescence decay after the delay time with (A) and without (B) the action
of the STED2 pulse. The ratio

A(t)

B(t)
=
Ao
Bo

(4.3)

is constant over the lifetime of the decay. This results in the normalized detection volume
fluorescence being preserved over the course of the additional time delay between the STED2
pulse and the detection gate when the STED2 pulse delay time is small. If the decay is not
a simple single exponential, however, then this relation breaks down. For this reason, it is
best to scan the delay of the detection gate trigger to maintain a constant delay beyond
the STED2 pulse, rather than a constant delay relative to the excitation, so that the gate
trigger occurs just after the action of the STED2 pulse is complete for all STED2 delay times,
and to integrate the fluorescence from that point onward (see Figure 4.6). This minimizes
the effect of any difference in decay characteristics between the cases with and without the
STED2 pulse. Scanning the gate trigger delay in sync with the STED2 pulse delay time also
requires that the STED2 pulse be modulated on and off for each delay in order to obtain all
the information needed to normalize for the fluorescence decay. In contrast to having a fixed
detection gate trigger, relative to the excitation, at long times, where a single measurement
without the STED2 pulse could be used to normalize the data for all the STED2 pulse
delays. For these reasons we converged upon using the detection scheme in Figure 4.6.
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Figure 4.6: Schematic of the implemented experiment and detection
scheme for a time-gated detection which is scanned insync with STED2
in delay. The colors indicate the same traces as in Figure 4.3.

Now we will move on to discuss how any variations in the efficiency of stimulated emission
depletion over the exciton lifetime and any exciton-exciton annihilation, could produce trends
in the normalized detection volume fluorescence that could be mistaken for migration, and
how we nevertheless control for these effects.

4.3.2 Time Dependence of the Stimulated Emission Depletion
Efficiency

Even with the correct detection scheme and normalization, it is also in principle possible
for there to be excited state dynamics that could transfer excitons to an excited state en-
ergy level with a different Einstein coefficient for stimulated emission, for example a triplet
or charge transfer state, which would alter the efficiency of the stimulated emission deple-
tion process. This variation in the effectiveness of the STED2 pulse over the delay time
would generate a trend in the normalized detection volume fluorescence, obscuring the sig-
nal produced by migration. If the STED pulse is sufficiently intense, however, operating
in a saturation regime, and if its duration is long compared to the vibrational relaxation,
then the degree of quenching should be relatively robust to small changes in the Einstein
coefficient for stimulated emission. Since the rate constant for stimulated emission and ab-
sorption induced by the STED2 pulse is given by the product of the Einstein coefficient and
the spectral energy density in the field, this effect would appear similar to a variation in the
STED2 pulse energy over the delay time, and would most likely produce a slight change in
the degree of confinement. This effect is very hard to fully remove by normalization, but we
can monitor the contribution of this effect by performing the experiment with the STED1
pulse blocked, as shown in Figure 4.22. In this case, the population is not confined to a small
volume but is dispersed over a large area, with a dramatically reduced gradient in its spatial
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distribution. Since the gradient of the distribution drives the observable change produced
by exciton migration, there is a negligible change in the extent of the distribution and any
change in the normalized detection volume fluorescence can be attributed to either some
small residual sensitivity to migration or to a change in the efficiency of the STED2 pulse
with delay time. To facilitate this comparison we therefore also modulate the STED1 pulse
in the experiment, so that this data can be simultaneously extracted. Fortunately, the result
(Figure 4.22) shows no dependence of the normalized detection volume fluorescence over
the delay time when the STED1 pulse is blocked. This confirms that the contribution from
time dependence in the stimulated emission depletion efficiency is negligible and highlights
the need for the confinement provided by the STED1 pulse in order to reveal the effects of
migration.

4.3.3 Exciton-Exciton Annihilation

Additionally, if the excitation density is too high, excitons can annihilate with each other
via singlet exciton annihilation.[71, 87, 98–107] In this process the energy of two S1 excitons
combines such that one occupies a higher energy state, Sn, and the other returns to the
ground state, S0. The high energy exciton then quickly thermalizes to the S1 state, so that
the net result is a density dependent quenching pathway whereby two excitons collide and
one is quenched. Since annihilation is a density dependent process, it has the most dramatic
effect near the center of the population distribution where the density is highest. Thus as
annihilation proceeds the spatial profile of the exciton distribution changes. This effect is
simple to model with the kinetic equation for annihilation,

dN

dt
= −γN2, (4.4)

where N represents the exciton population distribution as a function of both spatial po-
sition and time and γ is the annihilation coefficient. Numerically or analytically solving
this kinetic equation for an initial Gaussian spatial population distribution yields the curves
shown in Figure 4.7. As time evolves, the peak of the distribution is flattened by the action
of annihilation, while the periphery of the distribution, where the density is lower, remains
comparatively unaffected. Therefore, even though the distribution is not expanding spa-
tially, the fraction of the population quenched by the STED2 pulse will increase in time
as the percentage overlap with the STED2 pulse PSF increases, as shown in Figure 4.7,
causing a corresponding decrease in the “normalized detection volume fluorescence.” Thus,
annihilation can mimic the effects of migration, and we therefore take great care to ensure
the experiment is run at densities where annihilation is negligible (see Figure 4.23).

4.3.4 Modulation Scheme to Isolate Migration Signals

In order to implement the detection scheme and controls discussed above, we modulate
both of the STED pulses. The STED2 pulse modulation facilitates the normalization scheme
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Figure 4.7: An illustration of how the overlap of STED2 (red) and the
excited state population (grey) changes over time due to exciton annihi-
lation.

to remove the contribution of the fluorescence lifetime and the calculation of the normal-
ized detection volume fluorescence. The STED1 pulse modulation facilitates the control to
identify any variation in the efficiency of stimulated emission over the exciton lifetime. In
addition, as discussed in Section 3.4, the pump pulse must be modulated with an optical
chopper to remove the background signal from STED-induced fluorescence. This results in
3 modulations with 8 possible beam combinations, outlined in Table 4.1 and illustrated in
Figure 4.8, all of which are collected for each STED2 pulse delay time.

Name Pump STED1 STED2 Use
All 1 1 1

Data
Migration

STED1 + STED2 0 1 1
Pump + STED1 1 1 0

Normalization
STED1 only 0 1 0
Pump + STED2 1 0 1

Data
Control

STED2 only 0 0 1
pump only 1 0 0

Normalization
background 0 0 0

Table 4.1: Schematic of the modulation scheme for simultaneous acquisi-
tion of the normalization and control conditions, a 1 means the pulse is
incident on the sample and a 0 means the pulse is blocked.



CHAPTER 4. TIME RESOLVED ULTRAFAST STIMULATED EMISSION
DEPLETION: EXCITON MIGRATION IN CONJUGATED POLYMERS 103

Figure 4.8: Illustration of the modulation scheme.

4.4 Kinetic Simulations of TRUSTED: Verification of

Sensitivity to Migration

In order to verify that the normalization condition and modulation scheme presented
above do in fact isolate the signature of migration from the detected raw fluorescence, a
kinetic simulation of the experiment has been performed and analyzed. The experiment can
be simulated starting from the kinetics outlined in Equation 3.1, however, the populations
and optical fields must now be functions of both radial position and time. The STED field
must also now include the combined temporal dependence of both STED pulses. Additional
terms are also added to account for the migration and any other effects to be included, such
as fluorescence, annihilation, or 2PA. The resulting equations are,

dNev

dt
= Bpump ρpump (Ngg −Nev) + β ρ2

stedNgg − k∗vibNev

dNeg

dt
= Bsted ρsted (Ngv −Neg) + k∗vibNev − kfNeg − γN2

eg +D(t)∇2Neg

dNgv

dt
= Bsted ρsted (Neg −Ngv)− kvibNgv + kfNeg + γN2

eg −D(t)∇2Neg

dNgg

dt
= Bpump ρpump (Nev −Ngg)− β ρ2

stedNgg − kvibNgv

(4.5)

where Bpump is the Einstein coefficient of the transition driven by the pump field with spectral
energy density ρpump, Bsted is the Einstein coefficient of the transition driven by the STED
field with spectral energy density ρsted, kf is the rate constant for fluorescence, k∗vib is the
excited state vibrational relaxation rate, kvib is the ground state vibrational relaxation rate, β
is the 2PA coefficient, γ is the annihilation coefficient, D(t) is the time dependent diffusivity,
Nev, Neg, Ngv, and Ngg represent the spatially and time-dependent exciton populations in
the corresponding levels in Figure 3.2a, and ∇2 is the second derivative with respect to the
spatial coordinates, as in the diffusion equation.
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These equations must then be numerically propagated for all eight beam combinations
to be used in the experiment (pump, STED1, and STED2) each in both the blocked (off)
and unblocked (on) states. The excited state (Neg) population is then integrated over the
spatial coordinates for times after the detection gate is triggered, to calculate an analog of
the raw fluorescence signal on the detector. These signals are then analyzed, in analogy to
the experimentally collected data, as indicated in Table 4.1. The pump-induced fluorescence
is first isolated by subtracting the pump-off case from the pump-on case for each combination
of STED1 on/off and STED2 on/off. This should eliminate the contribution of the STED-
induced fluorescence. Then the normalized detection volume fluorescence is calculated from
the ratio of the case with the STED2 pulse on to the case with the STED2 pulse off, both
with the STED1 pulse on, to recover the normalized detection volume fluorescence,

normalized detection volume fluorescence =
[Pump, STED1, STED2]-[STED1, STED2]

[Pump, STED1]-[STED1]
(4.6)

where the pulses used in each case are indicated in the square brackets. The advantage of
the simulation is that each process may be independently controlled, isolated, or removed to
verify its effect on the calculated data.

To illustrate the kinetics in the simulation and experiment, an example of the calculated
evolution of the exciton population distribution over time is shown in Figure 4.9 for two
STED2 pulse delay times, and for the STED2 pulse on and off conditions. For the purposes
of this visualization, we simplified the kinetics by assuming the pump and excited state
vibrational relaxation are impulsive, so that the initial condition is a Gaussian spatial distri-
bution in level eg. The other parameters were set as follows: The Einstein coefficient of the
transition driven by the STED field was set to Bsted = 10 nm2/((energy a.u.) ps2) by trial in
combination with the amplitude A of the STED spectral energy density to produce a reason-
able degree of confinement, the 2PA coefficient was set to β = 0.1 nm6/((energy a.u.)2ps3)
and is not a sensitive parameter since the contribution of 2PA is removed in the analysis,
the annihilation coefficient was set to γ = 0 ps−1 to avoid the potential complication of
annihilation and visually highlight the effect of migration, the diffusivity was set to D(t) = 1
nm2/ps, which is likely a slight over estimate, but allows for a clear visualization of the
effects of migration, the rate constant for fluorescence was set to kf = 0.0002 ps−1 based on
the lifetime of CN-PPV,[251] the ground state vibrational relaxation was set to kvib = 0.05
ps−1, and is not a sensitive parameter as long as it is a fast process compared to the duration
of the STED pulse (∼ 120 ps). The STED1 field spectral energy density was defined as

ρsted1(r, t) = A1r
2 exp

(
− r2

2σ2
r

)
exp

(
− t2

2σ2
t

)
, (4.7)

where r is the radius, σr = 209.5 nm is the standard deviation in the radial dimension and
was set by comparison to the STED PSF, t is time, σt = 33 ps is the standard deviation in
time and was set to reproduce the ∼ 120 ps FWHM of the STED pulse, and A = 10 (energy
a.u.) ps/nm3 is the amplitude and was chosen by trial, in combination with Bsted to produce
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a reasonable degree of confinement. The STED2 field spectral energy density was

ρsted2(r, t) = Ar2 exp

(
− r2

2σ2
r

)
exp

(
−(t− t2)2

2σ2
t

)
, (4.8)

where t2 is the delay time of the STED2 pulse, and all other variable are the same as in
Equation 4.7. The total spectral energy density is

ρsted(r, t) = ρsted1(r, t) + ρsted2(r, t). (4.9)

Figures 4.9a,b show a short delay time (1 ns), while Figures 4.9c,d, have a longer delay
time (2 ns). The initial distribution (blue) is first acted on by the STED1 pulse, creating
a confined distribution. Migration is then allowed to proceed over the delay time (green),
during which the initially confined distribution expands. The STED2 pulse is then applied
(parts a,c) or not (parts b,d), and the detector is triggered to integrate the remaining signal
(red). The normalized detection volume fluorescence is the ratio of the area under the red
curves in Figure 4.9 a and b, for the short delay, and Figure 4.9 c and d, for the long delay.

These kinetic simulations were also used to determine whether the proposed detection
scheme and normalization should isolate the signatures of migration. First, as shown in
Figure 4.10a, when fluorescence is the only active process there is no observed change in the
calculated normalized detection volume fluorescence, however if diffusion is the only active
process, a change in the normalized detection volume fluorescence is observed, Figure 4.10b.
Additionally, if both fluorescence and diffusion are active, the observed normalized detection
volume fluorescence trend is identical to the diffusion only case, Figure 4.10c. These results
indicate that the fluorescence decay due to the the exciton lifetime does not contribute to
the normalized detection volume fluorescence trend. Finally, the potential challenge posed
by exciton-exciton annihilation is illustrated in Figure 4.10d, where annihilation is the only
active process and a change in the normalized detection volume fluorescence is observed,
which appears very similar to the trend created by migration, as predicted. This result
highlights the importance of verifying that the excitation densities used in the experiment
are in the linear regime, where annihilation is negligible. Note that we do not expect these
calculations to perfectly match any experimental results, in slope or intercept, as they were
not run with a degree of confinement matched to the experimental data and the parameters
are not identical to those found in a real material. They primarily serve to illustrate which
processes the experiment should be sensitive to by allowing the reader to visualize it.

4.5 Experimental Setup and Scan Operations

Before presenting the experimental results for CN-PPV, we will discuss the experimental
setup used to perform the measurements and some of the experimental details and hurdles
that were overcome. Specifically, in this section, we will discuss updates to the experimental
setup that were implemented after STED imaging work presented in Chapter 3, the method
used to stabilize the pump and STED pulse energies over the course of the experiment, and
the order in which the parameters are varied during data collection.
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Figure 4.9: Simulations of the exciton population distribution over the
course of the experiment. The initial population is shown in blue, the
population over the delay time is shown in green, and the population
during the detection gate is shown in red. a) short delay with STED2 on,
b) short delay time with STED2 off, c) long delay with STED2 on, d) long
delay with STED2 off. In each case the range on the position axis is 1 µm
and the range on the time axis is 3 ns.

4.5.1 Updates to the Experimental Setup

This experiment utilizes the same experimental setup as the STED imaging project pre-
sented in Chapter 3 and is illustrated in Figure 3.17. The interferometer in the STED line,
which wasn’t used in the imaging project, is designed to allow for the creation of the second
STED pulse with a controlled delay time. The STED1 pulse follows the arm of the STED
interferometer that has stationary optics, while the arm with the optical delay line is for
the STED2 pulse. It is important that the STED1 path optics are the same as those in
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Figure 4.10: Simulated normalized detection volume fluorescence, includ-
ing only the process of a) kf=1/5000 ps−1, b) D=0.08 nm2/ps, c) D=0.08
nm2/ps and kf=1/5000 ps−1, d) γ = 0.001.

the STED2 path so that when the beams are recombined they are in the same orientation
and can be overlapped to maintain the same transverse mode profile as found in the original
beam. If the optics are not matched, one of the beams may be a mirror image or inversion
of the other. This would result in different downstream fiber coupling conditions for the
two STED pulses (through the same fiber) and any upstream pointing fluctuations would
cause the spatially recombined beams to separate. Both of these effects are minimized by
matching the optics in the two lines. Additionally, a telescope was added to the STED line
for these experiments, just before the dichroic coupling mirror, which expands the STED
beam diameter to more completely fill the back aperture of the objective. The resulting
experimental point spread functions for the pump and the STED pulses are shown in Figure
4.11. Note that the size of the STED PSF in Figure 4.11 is approximately 2/3 the size of
the one in Figure 3.24.
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Figure 4.11: The point spread function of a) the pump, b) the STED
pulses, and c) an overlay of normalized cross-sections through the pump
and STED pulses.

The resolution of the microscope with these updated point spread functions was measured
by imaging a CN-PPV nanoparticle, as in the previous chapter. The resulting resolution
curve is shown in Figure 4.12. The best resolution yielded a FWHM of 67 nm, while a
typical STED energy used in our work of 240 pJ produced an excitation spot size of 85 nm
FWHM.

Figure 4.12: Measured resolution as a function of STED pulse energy.
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4.5.2 Power Stabilization

The data collection for a single data set can take up to 24-48 hours, and over this time
there can be some fluctuations in the output power of the NOPAs used to create the pump
and STED pulses, or some drift in the beam pointing, which impacts the fiber coupling
efficiency and thus the power incident on the sample. These effects must be monitored
and corrected for. As in the imaging work in Chapter 3, the noise eater in the pump line
acts to control and stabilize the pump pulse power. In addition, both arms of the STED
interferometer paths include motorized waveplates just before the polarizing beam splitting
cube that recombines the STED1 and STED2 pulses, which act to independently control
their transmitted powers and facilitate corrections for power fluctuations. During the data
collection, the LabView code stops periodically to check the powers of the STED1 and
STED2 pulses and makes corrections to the motorized waveplates to adjust accordingly. For
the STED2 pulse, this process is more complicated. The STED2 beam is difficult to perfectly
collimate over the range of the delay stage positions, so the beam size at the fiber changes
with the delay setting unless some calibrated path-dependent compensation is performed.
This impacts the coupling efficiency of STED2 through the fiber, and thus the fiber output
power varies with the delay setting. This effect is mitigated by setting a waveplate calibration
curve for the STED2 line that adjusts the waveplate angle for each delay setting, changing
the beam power to compensate for the change in the coupling efficiency. This calibration
curve is also reset periodically during the data collection to correct for any variations in the
calibration over the duration of the experiment.

4.5.3 Order of Events During Data Collection

The order of operations during data collection is also important to consider, as it impacts
the duration of the experiment and the fidelity of the data. Our multi-variable data acqui-
sition process can be conceptualized as a set of nested for-loops, defining and iterating over
the values of each parameter. The variable in the inner-most loop is changed for every data
point collected, while the variable in the outer most loop is only iterated through the values
along its range once. The data acquisition will therefore run fastest if the fastest variable to
change is placed in the inner-most loop and the slowest variable to change is places in the
outer-most loop. When two data points are collected for comparative purposes, however,
such as our normalization condition, it is generally advantageous to collect these data as
close to simultaneously as possible. The order of operations used is illustrated in Figure
4.13. The inner-most level is the pump modulation. This modulation is driven by an optical
chopper at 500 Hz and is the fastest variable. The next level is the position of the sample
stage in XYZ, which is driven by piezos. We alternate between a set of spatial positions
to eliminate heating effects that otherwise occur, see Section 3.3.1. We then modulate the
STED1 and STED2 shutters (labeled S1 shutter and S2 shutter in Figure 4.13). These shut-
ters have response times of ∼ 20 ms and ∼ 200 ms respectively. This gives the eight possible
beam combinations for all spatial locations. Next, we change the STED2 pulse delay stage
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Figure 4.13: Illustration of the order in which variables are changed during
our data collection.

position, which is our slowest stage. For this reason we vary the delay linearly, instead of
randomizing the delay points, which would provide better fidelity at the cost of increased
duration of data collection. Finally, we iterate this entire process, which we refer to as a
“scan”, to average the data and gather statistics for error analysis. We also pause after every
3-10 scans to refocus the light on the sample and reset the waveplate angles in the STED1
and STED2 lines to set the powers of each beam and compensate for any fluctuations in
the STED2 waveplate calibration (caused, for example, by drift in the beam pointing with
changes in the room temperature), both of which are automated procedures.

4.6 Results and Data Analysis for TRUSTED on

CN-PPV Thin Films

Here we present the experimental results and analysis for the application of TRUSTED
to CN-PPV thin films. We will discuss the sample preparation in Section 4.6.1 and the
method of data collection and processing in Section 4.6.2. The experimental data is pre-
sented in Section 4.6.3. A fitting routine to extract the length scale of migration from the
experimental results is then discussed in Section 4.6.4, and the results of the fit shown in
Section 4.6.5. We then discuss the results of two control experiments. In Section 4.6.6 we
show the data collected with the STED1 pulse blocked to demonstrate that the efficiency
of STED2 pulse does not change over the delay time due to excited state dynamics, and in
Section 4.6.7 we present an excitation dependence of our experimental result to demonstrate
that annihilation does not contribute significantly to our data. These controls verify that the
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Figure 4.14: The absorption (gray) and emission (black) of a CN-PPV
film used for TRUSTED measurements, with the pump (green), STED
(red), and fluorescence detection bandpass (gray) spectra overlaid.

observed normalized detection volume fluorescence trend is in fact due to exciton migration.

4.6.1 Sample Preparation

The experimental procedure outlined above was carried out on thin films of CN-PPV
prepared by spin-casting a ∼ 2.5 mg/mL solution of CN-PPV in chloroform on glass micro-
scope coverslips in a nitrogen glove box, where they were encapsulated to protect them from
oxygen during measurement. The solution was prepared by dissolving 9.8 mg CN-PPV in 1
mL chloroform and stirring on a hot plate overnight, then diluting 0.255 mL of this solution
with 0.745 mL chloroform. The resulting solution was heated to 50◦ for ∼ 4 hours before
spin-casting at 8000 RPM for 1 min with an acceleration of 8000 RPM/sec.

The spectrum of a film thus prepared is shown in Figure 4.14, with our laser pulses and
collection bandwidth overlaid.

4.6.2 Data Collection and Processing

Here we discuss the methods used to process the collected experimental data to calculate
the normalized detection volume fluorescence and its uncertainty. Experimental data was
collected on CN-PPV films using the apparatus described in Section 4.5, where a custom
LabView interface was utilized to control all parameters and acquire the data. The pile-up
correction and excitation modulation to remove the STED-induced fluorescence is handled
in LabView during data collection. This is achieved by sending the second harmonic of the
500 Hz chopping frequency to the DAQ counting card to trigger binning of counts from the
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detector. The count rate is then computed for each bin and then sorted, with every other
bin corresponding to chopper open and closed phases of the modulation cycle. This process
yields two raw count rate data stream channels (Figure 4.15c,d): one for each chopper state.
These channels are averaged over multiple chopper modulation cycles to improve signal to
noise, and then corrected for the pileup effect (see Section 3.4) and subtracted to isolate the
pump-induced fluorescence signal for each particular spatial pixel and delay time (Figure
4.15a,b). This data is collected for all prescribed spatial locations and combinations of
STED1 on/off, STED2 on/off, and delay times, and then this process is repeated for the
prescribed number of scan iterations for averaging purposes. For reference, an example of
these signals is shown in Figure 4.15, where all spatial locations and iterations have been
averaged.

After data collection, the resulting multidimensional data set is imported to a custom
MatLab analysis code for processing to calculate the normalized detection volume fluores-
cence and its uncertainty. The essential steps in the data analysis are the averaging of the
scans and the calculation of the normalized detection volume fluorescence and its error. The
normalized detection volume fluorescence is simply the ratio of the detected, pump-induced,
fluorescence at each delay time with the STED2 pulse on and off, and can be quickly cal-
culated from the data set. There is, however, a question as to the appropriate order of
operations of the data averaging and the calculation of the normalized detection volume flu-
orescence. In this case, the choice has an effect on the calculated uncertainty. This problem
stems from the difference in correlated and uncorrelated changes in the detected fluorescence
levels. The data collection takes up to 48 hrs to complete, and over that time there are some
laser power fluctuations and refocusing, which change the overall fluorescence level from the
sample. If the average of the pump-induced fluorescence is first calculated for the STED2
pulse on and the STED2 pulse off cases (an is Figure 4.15b), there will be a large standard
error of the mean due to these effects that will then propagate through the normalized detec-
tion volume fluorescence calculation. These long term effects, however, produce correlated
changes in the pump-induced fluorescence level for both the STED2 pulse on and the STED2
pulse off cases, and they can thus be better controlled for by first calculating the ratio of the
STED2 pulse on to the STED2 pulse off cases (normalized detection volume fluorescence) for
a given scan, spatial pixel, and delay time, and then averaging the normalized detection vol-
ume fluorescence and and finding the standard error of the mean of this data set. The result
is a smaller standard error of the mean that better reflects the uncertainty in the normalized
detection volume fluorescence. To illustrate the issue, Figure 4.16 shows the variation in
the pump-induced fluorescence count rates for the STED2 pulse on and the STED2 pulse
off cases compared to the variation in the normalized detection volume fluorescence over the
course of experiment, for a particular data point (spatial pixel and delay time). The data can
then be averaged over the spatial coordinates visited to further improve signal to noise, or it
can be analyzed as a function of space to search for heterogeneity in the samples response.
Because we found that in CN-PPV there were no statistically significant differences observed
at different locations (see Figure B.1), we typically aggregated the data from these spots to
improve the signal-to-noise ratio.
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Figure 4.15: Examples of the isolated pile-up corrected modulated sig-
nal and the underlying raw data. The graphs include the overlaid data
for the 4 possible STED shutter combination (S1 and S2, on or off),
the pump only (S1off/S2off) in green, pump+STED1 (S1on/S2off) in
cyan, pump+STED2 (S1off/S2on) in orange, and pump+STED1+STED2
(S1on/S2on) in red. a) The isolated and pile-up corrected pump-induced
fluorescence calculated from the raw data for the pump on and pump
off chopper phases. b) same as part (a) but only showing data for
pump+STED1 (S1on/S2off) and pump+STED1+STED2 (S1on/S2on),
which go into the determination of the normalized detection volume flu-
orescence. c) The raw count rates when the pump is on (chopper open).
d) The raw count rates when the pump is off (chopper closed).
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Figure 4.16: Top: Pump induced fluorescence for the STED2 pulse off
(solid) and the STED2 pulse on (dashed) cases. Bottom: The ratio the
STED2 pulse on/off, or normalized detection volume fluorescence. Notice
that the ratio does not reflect the systematic changes in the raw fluores-
cence values.

4.6.3 Experimental Data for CN-PPV

The resulting normalized detection volume fluorescence for a thin film of CN-PPV, cal-
culated using the procedure discussed above, is shown in Figure 4.17. The data shown
represents the average over nine spatial locations in a 60×60 µm area, with 30 µm spacing
between points, in order to mitigate sample heating by iterating between spatial locations
to allow for any thermal buildup to dissipate. The data from these nine individual locations
are shown in Figure B.1, where the consistence of the results within the error of the measure-
ment indicates that the sample is likely amorphous on the scale of the measurement. The
pump energy was 3 fJ/pulse and the STED energy was 240 pJ/pulse. The data for delay
times <100 ps has been cut out due to STED pulse overlap in this region. The initial value
indicates that roughly 50% of the initially confined distribution survives the action of the
STED2 pulse at early delay times. If the STED pulse PSF cross section had sharp edges,
with zero intensity for r < r1 and r > r2 and a finite value between r1 and r2, then the ini-
tial value would be 100%, however, since the STED pulse actually has a Laguerre-Gaussian
mode there is some quenching of the initially confined distribution, even in the absence of
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Figure 4.17: Experimental normalized detection volume fluorescence vs
delay time for the CN-PPV film.

migration, due to the non-zero overlap of the exciton population distribution and the STED
pulse PSF at and near the central axis of both distributions. For longer delay times, migra-
tion causes the exciton population distribution to expand, resulting in a larger overlap with
the STED2 pulse PSF and a reduction in the percentage of the population that survives to
contribute to the normalized detection volume fluorescence. Due to the limited length scales
of exciton migration, this effect produces a small but measurable change. Additional data
sets are presented in Figure B.2 for reference, which do not show significant deviations from
the presented results over multiple days and macroscopic sample locations.

4.6.4 Fitting Algorithm to Extract the Characteristic Migration
Length

The next challenge is to identify the length scale of exciton migration that would pro-
duce the observed trend in the normalized detection volume fluorescence in Figure 4.17.
We extract this length scale for exciton migration from the experimental data using a cus-
tom fitting function with Matlab’s “lsqcurvefit()” function. The fit function is based on a
simplified model of the experiment and is illustrated in Figure 4.18. The model represents
the initial population in the excited state as a 2D-Gaussian with a standard deviation ob-
tained from fitting the PSF of the pump pulse (see Figure 4.11a), under the assumptions
of impulsive excitation and excited state vibrational relaxation. The kinetics of the STED1
pulse interacting with the exciton population distribution are then treated analytically as
described in Equation 3.8, where the rate constant, ksted = Bstedρsted, is proportional to the
intensity of the STED pulse and since the intensity is in arbitrary units in the simulation
the intensity of the pulse, Isted, is used in place of the rate constant. The STED1 pulse PSF
radial dependence is assumed to have the functional form described by Equation 3.16, and
its width is obtained from a fit to the experimental STED pulse PSF (see Figure 4.11b). The
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ground state vibrational relaxation rate is assumed to be 0.05 ps−1. The model is insensitive
to this parameter as long as it is fast compared to the STED pulse duration (∼120 ps). The
intensity of the STED1 pulse in the model is then set by performing a separate fit to find
the STED1 pulse intensity (Figure 4.18a) that produces a confined distribution (excitation
volume) of the desired FWHM, which is an input parameter. This value is chosen by mea-
suring the resolution of a STED image of a CN-PPV nanoparticle with a STED pulse of the
same energy as used in the migration measurement. This STED resolution curve is shown
in Figure 4.12. This procedure allows the model to account for the pump and STED1 pulses
and to treat a confined distribution of the correct size. To proceed, the model must account
for migration and the action of the STED2 pulse (Figure 4.18b). The excitation distribution
from the previous step is assumed to be a Gaussian, which is a good assumption when the
STED pulse duration is long compared to the ground state vibrational relaxation. We have
also used numerical models that do not make this assumption and the results were similar.
The migration of this Gaussian distribution is then propagated over the time delay with
a generalized diffusion model, allowing for time dependent diffusivity (see Section 1.2.6.1),
where the the evolution of the Gaussian is described by σ(t)2 = σ2

o + 2
∫ t

0
D(t′)dt′. The

STED2 pulse is assumed have an identical intensity and radial distribution as the STED1
pulse and its action is again applied analytically using Equation 3.8. The normalized detec-
tion volume fluorescence is then calculated as the ratio of the excited state population after
to before the action of STED2.

This model represents a simplified analytical simulation of the experiment which can then
be fit to experimental data, using matlab’s “lnsqcurvefit()” function. The free parameters
in the fit are the parameters that define the time dependence of the diffusivity in the model.
For diffusive migration, D(t) = Do, and the diffusivity is the only free parameter, besides an
offset to correct the initial value to account for deviations of the real STED pulse PSF from
the ideal beam mode assumed in the fit. The diffusivity can be more generally described as
a power law, D(t) = Dot

α−1, where Do and α are the free parameters, along with an offset.
In the power law model, α = 1 corresponds to diffusive migration, α < 1 is subdiffusive, and
α > 1 is superdiffusive.

This fitting procedure yields the parameters that define the time dependence of the
diffusivity. The characteristic length for migration can then be calculated by noting that in
the diffusive model

L2
d =

∫∞
0
Dote

−t/τ∫∞
0
e−t/τ

, (4.10)

such that
Ld =

√
Doτ , (4.11)

or in the power law diffusivity model

L2
d =

∫∞
0

(
Do
α

)
tαe−t/τ∫∞

0
e−t/τ

, (4.12)
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Figure 4.18: A schematic of the model used in the fitting routine. a)
The first step starts with a Gaussian distribution of excitons based on
the pump pulse PSF, the kinetics of stimulated emission depletion from
Equation 3.8 are then applied to account for the STED1 pulse, where the
radial dependence of the STED field is taken from Equation 3.16 fit to the
STED pulse PSF, and the intensity, ISTED is variable. The appropriate
value of ISTED is found by fitting the FWHM of the resulting excitation
volume to the observed value from the resolution curve in Figure 4.12.
b) The excitation volume found in the previous step is then propagated
under migration over the delay time, t2, with the expression derived in
section 1.2.6.1. The action of the STED2 pulse is then applied, again
using Equation 3.16, with the same radial dependence and intensity as
found for the STED1 pulse in the previous step. The normalized detection
volume fluorescence is then the ratio for the excited state population after
to before the action of STED2.

such that

Ld =

√(
Do

α

)
τα. (4.13)

See Section 1.2.6.1 for the derivation of these expressions. The uncertainty in these “diffusion
lengths” is calculated from the uncertainty in the free parameters from the fit, which can be
calculated based on the Jacobian of the fit, the experimental error, and the residuals, follow-
ing an established procedure.[118] The goal of this procedure is to transform the covariance
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matrix of the data (Cd) into a convariance matrix for the fit parameters (Cp), which can be
expressed as,

Cp
ij =

dpi
dyk

Cd
ks

dps
dyj

(4.14)

or in matrix form as,

Cp =

[
dp

dy

]
Cd

[
dp

dy

]T
(4.15)

where p is a vector of the parameters and y is a vector of the data points. It can be shown
that,

dp

dy
= (JJT )−1J (4.16)

where J is the Jacobian of the fit,

Jij =
df(xj, ~p)

dpi
, (4.17)

and f(xj, ~p) is the value of the fit for the jth data point. To see this result, consider the
equation that is solved in least squares analysis, for each parameter pi,

d

dpi

[∑
j

[yj − f(xj, ~p)]
2

]
= 0. (4.18)

If we apply a small perturbation to the ~y values, such that ~y = ~yo + δ~y, there will be a
corresponding perturbation in the fit parameters, such that ~p = ~po + δ~p. Plugging this in to
equation 4.18 gives,

d

d(pi + δpi)

[∑
j

[yj + δyj − f(xj, ~po + δ~p)]2
]

= 0 (4.19)

and since pi is a constant, d
d(pi+δpi)

→ d
d(δpi)

. The function f(xj, ~po+δ~p) can also be expanded
as,

f(xj, ~po + δ~p) = f(xj, ~po) +
f(xj, ~p)

d~p

∣∣∣∣
~po

· δ~p

= f(xj, ~po) +
∑
k

f(xj, ~p)

dpk

∣∣∣∣
~po

δpk (4.20)

and then using the definition of the Jacobian in equation 4.17 we find,

f(xj, ~po + δ~p) = f(xj, ~po) +
∑
k

Jkjδpk. (4.21)
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Plugging this expression back in to equation 4.19 yields,

0 =
d

d(δpi)

∑
j

[
yj + δyj − f(xj, ~po)−

∑
k

Jkjδpk

]2
 (4.22)

and the derivative can then be applied to obtain

0 = −2
∑
j

[
yj + δyj − f(xj, ~po)−

∑
k

Jkjδpk

][∑
k

Jkj
d(δpk)

d(δpi)

]
, (4.23)

where the term d(δpk)
d(δpi)

= δik is the Kronecker delta. Also, if we let f(xj, ~po) = Fj, then

0 =
∑
j

[
Jijyj + Jijδyj − JijFj −

∑
k

JijJkjδpk

]
=
∑
j

Jijyj +
∑
j

Jijδyj −
∑
j

JijFj −
∑
k

∑
j

JijJkjδpk, (4.24)

where the sums can now be recognized as matrix and vector products. Note that (JJT )ik =∑
j JijJkj, such that Equation 4.24 can be recast as

0 = (J~y)i + (Jδ~y)i − (J~F )i −
∑
k

(JJT )ikδpk

= (J~y)i + (Jδ~y)i − (J~F )i − ((JJT )δ~p)i. (4.25)

This expression should hold for all i, such that

0 = J~y + Jδ~y − J~F − (JJT )δ~p, (4.26)

or rearranging to find δ~p,

δ~p = (JJT )−1J~y + (JJT )−1Jδ~y − (JJT )−1J~F . (4.27)

Then using the definition of the derivative we find,

dp

dy
=
δp(δy)− δp(−δy)

2δy
(4.28)

= (JJT )−1J. (4.29)

Equation 4.15 can then be used to convert the covariance matrix of the data points to the
covariance matrix of the fit parameters, where the data covariance is taken to be a diagonal
matrix, with elements equal to the larger of either the square of the standard deviation or
the square of the residual from the fit for each point. The resulting uncertainties on the
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Figure 4.19: Results of the fitting routine for a) the diffusive model and
b) the power law model. In both, the fits are shown as red curves overlaid
on the data.

parameters may then be propagated through the calculation of the diffusion length in the
usual way. This procedure will account for both the error on the data points and the ability
of the model to fit the data, however there is one additional factor that is not yet included,
which is the error in selecting the degree of confinement for the FWHM of the excitation
volume, which enters into the fit as a fixed parameter. This effect with be discussed, along
with the results of the fit to the data, in the next section.

4.6.5 Fits to the Experimental Data for CN-PPV

The fitting procedure outlined above was performed on the experimental data in Figure
4.17 for both a diffusive and power law (subdiffusive) model. The diffusive model returned
a value of Ld = 15.5±0.8 nm, with Do = 0.05 ± 0.01 nm2/ps. The fit is shown in Figure
4.19a, overlaying the experimental data. The sub-diffusive model returned a value of Ld =
14.7 ± 0.8 nm, with Do = 0.9 ± 1.7 nm2/ps and α = 0.6 ± 0.3. This fit is shown in Figure
4.19b. The uncertainties in the Ld’s reported here include the error on the data and the
ability of the model to fit the data, but do not yet include the uncertainty in the selection
of the degree of confinement (FWHM) of the excitation volume, see Figure 4.18a.

Interestingly, both models appear to fit the data well, and they return similar values for
the diffusion length and error. The sub-diffusive model, however, has very large error bars on
its parameters, while the Ld value is more tightly fit. This is due to a trade off between the
values of Do and α in this model, which can combine to produce a given diffusion length. This
effect is illustrated in Figure 4.20a, which shows the χ2 of the fit for different combinations
of Do and α, with the corresponding value of Ld shown in Figure 4.20b. The χ2 plot show a
minimum value for multiple combinations of Do and α, where the Do value for the minimum
χ2 increases and becomes more uncertain for decreasing values of α. The calculated value
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Figure 4.20: a) The χ2 of the power law fit for various combinations of
Do and α, illustrating the trade off in parameters that leads to the large
uncertainty in their values. b) The Ld produced by the corresponding set
of parameters. Note that the calculated value does not change along the
minimum of the plot in (a), leading to a smaller error in Ld than in the
parameters themselves.

of Ld, however, does not change significantly along the minimum of the χ2 plot, leading to
a smaller error in Ld than in the parameters themselves.

The additional error in the diffusion length, introduced by the selection of the FWHM of
the confined excitation volume in the fit, can be determined by considering the reasonable
range of possible confinements, as shown in Figure 4.21. As discussed in Section 4.6.4, the
resolution curve in Figure 4.12 and 4.21a is used to determine the value of the FWHM of the
excitation volume in the fitting routine. On this resolution curve the experimental STED
pulse energy of 240 pJ (shown in gray in Figure 4.21a) corresponds to a FWHM of 85 nm.
The red lines overlaying the resolution curve in Figure 4.21a indicate values for the FWHM
of 70 and 100 nm, which we take to be a 95% confidence interval. Note that this range
is determined by the uncertainty in the resolution curve at the energy of the STED pulse
(gray line), not the uncertainty in the energy of the STED pulse, which is well known. The
uncertainty in the calculated value of Ld, due to this effect, is then determined by performing
the fit to the experimental data for a range of values of the FWHM of the excitation volume,
as shown in Figure 4.21b. The result of the fit for the selected value of FWHM = 85 nm
is indicated with a black line. The red lines indicate the results of the fit at the FWHM =
70 and 100 nm extremes of the 95% confidence interval, as in Figure 4.21a. The blue lines
indicate the result of the fit at the corresponding ±1 σ values for the FWHM. The result
indicates that the additional uncertainty in the reported Ld value is σ = 1.4 nm. Combining,
in quadrature, this value with the σ = 0.8 nm reported above, due to the error in the data
and the quality of the fit, yields σ = 1.6 nm, which we round to 2 nm to be conservative.

This fitting procedure allows us to extract a length scale of migration and its uncertainty
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Figure 4.21: Illustration of method used to determine the additional un-
certainty in the Ld value from the fit, due to the degree of confinement of
the excitation volume. a) Same as Figure 4.12, the resolution (FWHM of
the excitation volume) vs STED energy from imaging a CN-PPV nanopar-
ticle. This figure is used in the fitting analysis to select the FWHM of the
excitation volume at the STED energy used in the experiment (240 pJ as
indicated in gray). The value of the FWHM at this STED energy is 85 nm.
The red lines indicate FWHM values of 70 and 100 nm, which we take as
a 95% confidence interval. b) The calculated Ld that results results from
running the fitting analysis on the experimental data for various values
of the FWHM of the excitation volume. The error bars on the Ld values
account for the error in the data the quality of the fit, as reported above.
The black line indicates the result for our selected value of 85 nm. The
red lines correspond to the 95% confidence range of 70 to 100 nm, or ±2σ,
and the blue lines indicate the corresponding results for ±1σ.

from the experimental TRUSTED data. To verify that the observed trend in the experimen-
tal data is in fact due to migration, however, we also perform two control experiments, as
outlined in Section 4.3, the results of which are discussed below.

4.6.6 Control for Time Dependence of the Stimulated Emission
Depletion Efficiency

To verify that the observed trend in the normalized detection volume fluorescence is due
to migration and not cause by a variation in the efficiency of the stimulated emission depletion
process as a function of the delay time, we perform a control measurement by blocking the
STED1 pulse and observing the change in the normalized detection volume fluorescence for
a diffraction limited population distribution. The result of this control experiment is shown
in Figure 4.22. Any excited state population dynamics that change the Einstein coefficient
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Figure 4.22: Control experiment with the STED1 pulse blocked. Any
variation in the ability of the STED2 pulse to stimulated emission, due to
excited state population dynamics, would result in a non-constant trend
in the normalized detection volume fluorescence. Note that the y-axis has
been set to display an eight percentage point range, as in Figure 4.17. The
fact that this control data shows no dependence on the delay time confirms
that the observed change in the normalized detection volume fluorescence
in Figure 4.17 is due to migration. This data also highlights the benefits
of confining the initial exciton population for migration measurements, by
showing that the diffraction limited initial distribution does not produce
a comparable signal.

for stimulated emission over the lifetime of the exciton, such as the formation of a charge
transfer or triplet state, would cause the normalized detection volume fluorescence to change
over the delay time, which we do not observe. This experiment also highlights the benefit of
creating a confined initial condition for migration. When the STED1 pulse is used (Figure
4.17) the initial distribution is tightly confined with steep gradients, so the effect of migration
is more pronounced in the data. In contrast, when the STED1 pulse is not applied, as here,
the effects of migration on the large, diffraction limited, exciton distribution is negligible,
even though there should be net migration away from the center of the diffraction-limited
distribution as a function of time.

4.6.7 Excitation Density Control

As previously discussed, exciton annihilation could also produce a normalized detection
volume fluorescence trend very similar to those produced by exciton migration. Annihilation,
however, has an exciton density dependence, and migration does not. To determine the
contribution of annihilation to the observed normalized detection volume fluorescence trend,
we therefore performed a series of migration measurements at several excitation densities.
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Figure 4.23: Summary of the power dependence of the measurement. a)
The excitation density dependence of the calculated diffusion length. The
bottom axis shows the pump energy used, while the top axis shows an
estimation of the corresponding excitation density after STED1. The er-
rorbars on the Ld’s include the error from the fit, but not the error in the
selection of the degree of confinement, which would likely be systematic
in these successively collected results, for comparative purposes. b) The
variation of the observed count rate when gating the detector on after the
action of the pump+STED1 pluses vs the excitation energy.

The results are summarized in Figure 4.23a, which shows no dependence of our calculated
diffusion length over the range of excitation densities explored. Additionally, Figure 4.23b
shows the excitation density dependence of the fluorescence after the STED1 pulse (during
migration), which is very linear over this range. In the absence of STED1, which quenches
a significant fraction (∼ 90%) of the initially excited exciton population, the observed count
rate is much higher and begins to saturate over this range of excitation energy, likely due
to annihilation. The quenching effect of STED1, however, reduces the exciton density to
a linear regime and the saturation in the count rate is no longer observed. These results
illustrate that the experiments are run in a linear regime where annihilation is negligible.

Based on these controls and the simulations presented in Section 4.4, we are confident that
the observed trend in the normalized detection volume fluorescence in Figure 4.17 is caused
by exciton migration. We have thus shown that TRUSTED can be used to successfully
extract the exciton migration length for films of the conjugated polymer CN-PPV and have
found that the best fit, with fewest parameters, is to a diffusive migration model with a
diffusivity of Do = 0.05 ± 0.01 nm2/ps and a diffusion length of Ld = 16 ± 2 nm. Next
we will consider the implications of this result on the spatioenegetic landscape in CN-PPV
films, and we will discuss how the spectral and energetic parameters of a material, more
generally, combine to determine the extent and character of exciton migration.
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4.7 TRUSTED Data Interpretation

Having established the theoretical framework of the experiment and demonstrated its
successful application to CN-PPV thin films, we now consider what kind of microscopic
spatioenergetic landscape and spectral factors could give rise to the relatively long observed
migration length, and more generally how these factors determine the extent and character
(diffusive vs subdiffusive) of exciton migration in the incoherent hopping regime. Micro-
scopically, the spatioenergetic landscape is composed of closely spaced chromophore sites
whose transition energies vary due to statistical fluctuations in the persistence length of the
polymer backbone, the chain packing conformations, the local electrostatic environment, and
interactions with neighboring chromophores, all of which contribute to the inhomogeneous
broadening (σIHB) of the site energies.[51, 54] The degree of site energy dispersity implied
by σIHB must be considered in relation to the site specific broadening (σSSB), the spectral
width of a single site due to the Franck-Condon progression and fast thermal fluctuations, to
determine the effective distinguishability of one site energy from another. Additionally, the
intrinsic reorganization energy of a chromophore determines its Stokes shift (∆SS), which
biases excitons to hop to lower energy sites and limits the spectral overlap for isoenergetic
hops. ∆SS must also, however, be considered in relation to σSSB to determine the magnitude
of these effects.[61] Thus, we consider the nature and extent of migration as a function of
σIHB and ∆SS, normalized to σSSB, where σIHB/σSSB is related to the inter-chromophore
properties, the distinguishability of sites, and ∆SS/σSSB is related to the intra-chromophore
properties, the spectral overlap of isoenergetic sites. These factors combine to determine
the extent and character of migration, where the character of migration is summarized by
the time dependence of the mean squared displacement (MSD), or the parameter α from
the fitting routine in Section 4.6.4. To determine the spatioenergetic landscape and corre-
sponding nature of exciton migration that is most likely to underlie our Ld ∼ 16 nm result,
we perform Monte Carlo simulations of excitons hopping over spatioenergetic landscapes at
multiple points in the σIHB/σSSB vs ∆SS/σSSB phase space.

4.7.1 Monte Carlo Random Walk Simulations

To aid in the interpretation of our experimental results we have constructed a Monte
Carlo simulation of incoherent exciton hopping.[60, 61] The goal of this simulation is to
elucidate how the spatioenergetic and spectral parameters combine to determine the extent
and character, diffusive or sub-diffusive, of migration. The simulation assumes discrete hops
between sites on a ∼ 80 x 80 nm 2D hexagonal lattice with periodic boundary conditions and
a density of ρ=1.4 sites/nm2. A 2D lattice is used for simplicity and computational efficiency,
as there is no gradient in the z-axis in out experiments and the value of Ld, in the form
commonly reported in literature, does not depend on dimensionality, see Section 1.2.6.1. For
each random walk trajectory, the sites are randomly assigned absorptive transition energies
from a Gaussian distribution, described by the inhomogeneous broadening, σIHB, centered
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at the mean transition energy ε̄. The density of sites at a given energy is then,

ρ(ε)dε =
ρ√

2πσIHB
e
− (ε−ε̄)2

2σ2
IHB dε. (4.30)

The absorption and emission profile for each site are also assumed to be Gaussian, with
widths determined by the site specific broadening, σSSB, due to the Franck-Condon progres-
sion and fast thermal fluctuations. The normalized emission spectrum of a donor site of
mean energy εd is,

Dems(ε, εd) =
1√

2πσSSB
e
− (ε−(εd−∆SS))2

2σ2
SSB (4.31)

where the Stokes shift, ∆SS, accounts for the reorganization energy of an individual site
(note that this quantity is not the same as the total observed Stokes shift from the film,
which also includes the exciton energy relaxation due to migration to lower energy sites).
While the absorption spectrum of an acceptor site of mean energy εa is

Aabs(ε, εa) = S(εa)e
− (ε−εa)2

2σ2
SSB , (4.32)

where S(εa) is the oscillator strength at εa. The rate of hopping between a donor and acceptor
site is governed by Förster Resonant Energy Transfer (FRET), for point dipoles (see Section
1.2.6), given by[26, 61]

kFRET (r, εd, εa) =
1

τ

(
Ro(εd, εa)

r

)6

, (4.33)

for

Ro(εd, εa) =

[
9c4~4ηκ2

8πn4

∫
Aabs(ε, εa)Dems(ε, εd)

ε4
dε

]1/6

, (4.34)

where r is the distance between the sites, τ is the fluorescence lifetime, Ro is the “FRET
radius”, c is the speed of light, ~ is the reduced Planck’s constant, η is the quantum yield of
fluorescence, κ is a dipole orientation factor (κ = 2/3 for isotropic orientational averaging),
n is the index of refraction, and ε is energy.

This holds for long hops, however, short hops, over distances comparable to the chro-
mophore size, are not described well by this equation, so our simulation switches from a
the radial dependence of r−6 to a Dexter-like exponential radial dependence for hops <2
nm, while constraining the overall radial dependence of the rate to be both continuous and
smooth. To derive this radial dependence, we find the amplitude, A, and the radial decay
constant, c of an exponential function, Ae−c r that matches the FRET rate and its derivative
at r = ro, where ro is set to 2 nm in our simulations. The constraints are,

Ae−c ro =
Ro(εd, εa)

6

τ
r−6
o (4.35)

and − cAe−c ro = −6
Ro(εd, εa)

6

τ
r−7
o , (4.36)
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which can be solved for A and c, as

A =
Ro(εd, εa)

6

τ
r−6
o e6 (4.37)

and c = 6/ro. (4.38)

By combining these expressions for A and c with the FRET rate, we can construct the overall
radial dependence of the rates as,

k(r, εd, εa) =


1
τ

(
Ro(εd,εa)

r

)6

r > ro

1
τ

(
Ro(εd,εa)

ro

)6

e−6( r
ro
−1) r ≤ ro

. (4.39)

For each trajectory that is run, the site energies are randomized and the excitation is
placed on a site at the center of the density of states. The simulation then steps through
a series of hops until the total elapsed time exceeds the lifetime of the trajectory, τ ′, which
is selected for each trajectory from the probability distribution described by the observed
lifetime, τ = 5000 ps,

τ ′ = −τ ln[rand()]. (4.40)

The result of a given hop is calculated by first determining the transfer rates from the
current donor site, to all other sites (acceptors) on the lattice,

K = k(R, εd,Ea) (4.41)

where R is a vector of the distances to each site and Ea is a the vector of the corresponding
the site energies. The site to hop to is selected by using the transfer rate vector, K, as a
probability distribution function

PDF =
K

sum (K)
, (4.42)

calculating the corresponding cumulative distribution function,

CDF = cumsum(PDF ), (4.43)

and selecting a value from this distribution as

ind = find(CDF >= rand(), 1, ‘first’), (4.44)

where “find()” is the matlab function that returns one value that corresponds to the index
ind of the first site that is greater than or equal to the random value “rand()”. The time for
the hop to occur, ∆t, is calculated from the total rate of transfer to all sites,

∆t =
1

sum (K)
. (4.45)
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The lattice is then re-centered around the selected location, using the periodic boundary
conditions, effectively moving the lattice under the exciton instead of moving the exciton
over the lattice.

The simulation tracks many parameters over the trajectory, such as the net displacement,
the site energy, and the size and duration of each hop. Many trajectories (typically ∼1000)
are then combined to determine the average behavior of an exciton for a given set of site-
specific and inhomogeneous broadening parameters and Stokes shift, producing graphs of
the mean squared displacement (MSD or 〈∆r2〉) vs time and the average energy lost over
the course of a trajectory (∆E). The migration length can be extracted from the average
final MSD of all trajectories,

L2
d =
〈∆r2〉

2n
. (4.46)

The factor of 2n, where n is the dimensionality (n = 2 in the simulations here), has been
divided out so that the reported Ld value is consistent with the common practice in the
literature of reporting migration lengths as Ld =

√
Dτ rather than actual root mean squared

displacement, RMSD =
√

2nDτ . See Section 1.2.6.1 for more discussion on this.
Alternatively, the time dependence of the MSD can be fit to a functional form. For

diffusive migration the MSD is linear in time,〈
∆r2

〉
(t) = 2nDt, (4.47)

where the slope is related to the diffusivity, D.
In real systems, however, the MSD often deviates from this trend. In these case, the

additional time dependence is assigned to the diffusivity,[17, 60, 252] such that〈
∆r2

〉
(t) = 2n

∫ t

0

D(t′)dt′, (4.48)

where the derivation of time dependence of the MSD in these cases is presented in Section
1.2.6.1. Note that if D(t) is constant, the diffusive equation is recovered. The most common
functional form assumed for the diffusivity is a power law in time,

D(t) = Dot
α−1 (4.49)

so that the equation for the MSD becomes〈
∆r2

〉
(t) = 2n

(
Do

α

)
tα, (4.50)

where α = 1 corresponds to the diffusive case, α < 1 indicates subdiffusive behavior, and
α > 1 indicates superdiffusive behavior. The average MSD over the exciton lifetime is then,〈

∆r2
〉

=

∫∞
0

2n
(
Do
α

)
tα e−t/τdt∫∞

0
e−t/τdt

= 2n

(
Do

α

)
τα (4.51)
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and the Ld can then be calculated from Equation 4.46.
The result of the simulation is the final calculated migration length, and the nature of the

migration, as characterized by the power α. The simulation can then be repeated for multiple
combinations of the σIHB, σSSB, and ∆SS, to examine how these parameters determine the
observed extent and character of migration.

4.7.2 Monte Carlo Simulation Results and Interpretation

To determine the nature of the spatioenergetic landscape that underlies our experimental
result for CN-PPV, and more generally how the spectral and energetic parameters of a
material combine to determine the extent and nature of migration, the simulations described
above were run at 213 points in the phase space defined by the ratios σIHB/σSSB and
∆SS/σSSB. The results of these simulations are summarized by the Ld and α contours
shown in Figure 4.24. Contours of the calculated energy relaxation during migration (due
to migration to lower energy sites), reported as (−∆E/∆SS), are shown in Figure 4.25, also
overlaid with the Ld contours for reference. Finally the contours of Do and α are plotted
together in Figure 4.26. All contours were calculated using “gridfit()” from the mathworks
file exchange,[253] which returns an interpolated and smoothed surface from scattered data
points, and Matlab’s “contour()” function. The yellow region on these plots represents the
range of total broadening (assuming ∆SS = 0.45 eV, from previous measurements[254]) we
take to be consistent with our observed absorption spectrum (Figure 4.14). The plotted
yellow region spans from σtot = 0.22 eV on the bottom right edge to σtot = 0.25 eV on the
top left. The lower bound of 0.22 eV was taken from a fit of the red edge of the observed
absorption profile in Figure 4.14 to a Gaussian, while the upper limit is a guess of the
reasonable range that could account for the broader absorption on the blue edge. The blue
dot indicates our assignment of the location of CN-PPV in the phase space.

The placement of CN-PPV in this phase space was determined by plotting the intersection
of a Ld = 15.5 ± 0.8 nm contour, which we take from our experimental result from the fit
assuming a known degree of confinement, and the −∆E/∆SS contour that best matches the
following parameters for CN-PPV: This contour was determined from the value of ∆SS = 0.45
eV, which has been previously reported from site selective fluorescence measurements,[254]
and the value of ∆E = −0.2, which was taken as the difference between the ‘single site’
Stokes shift in the site selective fluorescence measurements and the observed Stokes shift of
our film (∼ 0.65 eV) that includes the effect of downhill energy transfer among sites. These
values put CN-PPV on the −∆E/∆SS = 0.44 contour. These contours are plotted in Figure
4.27. Their intersection determines the location of the blue spot in Figures 4.24-4.26 as well.

This analysis places CN-PPV at σIHB/σSSB = 0.68 and ∆SS/σSSB = 2.43, as indicated by
the blue dot in Figure 4.27. Since we know the value of ∆SS = 0.45 eV,[254] we determine
that σIHB = 0.13 and σSSB = 0.19. The resulting predicted total broadening, σtot =√
σ2
IHB + σ2

SSB = 0.23 eV is in good agreement with the observed width of the absorption
profile in Figure 4.14, where the red edge of the absorption profile can be fit to a Gaussian
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Figure 4.24: An overlay of the contours of Ld (gray) and α (red) plotted
against σIHB/σSSB and ∆SS/σSSB. The yellow region represents the range
of total broadening that is consistent with the observed absorption spectral
and the blue dot indicates the location of CN-PPV in the phase space.

with σ = 0.22 eV, which serves as a lower bound for the total broadening. This consistency
between the reported (∆SS), measured (spectra and Ld), and calculated (σIHB and σSSB)
parameters for CN-PPV gives us confidence in our results. We conclude from the location
of CN-PPV in the phase space that exciton migration is approximately diffusive, falling on
the boarder of the diffuisve and subdiffusive regions, and that the relatively large reported
Ld of ∼16 nm is the result of the combination of the approximately diffusive migration and
the long (5 ns) exciton lifetime.[251] This approximately diffusive regime is enabled, despite
the presence of inhomogeneous broadening, due the large contribution of σSSB compared to
σIHB. The relatively large value of ∆SS, compared to the σSSB, is likely a limiting factor
in the extent of migration. These results also highlight that the relative quantities that we
identified are more fundamentally relevant than the 3 individual values.

Beyond this particular result for CN-PPV, our framework enables more general pre-
dictions of how the nature and extent of exciton migration vary as a function the energy
relationships that we have identified. The Ld contours in Figure 4.24 roughly fall along
the antidiagonal with the highest Ld values in the bottom right corner, where sites are es-
sentially energetically indistinguishable (σSSB dominates both σIHB and ∆SS, and α = 1).
Interestingly, Ld depends additively on σIHB/σSSB and ∆SS/σSSB with approximately equal
weighting, such that their individual contributions are able to trade off to achieve the same
extent of migration. If the appropriate weighting is found, corresponding to the direction
of the steepest gradient in the Ld contours in Figure 4.24, the Ld trend can be further sim-
plified, as shown in Figure 4.28, where the calculated Ld’s have been plotted against the
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Figure 4.25: An overlay of the contours of Ld (gray) and −∆E/∆SS (red)
plotted against σIHB/σSSB and ∆SS/σSSB. The yellow region represents
the range of total broadening that is consistent with the observed absorp-
tion spectral and the blue dot indicates the location of CN-PPV in the
phase space.

weighted sum (
√

2 ∆SS

σSSB
+ σIHB

σSSB
)/(
√

2 + 1). The overlaid red curve in Figure 4.28 is a fit
to a Gaussian with σ = 1 and amplitude = 61 nm. It is curious that the dependence of
the migration length on σIHB, σSSB, and ∆SS can be so concisely summarized with these
particular weighting factors, and that the resulting trend fits to a Gaussian with a standard
deviation of one unit, but the underlying physical reason for this particular relationship is
unclear.

The α contours depend most strongly on the distinguishability of sites, σIHB/σSSB and
generally start becoming subdiffusive (α < 1) near σIHB/σSSB = 1, but also generally
decrease with decreasing Ld. Another key feature of Figure 4.24 is that the Ld contours
intersect multiple α contours. At the trajectory scale, the same Ld can be achieved for
multiple values of α, because the same net displacement over the lifetime can be realized for
either a constant diffusivity or an initially large diffusivity that decays over time, Figure 4.29.
Correspondingly, the value of Do (Figure 4.26) decreases with decreasing Ld in the region
where α ∼ 1 and shows an increased variability, with respect to the α and Ld contours
(Figure 4.24), in the region that corresponds to α < 1. This variability in possible values
of α and Do for a given Ld is pronounced for small Ld but decreases as the Ld increases,
since there is a maximum allowed diffusivity (when σSSB >>(σIHB+∆SS)). Similarly, the
same α can result in multiple Ld values if the diffusivity is scaled, for instance by changing
∆SS/σSSB.

To further understand the importance of σIHB/σSSB and ∆SS/σSSB, as well as the mi-
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Figure 4.26: An overlay of the contours of Do (gray) in units of nm2/ps
and α (red) plotted against σIHB/σSSB and ∆SS/σSSB. The yellow re-
gion represents the range of total broadening that is consistent with the
observed absorption spectral and the blue dot indicates the location of
CN-PPV in the phase space.

croscopic origin of subdiffusive migration, consider the behavior of individual trajectories
initiated at the center of the density of states at the level of individual hops. Broadly
speaking there are four distinct cases, illustrated in Figure 4.30, corresponding to the four
quadrants in Figure 4.24:

Case 1 (Figure 4.30b): If both ∆SS/σSSB and σIHB/σSSB are large, there will be a
large bias for hopping to acceptor sites lower in energy than the donor, and the sites will
be distributed over a broad range of energies. In this case, the exciton will rapidly hop
to spatially isolated states at the band edge and become trapped, due to the low density
of accessible acceptor states at this energy and the very small isoenergetic spectral overlap
that a large ∆SS value produces. Therefore, there is little to no migration (Ld ∼ 0), there
is a significant loss of energy (∆E), and the migration is subdiffusive α < 1 since each
step reduces the exciton energy, thereby reducing the density of available acceptors for the
subsequent hop.

Case 2 (Figure 4.30d): When ∆SS/σSSB is large and σIHB/σSSB is small, there is
still a large bias for hopping to acceptor sites lower in energy than the donor, but now
the entire collection of sites are confined to a narrow range of energies. The exciton will
thus hop directly to the band edge (in ∼1 hop), but the narrow distribution of acceptor
site energies, relative the spectral width of each site, results in a relatively large density of
available acceptors at this energy. The resulting migration will be diffusive (α = 1) since
all hops (after the first) are effectively equivalent, however, the diffusivity will be small due
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Figure 4.27: The intersection of the Ld = 15.5 nm (gray) and−∆E/∆SS =
0.44 contour (red) plotted against σIHB/σSSB and ∆SS/σSSB. The yellow
region represents the range of total broadening that is consistent with the
observed absorption spectral and the blue dot indicates the location of
CN-PPV in the phase space, which results from this analysis.

to the poor isoenergetic spectral overlap, so Ld will be small but non-zero, and ∆E will be
limited by the narrowness of the accessible band of states.

Case 3 (Figure 4.30a): If ∆SS/σSSB is small and σIHB/σSSB is large, there will be
only a slight bias for hopping to acceptor sites lower in energy than the donor and the sites
will be distributed over a broad range of energies. In this case, the exciton loses a little
energy with each hop, slowly approaching the band edge. Each hop also slightly reduces the
density of accessible acceptor sites for subsequent hops, resulting in subdiffusive migration
(α < 1). An equilibrium is eventually reached where the large density of sites at higher
energies balances the slight bias to move to lower energy sites or the exciton is trapped at a
spatially and energetically isolated site. The overall energy lost in the trajectory will again
be substantial, and the migration length will be moderate.

Case 4 (Figure 4.30c): When both ∆SS/σSSB and σIHB/σSSB are small, there will
be only a slight bias for hopping to acceptor sites lower in energy than the donor and the
sites will be confined to a narrow range of energies. This narrow distribution of site energies,
combined with the large degree of spectral overlap of isoenergetic sites (implied by the small
value of ∆SS/σSSB), results in a high density of accessible acceptor states. The exciton
will, thus, quickly (∼1 hop) reach an equilibrium between the effects of the small bias to
lower energies and the steep gradient in the density of states, and the corresponding energy
loss with be small. Further hops will then be isoenergetic on average, resulting in diffusive
migration (α = 1), and the diffusivity will be high due to large spectral overlap of isoenergetic
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Figure 4.28: The calculated values of Ld (black) from the MC simulations
plotted along the axis which corresponds to the steepest gradient in the
Ld contours in Figure 4.24, and a fit (red) of this data to a Gaussian with
σ = 1.

sites, resulting in a large migration length.
In each of the four cases, the exciton loses some energy as the effect of bias towards lower

energy sites achieves a balance with effect of the gradient in the density of states. This ∆E
(Figure 4.25) depends primarily on σIHB/σSSB. This is expected as the observed spectral
shift in electronically coupled systems is typically considered to be[54]

∆E = −σ
2
IHB

kBT
, (4.52)

where kB is the Boltzmann constant and T is temperature. Our Monte Carlo simulations
do not explicitly include temperature, but σSSB should capture analogous behavior to kBT .
To check this assumption, we plot −∆E vs σ2

IHB/σSSB from the simulation data in Figure
4.31. We indeed find a linear trend and the slope is roughly in agreement with the expected
value of 1 (red curve), but there a large spread due to the bending of the contours in the
upper right corner of Figure 4.25.

The general trends from the microscopic hopping analysis indicate that σIHB/σSSB pri-
marily determines the final energy of the exciton (although ∆SS/σSSB does play a role) and
the density of sites at that energy, while ∆SS/σSSB determines the energy lost per hop (al-
though this does change depending on the gradient in the density of states) and the spectral
overlap for isoenergetic hopping. Both diffusive and subdiffusive trajectories exhibit energy
loss, although this loss occurs in ∼1 hop in the diffusive regime, where the subsequent dif-
fusivity depends on the isoenergetic hopping rate between sites at the final energy. In the
subdiffusive regime the energy loss is gradual and the diffusivity evolves as the relaxation
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Figure 4.29: Illustration of how multiple trajectories with different values
of α can produce the same net displacement over the lifetime of the exciton
and why this effect diminishes for large Ld values. This plot assumes a
maximum diffusivity that corresponds to Ld = 50 nm (black). Also plotted
are some example trajectories that achieve Ld = 40 nm (blue), Ld = 25
nm (green), and Ld = 10 nm (red). As the target Ld decreases, relative
to the maximum value of 50 nm, a larger number of subdiffusive traces,
with smaller values of α, are possible.

in energy reduces the density of available hopping partners. Since σIHB/σSSB determines
the density of states available for hopping at a given energy and ∆SS/σSSB determines the
spectral overlap of those states, they can trade off to produce the same migration length.

As an overall prescription for long range exciton hopping trajectories, minimizing the
effective distinguishability of sites and maximizing the isoenergetic hopping rate within the
lifetime of the exciton appears to be critical. Therefore, one should seek to minimize the
Stokes shift and inhomogeneous spectral linewidths of an electronically-coupled material
relative to the site specific broadening. As a corollary, substantial site specific broadening
should be able to compensate for comparable site energy dispersity and reorganization energy.

Although the migration length values on Figure 4.24 are specific to CN-PPV, these
contour trends should hold for other materials, modulated primarily in value by the fluores-
cence lifetime, chromophore density, oscillator strength, and any orientational anisotropies.
We therefore hypothesize the locations in the phase space where other electronically-coupled
systems are situated within the above framework. Other conjugated polymer solids should
fall into a similar part of the generalized phase space as CN-PPV because site specific broad-
ening is able to compensate the other energies in the problem. These other semiconductors
generally suffer from shorter migration lengths (∼5-20 nm),[14] which we attribute primarily
to their shorter fluorescence lifetimes, restricting the trajectory duration without compen-



CHAPTER 4. TIME RESOLVED ULTRAFAST STIMULATED EMISSION
DEPLETION: EXCITON MIGRATION IN CONJUGATED POLYMERS 136

Figure 4.30: Illustration of the microscopic trajectories for, a) case 3, b)
case 1, c) case 4, and d) case 2 discussed in the text. The black curves
indicate the absorption width of each site, the red curve is the emission
profile of the first site to illustrate the size of the Stokes shift, the green
arrow indicates the average progression of the trajectory. Note that while
(c) and (d) appear similar, the time scales for migration will differ due to
the difference in spectral overlap.

sating with faster hopping rates. Nanocrystal arrays generally generate subdiffusive exciton
trajectories located further from the phase space origin, albeit with longer migration lengths
(tens of nm).[60] We attribute this difference to the much longer nanocrystal excited state
lifetimes. In spite of very narrow intrinsic linewidths that generate subdiffusion from poly-
dispersity in size and energy, the slower hopping rates that accompany larger site spacings
still enable a compensating number of hops within the lifetime.

4.8 Conclusions of TRUSTED Measurements on

CN-PPV

In sum, we have devised and executed an original all-optical scheme to measure exciton
migration within sub-diffraction excitation volumes on its native nanometer and picosecond
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Figure 4.31: The variation of the energy lost during a trajectory (black)
with the predicted dependence (red).

scales. Through a combination of our measurements and simulations, we determined that
the disordered CN-PPV films that we interrogated exhibit a considerable exciton migration
extent of 16± 2 nm in the approximately diffusive regime, largely thanks to a relatively long
fluorescence lifetime and to the intrinsic site specific broadening of the chromophore site en-
ergy. In addition to our measurement and analysis of exciton migration in CN-PPV films, we
developed a more general framework in which to contextualize our results by distinguishing
between the inter- and intramolecular energy scales that influence the character and extent
of exciton migration. We emphasize the significance of assessing inhomogeneous broadening
and intrinsic chromophore Stokes shift effects on migration relative to intrinsic variations in
chromophore site energies. As such, intrinsic site energy fluctuations are partially able to, or
could be designed to, compensate for the latter effects in disordered electronically-coupled
molecular systems. For example, deliberately enhancing intrinsic chromophore energy fluctu-
ations on molecular (or even material) scales by design could become an important strategy
to extend exciton migration in photovoltaics, while suppressing it could prevent degradation
in modern organic displays. We also posit that the additional levels of multiscale hierarchy
in photosynthetic light harvesting, namely intra- versus inter-protein exciton transfer and
a potentially-active protein scaffold with complementary physical properties to those of the
pigment chromophores, could explain their exemplary transport efficiencies, which should be
amenable to TRUSTED investigation in the future. Furthermore, although the measured
CN-PPV films appear to be amorphous on the scale of our measurement (see Figures B.1
and B.2), TRUSTED is also inherently amenable to resolving spatial heterogeneity in exciton
migration. Comparing migration heterogeneity maps to those of the physical heterogeneities
observed in complex material microstructure should be a powerful approach to elucidate
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correlations between advantageous physical and functional intermolecular configurations in
many electronically-coupled molecular materials.
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Chapter 5

Conclusion for Spatially and
Temporally Resolving Exciton
Dynamics in Organic Semiconductors

This thesis has presented new methods and applications of spatially and temporally
resolving exciton dynamics in heterogeneous organic semiconducting materials, in order to
elucidate the fundamental photophysics and underlying structure/function relation which
ultimately determines the performance of an organic electronic device.

In Chapter 2, the benefits of transient absorption microscopy in the context of polycrys-
talline thin films of small molecule organic semiconductors were demonstrated. The enhanced
spatial resolution of this method enabled domain specific studies of exciton population dy-
namics in TIPS-Pn. The strong probe polarization dependence revealed by single domain
studies significantly aids in the assignment of the observed dynamics. A full kinetic model
of population dynamics, as a function of both polarization and time, was developed and fit
to the experimental data, where the polarization dependence provides a several fold increase
in the number of constraints for the fitting routine. The global fitting analysis successfully
reproduces the experimental data, and the observed dynamics were determined to include
ultrafast thermalization of the initially hot exciton in ∼ 50 fs, followed by singlet fission
in the first few picoseconds, and then internal conversion over several hundred picoseconds.
The success of the kinetic model and the assignment of the dynamics was a direct result
of the polarization dependence, which is only revealed at the single domain level. These
results clearly illustrate the utility of spatially resolving exciton dynamics on their native
length scales. Many organic semiconductors, however, have much smaller length scales of
heterogeneity, requiring sub-diffraction limited excitation volumes.

The preparation of such sub-diffraction excitation volumes in naturally luminescent ma-
terial, however, poses significant challenges. Chapter 3 illustrated one method of achieving
the required super-resolution in conjugated polymers, by adapting stimulated emission deple-
tion (STED) microscopy for use with their endogenous chromophores. Notably, the challenge
posed by the strong two photon absorption of the STED pulse in conjugated polymers was
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successfully mitigated through a combination of the pile-up correction and excitation mod-
ulation. This technique was then demonstrated on nanoparticles of the conjugated polymer
CN-PPV, where an imaging resolution of better than 90 nm was achieved. This work estab-
lishes the ability to define sub-diffraction excitation volumes neat to the scale of the material
heterogeneity in conjugated polymers. This advance will enable future correlative studies of
exciton dynamics with their underlying microstructure, providing valuable insight into the
structure/function relation in conjugated polymers. In addition to opening the door for such
correlative measurements, these sub-diffraction excitation volumes are also better matched
to the native length scale of exciton migration.

Finally, in Chapter 4, a new method to measure exciton migration on its native nm
and ps scales was presented. This new approach is based on a further adaptation of STED
microscopy, which provides ultrafast time resolution of spatial migration dynamics. This
technique of time resolved ultrafast stimulated emission depletion (TRUSTED) is achieved
by adding a second STED pulse, with a controlled time delay, to define an optical quenching
boundary (detection volume) that preferentially quenches excitons that have migrated be-
yond a critical radius. The theoretical and experimental sensitivity of this technique to the
migration process was demonstrated, through kinetic simulations and experimental studies.
The application of TRUSTED to CN-PPV thin films, in combination with a custom fitting
routine, revealed the exciton migration length to be Ld = 16 ± 2 nm. Additionally, Monte
Carlo simulations of incoherent exciton hopping were performed for a variety of possible
spatioenergetic landscapes, revealing the the migration process in CN-PPV is approximately
diffusive in nature, where the 5 ns lifetime capitalizes on the diffusive motion, resulting in
the relatively long observed migration length. The simulations also revealed, more generally,
how the energetic and spectral parameters of a material combine to determine the extent
and nature of exciton migration.

These results reveal the importance of matching the spatial resolution of measurements
to the native length scale of the processes and heterogeneity in complex materials. The sub-
diffraction limited spatial resolution and ultrafast time resolution of the techniques presented
here will enable future correlative studies of exciton dynamic and migration with the under-
lying substructure. The insights that stand to be gained by such correlative measurements
will elucidate the nature of the structure/function relationship in organic semiconductors,
thereby informing the rational design of the next generation of semiconducting materials for
applications in displays, computing, lighting, and light harvesting.
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A. J.; Willard, A. P.; Bulović, V.; Tisdale, W. A. Nano Lett. 2014, 14, 3556–3562.

(61) Lee, E. M. Y.; Tisdale, W. A.; Willard, A. P. J. Phys. Chem. B 2015, 119, 9501–
9509.

(62) Cussler, E. L., Diffusion: Mass Transfer in Fluid Systems ; Cambridge University
Press: 2009.



BIBLIOGRAPHY 144

(63) Junping, S. Derivation of the Reaction-Diffusion Equations., Math 480-01 Partial
Differential Equations and Mathematical Biology, http://www.resnet.wm.edu/

~jxshix/math490/ (accessed 07/08/2016).

(64) Weitsman, Y. J. Compos. Mater. 1976, 10, 193–204.

(65) Luhman, W. A.; Holmes, R. J. Adv. Funct. Mater. 2011, 21, 764–771.

(66) Terao, Y.; Sasabe, H.; Adachi, C. Appl. Phys. Lett. 2007, 90, 103515.

(67) Mikhnenko, O. V.; Cordella, F.; Sieval, A. B.; Hummelen, J. C.; Blom, P. W. M.;
Loi, M. A. J. Phys. Chem. B 2008, 112, 11601–11604.

(68) Haugeneder, A.; Neges, M.; Kallinger, C.; Spirkl, W.; Lemmer, U.; Feldmann, J.;
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(128) Köhler, H. Optica Acta: Int. J. Opt. 1981, 28, 1691–1701.

(129) The Nobel Prize in Chemistry 2014., http://www.nobelprize.org/nobel_prizes/
chemistry/laureates/2014/ (accessed 06/11/2016).
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Appendix A

Experimental Setup Details For
STED and TRUSTED

A.1 Part Numbers

Ref Description Company Part
1 achromatic doublet f = 150 mm ThorLabs AC254-150-A-ML
2 achromatic doublet f = 100 mm ThorLabs AC254-100-A-ML
3 reflective neutral density OD = 1 ThorLabs ND10A
4 half wave plate ThorLabs AHWP10M-600
5 Glan-Thompson polarizer Thorlabs GTH5M
6 achromatic doublet f = 10 mm ThorLabs AC080-010-A-ML
7 polarization maintaining single mode fiber 5 m ThorLabs PM105953
8 Olympus UPlanFL N 10x0.3 objective Thorlabs RMS10x-PF
9 half wave plate ThorLabs AHWP10M-600
10 polarizer ThorLabs LPVISA100-MP
11 achromatic doublet f = 125 mm ThorLabs AC254-125-A-ML
12 liquid crystal noise eater ThorLabs LCC3111L
13 achromatic doublet f = 100 mm ThorLabs AC254-100-A-ML
14 half waveplate ThorLabs AHWP10M-600
15 polarizer ThorLabs LPVIS100-MP2
16 absorptive neutral density OD = 1 NA NA
17 retro-reflector PLX OW-25-1E

mounted on delay stage Newport LS250CC
18 absorptive neutral density OD = 2 NA NA
19 achromatic doublet f = 75 mm ThorLabs AC254-075-A-ML
20 optical chopper Newport 3501
21 achromatic doublet f = 150 mm ThorLabs AC254-150-A-ML
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22 dichroic mirror Chroma T600lpxr-UF2
23 achromatic doublet f = 100 mm ThorLabs AC254-100-B-ML
24 achromatic doublet f = 45 mm ThorLabs AC254-045-B-ML
25 grating stretcher Clark-MXR, Inc NA
26 half waveplate ThorLabs AHWP10M-980
27 polarizer ThorLabs LPVIS100-MP
28 polarizing beam splitting cube Newport 10FC16PB.5
29 retro-reflector PLX OW-25-1E

mounted on delay stage Newport LS250CC
30 90◦ roof mirror PLX RM-10-2E
31 silver pick-off mirror NA NA
32 half waveplate ThorLabs AHWP10M-600

mounted on rotation stage Newport PR50CC
33 home built optical shutter NA NA
34 retro-reflector PLX OW-25-1E
35 90◦ roof mirror PLX RM-10-2E
36 silver pick-off mirror NA NA
37 half waveplate ThorLabs AHWP10M-980

mounted on rotation stage Newport PR50CC
38 optical shutter ThorLabs SHB1T
39 polarizing beam splitting cube Newport 10FC16PB.5
40 half waveplate ThorLabs AHWP10M-600
41 polarizer ThorLabs LPVIS100-MP
42 achromatic doublet f = 10 mm ThorLabs AC080-10-B-ML
43 single mode polarization maintaining fibber ThorLabs PM105-605
44 Olympus UPlanFL N 10x0.3 objective Thorlabs RMS10x-PF
45 achromatic doublet f = 75 mm ThorLabs AC254-075-B-ML
46 achromatic doublet f = 100 mm ThorLabs AC254-100-B-ML
47 half waveplate ThorLabs AHWP10M-600
48 vortex phase mask RPC Photonics VPP-1a
49 Glan-Laser polarizer ThorLabs GL15-B
50 achromatic doublet f = 35 mm ThorLabs AC254-035-B-ML
51 achromatic doublet f = 75 mm ThorLabs AC254-075-B-ML
52 dichroic mirror Chroma T650spxr
53 quarter waveplate Tower Optics A-25.4-B-.250-N4
54 63×/1.4NA HC PL APO CS2 oil objective Leica NA

mounted on XYZ positioner Newport VP-25XL-XYZL
55 Nano mover piezo positioning sample stage PI P-545.3C7
56 20×/0.7NA HC PL APO air objective Leica NA
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mounted on a linear positioner Newport VP-25XL
57 plano-convex lens f = 25.4 mm ThorLabs LA1951-A-ML
58 white light LED ThorLabs MWWHL3
59 silver mirror on kinematic mount Newport BK-3A
60 emission filter set
61 achromatic doublet f = 50 mm ThorLabs AC250-050-B-ML
62 fast-gated SPAD (see Section 3.5 for details)
63 plano-convex lens f = 200 mm ThorLabsv LA1708-A-ML
64 CMOS camera ThorLabs DCC1545M

Table A.1: Table of part numbers, referenced to the schematic of the
experimental setup in Figure 3.17.
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A.2 Custom Parts
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Figure A.1: Custom mount for the bottom objective in the
STED/TRUSTED Microscope.
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Figure A.2: Custom mount that interfaces the PI sample stage with Thor-
Lab Pedestals in the STED/TRUSTED Microscope.
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Figure A.3: Custom mount for the top objective in the STED/TRUSTED
Microscope.
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Figure A.4: Custom interface plate to add space between the top objec-
tive mount and the newport translation stage it is mounted on in the
STED/TRUSTED Microscope.
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A.3 Detection Amplification Circuit

Figure A.5: Picture of the detection circuit.

Figure A.6: Diagram of the detection circuit, where V+ = 15 V, V− = −15
V, R1 = 47 Ω, R2 = 100 Ω, C1 = 10 nF, C2 = 2.2 µF. The operational
amplifier is a National Semiconductor model LM6171. The capacitors
bridging the power supply (V+, V−) to ground reduce noise.
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Appendix B

Additional TRUSTED Data Sets

Comparing spatial averaging to unaveraged results: The data for the nine individual
sample locations, spaced by 30 µm over a 60×60 µm area and collected as part of a single
scan, which are averaged in the data reported in Figure 4.17, are shown in Figure B.1a-i
with overlaid fits in red. Note, that the error on each data point from individual sample
locations is increased relative to Figure 4.17 due to the reduced averaging, however, the same
general trend is seen. The variation in the calculated value of Ld over these sample locations
is shown in Figure B.1j with the error from the fit, but not the error due to the selection
of the degree of confinement, which is a systematic effect in these simultaneously collected
data sets, see Section 4.6.5. There does not appear to be any significant heterogeneity in
the reported values of Ld over the spatial locations, at least with the current degree of error
in the data, implying that the sample is likely amorphous at the spatial resolution given by
our single point measurements. It is possible, however, that further improvements to the
experiment to increase the signal-to-noise ratio could reveal some underlying heterogeneity
in this or other samples.

Measurement of reproducibility: Additional measurements of the exciton migration
length in CN-PPV thin films are shown in Figure B.2a-e. The presented data were taken
over a series of days, one set per day, at different positions on the sample. Note that each
scan is an average over nine spatial locations spaced by 30 µm over a 60×60 µm area, as in
Figure 4.17. Also shown, in Figure B.2f, is a summary of the value of Ld returned by the fit
for each location, shown with the error from the fit, but not the error from the selection of
the degree of confinement, which would likely be systematic in these successively collected
results, for comparative purposes. The consistency in the reported value of Ld over different
days of data collection and different sample locations indicates that the measurement is
reproducible.
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Figure B.1: The data from nine individual sample locations (parts a-i)
collected as part of a single scan, which were averaged to produce the
results shown in Figure 4.17. Fits to the data are overlaid in red. Part (j)
shows the variation in the calculated Ld over these sample locations.
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Figure B.2: Additional measurements of the exciton migration length in
CN-PPV thin films, at sample coordinates relative to the center of the
sample of: a) X = 2.72 mm Y = 2.80 mm, b) X = 3 mm Y = 2.88 mm,
c) X = 2 mm Y = 1.88 mm, d) X = 1 mm Y = 0.88 mm, e) X=0 mm Y
= 0.13 mm. f) A summary of the value of Ld returned by the fit for each
location.




